
Abstract. The stability of the dissipative Couette flow is exam-
ined in the linear approximation. The onset conditions and flow
instability properties are studied, with special emphasis placed
on the instability properties in the presence of a magnetic field
and density stratification. Theoretical and experimental results
on instability parameters are found to be in good agreement
(within a few percent).

1. Introduction

The stability of a flow in an annulus between two rotating co-
axial cylinders (the Taylor±Couette flow) is a classic problem
of hydrodynamic and magnetohydrodynamic stability. Stu-
dies of the laminar flow, currently referred to as the Couette
flow, trace back to the 19th-century experiments designed to
measure fluid viscosities [1±3].

Rayleigh [4] derived a stability criterion [see Section 2,
Eqn (26)] for a rotating ideal incompressible fluid under
axially symmetric perturbations. Later, it was shown in [5]
that the Rayleigh criterion is the necessary and sufficient
condition of stability under such perturbations in ideal fluids.
Viscosity stabilizes theCouette flow, and the viscous flow that
would be unstable according to condition (26) loses stability
only if the angular rotation speed (or the Reynolds number)

exceeds some critical value; in this case, condition (26)
becomes only a sufficient one [6] (see also Ref. [7]). The
critical Reynolds numbers theoretically derived by Taylor [8]
proved to be in remarkable agreement (within several
percent) with his experimental data. Presently, an analytic
formula that approximates the Couette flow stability curve
for the entire range of governing parameters is known [9].

The success of the theory in accurately reproducing
experimental results, as well as the relative simplicity of
both theoretical models and experiment, predetermined the
great interest in the Taylor±Couette flow, making it a
conceptual problem in the theory of hydrodynamic and
hydromagnetic stability. Papers devoted to this problem are
counted in three- if not four-digit numbers. Many results
are summarized in monographs and reviews (see, e.g.,
Refs [7, 10±13]). An international conference on the
Taylor±Couette flow is held every two years; the last one,
the 15th in sequence, took place in France in 2007 [14]. It is
noteworthy that the agreement between theoretical and
experimental results pertaining to the stability of the
Couette flow gives support to the so-called global stability
theory, which hinges on the presence of boundary condi-
tions. In contrast, results obtained in the framework of a
local approach might prove unreliable (i.e., predicting
instability for stable flows and vice versa) [15].

In mentioning the successes in studying the Taylor±
Couette flow, the existing difficulties must also be men-
tioned. Admittedly, the Couette flow between a resting inner
and a rotating outer cylindersmust, according to theRayleigh
stability criterion, be stable under axially symmetric perturba-
tions. But the early experiments in [2, 3] already demonstrated
that the stability is lost for a sufficiently fast rotation. This
instability was not encountered in the original experiments by
Taylor, but subsequent research [16] lent support to Couette's
results. The discrepancy between the theory and the experi-
ment has not yet received an exhaustive explanation. The
present situation remains ambiguous [17, 18]. In particular,
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the instability of a flow that is stable according to the linear
theory can be rooted in nonlinearities and imperfections of
the experiment proper: nonalignment of the cylinder axes,
roughness of cylinder surfaces, unsteadiness of rotation, and
so on. Removing these hampering factors also removes the
flow instability [18, 19]. However, the larger the Reynolds
number (rotation speed), the higher the constraints on the
experimental setup with respect to these imperfections.
Nonideal behavior can also emerge from boundary effects
stemming from a finite height of the cylinders [20]. They can
be neglected for small Reynolds numbers, but become a
serious problem for Reynolds numbers of the order of 105

or larger.
It is well known (see, e.g., Ref. [21]) that because of the

instability, a purely rotational laminar one-dimensional
Couette flow evolves into a more complex (but stable) three-
dimensional flow with the structure dependent on the relative
rotation speed of the cylinders. On the way to well-developed
turbulence, the Taylor±Couette flow passes through several
such stable states, characterized by an increasingly complex
structure, which emerge as the Reynolds number increases.
Given this behavior, the instability of a purely rotational
Couette flow is commonly referred to as the primary
instability of the Taylor±Couette flow.

In this paper, we theoretically study the Couette flow
instability (i.e., the primary instability of the Taylor±Couette
flow) under the effects of density stratification and a
magnetic field. Notwithstanding the long history of the
problem, essential progress in this area was achieved only
recently; it is barely reflected in the existing review literature
on the Taylor±Couette flow. We limit ourselves to the
simplest, linear stability theory. This limitation is not
essential in our case, because the linear theory already
agrees well with experimental data on the primary instabil-
ity.

In Sections 2±5, general equations describing the system
behavior and defining its steady state are given. They are
followed by equations describing the stability of the steady
state in the linear approximation. As a rule, they can be
worked out only by numerical methods, which are standard
and are briefly discussed when the linearized equations first
appear. Some results for an ideal fluid can be derived
analytically. Each section ends with a brief discussion of the
results pertaining to the instability of the Couette flow.
General conclusions are given in Section 6.

2. The classical Couette flow

We consider a viscous incompressible fluid with a uniform
density r and dynamic viscosity m in a gap between two
infinitely long coaxial cylinders. The fluid obeys the hydro-
dynamical equations

qU
qt
� �UH�U � ÿ 1

r
HP� nDU� g ; �1�

divU � 0 ; �2�

where P is the pressure, r is the density, n is the kinematic
viscosity ( m � rn), U is the fluid velocity, and g is the
acceleration due to external forces. In Eqn (1), the contribu-
tion of volume viscosity and friction is omitted, as is usually
done. Given the geometry of the problem, we consider the
cylindrical system of coordinates (R, f, z). In the absence of

external forces, system (1), (2) becomes
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For cylinders rotating with different angular speeds in the
general case, system (3)±(6) allows a solution in the form

U � ÿ0;RO�R�; 0� ; P � P�R� ; r � r0 � const : �9�

We note that this form is preserved in the presence of external
forces, expressed as g � H�c�R��, which simply implies
redefining the pressure. For an ideal fluid (n � 0), the
angular velocity is an arbitrary function of the radius
satisfying boundary condition. In a viscous fluid, the
azimuthal component of momentum equation (4) deter-
mines the behavior of the function O�R�:

Uf�R� � RO � aOR� bO
R
; �10�

where constants aO and bO are determined from the boundary
conditions

aO � Oin
m̂O ÿ Ẑ 2

1ÿ Ẑ 2
; bO � OinR

2
in

1ÿ m̂O
1ÿ Ẑ 2

; �11�

Ẑ � Rin

Rout
; m̂O �

Oout

Oin
: �12�

Here, Rin and Rout are the radii and Oin and Oout are the
angular velocities pertaining to the internal and external
cylinders. If the angular velocity is known, the pressure is
determined from Eqn (3), which, taking Eqn (9) into account,
reduces to

O 2R � 1

r0

dP

dR
: �13�

Just the velocity profile obeying Eqn (10) is observed
experimentally for a stable, steady Taylor±Couette flow,
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which is then called the Couette flow. The functional law for
the angular velocity profile is therefore fixed and the entire set
of possible flows is spanned by the two parameters aO and bO
(or Ẑ and m̂O), which are fixed by the geometry of the problem
(the gap between the cylinders) and the boundary conditions.
This simplification is a consequence of the cylindrical
geometry and is lacking, for example, in the spherical
geometry. For completeness, the existence of a general
solution for finite-length cylinders [22] should be mentioned.
It obviously depends on the axial coordinate, in addition to
the radial one.

We are interested in the stability of solution (9). In this
paper, we are limited to exploring the linear stability under
infinitesimal perturbations. The perturbed solution is written
as

uR�R;f; z� ; RO�R� � uf�R;f; z� ;

uz�R;f; z� ; P�R� � p�R;f; z� ; �14�

where uR, uf, uz, and p are small compared to the respective
unperturbed quantities. Linearizing system (3)±(6) with
respect to the unperturbed fields, we obtain

quR
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�
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R 2
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; �15�

quf
qt
� O

quf
qf
� 1

R

q
qR
�R 2O� uR

� ÿ 1

r0R
qp
qf
� n
�
Duf � 2

R 2

quR
qf
ÿ uf

R 2

�
; �16�
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To set up the problem completely, Eqns (15)±(18) must be
complemented by six boundary conditions. The velocity of
viscous fluid at a boundary equals that of the boundary, and
hence the velocity perturbations are

uR � uf � uz � 0 �19�

for both the inner (R � Rin) and outer (R � Rout) cylinders.
The coefficients of system (15)±(18) depend only on the

radial coordinate, and therefore the solution can be written as
a sum of normal modes of the form

f � f �R� exp �i�mf� kz� ot�� ; �20�

where f denotes any of the sought variables. Regarding the
geometry of the problem, we readily realize that the axial
wave number can be any real number, the azimuthal number
m can be only an integer, and the increment o takes an
arbitrary complex value. Moreover, without losing the
generality, only positive k and m can be considered. Expan-
sion (20) reduces the problem in three dimension to a single

dimension:
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duR
dR
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R
� i

m

R
uf � ikuz � 0 : �24�

If the fluid is ideal (n � 0) and perturbations are axially
symmetric (m � 0), then system (21)±(24) further reduces to a
single second-order equation,

ÿ d

dR

�
1

R

d

dR
�RuR�

�
� k 2uR ÿ k 2

o 2

1

R 3

d

dR
�R 2O�2uR � 0:

�25�

Equation (25) allows deriving the necessary and sufficient
condition for the stability of a rotating fluid. For example,
this can be done by invoking the results of the classic Sturm±
Liouville theory. Indeed, Eqn (25) with boundary conditions
(19) is the classic Sturm±Liouville problem for eigenvalues
k 2=o 2 [7]. Because k is real, the sign ofo 2 coincides with that
of k 2=o 2. According to the general theory, all eigenvalues are
positive (and hence the flow is stable) if and only if

1

R 3

d

dR
�R 2O�2 > 0 �26�

for any point within the interval under consideration.
The conjecture that condition (26) is sufficient for stability

was first proved by Rayleigh [4] and bears his name. The
exchange method used by Rayleigh is physically very
transparent and points to a direct link between criterion (26)
and themomentum conservation (see, e.g., Refs [7, 23]). It can
be readily shown that for a flow described by Eqn (10),
criterion (26) becomes [7]

m̂O > Ẑ 2 : �27�

Hence, the ideal Couette flow is stable under axially
symmetric perturbations when the angular momentum is an
increasing function of the radius everywhere in the annulus
between the cylinders. If there are points where the angular
momentum decreases with the radius, the flow is unstable
under axially symmetric perturbations.

In what follows, the instability evolving in a rotating fluid
will be referred to as the rotational instability (RI).
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The general stability criterion, similar to (26), is still not
known for asymmetric perturbations. It can only be argued
that (26) is a necessary condition for the stability under
asymmetric perturbations [24, 25]. It is nevertheless well
known that criterion (26) is insufficient for the stability of
an ideal incompressible homogeneous flow under asymmetric
perturbations [26]. It was shown in [27] that asymmetric
modes might be unstable at the Rayleigh line ( m̂O � Ẑ 2).
However, it was noted in [28] that this result is extremely
sensitive to the boundary conditions. The result has been
obtained for free boundary conditions, but the unstable
modes disappear [29] in the case of the no-slip boundary
condition (19).

