
Abstract. The past 40 years of theoretical and experimental
research on contact heat transfer are reviewed. Thermophysi-
cal and mechanical processes involved in heat flow propagation
through various kinds of solid±solid joints are considered. Ana-
lytical and semiempirical expressions are presented, which
simulate these processes both under vacuum conditions and in
the presence of a heat-conducting medium in gaps. Reasons for
the experimentally examined heat flux rectification are ex-
plained. Studies on thermal contact under a nonstationary
regime are covered, as is the possibility of applying classical
heat conduction theory to describing the contact thermal prop-
erties. A thermodynamic interpretation of the thermal contact
resistance is suggested and basic approaches to the study of
contact phenomena are described. The heat conduction in na-
nosystems is briefly reviewed. Theoretical problems yet to be
solved are pointed out and possible solution methods suggested.

1. Introduction

Analysis of the current literature on contact heat transfer in
solids confirms it to be a topical subject given much attention
at almost all international conferences on heat-and-mass
transfer.

Since the 1970s, the problem of contact heat transfer in
solids has beenhighlighted in this country in fourmonographs
[1±4], two textbook chapters [5, 6], and some 80 journal
papers. Over 300 works published abroad during the same

period have been cited in review articles [7±10] and in Teplo-
and Massoobmen Referativnyi Zhurnal (Heat-and-Mass
Transfer Abstracts).

These publications can be arbitrarily categorized as
follows:

Ð articles in which contact thermal conduction is
regarded as a purely physical phenomenon;

Ð experimental studies designed to elucidate new types of
joints and develop methods for detecting thermal contact
resistance;

Ð papers in which special problems are considered, such
as contact geometry, loading cycles, and attendant phenom-
ena in the neighborhood of joints between various materials;

Ð applied studies aimed at introducing advanced devel-
opments into different branches of industry for reducing
unproductive losses of temperature head in various construc-
tion joints, and for thermal regulation and solving the
problems related to the creation of mechanically strong heat
insulation with high thermal contact resistance.

Contact thermal conduction is essentially a surface effect
due to the thermal and mechanical properties of interacting
materials and gap-filling substances. Low thermal conductiv-
ity of a medium between loose contact surfaces accounts for
the worst possible joint where contact heat transfer is largely
governed by surface phenomena. The best joints are produced
by welding, soldering, or vacuum deposition of one material
layer over the surface of another, and their thermal contact
resistance depends on the conductance of the involved
materials. All other variants are intermediate between these
two extremes.

2. Brief overview of theoretical
and experimental studies

Over 100 studies have been concerned with the contact heat
conduction theory during the past 30 years.Many of them are
based on the Holm theory [11] developed for electrical
contacts and extended to thermal joints. The following issues
have been considered:
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Ð thermal resistance of a single microscale contact [12±
15] between a flat surface and a sphere or between a flat
surface and a cone in a vacuum;

Ð thermal resistance of a multipoint contact in a vacuum
[16, 17];

Ð thermal resistance of a solid±solid joint with regard for
surface deformation [7, 18];

Ð nominally flat rough surfaces [1, 4, 7, 15];
Ð the effect of surface macroroughness and waviness on

contact heat transfer [1, 4, 19, 20].
Also studied was the influence of surface films, interstitial

defects, and chemical potential on heat exchange in inter-
contact gaps. Issues pertaining to numerical solution of a
conjugate contact heat transfer problem in a system of solids
were considered in monograph [21].

Simulation of a contact between microasperities on
interacting surfaces in the form of a single joint of spherical
or conical protrusions yielded no qualitatively new solutions.
Only separate corrections for special cases of contact heat
exchange to the well-knownRoyce andYovanovich solutions
were obtained [4].

The authors of Ref. [13] considered a thermal model of
contact heat exchange between rough surfaces, taking into
account flow curvature caused by constriction of the lines of
flow to contact spots. The model was used to calculate
thermal contact resistance at low pressures.

Comprehensive analysis of unitary models was reported
in Ref. [22] that substantiated the necessity to consider
spherical elements making contact with each other. A similar
approach was taken by foreign authors [14, 17] reporting
detailed studies of thermal processes in model elements.

One of themost intricate aspects of contact heat transfer is
translation of unitary model solutions to real surfaces. As
known from the literature, a key factor when passing to
nominally flat surfaces is not only the number and size of
contact spots but also the type of deformation.

Studies of large-scale surface asperities show that wavi-
ness and departure from flatness are responsible for enhanced
thermal contact resistance; in addition, the influence of
waviness becomes critical when there are small loads [23].

A promising approach proposed in Ref. [24] is based on
the construction of random three-dimensional temperature
distribution, making use of an extensive and continuously
developingmathematical apparatus of the probability theory.
This study demonstrated the strong influence of the aniso-
tropic properties and mutual orientation of the surfaces on
contact characteristics.

Most experimental studies were devoted to the investiga-
tion of the dependence of thermal contact resistance on the
real contact area, thermal conductivity of contact pair
materials, and intragap medium. The materials of interest
include 1X18H9T, 12X18H10T, 45, 30, 1X13, and 30XGSA
steels, copper, aluminium,D16T duralumin, Armco iron, and
molybdenum treated at 300±900 K with a mechanical load of
0.1±20 MPa in the air, a vacuum, helium and argon ambient
gas to obtain a roughness class in the range from 4 to 10. Some
foreign authors also used materials having no analogs in the
standard specifications adopted in this country.

Certain more recent studies were designed to measure the
thermal conductance of contacts between advanced compo-
site, laminated, and porous materials [25±28]. The results of
an investigation into metal±semiconductor contacts were
reported in monograph [29]; in particular, aluminium±
silicon and semiconductor±semiconductor contacts were

explored in Refs [30, 31] and [32], respectively. Values of
thermal contact resistance thus obtained for carbon and
carbonaceous composite materials at low temperatures [33]
indicate that despite the high thermal conductivity of these
materials the thermal resistance of their contacts is 100 times
that in a copper±copper pair.

Adhesive-bonded joints of 12X18H10T steel specimens
were subjected to a magnetic field to measure thermal
conductivity of polymer glue layers with ferromagnetic
filling material and to estimate the influence of an electric
field on thermal conductance of polymer glue layers contain-
ing a nonferromagnetic filler [34]. It was shown that
application of a magnetic or electric field to glue layers with
disperse fillers during hardening allows their thermal con-
ductivity to be increased.

Reviews [1, 2, 4, 7±9] summarize a wealth of experimental
data, including the well-known correlation dependences
[8, 35, 36].

Experiments designed to examine pressure effects on the
thermal and electrical properties of contact junctions are
reported in Ref. [37]. An acoustic study of Fe±Cu, Fe±Al,
Fe±Ti, and Cu±Al contact pairs at a joint zone temperature of
310±348 K showed that the most significant changes in the
real contact area Ar occur within the nominal pressure range
of 12 MPa 4Pn 4 40 MPa; at Pn > 90 MPa, the real
contact area is close to the nominal value An. In this process,
the pressure derivative of thermal contact resistance Rth; c

tends to vanish:

lim
Ar!An

qRth; c

qPn
� 0 :

In fact, the quantity Rth; c tends to a small finite value Rth; r

rather than to zero, corresponding to the thermal resistance of
a real contact:

lim
Ar!An

Rth; c � Rth; r > 0 :

Thismeans that the solid±solid interface in a real contact zone
has finite thermal conductance; in other words, thermal
resistance of a close contact is nonvanishing. The contribu-
tion of real contact resistance and associated constriction
resistance to the total resistance of a bimetallic system
increases with decreasing resistance of the solids themselves
and growing nominal pressure: it is 8±18% at Pn � 30 MPa,
and 36±63% at Pn � 70 MPa; at Pn exceeding 90±100 MPa,
Rth; c � Rth; r.

The authors of Ref. [37] attribute the existence of intrinsic
thermal resistance in close solid±solid contacts to electron and
phonon scattering at the interface between continuousmedia.
The lack of other interpretations of such data may be due to
the difficulty of applying the classical heat conduction theory
at the points of discontinuity of the temperature distribution
and the thermophysical properties; the theory contains the
notion of fictitious contact conductance (or similar quanti-
ties) having no physical sense and hampering the under-
standing of the causes of experimentally examined phenom-
ena.

3. Contact heat transfer models

The possibility of a thermoelectric analogy in a contact
accounts for the similarity of the theories of contact thermal
and electric conduction [38, 39]. The thermal and electrical
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resistance of a contact has identical components, viz.
constriction resistances toward real contact spots, resis-
tances of real contact spots and oxide films, and medium
resistance in the gaps between contacts. The difference
reduces to the relative values of individual components
between thermal and electric conductions. The electrical
resistance of oxide films is a dominant constituent of integral
contact electrical resistance; an analogous component of
thermal resistance is usually small compared with the total
thermal contact resistance. At the same time, both thermal
and electrical conductances of intercontact gaps in most
gaseous media and in a vacuum are small compared with
conductance of real contact spots. The structure of the
thermal resistance of a real contact is determined from the
equivalent scheme constructed in analogy with the electrical
scheme of a given contact [40].

The main problem in the theory of solid±solid contact
heat exchange consists in elucidating the relationship between
the heat flux (or its density) passing through a joint and the
temperature difference between the interacting surfaces. The
solution to this problem requires the following main steps:

Ð establishment of the geometry of a system of solids
under given thermomechanical conditions;

Ð evaluation of the influence of the geometry on
temperature distribution within the confines of each contin-
uous system;

Ð computation of the thermophysical properties in
perturbed layers of a material for a given temperature
distribution;

Ð calculation of the thermal contact resistance respon-
sible for the loss of temperature head in contiguous solids as
the ratio of the reduced temperature drop on mean contact
planes to heat flux density:

Rth; c � 1

ath; c
� DT

q
; �1�

where ath; c is the thermal conductance of the contact,
W mÿ2 Kÿ1; Rth; c is the thermal contact resistance,
m2 K Wÿ1; q is the heat flux density, W mÿ2, and DT is the
contact temperature drop, K. Thermal conduction problems
at the solid±liquid (or gas) boundary are convenient to solve
by introducing the thermal resistance of the contact [15].

Apart from Rth; c, absolute (total) thermal contact
resistance Rth; c; a is used, being defined as the ratio of contact
temperature drop DT to heat flux Q [41]:

Rth; c; a � DT
Q

: �2�

Unlike thermal contact resistance, absolute thermal resis-
tance Rth; c; a corresponds to the entire surface across which
the heat flux is transferred rather than to a unit area of the
heat exchange surface.