For analyzing a viscous Couette flow, it is convenient to
bring the equations to dimensionless form. Let d � Rout ÿ Rin

be the gap between the cylinders. We take R0 � �Rind �1=2 to
be the unit length, OinR0 the unit velocity, Oin the unit
frequency, and r0nOin the unit pressure. The dimensionless
number in the problem is the Reynolds number

Re � OinR
2
0

n
; �28�

and the problem parameters are m̂O, Ẑ, m, k, and o. With the
same notation for dimensionless and dimensional variables,
the system of Eqns (21)±(24) is written as

iRe�o�mO� uR ÿ 2ReOuf � ÿ dp
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R

duR
dR
ÿ uR
R 2
ÿ
�
m 2

R 2
� k 2

�
uR ÿ 2i

m

R 2
uf; �29�

iRe�o�mO� uf �Re

R

d�R 2O�
dR

uR � ÿi m
R

p� d2uf
dR 2

� 1

R

duf
dR
ÿ uf

R 2
ÿ
�
m 2

R 2
� k 2

�
uf � 2i

m

R 2
uR ; �30�

iRe�o�mO� uz�ÿikp� d2uz
dR 2

� 1

R

duz
dR
ÿ
�
m 2

R 2
� k 2

�
uz ;

�31�
duR
dR
� uR

R
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R
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In the general case, system (29)±(32) complemented with
boundary conditions (19) is a classic eigenvalue problem of
the form

L�Y � � 0 ; �33�

where Y denotes the whole set of problem parameters (wave
numbers, increment and dimensionless numbers). Generally,
L is complex valued. The imaginary and real parts of L are
simultaneously equal to zero only if all the parameters are
eigenvalues.

If a solution exists, the range of parameters where the
imaginary part of the increment is positive, Imo > 0,
corresponds to stable flows, and the range where Imo < 0
corresponds to unstable ones. States with Imo � 0 corre-
spond to neutrally stable flows (i.e., perturbations neither
grow nor decay). The Couette flow is stable at small Reynolds
numbers and can lose stability as the Reynolds number
increases. Taylor assumed [8] that the flow loses stability for

the Reynolds number that is the minimum over neutral
regions for all possible values of the parameters (these
minimum Reynolds numbers are called critical). We note
that in this framework, no statement can be made about the
magnitude of the instability increment (the imaginary part of
the increment is equal to zero in neutral regions). The
instability increment can only be estimated in a nonlinear
framework. This aspect makes the linear stability theory for
ideal fluids essentially different from that in the viscous case.
In an ideal fluid, on the contrary, we can compute the
instability increment, but cannot determine the Reynolds
number.

The real part of the increment Reo can be equal to or
different from zero on the neutral curve in the general case. If
Reo � 0, then the instability evolves monotonically and the
system typically passes into a new stable state as a result of
unfolding instability (the process is often referred to as the
principle of stability exchange [7]). If the real part of the
increment is nonzero, the instability evolves as an oscillatory
one.

Typically, problem (33) can only be solved numerically.
Three main approaches have been used: 1) Galerkin-type
methods, according to which the solution is approximated as
a series in basis functions chosen so as to ensure fast
convergence (see, e.g., Refs [7, 10]); 2) Runge±Kutta
methods, where the solution is reduced, due to the linearity
of problem (33), to the sum of solutions of several initial value
problems, sought by the Runge±Kutta method (see, e.g.,
Ref. [30]); 3) the method of finite differences. In all three
cases, the problem amounts to computing the determinant of
a matrix (generally, a complex-valued one) and finding its
zeros. Current practices give preference to the third method.
The first one turns out to be rather cumbersome (requires
integrations to determine the coefficients of the series) and
does not suggest a robust choice for the basis functions. The
second method frequently suffers from a strong dependence
of the solution on boundary conditions. As a consequence,
the solution can only be found when trial initial conditions
(which are used to augment the boundary conditions on one
of the boundaries to transform the boundary value problem
into an initial value one) are fairly close to the true ones.
Evidently, a general method allowing the selection of
appropriately close trial conditions does not exist.

A typical neutral stability curve for the Couette flow is
schematically presented in Fig. 1. According to Fig. 1, the
critical Reynolds numbers are minimum when the outer
cylinder is at rest ( m̂O � 0). We note that not only the
Reynolds number but also other parameters (k, m, and
Reo) vary along the curve. For cylinders rotating in the
same sense, the axially symmetric mode is always the most
unstable and m � 0 for m̂O > 0. Modes with m > 0 become
the most unstable [33] only when the cylinders are counter-
rotating ( m̂O < 0). The value of m̂O at which the axially
symmetric instability is replaced with the asymmetric one
varies as a function of the parameter Ẑ.

The asymmetric instability is obviously an oscillatory one,
Reo 6� 0. As concerns the axially symmetric instability, both
the experimental and theoretical results indicated that the
principle of stability exchange (i.e.,Reo � 0) is applicable in
this case to the Couette flow. A rigorous proof of this fact was
given only recently [32].

When the Reynolds number exceeds the critical value,
flows with m̂O > 0 evolve from the ground state described by
Eqn (10) to another stable state that is periodic in the vertical
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direction and is presently referred to as Taylor vortices. Two
vortices rotating in opposite senses then form over a single
period. We let dz denote the vortex size in the axial direction;
the wave number corresponding to this size is expressed as
k � p=dz. Using the unit size R0 defined above, we obtain

dz
Rout ÿ Rin

� p
k

�����������
Ẑ

1ÿ Ẑ

s
: �34�

The magnitude of k is strongly sensitive to the value of m̂O for
Ẑ kept fixed. For a resting outer cylinder ( m̂O � 0), the Taylor
vortices are practically of square form (i.e., the vortex height
is nearly equal to the size of the gap between the cylinders).
Experimental values for the critical Reynolds number and the
axial wave number set by the size of Taylor vortices for the
Reynolds numbers slightly in excess of the critical value can
be compared to the respective theoretical values. It turns out
that the theoretical and experimental values coincide with
each other within several percent over virtually the entire
interval of parameters Ẑ and m̂O.

If the real part of o is different from zero, it is typically
negative (i.e., the instability, if manifested as a wave,
propagates against the basic rotation). However, as we see
in Section 3, this is not a general statement because many
exceptions with a positive real part of o exist.

3. Flows with nonuniform density

3.1 Radial density stratification
The problem considered in Section 2 allows a natural
generalization to the case of nonuniform density. We again
consider an incompressible fluid and assume that the density
is distributed nonuniformly but the dynamic viscosity is
uniform as previously (i.e., is independent of the density).
Equations (1) and (2) must be augmented with

qr
qt
� �UH� r � 0 : �35�

Systems (1) and (2) together with Eqn (35) again allow a
solution of form (9), but for the density depending on the
radius, r�R�, where, as before, O�R� is either an arbitrary
function satisfying boundary conditions for an ideal fluid or a
function given by Eqn (10) for a viscous fluid. Perturbed state
(14) must now be augmented by density perturbations
r � r0�R� � r�R;f; z�. All the equations of system (21)±(24)
except Eqn (21) preserve their form. Equation (21) acquires
an additional term related to density perturbations:

i�o�mO� uR ÿ 2Ouf ÿ O 2R
r
r0
� ÿ 1

r0

dp

dR

�n
�
d2uR
dR 2

� 1

R

duR
dR
ÿ uR
R 2
ÿ
�
m 2

R 2
� k 2

�
uR ÿ 2i

m

R 2
uf

�
;

�36�

and Eqn (35), after linearization and expansion in normal
modes, becomes

i�o�mO� r� dr0
dR

uR � 0 : �37�
We note that in solving system (22)±(24), (36), (37), it must be
borne in mind that the kinematic viscosity n also depends on
the radial coordinate because n � m=r0�R�, and m is taken to
be constant. This dependence can be discarded only if the
stratification is weak.

For an ideal fluid and axially symmetric perturbations,
system of equations (22)±(24), (36), (37) reduces by straight-
forward manipulations to

ÿ d

dR

�
r0
R

d

dR
�RuR�

�
� k 2uR ÿ k 2

o 2
r0�K 2 �N 2

R� uR � 0 ;

�38�

where

K 2 � 1

R 3

d

dR
�OR 2�2 ; N 2

R �
1

r0

dr0
dR

O 2R ; �39�

K is the epicyclic frequency (the terminology adopted from the
literature on astrophysics), and NR is the buoyancy (Brunt±
V�ais�al�a) frequency. In the presence of a radial external force
gR�R�, the buoyancy frequency is determined by the joint
action of this force and the centrifugal force,

N 2
R �

1

r0

dr0
dR
�O 2R� gR� : �40�

Equation (38) together with boundary conditions (19)
constitutes the classic Sturm±Liouville problem. Therefore,
for the stability of an ideal incompressible Couette flow with
radial stratification under axially symmetric perturbations, it
is necessary and sufficient that the condition [33]

K 2 �N 2
R > 0 �41�

be satisfied. Condition (41) is a generalization of condition
(26) to incompressible fluids with radial density stratification.
If the fluid is homogeneous, condition (41) reduces to (26),
and for a nonrotating fluid, to the Rayleigh±Taylor criterion.
A stable density stratification stabilizes ideal flows.

We recall that asymmetric modes can become unstable
beyond the Rayleigh limit (see Section 2). This instability,
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Figure 1. A typical neutral stability curve for a dissipative Couette flow

(the solid curve) for a fixed Ẑ. A viscous flow is unstable above the curve

and stable below it. The dashed line corresponds to the limiting Rayleigh

line for the flow described by Eqn (10).
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however, is strongly dependent on boundary conditions and
seems not to occur for the classical Couette flow. Never-
theless, the results in Section 3.2 demonstrate that a vertical
density stratification might have an essential impact on the
stability of axially symmetric modes beyond the Rayleigh
limit. For a radial stratification, this question is still awaiting
an analysis.

The Couette flow with a radial density gradient has not
attracted sufficient attention; we can only mention Ref. [34].
Its results, however, lack the generality (computations were
carried out only for a resting outer cylinder and weak
stratification) sufficient for any conclusions going beyond
simple condition (41). Such lack of interest is supposedly
related to the fact that even the simplest model of an ideal
incompressible fluid agrees well with observations. Besides,
experimental data on the Couette flow with radial density
stratification in the presence of an additional radial force (to
the centrifugal force) are absent to the best of our knowledge.
Admittedly, this is linked to the difficulty in creating such a
force in the laboratory. We note that a far more complex
problem involving buoyancy forces caused by radial tem-
perature gradients has received much more attention (see,
e.g., Ref. [35]), but discussing it is beyond the scope of this
paper.

3.2 Axial density stratification
We assume the presence of an external force with a uniform
acceleration gzez directed along the cylinder axes (its role is
played by the gravity force for vertically aligned cylinders in
laboratory conditions). The right-hand side of Eqn (5) then
acquires an extra term gz:

qUz

qt
� �UH�Uz � ÿ 1

r
qP
qz
� gz � nDUz : �42�

We are interested in the stability of a steady solution of
system (3), (4), (6), (35), (42) for a given vertical density
stratification r � r�z�. We assume that the steady flow
preserves the form it had in the absence of density stratifica-
tion, U � �0;RO�R�; 0�. It then follows that

U 2
f

R
� 1

r
qP
qR

;
q2Uf

qR 2
� 1

R

qUf

qR
ÿUf

R 2
� 0 ;

1

r
qP
qz
� gz :

�43�

As previously, the second equation of system (43) determines
rotation law (10). But differentiating the first of Eqns (43)
with respect to z and the third with respect to R, and
subtracting the resultant expressions gives

RO 2 dr
dz
� 0 : �44�

According to Eqn (44), the density can depend on the axial
coordinate only in the absence of rotation. Therefore, the
initial assumption thatO � O�R� and r � r�z� is inconsistent
and wemust allow amore general functional form ofO and r.
The functional formO � O�R� is determined by the boundary
conditions (the angular rotation speed of the cylinders is
independent of z), and it is therefore nature to assume a more
general density distribution, r � r�R; z�. In this case, condi-
tion (44) becomes

RO 2 qr
qz
ÿ gz

qr
qR
� 0 : �45�

Hence, even if the initial density distribution in a resting fluid
is one-dimensional, r � r�z�, it becomes two-dimensional,
r � r�R; z�, under the centrifugal force action. This essen-
tially complicates the problem.

In real experiments, however, the initial density stratifica-
tion (without rotation) and the ratio of the centrifugal to
gravitational acceleration are both small [36, 37]:���� d ln rd ln z

����5 1 ;

����RO 2

gz

����5 1 : �46�

With conditions (46), it follows from Eqn (45) that the radial
density stratification has an even higher order of smallness
than the vertical one. We can then write

r�r0 � r1�z� �r2�R; z� � . . . ; j r1j5 r0 ; j r2j5 j r1j ;
�47�

where r0 is a uniform reference density. Condition (45) is
obviously satisfied in the zeroth approximation; in the first
approximation, it takes the form

RO 2 dr1
dz
ÿ gz

qr2
qR
� 0 : �48�

It follows that the steady solution of system (3), (4), (6), (35),
(42) constrained by conditions (46) can be expressed as

UR � Uz � 0 ; Uf � RO�R�;

P � P0�z� � P1�R; z� � . . . ; r � r0 � r1�z� � . . . ; �49�

whereO�R� is described by Eqns (10) and (11), and P0 and P1

(P1 5P0) are determined by the equations

1

r0

dP0

dz
� gz ;

U 2
f

R
� 1

r0

qP1

qR
;

1

r1

qP1

qz
� gz : �50�

We are interested in the stability of steady state (49). In the
linear approximation, the perturbed flow is represented as

uR�R;f; z� ; uf�R;f; z� � RO�R� ; uz�R;f; z� ;

P0�z� � P1�R; z� � p�R;f; z� ; r0 � r1�z� � r�R;f; z� ;
�51�

where the perturbations uR, uf, uz, p, and r are small
compared to their unperturbed fields.

The linearization of system (3), (4), (6), (35), (42) preserves
Eqns (15), (16), and (18); Eqns (42) and (35) are transformed
into

quz
qt
� O

quz
qf
� ÿ 1

r0

qp
qz
� gz

r
r0
� nHuz ; �52�

qr
qt
� O

qr
qf
� dr1

dz
uz � 0 ; �53�

and the linearized system becomes equivalent to the Boussi-
nesq approximation.

If the density stratification is linear, then

dr1
dz
� const ; �54�
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the coefficients of the linear system still depend only on the
radius, and the solution can be sought as an expansion in
normal modes (20).

To pass to a dimensionless form, we chooseR0��Rind �1=2
as the unit length (d�RoutÿRin), OinR0 as the unit velocity,
Oin as the unit frequency, r0R0O 2

in=gz as the unit density, and
r0nOin as the unit pressure. Additionally, we introduce the
buoyancy (Brunt±V�ais�al�a) frequency Nz,

N 2
z �

gz
r0

dr1
dz

: �55�

The problem is now characterized by the Reynolds (Re)
and Froude (Fr) numbers

Re � OinR
2
0

n
; Fr � Oin

Nz
: �56�

Keeping the same notation for dimensionless and dimen-
sional fields, we obtain

iRe�o�mO� uR ÿ 2ReO uf � ÿ dp

dR
� d2uR

dR 2

� 1

R

duR
dR
ÿ uR
R 2
ÿ
�
m 2

R 2
� k 2

�
uR ÿ 2i

m

R 2
uf ; �57�

iRe�o�mO� uf �Re

R

d�R2O�
dR

uR � ÿi m
R

p� d2uf
dR 2

� 1

R

duf
dR
ÿ uf

R 2
ÿ
�
m 2

R 2
� k 2

�
uf � 2i

m

R 2
uR ; �58�

iRe�o�mO� uz � ÿikp�Re r� d2uz
dR 2

� 1

R

duz
dR
ÿ
�
m 2

R 2
� k 2

�
uz ; �59�

duR
dR
� uR

R
� i

m

R
uf � ikuz � 0 ; �60�

i�o�mO� r�N 2
z uz � 0 : �61�

The boundary conditions are still given by Eqn (19) for
both outer and inner cylinders.

The stability condition for a rotating fluid having an axial
density gradient under axially symmetric perturbations has
the form [33]

1

R 3

d�R2O�2
dR

�N 2
z > 0 ; �62�

which translates to Rayleigh criterion (26) for a homogeneous
fluid and the Rayleigh±Taylor one for a nonrotating fluid.
The Couette flow with an axial density gradient was
theoretically considered by Thorpe [38], who conjectured
that a stable vertical density gradient stabilizes the flow and
reduces the axial size of Taylor vortices. Further theoretical
development in Ref. [39] and experiments in Refs [36, 37] for a
resting outer cylinder lent support to Thorpe's conclusions.

But the experimental data in Ref. [40] have already
demonstrated the existence of a principally new instability
developing beyond theRayleigh limit. Paradoxically, this new
instability received proper attention neither from the research
community nor from the authors, who failed to emphasize it
in the abstract and conclusions, only briefly mentioning it in
passing in the text. The only plausible explanation seems to be

the lack of sufficient confidence in the accuracy of the
experiment.

Only in 2001 did the linear analysis of stability for an ideal
Couette flow [41, 42] demonstrate that the sufficient condi-
tion for the instability under asymmetric perturbations does
not amount to the requirement that the angular momentum
be an increasing function of radius. Instead, it constrains the
angular velocity magnitude,

dO 2

dr
< 0 ; �63�

which shifts the instability bound beyond the Raleigh limit.
We note that condition (63) exactly corresponds to that of
magnetorotational instability (see Section 4.1, Eqn (97)) and
for rotation law (10) takes the form

m̂O < 1 : �64�

Illustrative results in Refs [41, 42] pertaining to nonideal
flows have demonstrated that the instability persists beyond
the Rayleigh limit ( m̂O � Ẑ 2).

The analysis in Ref. [43] helped establish the applicability
limits (46) of Eqns (57)±(61) used to explore the stability of a
Couette flow with vertical density stratification. The numer-
ical results in Ref. [43] have shown that the linear theory in the
Boussinesq approximation agrees well with experimental
data pertaining to states before the Rayleigh limit at weak
stratification (see Fig. 2 in Ref. [43]), as well as to states
beyond the Rayleigh limit [40]. Recently, a new and much
more elaborate experiment was conducted [44]. Its experi-
mental data and the numerical results in Ref. [43] were found
to agree well both before and beyond the Rayleigh limit.

A typical behavior of neutral stability curves (a flow is
stable below them and unstable above) for a nonideal Couette
flow with stable vertical density stratification is schematically
displayed in Fig. 2. In the absence of stable vertical density
stratification, the axially symmetric mode (solid curve) is the
most unstable. This curve, in accordance with condition (26),
does not intersect the Rayleigh limit line ( m̂O � Ẑ 2). The

0 1

m̂ O
�

m̂ z

m̂ O
�

Ẑ
2

m̂O

Re

Figure 2. Schematics of neutral stability curves in the presence of axial

density stratification and fixed Ẑ for axially symmetric (m � 0, the dashed

line) and asymmetric (m � 1, the dashed-dotted line) perturbations. For

comparison, the solid curve corresponds tom � 0 in the absence of density

stratification.
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stable density stratification stabilizes the axially symmetric
mode (the dashed curve goes above the solid one), but
destabilizes asymmetric modes, which remain unstable even
beyond theRayleigh limit up to some bounding value m̂O � m̂z
(Ẑ 2 < m̂z < 1). The results of computations in Refs [43, 45]
demonstrate that m̂z reaches the largest value for the m � 1
mode (the dashed-dotted curve in Fig. 2). The neutral curves
for modes with larger m pass above the curve for the m � 1
mode.

The results in Refs [43, 45] have additionally shown that
the instability criterion for the Couette flow with a vertical
density gradient under asymmetric perturbation expressed by
Eqn (63) is excessively restrictive. In reality, the bounding
value m̂z is strongly sensitive to the gap between the cylinders Ẑ
and tends to unity only in the limit of a disappearing gap.
Hence, the wider the gap between the cylinders, the smaller is
the bounding value m̂z.

We recall that asymmetric modes are less stable than the
symmetric mode in the uniform Couette flow only if the
cylinders rotate in opposite senses [31]. In the presence of
stable axial stratification, the asymmetric modes can also be
less stable for corotating cylinders.

In the absence of a density gradient, Reo � 0 and the
instability evolves monotonically. Equation (61) shows that
in the presence of a density gradient, the neutral stability
corresponds to the nonzero real part of the frequency even for
the axially symmetric mode, and the instability develops as an
oscillatory one. As a rule,Reo < 0 and the instability is seen
as a wave traveling against the rotation.

In summary, the axial density gradient, even being stable,
destabilizes the Couette flow and makes it unstable beyond
the Rayleigh limit ( m̂O � Ẑ 2). It is impossible to derive a
simple instability criterion in this case due to the asymmetric
character of the instability. We say that this is a stratorota-
tional instability (SRI).

4. A flow in the presence of a magnetic field

An incompressible homogeneous conducting fluid in the
presence of a magnetic field is described by the equations

qU
qt
� �UH�U � ÿ 1

r
HP� nDU� 1

c
j� B ; �65�

divU � 0 ; �66�
qB
qt
� ÿc rotE ; �67�

where j is the electric current density, E is the electric field, B
is the magnetic field, and c is the speed of light. If the standard
Ohm law is applicable to the fluid,

E� 1

c
U� B � ROm j ; �68�

where ROm is the specific electric resistance, then neglecting
the displacement current

j � c

4p
rotB ; �69�

in the magnetic induction equation, we can write Eqn (67) as

qB
qt
� rot �U� B� � ZDB ; �70�

where Z is the magnetic diffusion coefficient. It is assumed in
Eqn (70) that Z is uniform and that

divB � 0 : �71�

In a cylindrical coordinate system, Eqns (65), (66), (70),
and (71) become

qUR

qt
� �UH�UR ÿ

U 2
f

R
ÿ 1

4pr

�
�BH�BR ÿ

B 2
f

R

�
� ÿ 1

r
q
qR

�
P� B 2

8p

�
� n
�
DUR ÿ 2

R 2

qUf

qf
ÿUR

R 2

�
; �72�

qUf

qt
� �UH�Uf �UfUR

R
ÿ 1

4pr

�
�BH�Bf � BfBR

R

�
� ÿ 1

rR
q
qf

�
P� B 2

8p

�
� n
�
DUf � 2

R 2

qUR

qf
ÿUf

R 2

�
; �73�

qUz

qt
� �UH�Uz ÿ 1

4pr
�BH�Bz

� ÿ 1

r
q
qz

�
P� B 2

8p

�
� nDUz; �74�

qUR

qR
�UR

R
� 1

R

qUf

qf
� qUz

qz
� 0; �75�

qBR

qt
� �UH�BR ÿ �BH�UR � Z

�
DBR ÿ 2

R 2

qBf

qf
ÿ BR

R 2

�
;

�76�
qBf

qt
� �UH�Bf ÿ �BH�Uf � 1

R
�UfBR ÿURBf�

� Z
�
DBf � 2

R 2

qBR

qf
ÿ Bf

R 2

�
; �77�

qBz

qt
� �UH�Bz ÿ �BH�Uz � ZDBz; �78�

qBR

qR
� BR

R
� 1

R

qBf

qf
� qBz

qz
� 0 ; �79�

where �AH�F and DF are defined by expressions (7) and (8).
We note that only three of the last four equations are
independent.

4.1 Uniform axial magnetic field
In the presence of a uniformmagnetic fieldB0 alignedwith the
rotation axis, Eqns (72)±(79) allow a steady solution of the
general form

P � P�R� ; r � r0 � const ; �80�

UR�R� � 0 ; Uf�R� � RO�R� ; Uz�R� � 0 ; �81�

BR�R� � 0 ; Bf�R� � 0 ; Bz�R� � B0 ; �82�
where, as in the absence of a magnetic field, O�R� is either an
arbitrary function of the radius satisfying the boundary
conditions for an ideal fluid or is given by Eqn (10) for a
nonideal fluid, with the pressure obeying Eqn (13) as
previously.
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We are interested in the stability of stationary solution
(80)±(82). We represent a perturbed solution in the linear
approximation as

uR�R;f; z� ; RO�R� � uf�R;f; z� ; uz�R;f; z� ;
bR�R;f; z� ; bf�R;f; z� ; B0 � bz�R;f; z� ;

P�R� � B 2
0

8p
� p�R;f; z� ; �83�

where the perturbations uR, uf, uz, bR, bf, bz, and p are small
compared to their unperturbed counterparts (we note that p is
the perturbation of the full pressure, with account for the
magnetic contribution). The coefficients of linearized system
(72)±(79) depend only on the radial coordinate, which allows
using expansion in normal modes (20).