The parameters of surface roughness andwaviness, as well
as themechanical characteristics of a contact, are identical for
thermal and electric conductions. In heat exchange between a
solid and a gas (or a liquid), the solid surface structure largely
affects the convective constituent. Thermal conductivity of
solid±gas or solid±liquid interfaces, such as occurring, in
particular, in intercontact gaps during heat transfer in
solids, depends first and foremost on the thermodynamic
and thermophysical properties of the interacting systems and
on the pressure of the medium (gas or liquid) in which the

contact takes place. The situation with thermal conductivity
in solid±solid contacts is different. Surface and mechanical
properties of the solid±solid interface determine the real
contact area which in turn accounts for the value of
constriction resistance. Heat flow density increases near real
contact zones (i.e., flow lines contract in these zones), similar
to electric current density in such zones (constriction of
electric current lines to the real contact zones) in the case of
electric conductionwhen this constituent of contact resistance
results from a decrease in the flow area for electrons from the
nominal cross section area of the body to the real contact
area. However, electrical constriction resistance has a clear
physical interpretation due to the constriction of electric
current lines to real contact zones along the electron flow
trajectory, while thermal constriction resistance is explained
purely phenomenologically. In a homogeneous medium with
a steady-state temperature, a heat flow line is a curve
constructed in such a way that the constant temperature
gradient vector directed from one isothermal surface to
another is always oriented tangentially to this line (Fig. 1).
Solid±solid thermal contact is associated with distortion of
isothermal surfaces. As a result, heat flow lines turn out to be
contracted to the zones of intimate joint of surfaces [42]; in
other words, energy transfer by thermal conduction unlike
that by electrical conduction, occurs without matter transfer.

Due to the waviness and roughness of a solid surface, heat
flow constriction occurs in a step-by-step mode: first, flow
lines contract to contact macrospots formed by waviness
within nominal cross sections and thereafter to roughness-
produced microspots within the confines of each macrospot
(Fig. 2) [40]. Under real conditions, mechanical interaction
between surfaces takes place only at contact microspots,
while macrospots are just regions where microspots concen-
trate. The distance between real contact spots increases with
decreasing contact pressure, and the microspots become
thermally equivalent to single contacts modelled as the bases
of semi-infinite cylinders (tubes of heat flow) [43]. Such an
approximation allows the multidimensional thermal conduc-

q

q

Tc; r;1 Tc; r;2 Tc; r; nr

Figure 1. Constriction of heat flow lines to real contact zones.
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tivity problem to be reduced to a unidimensional one, thereby
simplifying calculations. The arithmetic average of radii
a1; a2; . . . ; anr gives the mean equivalent radius a of the
contact spot:

a � 1

nr

Xnr
i�1

ai ;

where nr is the number of real contact spots [44]. Contact spot
itemized under number i has its own temperature Tc;r;i. These
temperatures and corresponding radii ai are responsible for
the establishment of temperature distribution in the contact
area for which mean contact temperature �Tc;r is given by [45]

�Tc;r �
Pnr

i�1 aiTc;r;iPnr
i�1 ai

:

Therefore, the temperature drop in contact, �T 0w;2 ÿ �T 00w;2, may
be expanded into two parts (Fig. 3):

T 0w;2 ÿ T 00w;2 � �T 0w;2 ÿ �Tc;r� � � �Tc;r ÿ T 00w;2� :

If heat flux vectors crossing real contact spots are parallel, i.e.,
in the case of a unidimensional problem, the terms on the
right-hand side of the last equation can be represented as [45]

T 0w;2 ÿ �Tc;r � d1q
l1

; �Tc;r ÿ T 00w;2 �
d2q
l2

;

where q is the heat flux density across the contact plane,
W mÿ2; l1, l2 are the thermal conductivities of interacting
solids, and d1, d2 are the functions characterizing the
constriction of heat flow lines to real contact spots in
materials 1 and 2, m. These functions are identical because
they depend on microgeometry alone (the distribution of
contact zone radii a1, a2, . . . ; anr within contact contour area
Fa), which is identical for the two materials, and on the
thermal conductance of contacting media; hence follows the
relationship

T 0w;2 ÿ �Tc;r

�Tc;r ÿ T 00w;2
� l2

l1
;

from which the mean contact temperature can be found:

�Tc;r �
T 0w;2 � �l2=l1�T 00w;2

1� l2=l1
: �3�

Whether the contact is elastic or plastic depends on the value
of �Tc;r. In other words, �Tc; r determines real contact pressure
Pr and thereby real contact area Ar:

Ar � N

Pr
;

where N is the compressive force, N, directed to the contact
surface.

The ratio of the real-to-nominal contact areas describes
constriction resistance that, in many cases of practical
significance, exceeds other constituents of thermal contact
resistance:

Rth; cn � 1

ath; cn
� Ar

An
:

These other components of contact thermal conductance ath; c
include:

Ð medium conductance in intercontact gaps, ath;m;
Ð surface film conductance, ath; f;
Ð conductance during radiative heat transfer, ath; rad [6];
Ð conductance during heat transfer by emission and

electron tunneling across the contact zone, ath; em, ath; tun [38,
46].

Real contact conductance ath; r deserves to be considered
separately for the following reason. A real contact tightly
binds solid surfaces together, being close to ideal joint;
therefore, thermal resistance Rth; r of the real contact is very
low and the temperature during passage through the contact
spots is assumed to be continuous. However, constriction
resistanceRth; cn related to the contact spot area is rather high.
Not infrequently, real contact resistance is associated with
constriction resistance directly related to the real contact
zone.

1

0

l1

d1 d2

l2

x

Tw;1

Tw;3

�Tc;r

T 0w;2

T 00w;2

2

Figure 3. Temperature distribution in a solid±solid contact (thermal

conductivity increaseswith temperature in solid 1, anddecreases in solid 2).

. . .

Macroconstriction

Microconstriction

Rcn;1 Rcn;2 Rcn;M

. . . . . .

r1; 1 r1; 2 r1; 3 r1;N r2; 1 r2; 2 r2; 3 r2;L

. . . . . .

rM; 1 rM; 2 rM; 3 rM;K

Figure 2. The structure of constriction resistance.
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Construction of an equivalent scheme is one of the most
accurate methods for calculation of thermal contact resis-
tance (or corresponding conductance). Because areas crossed
by heat fluxes corresponding to one component of total
resistance or another differ [e.g., the active areas of tunneling
(Rth; tun) and emission (Rth; em) constituents of thermal contact
resistance are equal to nominal An, while the active area of
constriction resistance Rth; cn is identical to real Ar], the
equivalent scheme in the general form is applicable to specific
(1) and absolute (2) thermal resistances expressed as the ratio
of specific quantities to the corresponding active areas:

Rth; c; a � Rth; f;1 � Rth; f;2

An

�
�
An

�
1

Rth; tun
� 1

Rth; em

�
� �An ÿ Ar�

�
1

Rth;m
� 1

Rth; rad

�
� Ar

Rth; cn;1 � Rth; cn;2

�ÿ1
;

where Rth; tun is the thermal resistance in electron tunneling;
Rth; em is the resistance in electron emission; Rth; rad is the
resistance in radiative heat exchange in a contact; Rth;m is the
resistance of the medium in intercontact gaps;Rth; cn;1,Rth; cn;2

are the constriction resistances in materials 1 and 2, and
Rth; f;1,Rth; f;2 are the film resistances at interacting surfaces of
materials 1 and 2, m2 KWÿ1. Nevertheless, given the equality
of active areas of individual constituents (e.g., constriction
resistance Rth; cn and real contact resistance Rth; r), the
equivalent scheme can be just as well constructed for their
specific resistances.

Such an approach requires detailed consideration of each
component and an adequate method for its detection. The
following assumptions are feasible depending on the state-
ments of the problem:

Ð thermal resistance of the films is close to zero,
Rth; f ! 0, due to their small thickness [47];

Ð at mean contact temperature �Tc;r below 700±1000 K,
heat transferred by radiation does not exceed 2±3% of the
total thermal flux; at moderate temperatures, radiative heat
exchange in the first approximation may be neglected, i.e.,
ath; rad ! 0 [6, 48, 49];

Ð if mean contact temperature �Tc;r does not exceed
2000 K and film thickness dr is above 1 nm, the energies
transferred through the contact interface by electron emission
and tunneling are small compared with phonon heat transfer
and ath; em ! 0, ath; tun ! 0 [45, 50];

Ð thermal resistance of a real contact sequentially
introduced at each interface is close to ideal one,
Rth; r ! 0 � Rth; i; therefore, it is excluded from the equiva-
lent scheme as a low-value series component.

Thus, thermal resistance Rth; c; a of a real contact can be
expressed through thermal constriction resistances Rth; cn;1,
Rth; cn;2 in the first and second materials and through thermal
resistance of the medium in intercontact gaps, Rth;m (Fig. 4):

Rth; c; a � 1

�An ÿ Ar�=Rth;m � Ar=�Rth; cn;1 � Rth; cn;2� ;

where total constriction resistance Rth; cn is the sum of
constriction resistances in materials 1 and 2, namely

Rth; cn � Rth; cn;1 � Rth; cn;2 :

If the intercontact gaps contain a vacuum, resistance of the
medium is infinitely high and thermal conductance ath;m
through the gaps represented by the first term in the
denominator vanishes. In this case, thermal resistance of a
real contact is completely defined by the constriction
resistance:

Rth;c � Rth; cn :

Such a situation is common in space engineering where the
equipment is operated in a vacuum, and surface films grow
slowly, having no appreciable effect on contact conductance.
For this reason, the primary objective of research in this field
is to elucidate the mechanisms underlying the formation of
constriction resistances and to develop methods for their
computation.

Theoretical studies on contacts between different types of
metals are divided into four main subgroups [51]:

Ð `electric' ones using the electrical theory of solids for
the description of thermal conduction between metallic
surfaces;

Ð `microscopic' ones investigating the dependence of
thermal contact resistance on surface roughness;

Ð `macroscopic' ones based on the boundary effect in
interactions of macroscopic contact areas;

Ð `film' research designed to study the influence of
surface films on contact thermal conductance.

In addition, there are computation techniques combining
themethods of two ormore of the above subgroups. As a rule,
combined methods employ basal parameters, each having
some effect or another on contact heat transfer [51]. Such
computation takes into account:

Ð waviness characteristics of the surface;
Ð roughness characteristics of the surface;
Ð mean angles of microasperities on contiguous surfaces;
Ð number, size, and shape of microasperities;
Ð contact pressure;
Ð loading history of materials in each experimental

series, including their deformation;
Ð surface temperatures of the contact;
Ð mechanical and thermophysical properties of the

materials;
Ð heat flux magnitude and direction;
Ð history of thermal loading in each experimental series,

with special reference to the number of changes in the heat
flux direction.