To bring the equations to dimensionless form, we take
R0 � �Rin�Rout ÿ Rin��1=2 as the unit length, Oin as the unit
frequency, Z=R0 as the unit perturbed velocity, B0 as the unit
magnetic field (both perturbed and unperturbed), and
r0nZ=R

2
0 as the unit pressure.

Linearizing system (72)±(79), expanding the unknown
fields in normal modes (20), and keeping the notation used
for dimensional fields for their dimensionless counterparts,
we obtain

iRe�o�mO� uR ÿ 2ReOuf ÿ iHa2kbR

� ÿ dp
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� d2uR

dR 2
� 1

R

duR
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R 2

ÿ
�
m 2

R 2
� k 2

�
uR ÿ 2i

m

R 2
uf ; �84�

iRe�o�mO� uf �Re
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R 2
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R 2
� k 2

�
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R 2
uR ; �85�

iRe�o�mO� uz ÿ iHa2kbz � ÿikp� d2uz
dR 2

� 1

R

duz
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ÿ
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m 2

R 2
� k 2

�
uz ; �86�

duR
dR
� uR

R
� i

m

R
uf � ikuz � 0 ; �87�

iRe Pm�o�mO� bR ÿ ikuR � d2bR
dR 2

� 1

R

dbR
dR
ÿ bR
R 2

ÿ
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R 2
� k 2

�
bR ÿ 2i
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R 2
bf ; �88�

iRe Pm�o�mO� bf ÿRePmR
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dR

bR ÿ ikuf

� d2bf
dR 2

� 1

R
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ÿ bf

R 2
ÿ
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m 2

R 2
� k 2

�
bf � 2i
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�89�
iRe Pm�o�mO� bz ÿ ikuz

� d2bz
dR 2
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R

dbz
dR
ÿ
�
m 2

R 2
� k 2

�
bz; �90�

dbR
dR
� bR

R
� i

m

R
bf � ikbz � 0 ; �91�

where the magnetic Prandtl number, the Hartmann number,
and the Reynolds number,

Pm � n
Z
; Ha � B0R0���������������

4pr0nZ
p ; Re � OinR

2
0

n
; �92�

are the dimensionless problem numbers.
The boundary conditions for the velocity are set by

expressions (19) on both the inner and outer cylinders. The
boundary conditions for the magnetic field depend on the
conducting properties of the cylinder material. In theoretical
considerations, it is commonly assumed that the cylinders are
either ideal conductors or dielectrics. For an ideal conductor,
the normal component of the magnetic field and the
tangential component of the electric field vanish at the
boundary,

bR � 0 ;
dbf
dR
� bf

R
� 0 : �93�

Boundary conditions (93) apply for the inner as well as outer
cylinders.

For an ideal dielectric (i.e., a dielectric with the magnetic
permeability equal to unity), the internal magnetic field must
coincide with the external one at the boundary. In this case,
the absence of the normal component of the electric current
on the boundary immediately yields

bf � m

kR
bz : �94�

This conditions also holds for both the inner and the outer
boundaries. From the solution of the potential equation
Dc � 0 (where B � Hc) in cylindrical coordinates, we have

bR � ibz
Im�kR�

�
m

kR
Im�kR� � Im�1�kR�

�
� 0 �95�

at R � Rin and

bR � ibz
Km�kR�

�
m

kR
Km�kR� ÿ Km�1�kR�

�
� 0 �96�

at R � Rout, where Im and Km are the modified Bessel
functions, with the respective finite limits as R! 0 and
R!1.

Obviously, the axial uniform magnetic field is stable per
se. However, already in 1959 Velikhov [46] showed that it
destabilizes the Couette flow and the condition of an ideal
flow stability under axially symmetric perturbations becomes

dO2

dR
> 0 ; �97�

which corresponds to the inequality m̂O > 1 for rotation
law (10). In the absence of a magnetic field, the flow is stable
under axially symmetric perturbations for m̂O > Ẑ 2, and
therefore the main manifestation of the destabilizing action
of the axial uniform magnetic field is the destabilization of
flows with Ẑ 2 < m̂O < 1. This instability is conventionally
referred to as the magnetorotational instability (MRI). A
surge of interest in the MRI followed the recognition of its
importance as a plausible mechanism responsible for the
turbulence in accretion disks [47±49]. It is noteworthy that
the instability brought about by the azimuthal magnetic field
(see Section 4.2) can even be more important for under-
standing the nature of turbulence in accretion disks. We
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emphasize that theMRI for accretion disks was either derived
in the framework of the local approach neglecting the
boundary conditions or obtained by numerical simulations.
In both cases, the reliability of the results causes serious
doubts. The difficulties of the local approach were briefly
mentioned in the Introduction (as regards accretion disks, see
also Ref. [50]). As concerns numerical simulations, it can be
argued that they are carried out for parameters that are very
far from those pertaining to typical accretion disks. Accord-
ingly, the question on the relevance of the MRI to the
accretion disks remains open.

It is somewhat counterintuitive that criterion (97) does not
involve the magnetic field and does not reduce to Rayleigh
criterion (26) in the limit of small magnetic fields. The
paradox, as noted by Velikhov [46], is caused by treating the
fluid as an ideal one. In an ideal fluid, the magnetic field is
frozen in the fluid and becomes perturbed when a small
volume of the fluid is perturbed. In this case, the perturbed
part of the magnetic field line remains connected with the
unperturbed one that is rotating with the unperturbed
angular velocity. Correspondingly, the perturbed volume of
the fluid preserves the angular velocity instead of the angular
momentum (as would be the case in the absence of the field),
and criterion (26) is replaced by (97).

In the presence of dissipative processes, if the magnetic
field manages to diffuse out of the perturbed volume (or
degrades there) as the instability is evolving, then it ceases to
influence the development of the instability. Recalling that
the magnetic field decay time is inversely proportional to the
magnetic diffusion coefficient Z, while the instability devel-
opment time is inversely proportional to the kinematic
viscosity n, we expect that the MRI would depend on the
magnetic Prandtl number Pm [see Eqn (92)]. For small Pm,
the magnetic field does not have a chance to diffuse out of the
perturbed volume only under fast rotation (large Reynolds
numbers) and the MRI can be manifested only at large
Reynolds numbers (see below). In general, the larger the
magnetic Prandtl number, the smaller are the Reynolds
numbers allowing an MRI.

It is worth mentioning that in experiments on magne-
tized Couette flows [51±54], liquid metals with very low Pm
(of the order of 10ÿ5 or smaller) are used. And indeed, the
MRI has not been observed experimentally thus far. The
results in Ref. [55], as argued by its authors, demonstrate the
MRI for the spherical geometry. But the initial flow state (in
the absence of a magnetic field) was already unstable
(turbulent), and therefore the instability observed is not the
true initial flow instability. This does not permit identifying
the observed instability with the MRI. Instead, we can speak
about the instability of a magnetic field under the action of
turbulent flow.

Chandrasekhar's computations for a nonideal fluid [7]
conducted in the limit of small Pm for a hydrodynamically
unstable flow with m̂O < Ẑ 2 have demonstrated, in concert
with experiments, that the magnetic field only stabilizes the
flow. Subsequent computations [56±59] carried out in the
same approximation of small Pm confirmed the stabilizing
effect of the magnetic field. On this background, the analysis
in Ref. [60] remained unnoticed. The presence of theMRI for
a hydrodynamically unstable flow ( m̂O < Ẑ 2) at Pm � 1 was
actually demonstrated in [60].

It was shown in [61] that for hydrodynamically unstable
flows in the approximation of small Pm and a narrow gap
(1ÿ Ẑ5 1), themagnetorotational instability does disappear.

Numerical simulations in Ref. [62] generalize this result to an
arbitrary gap between the cylinders. They show that the value
Pm � 0:25 is the minimum for which the magnetorotational
instability is still observed for flows with 0 < m̂O < Ẑ 2.

The results in Ref. [62] are illustrated in Fig. 3, which
sketches the behavior of neutral stability curves (flows are
stable below the curve and unstable above it) for a hydro-
dynamically unstable Couette flow (m̂O < Ẑ 2). It can be seen
that the flow is unstable in the absence of the magnetic field
for Re > Re0, because the neutral stability curves intersect
the ordinate axis at Re0, the critical Reynolds number in the
absence of a magnetic field. For small Pm, the magnetic field
only suppresses the instability (the critical Reynolds numbers
increase with an increase in the Hartmann number). But for
Pm5 1, the MRI is generated for weak magnetic fields (and
the flow becomes unstable for Reynolds numbers smaller
than Re0). We note that the neutral stability curve becomes
universal for sufficiently small Pm �Pm < 10ÿ2�. In contrast,
it loses universality for large Pm. Its minimum displaces as a
function of Pm and becomes deeper as Pm increases
(although it does not reach zero because the magnetic field is
stable per se).

We return to the main effect of the MRI, the destabiliza-
tion of flows with Ẑ 2 < m̂O < 1. A typical neutral stability
curve for such flows is plotted in Fig. 4. Because the flow is
hydrodynamically stable, the curve does not intersect the
ordinate axis. Its main feature is the presence of a minimum
for a certain value of the magnetic field (because the flow is
stable in the absence of a magnetic field and a strong field
stabilizes the flow). The results in Ref. [62] have demonstrated
that the coordinates of this minimum in the (L, Rm) plane are
constant if the magnetic Prandtl number is sufficiently small
(Pm < 10ÿ2). Here,

L � B0R0

�4pr0�1=2Z
; Rm � OinR

2
0

Z
�98�

are the Lundquist number and the magnetic Reynolds
number. For small Pm, viscous dissipation processes, which
are proportional to n, proceed much more slowly than those
of Joule dissipation, which are proportional to Z. Conse-

0

Pm
5

1

Pm
0
1

Ha

Re

Re0

Figure 3. Schematics of neutral stability curves for a hydrodynamically

unstable Couette flow (m̂O < Ẑ 2) in the presence of a uniform axial

magnetic field.
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quently, the dimensionless numbers Rm and L are indeed
better suited for describing flows with small Pm. We mention
that the neutral stability curve in Fig. 4 becomes universal in
the Rm and L variables (it is independent of Pm) if
Pm < 10ÿ2.

The results in Ref. [62] are derived using exact equations
(84)±(91). Computations for very small Pm values encounter
nontrivial technical difficulties (as is almost always the case
with numerical computations when parameters become either
very large or very small). These difficulties can be avoided by
using approximate equations. In this case, instead of the
Chandrasekhar approximation, which assumes only the
smallness of Pm, a more elaborate approach must be used
that also takes the smallness of terms proportional to the
kinematic viscosity into account [61].

Is it possible to observe anMRI in experiments with liquid
metals for flows with Ẑ 2 < m̂O < 1? The results in Refs [62, 63]
suggest a rather negative answer to this question. Indeed, for
small Pm, we have

Re � Pmÿ1 ; �99�

which gives Reynolds numbers about 106 or higher for
Pm � 10ÿ5. As noted in the Introduction, the instability at
such large Reynolds numbers is observed even for theoreti-
cally stable flows, which is presumably linked to the nonideal
character of the experiment. The relative accuracy required to
remove the nonideal features must be of the order of or
smaller than Pm. Such accuracy remains beyond the reach of
present-day research. Therefore, observing an MRI in
experiments with liquid metals is a challenging problem
because instabilities triggered by the nonideal character of
setups can dominate the MRI proper. Experiments with
plasma might offer a more straightforward perspective [64].

Based on numerical simulations, it is argued in [65] that on
the Rayleigh line ( m̂ � Ẑ 2), the dependence of the critical
Reynolds number on Pm follows not Eqn (99) but the much
shallower law

Re � Pmÿ1=2 : �100�

This result can be derived analytically [63] by taking into
account that aO � 0 [see Eqn (11)] in expression (10) for the
angular velocity. Critical Reynolds numbers corresponding
to law (100) are markedly lower (� 104) than those for
law (99). However, the results in Ref. [63] demonstrate that
the change in critical Reynolds numbers at small Pm occurs as
a jump in the vicinity of the Rayleigh line (in practice, this
happens in a very narrow range with the width of the order of
Pm), which strongly hampers experimental efforts (in
particular, the rotation of the cylinders must be maintained
with a very high relative accuracy, no worse than the order of
Pm). It was noted in [66] that if critical Reynolds numbers are
taken not for the optimal magnetic field (when they are
minimal) but for some fixed magnetic field, then the jump
might be not so sharp. For strong magnetic fields, indeed, the
jump is more gradual, but the Reynolds numbers themselves
become large, preserving the problems noted above.

As regards theMRI structure, we remark that similarly to
the flow in the absence of a magnetic field [31], the most
unstablemode for cylinders rotating in the same sense in weak
magnetic fields is the axially symmetric (m � 0) monotonic
(Reo � 0) mode. The behavior in other cases depends on
boundary conditions and the magnitude of Pm. For insulated
boundaries, the axially symmetric mode continues to be the
most unstable as Ha increases. The situation changes for
conducting boundaries. First, if Pm is less than � 1, a critical
Hartmann number Hacr exists. Above it, for Ha > Hacr, the
asymmetric (m � 1)mode becomes themost unstable [62, 67].
The replacement of the axially symmetric instability with the
asymmetric one at Ha > Hacr and for conducting boundaries
was first predicted in Ref. [59] for the infinitely narrow gap
and Pm � 0. Nevertheless, the question calls for further
research because, according to Ref. [63], and in contrast to
the results in Ref. [59], an oscillatory (o 6� 0) axially
symmetric mode may be most unstable. We note that
oscillatory axially symmetric instability of Couette flows for
ideally conducting cylinders at large Ha was first obtained in
Ref. [56].

As already noted, the axial wave number k corresponding
to the critical Reynolds number defines the axial size of
Taylor vortices arising as the result of the instability. In the
presence of a vertical magnetic field, cells are stretched along
it and the axial size of vortices increases accordingly [62, 63].

As follows from calculations and experimental data, the
axially symmetric instability is commonly monotonic
(o � 0). However, a rigorous proof of this proposition is
lacking thus far. For strong magnetic fields and conducting
boundaries, the axially symmetric instability, as noted
previously, can become oscillatory (Reo 6� 0). The asym-
metric instability is always oscillatory. The results in Ref. [63]
have shown thatReo > 0 and the vortices rotate in the same
sense as the main flow.

4.2 Azimuthal magnetic field
In the presence of an azimuthal magnetic field, Eqns (72)±(79)
allow a steady solution of the general form

P � P�R� ; r � r0 � const ; �101�

UR � 0 ; Uf � RO�R� ; Uz � 0 ; �102�

BR � 0 ; Bf � Bf�R� ; Bz � 0 ; �103�

0 Ha�L�Hamin�Lmin�

R
e m

in
�R

m
m
in
�

Re�Rm�

Figurte 4. Schematics of a neutral stability curve for a hydrodynamically

stable Couette flow (Ẑ 2 < m̂O < 1) in the presence of a uniform axial

magnetic field.
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where, as previously, O�R� and Bf�R� are arbitrary functions
of the radius satisfying the boundary conditions for an ideal
fluid. For a viscous fluid, the angular velocity is determined
by Eqn (10) as usual, while the expression for the magnetic
field follows from Eqn (77),

Bf�R� � aBR� bB
R
; �104�

where constants aB and bB are determined from the boundary
conditions as

aB � Bin

Rin

Ẑ� m̂B ÿ Ẑ�
1ÿ Ẑ 2

; bB � Bin Rin
1ÿ m̂BẐ
1ÿ Ẑ 2

: �105�

Here,

m̂B �
Bout

Bin
; �106�

Ẑ is given by Eqn (12), and Bin and Bout are the azimuthal
magnetic fields on the inner and outer cylinders. We note that
the first term in the right-hand side of Eqn (104) corresponds
to the uniform current density jz,

jz � c

2p
aB ; �107�

and the second term is current-free. The pressure is deter-
mined from Eqn (72), which now takes the form

O 2R � 1

r0

d

dR

�
P� B 2

f

8p

�
ÿ 1

4pr0

B 2
f

R
: �108�

To explore the stability of steady solution (101)±(103) in
the linear approximation, the perturbed solution is repre-
sented in the form

uR�R;f; z� ; RO�R� � uf�R;f; z� ; uz�R;f; z� ;

bR�R;f; z� ; Bf�R� � bf�R;f; z� ; bz�R;f; z� ;

P�R� � B 2
f�R�
8p

� p�R;f; z� ; �109�

where the perturbations uR, uf, uz, bR, bf, bz, and p are small
compared with the respective unperturbed fields. The coeffi-
cients of linearized system (72)±(79) depend only on the radial
coordinate, which allows using the expansion in normal
modes (20).

To make the equations dimensionless, we choose
R0 � �Rin�Rout ÿ Rin��1=2 as the unit length, Oin as the unit
frequency, Z=R0 as the unit perturbed velocity, Bin as the unit
magnetic field (perturbed and unperturbed), and r0nZ=R

2
0 as

the unit pressure.
Linearizing system (72)±(79), expanding in normal modes

(20), and keeping the same notation for dimensionless and
dimensional fields, we obtain

iRe�o�mO� uR ÿ 2ReOuf ÿ iHa2
m

R
BfbR

� 2Ha2
Bf

R
bf � ÿ dp

dR
� d2uR

dR 2
� 1

R

duR
dR
ÿ uR
R 2

ÿ
�
m 2

R 2
� k 2

�
uR ÿ 2i

m

R 2
uf ; �110�

iRe�o�mO� uf �Re

R

d�R 2O�
dR

uR ÿHa2

R

d�RBf�
dR

ÿ iHa2
m

R
Bfbf �ÿi m

R
p� d2uf

dR 2
� 1

R

duf
dR
ÿ uf

R 2

ÿ
�
m 2

R 2
� k 2

�
uf � 2i

m

R 2
uR ; �111�

iRe�o�mO� uz ÿ iHa2
m

R
Bfbz � ÿikp� d2uz

dR 2

� 1

R

duz
dR
ÿ
�
m 2

R 2
� k 2

�
uz ; �112�

duR
dR
� uR

R
� i

m

R
uf � ikuz � 0 ; �113�

iRe Pm�o�mO� bR ÿ i
m

R
BfuR � d2bR

dR 2
� 1

R

dbR
dR

ÿ bR
R 2
ÿ
�
m 2

R 2
� k 2

�
bR ÿ 2i

m

R 2
bf ; �114�

iRe Pm�o�mO� bf ÿRePmR
dO
dR

bR

� R
d

dR

�
Bf

R

�
uR ÿ i

m

R
Bfuf � d2bf

dR 2
� 1

R

dbf
dR

ÿ bf

R 2
ÿ
�
m 2

R 2
� k 2

�
bf � 2i

m

R 2
bR ; �115�

iRe Pm�o�mO� bz ÿ i
m

R
Bfuz � d2bz

dR 2
� 1

R

dbz
dR

ÿ
�
m 2

R 2
� k 2

�
bz ; �116�

dbR
dR
� bR

R
� i

m

R
bf � ikbz � 0 ; �117�

where

Pm � n
Z
; Ha � BinR0���������������

4pr0nZ
p ; Re � Oin R

2
0

n
�118�

(we note that theHartmann number Ha here differs from that
introduced in Section 4.1)

The boundary conditions for the velocity are determined
by Eqns (19). For themagnetic field, the boundary conditions
are expressed by Eqn (93) for ideally conducting cylinders and
by (94) and (95) or (96) for nonconducting ones.

The necessary and sufficient condition of stability under
axially symmetric perturbations for an ideal rotating fluid in
the presence of an azimuthal magnetic field was derived
in [68]:

1

R 3

d

dR
�R 2O�2 ÿ R

4pr0

d

dR

�
Bf

R

�2

> 0 : �119�

Condition (119) can readily be recovered by reducing the
problem to a second-order equation, in analogy to the
procedure outlined in Section 2. The first term, as should be
expected, corresponds to Rayleigh condition (26). According
to Eqn (119), the azimuthal magnetic field, in contrast to the
uniform axial magnetic field, can be unstable even in the
absence of rotation (as is well known from the theory of
plasma pinch stability; see, e.g., Ref. [69]). We say that the
rotation is stable under axially symmetric perturbations if it is
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stable according to the Rayleigh condition (the first term in
Eqn (119) is positive), and unstable otherwise. Similarly, the
azimuthal magnetic field is said to be stable under axially
symmetric perturbations if the second term (with regard for
its sign) in Eqn (119) is positive, and unstable if it is negative.
Correspondingly, according to Eqn (26), any unstable
(stable) rotation O�R� can be stabilized (destabilized) by the
azimuthal magnetic field Bf�R� with the suitable structure
and amplitude. Obviously, the converse is also true and an
unstable (stable) azimuthal magnetic field can be stabilized
(destabilized) by choosing rotation.

Using expression (104) for the azimuthal magnetic field, it
is straightforward to show that the magnetic field is stable if

04m̂B 4
1

Ẑ
� m̂0 ; �120�

and unstable for all other m̂B. We recall that the rotation is
stable for m̂O > Ẑ 2. According to Eqn (119), if m̂B lies outside
interval (120), then for any rotation law (arbitrary m̂O), there
exists a critical value of the magnetic field above which the
flow loses stability. Evidently, the critical value of the
magnetic field is equal to zero for unstable rotations and
increases with an increase in the angular velocity for stable
rotations.

It seems rather unexpected that the question of stability of
the Couette flow in the presence of an azimuthal magnetic
field has not received attention. In particular, we are not
aware of any experimental results. Moreover, until recently,
only a single theoretical study [70] dealt with the realistic
dissipative Couette flow in a current-free magnetic field
(m̂B � Ẑ or aB � 0). Because this m̂B belongs to interval (120),
it is not surprising that only stabilization of the flow by the
azimuthal magnetic field was found in [70].