Rth;tun

Rth;em

Rth;rad

Rth;m

Rth;c

Rth;1 Rth;2Rth;f;1 Rth;f;2

Rth;cn;1 Rth;cn;2

Figure 4. The structure of contact thermal resistance.
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One of themost popular analytical models is the following
representation of constriction resistances [52]:

Rth; cn; a � c
2pnrla

arctan

�
r

a
ÿ 1

�
; �4�

where Rth; cn; a is the absolute thermal constriction resistance,
KWÿ1; r is the mean fictitious radius of the constriction area,
m, and c is the shape factor of the contact spots, equaling 1
for circular spots. Bearing in mind that the active area of
constriction resistance is the real area Ar, the following
relationship is valid for specific thermal contact resistance:

Rth; cn � Ar

2pnrla
arctan

�
r

a
ÿ 1

�
� a

2l
arctan

�
r

a
ÿ 1

�
:

�5�

Quantities a, r are found as follows:
Ð by calculating thermal microconstriction resistance

resulting from the constriction of heat flow lines to a single
spot from radius r to a:

a �
�������
Ar

pnr

r
; r �

�������
An

pnr

r
; �6�

Ð by calculating the total thermal contact resistance:

a �
�����
Ar

p

r
; r �

������
An

p

r
: �7�

Relations (6), (7) establish the following limits for
constriction resistances:

Ð for the specific value

lim
a!0
Ar!0
nr!0

Rth; cn � lim
a!0
Ar!0
nr!0

a

2l
arctan

�
r

a
ÿ 1

�
� lim

a!0
Ar!0
nr!0

pa
4l
� 0 ;

lim
a!r

Ar!An
nr!1

Rth; cn � lim
a!r

Ar!An
nr!1

a

2l
arctan

�
r

a
ÿ 1

�
� 0 ;

Ð for the absolute value

lim
a!0
Ar!0
nr!0

Rth; cn; a � lim
a!0
Ar!0
nr!0

1

2pnrlca
arctan

�
r

a
ÿ 1

�

� lim
a!0
Ar!0
nr!0

1

4nrlca
� 1 ;

lim
a!r

Ar!An
nr!1

Rth; cn; a � lim
a!r

Ar!An
nr!1

1

2pnrlca
arctan

�
r

a
ÿ 1

�
� 0 :

Because practically any material manufactured or pro-
cessed in the air is coated with a surface film, the contact zone
is chemically inhomogeneous. For this reason, the equivalent
scheme should contain film resistance in a series with the
resistances of the contact materials themselves (see Fig. 4):

Rth; c � �Rth; f; 1 � Rth; f; 2� � �Rth; cn; 1 � Rth; cn; 2�
� Rth; f � Rth; cn ;

where the thermal resistances Rth; f; 1, Rth; f; 2 of the films are
defined by the ratio of their mean thicknesses df; 1, df; 2 to their

thermal conductivities lf; 1, lf; 2:

Rth; f; 1 � df; 1
lf; 1

; Rth; f; 2 � df; 2
lf; 2

:

Mean film thickness can be determined by measuring the
electrical resistance of the contact [50].

If an especially high accuracy of thermal computation is
needed, the scheme in Fig. 4 is supplemented by resistances of
intimate contacts at each interface between the twomaterials.
However, the low values of these resistances make relevant
experiments difficult to conduct, and only a few methods for
their theoretical evaluation have thus far been described in the
literature [53]. Thermal resistance of an intimate contact may
be defined as

Rth; i; 12 � 1

2

�
d1T� d2T

q

�
� 1

2N
1=3
A

�
1

l1

�
M1

r1

�1=3

� 1

l2

�
M2

r2

�1=3�
; �8�

where NA is the Avogadro constant, molÿ1; M1, M2 are the
molar masses, kg molÿ1; l1, l2 are the thermal conductivities,
W (m K)ÿ1, and r1, r2 are the densities of materials 1 and 2,
kg mÿ3.

Because the thermal resistance of an intimate contact
(� 10ÿ11 m2 K Wÿ1) is a few orders of magnitude lower
than the constriction resistance (� 10ÿ4 m2 K Wÿ1), it is the
constriction effect that determines contact thermal conduc-
tance in the absence of a substance in the gaps. Thermal
constriction resistance can be represented by the product of
the ratio of perturbed zone thickness dcn to thermal con-
ductivity l and function F dependent on the real-to-nominal
area ratio [54]:

Rth; cn � dcn
l

F � dxNcn

l
cot

�
p
2

Ar

An

�

� 1

N
1=3
A

1

l

�
M

r

�1=3

Ncn cot

�
p
2

Ar

An

�
; �9�

where Ncn � 0:5� 107 is the number of molecular layers in
the perturbed zone, varying with the material, and dx is the
minimal discrete change of the coordinate equaling the
atomic layer thickness. Then, one finds

Rtn; c;12 � Rth; r;12 � 1

N
1=3
A

1

l1

�
M1

r1

�1=3

Ncn cot

�
p
2

Ar

An

�

� 1

N
1=3
A

1

l2

�
M2

r2

�1=3

Ncn cot

�
p
2

Ar

An

�

� Rth; r;12 � Rth; cn;1 � Rth; cn;2 � Rth; r;12 � Rth; cn;12 : �10�

The constriction effect is apparent in perturbation zones
where average temperatures are close to mean contact
temperature �Tc; r;12; therefore, the thermal conductivities and
densities of materials in the first approximation are taken at
this temperature and have the sense of the thermophysical
properties of perturbation zones:

l1 � l1� �Tc; r;12� ; l2 � l2� �Tc; r;12� :
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According to formula (9), thermal constriction resistances
has the following limits:

Ð for the specific value

lim
a!0
Ar!0
nr!0

Rth; cn � lim
a!0
Ar!0
nr!0

dxNcn

l
cot

�
p
2

Ar

An

�
� 1 ;

lim
a!r

Ar!An
nr!1

Rth; cn � lim
a!r

Ar!An
nr!1

dxNcn

l
cot

�
p
2

Ar

An

�
� 0 ;

Ð for the absolute value

lim
a!0
Ar!0
nr!0

Rth; cn; a � lim
a!0
Ar!0
nr!0

dxNcn

Arl
cot

�
p
2

Ar

An

�
� 1 ;

lim
a!r

Ar!An
nr!1

Rth; cn; a � lim
a!r

Ar!An
nr!1

dxNcn

Arl
cot

�
p
2

Ar

An

�
� 0 :

In formula (9), the thickness of the perturbed zone is
assumed to be constant, whereas another approach is realized
in formula (5) where the constriction function is not used and
Rth; cn is defined as a quantity directly proportional to the
thickness dcn of the perturbed zone. In this case, the thickness
of the perturbed zone (hence, thermal constriction resistance)
depends on the relationship between the real and nominal
areas and has an extremum at Ar=An � 0:201 (Fig. 5).

Therefore, a decrease in the real area in the low contact
pressure range must lead to a fall of constriction resistances,
and its zero valuemust correspond to a zero value ofRth; cn. In
both approaches, absolute constriction resistances Rth; cn; a

tend to infinity as the real contact area in the low-pressure
range decreases, and they agree fairly well with experimental
data for medium and high pressures. The fundamental
problem of the extremum in the perturbation zone needs
verification by experiment because the above methods yield
different limits of constriction resistances in the low-pressure
range (Figs 5, 6).

A third approach that ensures both infinitely high specific
constriction resistances for a zero real contact area and
extremum of the thickness of the perturbed zone in the low
contact pressure range is also conceivable. This approach
combines the advantages of the two above methods using the
definition of the thickness of the perturbation zone from
formula (5) and constriction function (9) (F may have a
different value):

Rth; cn � dcn
l

F � a

2l
arctan

�
r

a
ÿ 1

�
cot

�
p
2

Ar

An

�

� 1

2l

�����
Ar

p

r
arctan

� ������
An

Ar

r
ÿ 1

�
cot

�
p
2

Ar

An

�
: �11�

It leads to the following limits:
Ð for the specific value

lim
a!0
Ar!0
nr!0

Rth; cn � lim
a!0
Ar!0
nr!0

a

2l
arctan

�
r
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�
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�
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2

a 2

r 2
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a
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�
r
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�
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�
p
2

a 2

r 2

�
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Ð for the absolute value
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a!0
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Rth; cn; a � lim
a!0
Ar!0
nr!0
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Figure 5. Thickness of the perturbed zone depending on the real contact

area for different nominal area values: An1�10ÿ5 m2, An2�5� 10ÿ5 m2,

and An3 � 10ÿ4 m2.
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lim
a!r

Ar!An
nr!1

Rth; cn; a � lim
a!r

Ar!An
nr!1

1

2pnrla
arctan

�
r

a
ÿ 1

�

� cot

�
p
2

a 2

r 2

�
� 0 :

Despite the advantages of analytical methods for deter-
mining the thermal resistance of real contacts due to the
possibility of the physically sound computation of its value,
the necessity to calculate a large number of various para-
meters precludes fast estimation for practical purposes. This
accounts for the extensive use of semiempirical dependences
in calculations of contact heat exchange to evaluate integral
thermal contact resistance without insight into the peculia-
rities of its structure.

One such method permits calculating heat exchange in
contacts between different types of metals taking account of
microscopic and macroscopic parameters. Total contact
conductance ath; c is represented as the sum of thermal
conductances through contact spots in solids, ath; cn, and
medium in the intercontact gaps, ath;m,

ath; c � ath; cn � ath;m :

Terms on the right-hand side of this relation are obtained
from the following empirical dependences [31, 48, 49, 55]:

ath; cn � Z1lc

�
Pn

H

�Z2�m

s

�Z3
;

Z1 � 1:25; Z2 � 0:95; Z3 � 1:00 �31; 55�; �12�

Z1 �
2

pw
; w � 0:36; Z2 � 1� 0:071c2; Z3 � 1:00 �48; 49�;

ath;m � lm
D� G

;

where Pn is the nominal contact pressure, Pa; lc �
2l1l2=�l1 � l2� is the geometric mean of thermal conductiv-
ities of interacting materials, W (m K)ÿ1; lm is the thermal
conductivity of the gap medium, W (m K)ÿ1;
s � �s 2

1 � s 2
2 �1=2 is the reduced surface roughness, m, and

m � �m 2
1 �m 2

2 �1=2 is the mean reduced microasperity angle.
Distance D [m] between mean planes of the contacting
surfaces is given by the expression

D � 1:53

�
Pn

H

�ÿ0:097
s :

Gas parameter G is defined by the product of reduced
accommodation coefficient a, parameter b, and mean free
path L of a molecule in the gaps:

G � abL; a � 2ÿ a1
a1
� 2ÿ a2

a2
;

b � 2g
Pr �g� 1� ; L � L0

P0

P

T

T0
;

where a1, a2 are the accommodation coefficients at the
interfaces between solid surfaces and the gap medium; T is
the gap medium temperature, K;P0 is the medium pressure in
the gaps at room temperature T0, Pa; Pr is the Prandtl
criterion for the medium in the gaps, and g is the level of
heat (statistical coefficient).

Surface microhardness H is in great excess of the Brinell
value and depends on a number of parameters, such as
average surface roughness s, the mean absolute angle of
material roughness m � tanm � 0:01ÿ0:1 (tilt angle of the
microroughness cone generatrix), surface treatment proce-
dure, applied pressure, and contact temperature. Surface
microhardness H is computed with respect to nominal
contact pressure Pn [48, 49]:

Pn

H
�
�
Pn

H 0

�1=1�0:071c2
; H 0 � c1

�
1:62s
ms0

�
;

where s0 � 10ÿ6 m; c1, c2 are the Vickers microhardness
coefficients:

c1 � HBGM�4:0ÿ 5:77k� 4:0k 2 ÿ 0:61k 3� ;

c2 � ÿ0:57�
�

1

1:22

�
kÿ

�
1

2:42

�
k 2 �

�
1

16:58

�
k 3 ;

k � HB

HBGM
;

HBGM � 3:178� 109 Pa, and HB is the Brinell microhard-
ness, Pa. This approximation is valid in the hardness range of
1:3� 109 4HB 4 7:6� 109 Pa. With the fictitious value of
surface microhardness He being known, coefficients of
microhardness can be found as c1 � He, and c2 � 0.