The stability of nonideal Couette flows under axially
symmetric perturbations in the presence of an azimuthal
magnetic field was recently analyzed theoretically in [71, 72]
for arbitrary m̂B and for both conducting and insulating
boundaries. For simplicity, the authors restricted themselves
to the case of monotonic (Reo � 0) axially symmetric
perturbations, which are typically most unstable. The results
in Refs [71, 72] have demonstrated that the stability of a
dissipative Couette flow under axially symmetric perturba-
tions agrees with ideal criterion (119). In this case, dissipative
processes stabilize the flow and two critical numbers emerge:
theReynolds and theHartmann number. The dissipative flow
with m̂O < Ẑ 2 actually loses stability only if the rotation is fast
enough (large Reynolds number), and the azimuthal mag-
netic field with m̂B < 0 or m̂B > 1=Ẑ actually loses stability
only for a sufficiently large amplitude (large Hartmann
number). In the general case, a flow characterized by
unstable rotation and an unstable magnetic field is stable
only for subcritical Reynolds and Hartmann numbers (see
curve 1 in Fig. 5). The critical Reynolds number is maximal in
the absence of a magnetic field and decreases to zero at some
finite Hartmann number. In turn, the critical Hartman
number is maximum in the absence of rotation and decreases
to zero at some finite Reynolds number. In this way, the
combination of unstable rotation and an unstable magnetic
field enhances the instability of the Couette flow in the general
case. An exception occurs for the simplest solution of the
magnetohydrodynamic equations,

V � � B

�4pr�1=2
: �121�

It is well known that such a flow is stable for an ideal fluid
(see, e.g., Ref. [7]). The stability of the Couette flow obeying
Eqn (121) can be established straightforwardly by substitut-
ing Eqn (121) in condition (119). For an ideal Couette flow
where the rotation and the magnetic field are arbitrary
functions of the radius, it is then easy to choose the radial
dependence such that both the rotation andmagnetic field are
unstable, but their combination linked by condition (121)
results in a stable flow [73]. In this case, the rotation and the
magnetic field are stable at some locations and unstable at
others (obviously, the locations where the rotation is unstable
are those where the magnetic field is stable, and vice versa).
For a dissipative Couette flow with the angular velocity and
magnetic fields specified by Eqns (10) and (104), the
compensation of instabilities, as shown in Ref. [73], occurs
for axially symmetric perturbations, for cylinders rotating in
opposite directions, m̂O < 0, with the magnetic field changing
sign between the cylinders, m̂B < 0, and if the condition
Ẑjm̂Bj4 jm̂Oj holds. In this case, the flow is stable in some
vicinity of the line that corresponds to the stability of the ideal
Couette flow.

The stability of flows with unstable rotation and a stable
magnetic field is illustrated by curve 2 in Fig. 5, and flows with
stable rotation and an unstable magnetic field, by curve 3.
Predictably, the stable magnetic field stabilizes the flow and
the critical Reynolds numbers increase with the Hartmann
number. Similarly, stable rotation stabilizes the unstable
magnetic field, and critical Hartmann numbers increase with
the Reynolds number. Noteworthy is a special feature of the
combination of an unstable magnetic field and stable
rotation: the flow is unstable at small Reynolds numbers
and stable when the Reynolds number is large. This happens
because this instability, in its essence, is that of a magnetic
field, not of rotation. We call it the pinch instability (PI).

In addition to stable and unstable solutions, a neutrally
stable rotation (at m̂O � Ẑ 2) and a neutrally stable magnetic

0 HaHa0

Re0

Re

1

2
4

5

3

Figure 5. Schematics of the curves of neutral stability under axially

symmetric perturbations for an unstable rotation and unstable magnetic

field (curve 1), unstable rotation and stable magnetic field (curve 2), stable

rotation and unstable magnetic field (curve 3), neutral rotation and

unstable magnetic field (curve 4), and unstable rotation and neutral

magnetic field (curve 5). For curves 1, 2, and 5, the flow is stable

(unstable) below (above) the curves. For curve 4, the flow is unstable

(stable) to the right (left) of the curve. Finally, for curve 3, the flow is

unstable (stable) below (above) the curve.
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field (at m̂B � 1=Ẑ) also exist for axially symmetric perturba-
tions. They have no respective impact on the critical
Hartmann and Reynolds numbers (curves 4 and 5 in Fig. 5).
We note that curves 1, 2, and 5 correspond to the same value
of m̂O (because the critical Reynolds numbers coincide for
Ha=0), but to different values of m̂B; curves 1, 3, and 4
correspond, accordingly, to the same m̂B but different m̂O.

The computation results indicate that the critical Rey-
nolds numbers for axially symmetric (m � 0) and monotonic
(Reo � 0) perturbations are independent of the magnetic
Prandtl number. This result can be readily obtained analyti-
cally [71]. As a consequence, Ha0 is also independent of Pm. It
is straightforward to realize that Ha0, being the number at
which the critical Reynolds number vanishes, is independent
of the flow parameters ( m̂O).

Boundary conditions, in general, do not influence the
behavior described above on the qualitative level, although
quantitatively, the critical numbers are naturally sensitive to
the boundary conditions. Nevertheless, there are some
peculiarities brought about by the boundary conditions. For
conducting cylinders and flows with ÿ1 < m̂B < 0, the axial
wave number corresponding to the minimum Hartmann
number is equal to zero and one-dimensional perturbations
are the most unstable. For dielectric cylinders, two-dimen-
sional perturbations are always the most unstable [71]. In
addition, for conducting cylinders, there exists a parasitic
solution that hampers the analysis under some circum-
stances [72].

Thus far, we have been discussing the case of axially
symmetric perturbations. However, it is well known that for a
plasma, pinch perturbations withm � 1 are themost unstable
(see, e.g., Ref. [69]). In the absence of rotation, the necessary
and sufficient condition for the stability of an ideal fluid in an
azimuthal magnetic field under asymmetric adiabatic pertur-
bations (actually, those with m � 1, because perturbations
with larger m are more stable) was obtained for cylindrical
geometry in [74] (see also Ref. [75]):

ÿ d

dR
�RB 2

f� > 0 : �122�
For a magnetic field given by (104), it can be shown that

condition (122) holds if

04m̂B 4
4Ẑ�1ÿ Ẑ 2�
3ÿ 2Ẑ 2 ÿ Ẑ 4

� m̂1 : �123�

It is easy to obtain that m̂1 < m̂0 for 0 < Ẑ < 1, and therefore
interval (123) is always narrower than interval (120). In this
sense, the Couette flow with an azimuthal magnetic field is
less stable under m � 1 perturbations than under axially
symmetric perturbations. We recall that the current-free
magnetic field (m̂B � Ẑ) corresponds to parameters inside
interval (123) is stable under both axially symmetric and
asymmetric perturbations. Moreover, in the case of a fluid
filling the entire volume inside the outer radius, we have Ẑ � 0
for a pinch, and interval (123) degenerates. Correspondingly,
the perturbations with m � 1 are always unstable for a pinch
(in the absence of rotation). This property is certainly well
known (see, e.g., Ref. [69]).

The stability of the Couette flows with an azimuthal
magnetic field under asymmetric perturbations was studied
in [76]. The results demonstrate, as in the case of axially
symmetric perturbations, that magnetic fields can be sub-
divided into stable and unstable with respect to asymmetric
perturbations according to ideal criterion (122). Accordingly,

a magnetic field is referred to as stable under asymmetric
perturbations if m̂B belongs to interval (123) and unstable
otherwise. As before, the unstable magnetic field loses its
stability in a dissipative fluid only when the Hartmann
number exceeds some critical value Ha1.

Unfortunately, as mentioned above, a criterion that
would allow labeling rotations as stable or unstable under
asymmetric perturbations has not yet been proposed. Never-
theless, we can always decide about the stability of a flow by
performing direct numerical simulations. As in other cases,
viscosity stabilizes the flow and a critical Reynolds number
Re1 exists above which an unstable flow loses stability.
Obviously, the critical Hartmann numbers are higher when
m̂B lies closer to stability interval (123). Critical Reynolds
numbers for asymmetric perturbations, in contrast to the case
of axially symmetric perturbations, depend on Pm. However,
the critical Hartmann numbers depend only weakly on Pm for
insulating boundaries and lack such a dependence for
conducting cylinders. We emphasize that critical Hartmann
numbers were numerically found only for two modes, m � 0
and m � 1 [76].

As already argued in Section 2, the instability of a Couette
flow in the absence of a magnetic field is axially symmetric for
cylinders rotating in the same sense and becomes asymmetric
when they are counterrotating. However, in the presence of
an azimuthal magnetic field, stability interval (123) for
asymmetric perturbations is narrower than interval (120)
related to axially symmetric perturbations. Thus, as m̂B
increases, the magnetic field loses stability, first with respect
to the m � 1 mode (there exists only the Hartmann number
Ha1). As m̂B increases further, the axially symmetric mode
also loses stability (and the second Hartmann number Ha0
arises). The rotation makes this arrangement more compli-
cated, and the only true conjecture is that the instability has
either the m � 0 or the m � 1 mode. Which of them is most
unstable is strongly sensitive to the parameter choice (the
modes can change, for instance, as a function of the magnetic
field strength). To summarize, it seems difficult to find a
rigorous selection criterion without turning to direct numer-
ical computations [76].

For asymmetric perturbations, various combinations of
stable and unstable rotation and the magnetic field typically
behave similarly to the axially symmetric case. For example, a
stable magnetic field stabilizes the Couette flow, and critical
Reynolds numbers (if they exist) increase with an increase in
the magnetic field strength.

There is an important distinction between axially sym-
metric and asymmetric perturbations, however. It is mani-
fested in considering a combination of stable rotation and a
magnetic field. A flow with the rotation and a magnetic field
stable under axially symmetric perturbations remains stable.
But a flow with rotation and the azimuthal magnetic field
stable under asymmetric perturbations might become
unstable. The instability is analogous to the MRI for a
homogeneous axial magnetic field and was apparently first
described in Ref. [77], although the authors did not identify it
with a combined instability of the two stable components. It is
referred to as the azimuthal magnetorotational instability
(AMRI) in what follows.

The neutral stability curve for the AMRI was first
computed in Ref. [78] (see also Refs [45, 79]). Its typical
shape is schematically presented in Fig. 6. The main
distinction between the AMRI and MRI lies in the existence
of a minimumHartmann number above which the instability
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evolves. For theMRI, the left branch asymptotically tends to
the ordinate axis without intersecting it (see Fig. 4). For the
AMRI, the asymptote is tilted to the ordinate axis. As a result,
for every Hartmann number greater than the critical one,
there exist two Reynolds numbers, the minimum and
maximum ones, that bound the instability interval. The flow
is stable for small and large Reynolds numbers, but unstable
for intermediate Reynolds numbers (Fig. 6).

We mention that the AMRI also exists for an unstable
magnetic field, and is then combined with the PI yielding a
complex resulting pattern. Depending on the parameters, the
existence regions of both instabilities can be either well
separated or intersecting [78].

As a conclusion to the discussion here, we list some open
questions that are essential for understanding the Couette
flow in the presence of an azimuthal magnetic field. As
already mentioned, the simplest solution of the magnetohy-
drodynamics equations is stable [7]. This implies compensa-
tion of instabilities for axially symmetric perturbations [73].
Similarly, compensation must also exist for asymmetric
perturbations. An important question concerns the con-
straints on the existence of the AMRI. For an ideal fluid, the
AMRI is predicted for flows with the angular velocity
decreasing with radius [77]. It would be desirable to general-
ize this result to dissipative fluids. The results in Refs [78, 79]
allow assuming that the neutral stability curve for the AMRI
tends to a universal curve in coordinates (L, Rm) for Pm5 1.
It would be interesting to confirm this result by computations
performed for smaller values of Pm.

4.3 Helical (axial+azimuthal) magnetic field
In the presence of a helical magnetic field B � �0;Bf;Bz�,
Eqns (72)±(79) allow a steady solution of the general form

P � P�R� ; r � r0 � const ; �124�

UR � 0 ; Uf � RO�R� ; Uz � 0 ; �125�

BR � 0 ; Bf � Bf�R� ; Bz � Bz�R� ; �126�

where O�R�, Bf�R�, and Bz�R� are arbitrary functions of the
radius satisfying boundary conditions in the case of an ideal
fluid. For a dissipative fluid, the angular velocity is given by

Eqn (10), the azimuthal magnetic field is given by Eqn (104),
and Bz is determined from Eqn (78):

Bz�R� � az � bz ln�R� ; �127�
where

az � Bz in

�
1ÿ 1ÿ m̂z

ln Ẑ
lnRin

�
; bz � Bz in

1ÿ m̂z
ln Ẑ

; �128�

m̂z �
Bz out

Bz in
; �129�

and Bz in and Bz out are the axial magnetic fields at the inner
and outer cylinders.