Thermal conductance of a real contact with regard for
constriction resistances is also calculated using the semiempi-
rical dependence [6, 32, 35] derived from generalization of
numerous experimental data and yielding fairly reliable
values for a variety of materials:

ath; s � 1:15� 104leq

�
P 2
n

ObE

Tc

Tmelt
K 2

�0:302

; �13�

leq � s1 � s2
s1=l1 � s2=l2

;

where leq is the equivalent thermal conductivity of the
contacting materials, W (m K)ÿ1; h1, h2 are the mean heights
of microasperities at the interacting surfaces, m; Pn is the
nominal contact pressure, Pa; Ob is the ultimate strength of a
softer material, Pa; E is the coefficient of elasticity of the
contacting materials, Pa;Tc is the mean contact temperature,
K; Tmelt is the melting temperature of a lower-melting
material, K; E � 2E1E2=�E1 � E2� is the reduced elastic
modulus, Pa, E1, E2 are the reduced elastic moduli of
contacting materials, Pa, and K is a coefficient describing a
change of contiguous surfaces depending on the arithmetic
mean of profile deflection in the following way:

K � 1 at �s1 � s2� > 3� 10ÿ5 m ;

K 2 �
�
30� 10ÿ6

s1 � s2

�2=3

for 10ÿ5 < s1�s2 4 3�10ÿ5 m ;

K � 15� 10ÿ6

s1 � s2
for s1 � s2 4 10ÿ5 m :

The results of a comparison of thermal contact resistances
calculated from formula (13) and found through experiment
for several flat specimens in a vacuum [35] are presented in
Table 1. At a confidence level of 0.95, the calculation error for
thermal resistance of a contact does not exceed 52%. The
difference between theoretical and observed values is due to
the errors in the experimental determination of Rth; c, as well
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as in the measurement of geometric characteristics, and to the
assumptions adopted when using analytical relations. Speci-
fically, the fictitious quantity necessary to account for
discontinuity of thermal conduction in the contact zone is
present in both formulas (12) and (13) (reduced thermal
conductivity lc of materials in formula (12) and equivalent
thermal conductivity leq in formula (13)).

Figures 7, 8 illustrate the results of calculations of thermal
contact resistances for plastic and elastic Al±Al joints in a
vacuum with similar classes of finish of the interacting
surfaces. Thermal resistance of a contact was found as the
sum of constriction resistances in the samples (thermal
resistance of the real contact was disregarded in view of its
smallness). Mechanical properties and contact criterion
(plastic or elastic) were obtained as described in Ref. [44].
Real pressure in the plastic contact was 1:082�108 Pa
(Fig. 7), and in the elastic one 1:050� 108 Pa (Fig. 8). In
other words, for all the apparent similarity between Figs 7 and
8, the abscissa axis in the latter is more extended than in the
former.

The above relations were converted to one and the same
argument, namely

Ar

An
� Pn

Pr
;

as follows:

Ð the real contact area was expressed through the
nominal one (constant for a given joint):

Ar �
�
Ar

An

�
An �

�
Pn

Pr

�
An ; An � const ;

Ð the nominal contact pressure was expressed through
the real one (constant for a given joint):

Pn �
�
Pn

Pr

�
Pr �

�
Ar

An

�
Pr ; Pr � const :

The nominal contact area An is the starting parameter
characterizing the geometry of the system being computed,
whereas real contact pressure depends on the temperature,
joint type (plastic or elastic), and surface mechanical proper-
ties of the materials [44]:

Ð for the elastic contact

Pr � 2E
Ra

Smtm
;

where Sm is the mean roughness asperity spacing of surface
profile, m; tm is the relative bearing length of the profile at the
central line level (the ratio of the total length bm j of sections
cut off by the mean line drawn through the profile peaks to
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Figure 7. Thermal contact resistance of an Al±Al plastic contact in a vacuum [Tc � 550 K, An � 10ÿ2 m, Sm � 10ÿ5 m, tm � 0:8, 9c class of finish

(Ra � 0:2� 10ÿ6 m, Rz � 10ÿ6 m)]: (a) specific value calculated from formulas (5)Ð 1, (9)Ð 2, (11)Ð 3, (12)Ð 4, and (13)Ð 5; (b) total value (for

constriction assigned to the real contact areaAr found as described inRef. [44]) calculated from formulas (5)Ð 1, (9)Ð 2, (11)Ð 3, (12)Ð 4, and (13)Ð 5.

Table 1.Measured values of contact thermal resistance at Pn � 5� 105 Pa, and Tc � 550 K.

Contact
pair

Surface geometry
leq

Theoretical
Rth; c

Experimental
Rth; c

Ra1 Ra2 R1 R2 a c

10ÿ6 m W (m K)ÿ1 10ÿ4 m2 KWÿ1

X18H8T ëX18H9T 1.15 0.68 47 180 6.2 0.989 21.1 20.5 23.1

X18H8T ëX18H9T 0.46 0.40 510 718 9.4 0.982 21.1 13.1 18.4

X18H8T ëX18H9T 0.38 0.42 890 628 12.0 0.968 21.1 12.4 14.0

Mo ëX18H9T 0.48 0.40 580 736 9.8 0.986 42.0 37.4 25.3

X18H9T ëCu 0.52 1.26 148 43 14.0 0.972 64.3 3.38 4.8
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the profile basal line length l ):

tm � 1

l

Xn
j�1

bm j ;

Ð for the plastic contact

Pr � 0:8HT :

If microhardness H0 at room temperature is known, micro-
hardnessHT at contact temperature T can be calculated using
the following formula

HT � H0
1ÿY 2=3

1ÿY 2=3
0

;

where the dimensionless temperatures Y, Y0 are determined
with respect to melting temperature Tmelt:

Y � T

Tmelt
; Y0 � T0

Tmelt
:

The contact criterion (plastic or elastic) is defined by the
quantity

P � ERa

HTSm
:

The contact is termed plastic if P > 1=4, and elastic if
P4 1=4.

In the case of thermal interaction between different
materials, contact pressure is calculated separately for each
material. The real contact area is determined based on the
minimal pressure principle, i.e., the lowest of the calculated
values is taken as the real contact pressure, because deforma-
tion of a less thermostable material causes the contact spot
area to increase. It may turn out that one of the materials
retains elasticity at a given contact temperature, while the
other becomes plastic. In such a case, the minimal pressure
principle holds as well, i.e., the pressure exerted by the plastic

material corresponding to the larger contact area is regarded
as real contact pressure.

The above dependences may be used to evaluate thermal
resistance in contacts of materials having smooth rough
surfaces with a small average asperity height s compared
with the thickness of samples themselves. In such calcula-
tions, a heat flux tubemodel (Fig. 9a) is applied, for which the
fictitious radius r is calculated from formula (6) for a single
microcontact, and from formula (7) for total contact
resistance. It is assumed that the constriction of heat flow
lines is a one-step process and proceeds directly from tube
radius r toward radius a of the real contact area Ar.

Such an assumption holds only if the surface has no low-
order asperities. However, most applied studies deal with
wavy rough surfaces where heat flow line constriction occurs
in two steps: first from nominal areaAn of radius r to contour
(apparent) wave-contact area Aa, and thereafter to the real
area with radius a (see Fig. 2). In this case, the heat flux tube
becomes more complicated and transforms into a two-step
one (Fig. 9b). Thermal constriction resistances Rth; cn is the
sum of serial macroscale (Rth; lcn) and microscale (Rth; scn)
constriction resistances:

Rth; cn � Rth; lcn � Rth; scn :

An advantage of the analytical models (5), (9), (11) is the
possibility of using both macro- and microscale constrictions
for computation purposes. It is enough to introduce inter-
mediate fictitious radius ra of the contour area and consider
heat flow line constriction in the framework of the scheme
An�r� ! Aa�ra� ! Ar�a�. By way of example, Eqn (5) for a
wavy rough surface is converted into

Rth; cn � ra
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Figure 8. Thermal contact resistance of an Al±Al plastic contact in a vacuum [Tc � 293 K, An � 10ÿ2 m, Sm � 10ÿ5 m, tm � 0:8, 14c class of finish
(Ra � 0:006� 10ÿ6 m, Rz � 0:032� 10ÿ6 m)]: (a) specific value calculated from formulas (5)Ð 1, (9)Ð 2, (11)Ð 3, (12)Ð 4, and (13)Ð 5; (b) total

value (for constriction assigned to the real contact area Ar found as described in Ref. [44]) calculated from formulas (5)Ð 1, (9)Ð 2, (11)Ð 3, (12)Ð 4,

and (13)Ð 5.
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where dlcn, dscn are the thicknesses of flat walls thermally
equivalent to perturbed zones formed by macro- and
microconstrictions.

The third case is just as feasible: it corresponds to wavy
unrough surfaces, the interaction between which is associated
with macroconstriction alone. Although roughness is impos-
sible to eliminate completely, an analytical expression for
constriction resistances can be written in this case, too [it
coincides with formula (5)] on the assumption of equality
between the apparent and real areas: Aa�ra� � Ar�a�, ra � a.

Moreover, combined cases are also conceivable in which
smooth and wavy rough surfaces interact, with the one-step
heat flux tube in one of them and the two-step tube in the
other. Nominal cross section areas of interacting materials
may differ, too. Analytical expressions allow constriction
resistances to be computed independently for each solid
body and can be easily adapted to any kind of interaction.

As a rule, empirical dependences for solids with equal
nominal areas are constructed separately for macro- and
microscale constrictions. To recall, formulas (12) and (13)
permit calculating only microconstriction; hence, the neces-
sity of additional expressions for wavy surfaces. For example,
thermal macroconstriction resistance in a contact between
two spherical surfaces of radii r1, r2 (r4 s) is possible to find
as [48, 49]

Rth; lcn; a � 1

2lcra

�
1ÿ ra

r

�3=2

: �14�

Specific thermal resistance Rth; lcn is defined by the product of
Rth; lcn; a and apparent area Aa:

Rth; lcn � Rth; lcn; aAa � Aa

2lcra

�
1ÿ ra

r

�3=2

� pr 2a
2lcra

�
1ÿ ra

r

�3=2

� pra
2lc

�
1ÿ ra

r

�3=2

: �15�

Radius ra of the apparent area Aa is defined as

ra �
�
3Nr
4E 0

�1=3

;

where fictitious values of the radius of curvature r and elastic
modulus E 0 are calculated in the following way:

r �
�

1

r1
� 1

r2

�ÿ1
;

E 0 �
�
1ÿ u 21
E1

� 1ÿ u 22
E2

�ÿ1
;

where E1,E2 are elastic moduli of the contact pair, Pa, and u1,
u2 are the Poisson ratios. If the nominal surface areas of the
samples are different, thermal constriction resistance in the
contact of spherical surfaces takes the form [48, 49]

Rth; lcn; a � 1

4l1ra

�
1ÿ ra

r1

�3=2

� 1

4l2ra

�
1ÿ ra

r2

�3=2

; �16�

Rth; lcn � pra
4l1

�
1ÿ ra

r1

�3=2

� pra
4l2

�
1ÿ ra

r2

�3=2

: �17�

Because relationships (14)±(17) are based on the heat flux
tube model, they can be generalized and adapted to the
calculation of both thermal resistances of a wider class of
wavy surfaces and microscale constriction resistances by
replacing ra with a. Consideration of coefficient p=2 in
formula (17) as the limiting value of arctangent in formula
(5), and �1ÿ a=r�3=2 as the constriction functionF in formula
(9), leads to expression (11) in the general form (as mentioned
above, F can be different).