We note that the first term in Eqn (127) is current free,
while the second term corresponds to the azimuthal current
density

jf � c

4p
bz
R
: �130�

The pressure is, as before, determined from Eqn (72), which
now takes the form

O 2R � 1

r
d

dR

�
P� B 2

f � B 2
z

8p

�
ÿ 1

4pr

B 2
f

R
: �131�

We are interested in the stability of steady solution (124)±
(126). In the linear approximation, the perturbed solution is
represented in the form

uR�R;f; z� ; RO�R� � uf�R;f; z� ; uz�R;f; z� ;

bR�R;f; z� ; Bf�R� � bf�R;f; z� ; Bz�R� � bz�R;f; z� ;

P�R� � B 2
f�R� � B 2

z �R�
8p

� p�R;f; z� ; �132�

where the perturbations uR, uf, uz, bR, bf, bz, and p are small
compared with their unperturbed fields. The coefficients of
linearized system (72)±(79) depend solely on the radial
coordinate, which allows normal mode expansion (20).

To make the equations dimensionless, we use R0 �
�Rin�Rout ÿ Rin��1=2 as the unit length, Oin as the unit
frequency, Z=R0 as the unit perturbed velocity, Bz in as the
unit magnetic field (both perturbed and unperturbed), and
r0nZ=R

2
0 as the unit pressure.

Linearizing system (72)±(79), expanding the unknown
fields in normal modes (20), and keeping the same notation
for dimensional and dimensionless fields, we obtain

iRe�o�mO� uR ÿ 2ReOuf ÿ iHa2a
m

R
BfbR

� 2aHa2
Bf

R
bf ÿ iHa2kBzbR � ÿ dp

dR
� d2uR

dR 2

� 1

R

duR
dR
ÿ uR
R 2
ÿ
�
m 2

R 2
� k 2

�
uR ÿ 2i

m

R 2
uf ; �133�

iRe�o�mO� uf �Re

R

d�R 2O�
dR

uR ÿ a
Ha2

R

d�RBf�
dR

ÿ iHa2a
m

R
Bfbf ÿ iHa2kBzbf � ÿi m

R
p� d2uf

dR2

� 1

R

duf
dR
ÿ uf

R 2
ÿ
�
m 2

R 2
� k 2

�
uf � 2i

m

R 2
uR ; �134�

0 Ha

Re

Fl
ow

is
un
sta
bl
e

Figure 6. Schematic of the neutral stability curve for the m � 1 mode for

stable rotation and a stable azimuthal magnetic field.
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iRe�o�mO� uz ÿ iHa2a
m

R
Bfbz ÿHa2

dBz

dR
bR

ÿ iHa2kBzbz � ÿikp� d2uz
dR2
� 1

R

duz
dR
ÿ
�
m 2

R 2
� k 2

�
uz ;

�135�
duR
dR
� uR

R
� i

m

R
uf � ikuz � 0 ; �136�

iRe Pm�o�mO� bR ÿ ikBzuR ÿ ia
m

R
BfuR � d2bR

dR 2

� 1

R

dbR
dR
ÿ bR
R 2
ÿ
�
m 2

R 2
� k 2

�
bR ÿ 2i

m

R 2
bf ; �137�

iRe Pm�o�mO� bfÿRePmR
dO
dR

bR�aR d

dR

�
Bf

R

�
uR

ÿ ia
m

R
Bfuf ÿ ikBzuf � d2bf

dR 2
� 1

R

dbf
dR
ÿ bf

R 2

ÿ
�
m 2

R 2
� k 2

�
bf � 2i

m

R 2
bR ; �138�

iRe Pm�o�mO� bz � dBz

dR
uR ÿ ia

m

R
Bfuz ÿ ikBzuz

� d2bz
dR 2

� 1

R

dbz
dR
ÿ
�
m 2

R 2
� k 2

�
bz ; �139�

dbR
dR
� bR

R
� i

m

R
bf � ikbz � 0 : �140�

The dimensionless numbers of the problem are once again
the Prandtl number Pm, the Hartmann number Ha, defined
here differently from Sections 2, 3, 4.1, and 4.2, the Reynolds
number Re, and, additionally, the ratio of the azimuthal and
axial magnetic fields on the inner cylinder,

Pm � n
Z
; Ha � Bz inR0���������������

4pr0nZ
p ; Re � OinR

2
0

n
; a � Bin

Bz in
:

�141�

The boundary conditions for the velocity are given by
expressions (19) at both the inner and outer cylinders. The
magnetic field must satisfy either boundary conditions (93)
for conducting cylinders or those specified by Eqns (94), (95),
and (96) for insulating ones.

The essential distinction of this case from those consid-
ered above lies in its other symmetry type. As a result, when
studying the Couette flow in a helical magnetic field, we must
analyze perturbations with m > 0 as well as with m < 0.
Equivalently, we can restrict ourselves to perturbations with
m > 0, but allow magnetic field configurations with a > 0 as
well as with a < 0.

Unfortunately, a detailed analysis of the Couette flow
stability in the presence of a helical magnetic field is not yet
available. To explore the stability of the magnetic field
proper, the so-called energy principle is frequently used [80].
It was generalized inRef. [81] to allow the presence of a steady
flow. But the results in Refs [80, 81] are too general and do not
allow formulating any simple stability condition. In discuss-

ing the stability of the helical magnetic field per se, we note
Refs [82, 83]. It is shown in [82] that the magnetic field is
unstable if� Rout

Rin

B 2
fR dR > 2

� Rout

Rin

B 2
z R dR : �142�

Three different stability conditions for a helical magnetic field
and an ideal conducting plasma are derived in [83]. The first is
a sufficient stability condition, the second is a necessary
condition, and the third is a necessary and sufficient
condition of stability. Discouragingly, the most relevant,
necessary and sufficient condition depends on the zeros of a
solution of the Euler±Lagrange equation (a second-order
equation analogous to Eqn (25) but with a helical magnetic
field), which are not known in the general form (although they
can be found in concrete cases). This hampers its practical
use. We note that both the sufficient and necessary
conditions were generalized to the case where radial forces
are acting [74]. For axially symmetric perturbations in an
incompressible fluid, the sufficient stability condition was
generalized to the case of rotating fluid in [26]. The necessary
stability condition in the absence of rotation was derived
in [84]; it is applicable to magnetic field configurations
containing a singular point where mBf ÿ kBz � 0. The
condition in [84] was generalized in [85] to the case of a
moving fluid (see also Ref. [86]).

The stability of a dissipative pinch was explored in
Ref. [87]. In the case of a pinch, in contrast to the Couette
flow, the fluid fills the entire volume confined by the outer
pinch radius (Rin � Ẑ � 0); according to Eqns (11) and (105),
the angular velocity is then constant, O � const (bO � 0),
while in the azimuthal magnetic field, according to Eqns (104)
and (105), only the first term is preserved (bB � 0), pertaining
to a constant axial current. The important difference between
a pinch and a Couette flow is the presence of a free, not fixed,
outer boundary.

In the presence of a uniform axial field B0, the problem
admits an analytic solution expressed in terms of Bessel
functions. In particular, it is shown in Ref. [87] that in the
limit of vanishing viscosity (as mentioned above, this limit
agrees well with experiments performed with liquid metals),
perturbations with m � ÿ1 and the axial wave numbers such
that Bf�Rout�=Rout � kB0 � 0 are always unstable (see also
Ref. [88]). We recall that the instability, as discussed, depends
on the sign of the azimuthal number. It turns out that
perturbations with m < 0 are less stable (or, equivalently,
the magnetic field configurations with a < 0 are more prone
to instability).

We mention the results in [89], where a stability criterion
for a compressible fluid differing from that in [84] was
derived.

As regards the true Couette flow, it was recently shown
that adding a current-free azimuthal magnetic field (which is
itself stable) to a uniform axial magnetic field destabilizes the
Couette flow with respect to axially symmetric perturbations
[90, 91]. In the presence of an axial magnetic field, the Couette
flow loses stability beyond the Rayleigh line. But the critical
Reynolds numbers are very large at small magnetic Prandtl
numbers typical of experiments with liquid metals (see
Section 4.1). It turns out [90, 91] that adding a current-free
azimuthal magnetic field to the axial one markedly reduces
the magnitude of critical Reynolds numbers (from � 106 to
� 104).
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4.4 A magnetic field and the Hall currents
If Hall currents are significant in the fluid, Ohm's law (68)
becomes

E� 1

c
U� B � ROm j� RH j� b ; �143�

whereRH is the specific Hall resistance and b is the unit vector
along the magnetic field. With the Hall currents taken into
account, Eqn (67) is written as

qB
qt
� rot�u� B� � ZDBÿ b rot�rotB� B� ; �144�

where bB is the Hall diffusion coefficient. Here and hereafter,
it is assumed that Z and b are independent of the coordinates.

It is a straightforward exercise to verify that all three
magnetic field configurations given by Eqns (80)±(82), (101)±
(103), and (124)±(126) also satisfy the magnetohydrodynamic
equations with Hall currents (65), (66), and (144) taken into
account. In this section, we do not write equations for
particular cases of uniform axial and azimuthal magnetic
fields (they readily follow from the general equations written
below upon setting Bz � 0 or Bf � 0, respectively), and
directly write general equations valid in the presence of both
fields. After linearization, expansion in normal modes, and
normalization, Eqns (133)±(136) and (140) retain their form,
while Eqns (137)±(139) become
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where aH is the Hall parameter (the ratio of the Hall magnetic
diffusion time to the Ohmic dissipation time of the magnetic
field),

aH � bBz in

Z
: �148�

The dimensionless numbers in (145)±(147) are given by (141);
the terms proportional to aH owe their existence to the Hall
effect.

We recall that similarly to the case of a helical magnetic
field, both the m > 0 and m < 0 possibilities must be
considered.

For an ideal dielectric boundary, the magnetic field at the
fluid boundary must coincide with the external one in the
presence of the Hall effect; hence, conditions (95) and (96)
preserve their form.

For conducting boundaries, in the first order in the
perturbations, the requirement that tangential components
of the electric field vanish gives

dbf
dR
� bf

R
� iaHBf

�
kbf ÿm

R
bz

�
: �149�

This condition is, as before, applicable to the outer and inner
cylinders. The condition requiring that the normal compo-
nent of the magnetic field vanish at the boundary (bR � 0)
does not change.

The influence of Hall currents on the stability of a Couette
flow in the presence of a uniform vertical magnetic field was
considered in [92]. Without Hall currents, the direction of the
magnetic field is irrelevant: only the magnitude matters
(Eqns (84)±(91) depend only on Ha2). The Hall currents
make the instability sensitive to the magnitude and the
direction of the magnetic field. Moreover, in the presence of
the Hall effect, a Couette flow in a uniform axial magnetic
field becomes unstable for any rotation law (critical Reynolds
numbers exist for any m̂O). The destabilization of rotation
with an increasing angular velocity under the action of the
Hall effect was first discovered for accretion disks [93]. Flows
that are stable even under the MRI ( m̂O > 1) are destabilized
by the magnetic field directed against the rotation vector (if
the Hall resistance sign is positive). The Hall effect also
destabilizes flows that were unstable without it, for instance,
the flow with a resting outer cylinder. In this case, the critical
Reynolds numbers decrease dramatically. Nonetheless, esti-
mates of the magnetic field magnitude conductive to theHall
magnetorotational instability (HMRI) in experiments with
liquid metals predict excessively strong magnetic fields
(� 107 G), which creates serious obstacles to their practical
implementation. The HRMI, however, might prove to be
important in astrophysical applications (especially for weakly
ionized accretion disks [93±96]). We emphasize that even
there, the development of HMRI demands that the magnetic
fields be sufficiently strong [92, 97].