Thus, the main problem of thermal calculation of wavy
rough surfaces consists in finding an apparent contact areaAa

and the corresponding fictitious radius ra (the method of Aa

computation was described in Ref. [44]). Analytical expres-
sions for constriction resistance have a number of advantages,
such as their invariance with respect to macro- and micro-
constrictions, the possibility of separately calculating inter-
acting solids and the related applicability to systems consist-
ing of solids with different nominal areas. Empirical depen-
dences can serve as criteria for the evaluation of analytical
models obtained by generalization of the wealth of experi-
mental data. Specifically, empirical dependences (12) were
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Figure 9.Heat flux tube and schematic of thermal resistance: (a) smooth rough surfaces with equal nominal areasÐone-step constriction; (b) wavy rough

surfaces with different nominal areasÐ two-step constriction.
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constructed based on more than 600 points corresponding to
a wide spectrum of materials and classes of finish of surfaces
[48, 49].

The above analytical expressions give values higher than
the empirical ones. This may be due to the use of the
maximum value of the shape factor c � 1 corresponding to
round contact spots. Hence, the necessity of further studies of
analytical models and their potential.

4. Heat flux rectification

In all the above formulas (4), (5), (9), (11)±(17), thermal
contact resistance is expressed through the thermophysical
properties of materials, their mechanical and geometric
characteristics, or related parameters. A change in heat flux
direction by permutation of temperature values at the outer
borders of a system alters mean contact temperature and as a
consequence thermal conduction resistances in both indivi-
dual layers and perturbed zones of the material. In other
words, the heat flux asymmetry effect occurs and thermal
rectification takes place. Also apparent is the temperature
dependence of thermomechanical properties: the real contact
area changes upon heat flux inversion due to the difference
between linear expansion coefficients of the materials; this
change affects the relationship between heat flux values in the
forward and backward directions. Important manifestations
of this effect were observed independently by different
authors in experimental studies [28, 48, 49, 55, 56].

A change of heat flux by interchanging boundary
conditions of the first order in complex thermophysical
systems composed of two or more objects in real contact
with each other is observed in two characteristic cases [28]:

Ð a thermal joint consisting of different materials with
similar or different surface properties, and

Ð a contact formed by identical materials with different
surface properties.

Conclusions drawn from this observation suggest the
cause of heat flux rectification. On the one hand, this effect
is due to the difference between thermophysical properties of
the interacting materials and their temperature dependences.
Measurement of the asymmetry for contact pairs of MM59
brass±Armco iron and IX18H9T steel±alundum bonded by
diffusion welding showed that the ratio of the forward-to-
backward heat fluxes (Ql,/Qr) varies from 1.02 to 1.4 and is
reproducible after rather a long time (several months).
Selected results of this experimental study are presented in
Table 2 [56].

Because the experiments involved practically ideally
bonded samples (diffuse welding), the heat flux ratio roughly
coincided with the density ratio; in other words, the influence
of real contact area (consequently, mechanical and surface
properties) on the effect of interest may be regarded in this
case as insignificant. Considering that the thermal resistance
of a multilayer wall with ideal contacts between the layers
depends only on the difference in temperatures DT at the
outer surfaces, thicknesses dm, and thermal conductivities lm
of the layers [6]:

Rth � DTPM
m�1 lm=dm

;

where M is the number of layers (in this case 2), and layer
thicknesses did not change over the course of the experiment,
the above results confirm the dependence of thermal rectifica-

tion on thermal conductivity:

K � d1l2
d2l1

:

CoefficientK is a dimensionless variable used as the argument
of dimensionless function f �K � (the ratio of the forward-to-
backward heat fluxes, Ql/Qr):

f �K � � Ql

Qr
: �18�

Theoretical dependence f �K � for a certain two-component
system at a constant temperature difference DT at the outer
surfaces is shown in Fig. 10 [56]. There is an optimal K0 value
for a given contact pair that can be approached by varying
thicknesses d1 and d2 of the materials. The variation will be
accompanied by an alteration of average thermal conductiv-
ities of the layers as a sequel to a change in their mean
temperatures, because mean contact temperature will be
variable despite constant temperature at the outer surfaces.

The value of f0 also varies depending on the relationship
between thermal conductivities of the materials making up
the contact pair. Possible variants of thermal conductivity
behavior as a function of temperature are illustrated in
Fig. 11. The maximum f0 values at which heat flux rectifica-
tion is especially pronounced correspond to the case exempli-
fied in Fig. 11b, where thermal conductivities change
oppositely. The rectification effect in Fig. 11a, b is less
pronounced; in the case shown in Fig. 11d, the results may

Table 2. Results of measurement of heat flux asymmetry effects.

Two-component specimen being
studied

MM59 brassë
Armco iron

IX18H9T steelë
alundum

Temperature at surface 1, �³ 352.8 320.5 300.0 390.5

Temperature at surface 2, �³ 224.1 152.0 80.0 94.2

Temperature difference at the
outer surfaces of the samples, �³

128.7 168.5 220.0 296.3

Ql

Qr
� ql

qr

1.0533 1.0955 1.2088 1.2582

f0

f�K�

0 1 K0 K

Figure 10. Theoretical dependence f �K � for a contact pair at DT � const.
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be different depending on preset temperature, meaning that
the choice of a contact pair to ensure a maximum and stable
heat flux rectification effect should be made using materials
with highly variable thermal conductivity in response to
temperature changes (as in Fig. 8b) and with the thicknesses
corresponding to the optimal K value.

On the other hand, heat flux rectification in a contact of
identical materials with different surface properties gives
evidence of its dependence on surface andmechanical proper-
ties. It was shown in experiment that [28]:

Ð elastic strain does not lead to an appreciable change in
the magnitude of the effect due to prolonged cyclic tempera-
ture inversion at the outer borders of a system, whereas plastic
strain causes its reduction after a few cycles;

Ð heat flux rectification grows with a rise in contact
pressure;

Ð it decreases in the presence of surface microasperities;
Ð heat flux rectification is greatly influenced by varia-

tions of surface properties and heat loading.
Experimental studies reveal some specific features but do

not elucidate the physical basis of thermal rectification
because of wide dispersion of the data observed, which is
attributable to a variety of materials and surface character-
istics of the samples. Hence, the importance of basic research
for physical justification of experimental results.

Each of the above subgroups of theoretical studies offers
its own explanation for heat flux rectification effect. The
electron theory attributes heat flux rectification to the
influence of the potential barrier formed in a contact between
materials of different kinds on the electron heat flux, on the
assumption that phonon conduction lacks the property of
directionality. If Ew; 1, Ew; 2 are the work functions of metal
surfaces and Ew; 1 < Ew; 2, the electron flow is directed from
metal 1 to metal 2 because electrons at the conduction
boundary of metal 1 are closer to the potential barrier. If
Ew; 1 > Ew; 2, the electron flow is directed from metal 2 to
metal 1. Because the work functions depend on the surface
geometry, as well as on the properties of surface films and
sample materials, thermal rectification is a function of these
parameters, too [38, 51, 57]. Although this assertion is valid,
the electron theory does not explain heat flux rectification in a

uniform contact where charge carriers in the interacting
metals reside at the same energy level. Moreover, this theory
fails to account for the rectification effect in nonmetallic
contacts where only phonon thermal conductivity is present.
Hence it follows that the hypothesis for the dependence of
thermal rectification on the potential barrier associated with
the difference between work functions of the interacting
metals is applicable only to electron thermal conductivity in
contacts of metals and semiconductors.

The same conclusions apply to `film' theories attributing
the heat flux rectification effect to the influence of surface
films [13]. Dielectric and semiconducting films actually form a
significant potential barrier for carriers of electric current and
have high electrical resistance [16]. However, the thermal
resistance of such films is as a rule low due to their small
thickness, and its changes upon inversion of the heat flow are
insignificant compared with overall contact resistance and its
phonon constituents (running to a few percent of the mean
film resistance). Because a change in the heat flux in the case
of boundary temperature inversion may be as large as 40%
[27], it is the phonon constituent of thermal contact resistance
that is responsible for thermal rectification, even though films
may just as well influence electron thermal conductivity.

`Microscopic' and `macroscopic' theories that postulate
the dependence of contact conduction on the surface and
mechanical properties of materials explain the rectification
effect by variation of contact micro- andmacroareas, leading
to changes inmicro- andmacroconstriction resistances. There
are several types of contacts, depending on the surface
structure of the materials. They can be either wavy with a
mean asperity height a few orders of magnitude smaller than
the mean waviness height or rough with the waviness height
commensurate with that of asperities (i.e., the interacting
surfaces are almost ideally flat). The higher thermal resistance
is believed to correspond to a heat flow direction away from
the material with lower thermal conductivity in the former
case, and toward such a material in the latter [51, 58].

The theory of micro- and macroconstrictions was
extended to the methods of calculation of contact heat
exchange, taking into account the effects of thermal stress in
the interface on the real contact area. The thermal stress is
proportional to the product of linear expansion coefficient b
and differenceDT betweenmaximum andminimum tempera-
tures at the sample's contact surface [51, 59]:

e � bDT :

Because DT is inversely proportional to the thermal con-
ductivity l of the material, one finds

e � b
l
:

It was shown in experiment that thermal conductance in
the contacts between different types of materials increases
when the heat flow is directed from the material with higher
thermal stress to the one with lower stress [51]. The distanceD
between mean planes of contacting surfaces, namely

D � �ÿ1�i�1 r 2�q

2

�
a1
l1
ÿ a2
l3

�
;

was proposed as a theoretical criterion formaximumheat flux
direction [51, 60] (�q is the mean heat flow density through a
contact taking account of the flow sign,Wmÿ2; r is the sample

1

2

l�T �

T

c

2

1
l�T �

T

a

1

2

l�T �

T

d

1

2

l�T �

T

b

Figure 11. Variants of varying thermal conductivities of contact pair

materials as a function of temperature.
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radius, m, and i is the sample's identification number). When
the absolute value of D is larger than asperities at the
interacting surfaces, contact thermal conductance is higher
for the heat flow directed away from the material with lower
thermal stress. IfD is smaller than the average surface asperity
size, maximum contact conductance occurs when heat is
transferred from the material with higher thermal stress [60].

The exact solution to the thermoelasticity problem for a
cylinder was proposed to quantitatively describe the effect of
heat flux magnitude and direction on thermal contact
resistance. It led to the conclusion that the surface profile at
the base end of the cylinder depends neither on heat transfer
at its cap end nor on the temperature profile of the end being
cooled; indeed, it was totally determined by heat flux
magnitude and direction [18]. If heat enters an end, the flow
is positive and the end becomes convex; if heat is emitted from
an end of a cylinder, it becomes concave. When samples of
identical materials are in contact, the radii of convexity and
concavity of the interacting ends coincide, and thermal
resistance is due only to heat flux constriction toward contact
microspots (Fig. 12). Because the mean size of microspots
shows but weak dependence on contact pressure, the quality
of surface processing, and the type of materials, thermal
contact resistance is practically independent of the heat flow
direction for thermal interaction between identical materi-
als. When samples of different materials are in contact, the
contact surface depends on the ratio of radii of curvature of
the contiguous ends. The microwaviness of end surfaces
created by thermal expansion of the materials may form a
contact either within a single macrospot or within a
macroring. The above patterns hold upon fulfilling the
condition [18]

�q

Pn
5

3p
2

l2
b2Er

;

where �q is the mean heat flow density across the contact,
W mÿ2; Pn is compressive pressure, Pa; l2 is the thermal
conductivity of the heat-absorbing material, W (mK)ÿ1; b2 is
the coefficient of thermal expansion of the heat-absorbing
material, Kÿ1; E is the reduced elastic modulus, Pa, and r is
the cylinder radius, m.When this condition is not fulfilled, the
microspot size is commensurable with the end sizes and
thermal conductance of the contact (in a vacuum) is totally
determined by the resistance of constriction to contact
microspots.

5. Thermal contact under a nonstationary regime

Microconstriction of heat flow lines to the real contact zone
occurs in the immediate vicinity of a contact median plane, at
a distance of order [33]

dcn �
�
An

nr

�1=2

;

whereAn is the nominal contact area,m2, and nr is the number
of real contact spots. The layer of material bounded by the
contact median plane on the one side, and the plane spaced
dcn apart on the other side, is referred to as the perturbation
zone. More appropriate dcn values can be found from
formulas (5) or (9), depending on whether the perturbation
zone thickness remains constant or varies. Microconstriction
in this zone enters a steady-state regime during a certain
characteristic time interval called relaxation time:

t1� D2

a1
� Aa

nra1
for body 1; t2� D2

a2
� Aa

nra2
for body 2;

�19�

where a1, a2 are the thermal diffusivities of materials 1 and 2,
m2 sÿ1. For transient thermal regimes with characteristic time
tc in excess of relaxation time t, relation (3) holds true; this
means that such nonstationary processes are at each moment
described by the classical theory of thermal conduction.
When the characteristic time of the nonstationary regime is
smaller than the microconstriction time, simulation of such
processes requires an additional analysis based on a theory
taking account of interactions between microparticles [44].

Nevertheless, attempts were undertaken to construct
phenomenological models of a nonstationary real contact,
making it possible to evaluate the effect of the perturbation
zone on the temperature field and heat flow under the
relaxation regime by introducing a fictitious thermal con-
ductivity and thermal capacity of the perturbation zone. The
nonuniform layer of a real contact was replaced by an equally
thick uniform wall with ideal solid±solid contacts, having the
internal energy of the nonuniform layer [61, 62]. The
nonuniformity of the real contact was taken into account by
dividing the fictitious layer into zones with different thermal
conductivities (Fig. 13): zone 3 simulates thermal conductiv-
ity across real contact spots, and zone 4 specifies properties of
the medium in intercontact gaps. Thermal conductance of the
equivalent wall is the sum of parallel conductances ath; 3; a and
ath; 4; a:

ath; c; a � ath; 3; a � ath; 4; a , 1

Rth; c; a
� 1

Rth; 3; a
� 1

Rth; 4; a

, Rth; c �
�

1

Rth; 3; a
� 1

Rth; 4; a

�ÿ1
:

The problem may be confined to a one-dimensional case
by advancing hypotheses considering boundary conditions
and temperature field [62]:

Ð at any point on the side surface of zone D, the heat flux
is zero, namely

qT
qn
� 0;

Ð all media being considered are in ideal contact
(Rth; i ! 0);

q

2

b1
l1
� b2

l2

0

q

2

b1
l1
>

b2
l2

0

2

b1
l1
<

b2
l2

0

q

1 1 1a b c

Figure 12. Schematics of profiles of the contacting ends of cylindrical

samples with a heat flux across them.
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Ð temperature distribution is uniform over the surfaces
P1, P2;

Ð thermal conductance in zoneD is assumed to be linear.
Final expressions for thermal capacity and bulk thermal

conductivity of the equivalent layer are written out in the
form [62]

l 0 � l3A3 q �T3�x; t�=qx� l4A4 q �T4�x; t�=qx
A3 q �T3�x; t�=qx� A4 q �T4�x; t�=qx ; �20�

c 0r 0 � c3r3A3 q �T3�x; t�=qt� c4r4A4 q �T4�x; t�=qt
A3 q �T3�x; t�=qt� A4 q �T4�x; t�=qt : �21�

Thus, calculation of l 0 and c 0r 0 requires knowledge of
temperatures �T3�x; t�, �T4�x; t� derived from these para-
meters; in other words, the problem is formulated incorrectly
from the standpoint of mathematical physics [63]. Never-
theless, it is possible to roughly determine the thermophysical
properties of the equivalent wall.

This purpose can be achieved by introducing a local
separation a�x; t� of the heat flux that is the ratio of the heat
fluxQ3�x; t� across the area A3 to the total fluxQ�x; t� across
the section S:

a�x; t� � Q3�x; t�
Q�x; t� :

Then, the heat fluxQ4�x; t� across the sectionA4 can be found
as

Q4�x; t� � Q�x; t� ÿQ3�x; t� �
�
1ÿ a�x; t��Q�x; t� ;

and thermal conductivity l 0, according to formula (20), as

l 0�x; t� � Q3�x; t� �Q4�x; t�
Q3�x; t�=l3 �Q4�x; t�=l4

� 1

a�x; t�=l3 � �1ÿ a�x; t��=l4 :

This means that when there is a small variation in a�x; t�, the
approximate value of fictitious thermal conductivity may be
defined in the following way:

l 0�x; t� � la ;

where la is the mean fictitious heat conductivity, W (m K)ÿ1,
of a nonuniform layer, measured under a stationary regime.

The approximate calculation of fictitious bulk thermal
capacity is based on the assumption of rather close rates of
variation of average temperatures �T3�x; t�, �T4�x; t�:

q �T3�x; t�
qt

� q �T4�x; t�
qt

;

i.e., according to expression (21), one obtains

c 0r 0 � c3r3A3 � c4r4A4

A3 � A4
� cara ;

where cara is the fictitious bulk thermal capacity, J (m3 K)ÿ1,
of a nonuniform layer in the stationary regime. This
heterogeneous layer model is a linear one because cara and
la are constant quantities.

In the relaxation regime starting from the point in time
t � 0, the temperature at each point M of the system with
coordinate xM may be represented as

T�xM; t� �
X1
j�1

Qj�xM� exp �ÿmjt� � F�xM� ;

where F�xM� is the temperature distribution under the
stationary regime, K, and mj are the coefficients of a series
independent at each point M, sÿ1.Till the point in time of
order 1=m1 � 1=m, a change in temperature is correctly
described by the first term of this series:

�Tk�x; t� � �Qk�x� exp �ÿmt� � �Fk�x� ; k � 1; 2; 3; 4 : �22�

The thermal conductivity and bulk thermal capacity of the
equivalent layer in the relaxation regime are determined by
substituting temperature field (22) into expressions (20), (21).
In the specific case of �Fk � const, these thermophysical
properties are time- and temperature-independent continu-
ous functions of the spatial coordinate:

l 0�x; t� � l3A3 d �Q3�x�= dx� l4A4 d �Q4�x�= dx
A3 d �Q3�x�=dx� A4 d �Q4�x�=dx

� l 0�x� ;
�23�

c 0r 0�x; t� � c3r3A3
�Q3�x� � c4r4A4

�Q4�x�
A3

�Q3�x� � A4
�Q4�x� � c 0r 0�x� : �24�

In the general case of �Fk 6� const, expression (24) for bulk
thermal capacity is retained, but the simplification inserted by
Eqn (23) is no longer suitable for the description of fictitious
thermal conductivity that, under the relaxation regime, must
tend to its asymptotic limit in the stationary regime [62]:

l 0�x; t� � l3A3 d �F3�x�=dx� l4A4 d �F4�x�=dx
A3 d �F3�x�=dx� A4 d �F4�x�=dx ! l 01�x� :

Thus, the equivalent wall model is applicable only to the
description of nonstationary processes in the perturbation

d1

l1 l2

P1 P 01 P 02 P2

x1 x2 x0

d0 d2

4

1 2

D

3

4

3

l4

l3

l3

l4

Figure 13.Diagram showing the replacement of the perturbation zone in a

real contact by a thermally equivalent heterogeneous layer.
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zone near the stationary state when fictitious thermal
conductivity is close to its value in the steady-state regime.
This method and the equivalent wall model cannot be used to
calculate fictitious thermal conductivity in nonstationary
processes with a characteristic time smaller than the micro-
constriction time.

Of interest in this context is an approach based on the
methods of irreversible thermodynamics applied to the
description of media with internal parameters of state and
rate type media, the approach into which the heat propaga-
tion rate is introduced [64]. A similar parameter is utilized in
the theory of thermal conduction of discrete media, treating
thermal conduction as a process of heat wave propagation
with given energies and momenta [53, 65, 66].

6. Thermal conduction in nanosystems

The development of nanotechnologies and the wide applica-
tion of nanomaterials excite keen interest in the mechanisms
of heat transfer in nano-sized structures. Such structures
underlie current state-of-the-art technological advances in
the fields of silicon-based electronics, the manufacture of
carbon nanotubes, semiconducting quantum lattices, poly-
mer nanocomposites, multilayer films and coatings, etc. Some
devices (computer processors, semiconductor lasers) need
maximum thermal conductance, while others (thermal
diodes, thermoelectrical materials) need only the minimum.
Experiments have demonstrated that the proximity of contact
surfaces and an extremely small volume of interfaces
substantially alter heat transfer, thereby complicating ther-
mal regulation [67]. These issues require different approaches,
depending on the dielectric properties of the materials used in
particular devices and determining thermal conduction
mechanisms, viz. electronic (in metals), phononic (in non-
metals), or mixed (in metals, semiconductors). The greatest
difficulties are posed by interfaces where thermal interactions
between solids with different dielectric properties (e.g.,
between metals and dielectrics or semiconductors) occur.
These cases require special consideration of spatially sepa-
rated electron and phonon conductances, followed by
examination of interactions between their carriers in a
contact. In materials with mixed thermal conduction, elec-
trons and phonons are coincident in space, which necessitates
consideration of electron±phonon interaction within the
confines of a same medium.