It is shown in [98] that the Hall effect can also essentially
affect the pinch instability of the azimuthal magnetic field. A
consequence of this instability can be, for example, a different
magnitude of the azimuthal magnetic field in the different
hemispheres of a neutron star. In addition, the computation
results in Ref. [98] show that under the action of the Hall
effect, the AMRI may unfold for arbitrary rotation laws,
similarly to the MRI. Once again, the laboratory study of
these effects is impeded by the limitation on the magnitude of
the magnetic field needed for their manifestation.
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5. A flow with a nonuniform density
and a magnetic field

An incompressible inhomogeneous fluid in the presence of a
magnetic field is described by the equations

qU
qt
� �UH�U � ÿ 1

r
HP� g� nDU� 1

c
j� B ; �150�

divU � 0 ; divB � 0 ; �151�
qB
qt
� rot �U� B� � ZDB ; �152�

qr
qt
� �UH�r � 0 : �153�

5.1 Radial density stratification and an azimuthal
magnetic field
Equations (150)±(153) admit the solution

UR � 0 ; Uf � RO�R� ; Uz � 0 ; �154�

BR � 0 ; Bf � Bf�R� ; Bz � 0 ; �155�

r � r0�R� ; P � P0�R� ; �156�

where O�R� and Bf�R� are, as everywhere above, either
arbitrary functions satisfying boundary conditions in the
case of an ideal fluid or functions defined by expressions
(10) and (104) for a dissipative fluid; the pressureP0 is defined
by Eqn (108).

It can be readily shown that for an ideal fluid, and if
perturbations are axially symmetric, linearized system (150)±
(153), similarly to those in the case with solely radial density
stratification (see Section 3.1) or solely an azimuthalmagnetic
field (see Section 4.2), reduces to the second-order equation
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As before, equation (157) with boundary conditions (19) is a
classic Sturm±Liouville problem. Accordingly, for the stabi-
lity of the Couette flow under axially symmetric perturba-
tions, it is necessary and sufficient that

1
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Condition (158) is a generalization ofMichael condition (119)
to the case of an inhomogeneous incompressible fluid. Amore
detailed analysis of the stability of solution (154)±(156) has
not been performed for the Couette flow. We note that, as in
the absence of a magnetic field, the kinematic viscosity is in
the general case a function of the radial coordinate (it can be
considered uniform only in the approximation of weak
stratification).

For completeness, we note that in the absence of rotation,
the necessary and sufficient condition of the stability of the
azimuthal magnetic field under both axially symmetric and
asymmetric perturbations in the presence of radial as well as
axial stratification is known [75]. In the presence of stratifica-
tion, it was shown for axially symmetric perturbations that
conditions generalizing those derived in Ref. [75] are only
sufficient for stability [99].

5.2 Axial density stratification and an azimuthal magnetic
field
It was shown in Section 3.2 that in the presence of vertical
density stratification, system (150)±(153) allows a solution for
the angular velocity in form (10) only in the limit of slow
rotation and small density stratification (46). It can be easily
verified that the same holds in the presence of an azimuthal
magnetic field that depends only on the radial coordinate.
Thus, system (150)±(153) under constraints (46) allows the
solution

UR � 0 ; Uf � RO�R� ; Uz � 0 ; �159�

BR � 0 ; Bf � Bf�R� ; Bz � 0 ; �160�

P � P0�z� � P1�R; z� ; r � r0 � r1�z� ; �161�

where r0 is a uniform reference density, P is the total pressure
(with the magnetic part), jP1=P0j5 1, r1=r0 5 1, and O�R�
and Bf�R� are, as above, either arbitrary functions satisfying
boundary conditions for an ideal fluid or the functions
defined by expressions (10) and (104) for a dissipative fluid.

We consider the linear stability of the solution of
Eqns (159)±(161) using a perturbed solution in the form
U� u�R;f; z�, B� b�R;f; z�, r0 � r1�z��r�R;f; z�, and
P0�z� � P1�R; z� � B 2

f=8p� p�R;f; z�. With conditions (46),
linearized system (150)±(153) takes the classic form of the
Boussinesq approximation with coefficients depending only
on the radius. Consequently, we can use expansion (20) in
normal modes. Performing linearization, expansion in nor-
mal modes, and normalization (the units selected for that are
given in Sections 3.2 and 4.2), we transform system (150)±
(153) to the form (as everywhere above, the same notation is
used for dimensional and dimensionless variables)
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The dimensionless numbers in the problemÐthe mag-
netic Prandtl number Pm, Hartmann number Ha, Reynolds
number Re, and Froude number FrÐare defined as

Pm � n
Z
; Ha � BinR0���������������

4pr0nZ
p ; Re � OinR

2
0

n
; Fr � Oin

Nz
;

�171�
where Nz is Brunt±V�ai�al�a frequency (55).

The general stability condition for an ideal Couette flow in
the presence of axial density stratification and an azimuthal
magnetic field is unknown. For a dissipative Couette flow,
this problem was first considered in Ref. [45]. Three cases
were treated separately: 1) the azimuthal magnetorotational
instability, when the magnetic field and the rotation are
unstable separately; 2) the magnetic field is stable under
axially symmetric perturbations but unstable under perturba-
tions with m � 1 (one critical Hartmann number); 3) the
magnetic field is unstable under perturbation with m � 0 as
well as m � 1.

Briefly, the stability of a Couette flow in this case exhibits
stability properties combining those pertaining to the case
with density stratification but without the magnetic field and
the case with a magnetic field and a uniform density, which
creates an intricate resulting picture.

In the first case, we can speak about the influence of axial
density stratification on the AMRI as well as the influence of
the magnetic field on the SRI. The influence of density
stratification largely amounts to destabilizing the rotation
with respect to axially symmetric perturbations, and the
rotation stable for a uniform density can become unstable in
the presence of axial density stratification. We recall that the
AMRI exists for arbitrary rotation with the angular velocity
decreasing in absolute value. The SRI exists in a narrower
interval (depending on the gap between the cylinders). An
azimuthal magnetic field destabilizes flows with decreasing
angular velocity also in the presence of a stable density
stratification. The stable density stratification makes critical

Reynolds andHartmann numbers larger. The influence of the
magnetic field on the SRI is similar to its influence on the RI.
For small Pm, the magnetic field suppresses the instability
(critical Reynolds numbers increase), but for Pm > 1, the
magnetic field facilitates the instability if the magnitude of the
magnetic field is not too large (critical Reynolds numbers are
lower with the magnetic field than without it).

Themost significant feature of the effect of the stable axial
density stratification on an unstable magnetic field is the
essential expansion of the stability regions for flows char-
acterized by a combination of unstable rotation and an
unstable magnetic field.

6. Conclusions

The results described in this review demonstrate that despite
more than a century of history of studying the Couette flow
stability, we are still far from fully understanding it. This is
even more so in the presence of additional factors such as
nonuniform density distribution and a magnetic field. These
factors have been selected not arbitrarily but because of their
omnipresence in laboratory conditions as well as in natural
conditions related, for instance, to astrophysical objects.

We briefly summarize the main results pertaining to the
instability of the Couette flow.

The classical ideal Couette flow is stable under axially
symmetric perturbations if the angular momentum magni-
tude is an increasing function of radius, Eqn (26). The
exhaustive criterion for asymmetric perturbations has not
yet been established. But both theory and experiment suggest
that for cylinders spinning in the same direction, the axially
symmetric mode is the most unstable. This instability is
monotonic (the real part of the instability increment is equal
to zero) and is called the rotational instability. The viscosity
stabilizes the RI and a viscous Couette flow that would be
unstable according to criterion (26) actually loses its stability
only if the rotation is sufficiently fast (large Reynolds
numbers). The RI shows good correspondence between
theory and experiment. For completeness, we remark that
theoretical results predict an asymmetric instability beyond
the Rayleigh limit, although not for rigid boundaries, as for
the Couette flow, but for free ones.

A stable vertical density stratification stabilizes the axially
symmetric mode but destabilizes asymmetric modes, which
become more unstable even for cylinders rotating in the same
sense. The most unstable in this case is them � 1 mode, while
the instability ceases to be monotonic and becomes oscilla-
tory. Moreover, this instability persists even beyond the
Rayleigh limit. It is called the stratorotational instability.
The existence boundary of the SRI is between Rayleigh limit
(26) and classical magnetorotational instability limit (97) and
is strongly sensitive to the size of the gap between the
cylindersÐ the instability limit decreases as the gap
increases. Such behavior is suggestive of a strong sensitivity
to boundary conditions. Exploring this question requires
going beyond the framework of classical Couette flows. The
results that follow are ambiguous, however. On the one hand,
there are results indicating that the SRI disappears in the
absence of rigid boundaries [100]; on the other hand, there are
results showing that the SRI is also preserved for soft
boundaries when boundary stresses are absent [101]. As we
have already noted, good agreement is also observed for the
Couette flow between theoretical and experimental data on
the SRI [44].
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A uniform axial magnetic field, being stable per se,
nevertheless destabilizes the Couette flow. This instability,
termed magnetorotational, is historically the best known
Couette flow instability except, perhaps, the RI proper. It is
manifested for both stable and unstable flows in the absence
of a magnetic field. For flows unstable in the absence of a
magnetic field, the critical Reynolds numbers may decrease in
the presence of a field. Still, this property is strongly
dependent on the magnetic Prandtl number and is mani-
fested only if Pm � 1. The main manifestation of the MRI,
however, is the destabilization of flows having an angular
velocity whose absolute value decreases with radius, and a
change of the instability criterion from (26) to (97). The
critical numbers of this instability are strongly influenced by
the magnetic Prandtl number, which entail difficulties when it
comes to laboratory experiments. As a result, the MRI has
not as yet been observed experimentally.

The azimuthal magnetic field complicates the problem
because it can be unstable by itself (in the absence of rotation).
This is the so-called pinch instability. The combination of an
azimuthal magnetic field and rotation creates an intricate
picture of the interaction between the RI and PI. Depending
on the parameters, themost unstable is either them � 0 or the
m � 1 mode. Noteworthy are two interesting facts pertaining
to this case. The first is the compensation of instabilities when
a combination of unstable rotation and an unstable magnetic
field can result in a stable flow. The second is the opposite
phenomenon, when a combination of stable rotation and a
stable magnetic field excite the so-called azimuthal magnetor-
otational instability. The characteristics of the AMRI in
practice resemble those of the MRI, including the limits
within which it exists (it destabilizes flows as the magnitude
of angular velocity decreases), except for the AMRI being
asymmetric (m � 1). Experimental implementation of inter-
esting regimes in the presence of an azimuthal magnetic field
requires maintaining currents inside the fluid, which is
apparently problematic to a certain degree.

The situation with a helical magnetic field is even more
complex. The only result worth mentioning is an essential
decrease in critical Reynolds numbers under the joint action
of a uniform vertical magnetic field and a current-free
azimuthal magnetic field (being stable itself). The experi-
ments in Refs [102±104] are interpreted by their authors as
confirmation of the helical magnetorotational instability. This
interpretation is questioned in Ref. [105, 106] and the
observed instability is explained as a result of transient
amplification of modes excited in boundary layers, which
have no relation to global instability. The question therefore
remains open.

Theoretically, the Hall effect is most promising from the
standpoint of exploring the instability. The analysis for a
uniform axial magnetic field has shown that this effect leads
to destabilization of flows with any law of rotation. The
main obstacle on the road to its laboratory implementation
as well as its manifestations in natural conditions is the need
for extremely strong magnetic fields. We note that the
sensitivity of the stability of rotating magnetized fluid to
modifications of the Ohm law seems to be, a universal
feature. It was shown in Ref. [107] that the modification of
the Ohm law in the presence of a dust component also leads
to destabilization of rotation with an arbitrary angular
velocity profile.

The study of the Couette flow stability with a nonuniform
density and a magnetic field is admittedly only in its earlier

phase. But the first results have already demonstrated an
exceptionally complex picture of the SRI interaction with the
AMRI and PI.

The author is indebted to the anonymous referee for
comments that allowed improving the presentation style.

This work was carried out under the partial support
from the Leading Scientific Schools program (grant
NSc-2600.2008.2).
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