Phonons as the major heat flux carriers in nonmetals are
`quasiparticles' of elastic waves propagating by virtue of
lattice oscillations. They fall within a wide frequency and
mean free path (prior to scattering) ranges. The mean free
path of 1±100 nm at room temperature is commensurate with
the structure size of the material and sometimes with the heat
wavelength. None of the existing analytical theories fully
describes the wave nature of phonons. This fact underlies the
striking discrepancy between theoretical and experimental
findings.Moreover, a number of fundamental problems, such
as determination of temperature along phonon mean free
paths, remain unresolved.

There are two main approaches to theoretical investiga-
tions into phonon thermal conductivity, besides Fourier's law
[67]:

Ð numerical solution of the Boltzmann equation;
Ð simulation of thermal conduction at the atomic level.
The majority of atomic thermal conduction models have

been constructed by molecular dynamics methods based on

Newton's equations of motion and, as a rule, empirical
expressions for the interatomic interaction potential. It is a
classical approach that can be employed to study thermal
processes in solids at temperatures above the Debye tempera-
ture. It also disregards electron±phonon interactions in
metals and semiconductors, but is fairly suitable for simulat-
ing phonon thermal conductivity. The following molecular
dynamics methods are most frequently used for the purpose
[67]:

Ð Green±Kubo method for studying lattice thermal
vibrations in the presence of a heat flow;

Ð the `direct method' reproducing the process of applica-
tion of the temperature gradient (of the order of 109 K mÿ1)
to a system and evaluating thermal conductivity from the
Fourier law.

Bothmethods allow thermal conductivity to be calculated
with a roughly similar accuracy (around 20%), but the latter
has an additional advantage making it possible to compute
thermal contact resistance for multilayer systems.

Numerical models of heat exchange in a solid±solid
contact demonstrate the presence of intrinsic thermal resis-
tance even in mechanically ideal interfaces (absence of
constriction) of crystals with a diamondlike structure and
differing only in atomic masses. The corresponding thermal
conductance for different boundary conditions is 0.8±
0.9 GW mÿ2 Kÿ1; for analogous Si crystals, it ranges 0.85±
1.53 GW mÿ2 Kÿ1 (Fig. 14). The equivalent thickness of a
perfect crystal with the same thermal resistance is on the order
of 100 nm [67].

A sharp rise in the temperature gradient occurs in the
interface region due to phonon scattering as they cross the
crystal±crystal interface. Phonons reflected from the poten-
tial barrier have an energy different from that of the passing
phonons, with the difference increasing as the interface is
approached. This leads to a rise in the mean phonon energy
gradient and, as a consequence, accounts for the greater
temperature gradient near the interface. The temperature of
reflected phonons is termed boundary temperature. The
difference between boundary temperature and the results of
linear extrapolation of temperature distribution inside the
medium is directly proportional to the ratio of heat flux to
phonon mean free path and thermal conductivity of the
material. In other words, this quantity determines the
temperature gradient and thermal conductance ath; c of
atomic layers adjacent to the interface.

0
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500
5 10 15 20d, nm

T, K

Figure 14. Temperature profile calculated for a two-layer Si crystal (the

25-nm-thick sample contains 840 atoms along the computed axis);

computation time is 1 ns.
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The exact expression for calculating ath; c was proposed by
D Young and HMaris (see Ref. [67]):

ath; c�T � �
�
C�o;T �
v�o��
t�o�� do ;

where o is the heat wave frequency, Hz; C�o;T � is a specific
function characterizing the state of phonons and being
determined from the Bose±Einstein distribution, J smÿ3 Kÿ1;

v�o�� is the phase velocity component normal to the
interface, m sÿ1;



t�o�� is the transition coefficient, and


v�o�� and


t�o�� are averaged over the entire frequency

range and all wave vectors directed either perpendicular or at
an angle to the interface. Young and Maris showed that

t�o��monotonically decreases with increasingo. This result
differs from the classical observation that the transition
coefficient weakly depends on wave frequency up to its
limiting value equal to the maximum frequency of a softer
material.

The classical models permitting us to determine the
transition coefficient include:

Ð the acoustic model, in accordance with which thermal
resistance of an ideal contact is a consequence of different
densities r and velocities of sound a of interacting materials a
and b [67]:

ht abi � 4ZaZb

�Za � Zb�2
;

where Z � ra is the acoustic impedance, kg (m s)ÿ1;
Ð the diffusion model postulating that all phonons

colliding in the interface `forget' their movements prior to
scattering event, the probability of which is proportional to
the density of phonon states

Both molecular dynamics and quantum mechanics make
use of the thermodynamic definition of temperature, i.e., they
consider this parameter as making sense for macroscopic
systems distinctive for the statistical reproducibility of their
related events and measurements. Moreover, a new notion is
introduced in quantummechanics: it is the notion of a particle
ensemble in which particles exist independently from one
another under similar macroscopic conditions. The result of
measurement of the state of a quantum ensemble coincides
with the result of many successive measurements of the states
of its elements, i.e., the key factor is not the number of
elements but the number of experiments that can be made
either using a large number of particles for a short time
interval or a small number of them during a long period [68].

The temperature is defined as a quantity related to the
mean kinetic energy of the system obtained in N measure-
ments [67]:

heii � m
2N

XN
i�1

v 2
i �

�
1

2
mv 2i

�
; �25�

where m is the atomic mass, kg. The character of the interplay
depends on the computation method involved:

Ð the molecular dynamics method based on Newton's
mechanics uses the classical relation [67]�

1

2
mv 2i

�
� heii � 3

2
kTi ;

Ð quantum mechanics assumes the average excitation
energy of an atomic system to be equal to the energy of a

phonon with wave vector q and polarization g for Bose±
Einstein statistics [67]:�

1

2
mv 2i

�
� 1

4N

X
g; q

�hog�q� x �i� 2�g; q�

�
�

2

exp
�
�hol�q�=�kTi�

�ÿ 1
� 1

�
; �26�

where x �i� 2 are the squares of polarization vector components
normalized in such a way thatX

g

x �i� 2�g; q� � 3 :

For high temperatures (above 1000 K), at which
kT4 �hog�q�, the state of Bose particles is approximated by
the following equation [67]:

2

exp
�
�hol�q�=�kTi�

�ÿ 1
� 1 � 2

kTi

�hol�q� :

In this case, expression (26) is converted to Eqn (25) and
quantum mechanics predicts the same result as molecular
dynamics. Temperatures falling in the range of 300 to 1000 K
and being calculated from formulas (25) and (26), are
significantly different. Expression (26) is preferred in this
range since the quantum-mechanical method is more applic-
able to the low-temperature region.

The temperature of a classical system is known at each
point of its trajectory, whereas the quantum approach
establishes a minimal size of the system (phonon mean free
path) for which it is possible to compute the temperature.
Phonon distribution differs in systems with different tem-
peratures and can vary as a result of phonon scattering during
the interaction between the systems: a single phonon usually
splits into two or two phonons fuse together. Low- and high-
frequency phonons have large and small mean free paths,
respectively. The phonon mean free path is referred to as
Casimir's boundary. As a rule, it is bigger than the size of cells
simulated by molecular dynamics methods.

The sizes of nanoscale systems being commensurable with
the phonon mean free path, the question arises as to the
possibility of determining local temperature in quantum
mechanics. Equation (26) relating temperature to phonon
excitation energy and frequency does not allow temperature
discontinuity between different atomic layers, in conflict with
the picture in Fig. 14. These results can be obtained in an
experiment on X-ray scattering from the corresponding
atomic lattices. Given the thickness of the atomic layer is
smaller than the phonon mean free path, it is impossible to
determine the temperature within the confines of the layer
using the above quantum definition. The Landauer formal-
ism assuming heat transfer from one reservoir to another is
equally inefficient, the mean free path being much smaller
than the distance between the reservoirs [67].

Another quantum approach to temperature determina-
tion relates temperature to mean frequency of atomic
oscillations [65, 69] by introducing the notion of a `quasi-
particle' whose kinetic and total energies are equal to the
respective mean energies of a given atomic system. The
quasiparticle is regarded in coordinate and momentum
frames of reference, the origins of which coincide with the
centers of probability distributions of the given quantities
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(�x � 0, �p � 0). In such a choice of the frames of reference, the
mean squares of coordinates and momenta equal their root-
mean-square deviations �Dx�2 and �Dp�2 [66]:

�Dx�2 � �xÿ �x�2 � x 2 ; �Dp�2 � � pÿ �p�2 � p 2 :

Then, the average kinetic energy �e proves to be equal to the
kinetic energy uncertainty (square root of standard deviation)
[65]:

�e � � p�
2

2m
� �Dp�

2

2m
�

�����������
�De�2

q
� jDej ; i:e:; jDej � 1

2
kT ;

�27�
where m is the particle mass, and T is the thermodynamic
temperature independent of the number of degrees of free-
dom of the system. According to formula (27), the absolute
temperature cannot be equal to zero because the infinitesimal
uncertainty of the momentum corresponds to the infinite
uncertainty of the coordinate, having no physical sense (the
Heisenberg uncertainty relation):

�Dp�2�Dx�2 5 �h 2

4
, 2mjDej�Dx�2 5 �h 2

4

, mkT �Dx�25 �h 2

4
, T �Dx�25 �h 2

4mk
,T5

�h 2

4mk
1

�Dx�2
;

in agreement with the third law of thermodynamics.
This approach yields the expression for absolute tempera-

ture in the form [65, 66, 69]

T � f �E0� � f ��ho0� ; �28�

where E0 is the total energy, J, of a quasiparticle characteriz-
ing the state of a homogeneous system composed of `0'
particles, and o0 is the cyclic frequency of thermal oscilla-
tions of the quasiparticle, Hz.

Temperatures of atomic a and b layers in an ideal contact
are identical and equal to a certain Tab value only under
thermodynamic equilibrium conditions. Bearing in mind the
relationship (28) between the particle energy and tempera-
ture, one may argue that particles a and b in these conditions
should occupy the energy level Eab. In all other cases, Eab

represents a limit to which total energies of the particles in
atomic layers of an ideal contact approach (Fig. 15). Particles
of the system a from which the heat flux is transferred occupy

a higher energy level than Eab:

Ea � Eab � DEa ;

and particles of the system b occupy a lower level:

Eb � Eab ÿ DEb :

Energy transfer from the system a to system b corresponds to
transition 1 of particles a and b to the level Eab.

On the other hand, particles a and b interact with particles
of their respective systems. Therefore, they do not stay at level
Eab (transition 2): a-particle moves to a more excited state,
and b-particle to a less exited state (Ea and Eb, respectively).
This double 1 ± 2 transition results in a spatial spread of
thermal energy. The time of double transition equals the
doubled time Dt of one-way transition. Identical particles a
and b (belonging to one and the same individual substance)
have equal excitation energies:

DEa � DEb :

Because periodic energy transitions of the particles around an
equilibrium state result in the spatial spread of energy and
occur without matter transfer, thermal conductivity at the
atomic level is essentially the propagation of heat waves [53].

The above-considered picture describes the thermal
conduction mechanism in matter at the quantum level and
extends A F Ioffe's hypothesis according to which, when the
phonon mean free path is equal to or smaller than the lattice
constant, heat spreads only by energy exchange between
neighboring atoms [70].

If the phonon mean free path is much greater than the
lattice size, the main factor influencing thermal conductivity
is phonon scattering. A F Ioffe suggested that the main
sources of phonon scattering in this case might be anharmo-
nicity density fluctuations of thermal vibrations. He proposed
the following formula (see Ref. [70]):

lph � vph
3

�
g0

�
Tÿ y

3

��ÿ1
;

where lph is the phonon thermal conductivity, W (m K)ÿ1;
g0 is the anharmonicity coefficient, m2 Jÿ1; vph is the mean
velocity of phonons, m sÿ1, and y is the Debye temperature,
K. TheDebye temperature reflects the state of a solid in which
all lattice vibration modes (degrees of freedom) are excited. A
further rise in temperature produces no new modes but
enhances mean vibration energy due to greater vibration
amplitudes of the existing modes. The Debye temperature is
given by

y � �homax

k
;

whereomax is themaximum cyclic atomic vibration frequency
in a solid, Hz. The value of g0 is found in experiment but can
be just as well derived from calculations based on the fact that
the Gr�unaisen constant computed analytically depends on
anharmonism of vibrations and is in fact a modified
anharmonicity coefficient [70].

Metals and crystalline semiconductors exhibit not only
phonon but also electron thermal conductivity; the latter
prevails in metals. The kinetic theory of electron thermal
conductivity is based on the hypothesis for the existence of an

1

Eab

Ea

E

Eb

1

2

2

Figure 15. Periodic energy transitions of particles in atomic layers of

homogeneous systems a and b that are in ideal contact.
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electron gas whose particles are electrons. Following the
Debye kinetic formula, the thermal conductivity of a gas is
given by [70]

l � 1

3
cvvl ;

where cv is the bulk thermal capacity, J mÿ3 Kÿ1; v is the
mean velocity of particles, m sÿ1, and l is the mean free path,
m. In the absence of electric current, the Debye formula can
be converted, using the Boltzmann equation and neglecting
certain factors, into an expression called the Wiedemann±
Franz law [70]:

le � p2

3

�
k

e

�2

sT ; �29�

where s is the specific electrical conductance, Oÿ1 mÿ1. This
expression represented in the general form is known as the
Wiedemann±Franz±Lorentz law [70]:

le � LsT ; �30�

where L is the Lorentz number, J2 Cÿ2 Kÿ2. The universal
character of expression (30) is due to the possibility of
describing unaccounted peculiarities of electron behavior
using different L values. Experimental studies have con-
firmed the validity of the Wiedemann±Franz±Lorentz law in
the form (30) for all metals, and in the form (29) for many of
them. Certain metals undergo deviation from relationship
(29) over the entire temperature range, whereas others do so
only at selected temperatures. The Lorentz number of
semiconducting materials strongly depends on the interband
scattering, which also accounts for the necessity of invoking
special computation techniques.

The main mechanisms of thermal conduction, such as
electronic and phononic ones, are supplemented by auxiliary
mechanisms (bipolar diffusion, electromagnetic radiation,
heat transfer by highly excited carriers and spin waves);
collectively, they account for the total thermal conduction of
a given material. Electron±phonon interaction manifests
itself in metal±semiconductor contacts, too.

Generally speaking, experiments confirm the applicability
of the additivity rule to overall thermal conductivity of solids
[70]:

l �
X
i

li ;

where li is the constituent of total thermal conductivity,
W (mK)ÿ1.

Thus, studies of thermal conductance in nanosystems are
part of an actively developing field of research concerning the
theory of thermal conduction in solids. A number of its
aspects await clarification, e.g., validity limits of thermo-
dynamic temperature, mechanisms of thermal conduction in
structures smaller than the phonon mean free path, contact
thermal conductivity of nanosystems, thermal resistance of
ideal contacts, heat transfer across surface nanofilms, and
some others. Solving these problems by the methods of
thermal physics and solid-state physics is a logical continua-
tion of these theories. At the same time, many solutions
obtained for solids prove inaccurate when applied to
nanoscale interpretation of thermal conduction processes
(for example, the Wiedemann±Franz±Lorentz law) and
require additional analysis with the use of up-to-date

quantum-mechanical methods. Many experimental findings,
such as the existence of thermal resistance in ideal contacts,
need theoretical interpretation and can be introduced into the
manufacturing of nanomaterials and thermal regulation of
nanosystems.

7. Heat transfer in nanofilms

Semiconducting and dielectric films that naturally form on
metallic surfaces in the air usually have a negative effect on
the thermal conductivity of multilayer systems that needs to
be taken into account [50]. However, it is possible to
manufacture surface nanofilms for specialized purposes,
first and foremost for use in microelectronics (silicon
insulators, multilayer electronic devices, semiconducting or
dielectric membranes) [67]. In all these cases, the thermal
conductance of the films should be clearly specified and, if
possible, amenable to regulation.

Films formed in natural conditions by gas adsorption fall
into an adhesive type. It remains uncertain whether such films
exist for long or undergo rapid transformation into oxide
films. The thickness of the adhesive layer (roughly 0.7 nm) is
somewhat larger than that of the monomolecular layer, and
the film covers the entire surface of the metal. So-called
tarnish films usually consist of oxide or sulfide films on the
metal surface and have a thickness of a few nanometers. They
grow slowly at room temperature. As the temperature rises,
both film thickness and growth rate increase. For T > 573 K
and T > 1073 K, the growth rate obeys parabolic and linear
laws, respectively. The growth practically stops after the film
becomes 6±10 nm thick (at room temperature); this is
sufficient to protect the material from further oxidation. The
thickness of oxide films over noble metals is very small. Gold
is usually coated with a single adhesive layer of oxygen. As
shown in experiment, surface films on steel, aluminium,
copper, silver, and gold are readily destroyed [50].

The thickness of artificial films utilized in microelectro-
nics comprises several dozen or hundred nanometers. The
main factors affecting their thermal conductivity are thick-
ness, homogeneity and structure of the material, presence of
admixtures, and temperature. Single crystals over 500 nm in
thickness (well above the Casimir boundary) exhibit the
highest thermal conductivity. A decrease in thickness of the
single crystal impairs its thermal conductivity. Impurities
cause distortion of the crystal structure, also accompanied
by impairment of thermal conductivity.

The thermal conductivity of polycrystalline films of the
same thickness is much lower but admixtures increase it. The
most widely used are silicon (Si) and silicon dioxide (SiO2)
films. Also in use are GaAs, Ge, and AlAs films [70].

It is generally believed that the small thickness of the films
is responsible for their negligibly low thermal conduction
resistance equaling the film thickness (df)-to-thermal con-
ductivity (lf) ratio:

Rth; f � df
lf
;

while the influence ofRth; f is insignificant compared with that
of the thermal resistance of contiguous materials [47]. Never-
theless, bearing in mind falling values of thermal conductivity
with decreasing nanofilm thickness, thermal resistance of the
film may to a certain extent (depending on the number of
atomic layers) influence total thermal resistance of the entire
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system. Moreover, the film has at least one interface with the
solid on which the phonon scattering takes place.

Electrons transferring heat in a metal or semiconductor
cause lattice vibrations leading to the predominant formation
of optical phonons converted into high-frequency acoustic
ones during their motion in the material. Scattering of
longitudinal optical phonons at the interface gives rise to a
transverse constituent that complicates the scattering pattern.
The effect of a material border on phonon propagation is a
critical factor exerting a decisive influence on thermal
conductivity in nanosystems.

The spatial region of maximally intensive formation of
optical phonons adjoins the border of a material from which
the heat is withdrawn. The characteristic size r of the region in
which optical phonons are formed is comparable to the lattice
size; it is much smaller than the phonon mean free path
(l � 250 nm). This distinction is another critical factor
responsible for higher real temperatures in the border area
compared with those calculated from the diffusion theory, the
difference between real and calculated temperatures increas-
ing in direct proportion to l=r.

The third critical factor is related to the fact that the group
velocity of the optical phonons being formed is significantly
lower than the characteristic lattice thermal conductivity rate,
which accounts for the elevated concentration of these
phonons in the zone of their active formation [67]. The
increase in phonon concentration near the `cold' border of
thematerial gives rise to the negative phonon flow responsible
for additional thermal resistance close to the border.

The thickness of a nanofilm can be either greater or
smaller than the phonon mean free path. As the film
thickness decreases and becomes commensurate with the
lattice size, the excess temperature at the heat-releasing
interface, caused by the second and third critical factors,
also falls. Simultaneously, the role of scattering from the
interface (first critical factor) increases. While longitudinal
thermal conductivity of the film in the direction normal to the
interface decreases, its constituent along the interface may
grow due to the appearance of the transverse component of
the phonon wave vector during scattering; it may be greater
than the longitudinal one.

Enhancement of thermal conductivity along the film±
solid interface is attributed to the properties of one- and
two-dimensional nanostructures characterized by specific
surface phonon propagation patterns. Experiments with
one-dimensional carbon nanotubes having a thickness from
a few nanometers to several dozen nanometers showed that
such systems have a thermal conductivity of about
3000 W (m K)ÿ1 at room temperature and transfer heat flux
with minimal losses, just as superconductors and optical
waveguides transfer electric current and light, respectively.
Surface thermal conductivity decreases with decreasing
temperature and becomes a few orders of magnitude lower
[0.1±1W (mKÿ1)] at temperatures close to absolute zero than
at room temperature. A quantum of phonon thermal
conductance in one-dimensional nanostructures can be
calculated as [cf. formula (29)] [67]

aph;min � p2k 2T

3h
� pk 2T

6�h
: �31�

It can be seen that aph;min grows linearly with temperature.
Nanofilms exhibit two-dimensional thermal conductivity,

but the principles of heat transfer by surface phonons remain

unaltered, which accounts for the appearance of the trans-
verse component of the wave vector during scattering from
the interface.

Nanofilms form a subgroup in a wider group of
nanomaterials containing amorphous or vitreous sub-
stances, materials with nano-sized grains and nanopores,
multilayer films, and epitaxial lattices. A common distinctive
feature of these nanomaterials is the possibility of identifying
an elementary nanostructure and reproducing it to obtain any
necessary amount of a given material. The size of an
elementary nanostructure in amorphous materials is close to
the lattice size. Multilayer films have a period depending on
the thickness of the elementary structure whichmay consist of
two layers of alternating materials. The thermal conduction
in nanomaterials is characterized by the presence of collective
modes and phonon interference.

Amorphous and porous materials possess a low permit-
tivity, associated with low thermal conduction. Nanofilms of
such materials widely used in electronics need efficacious
cooling. By way of example, modern electronic logical units
consist of several metallic (Cu) layers alternating with
dielectric (polyamide) films less than 500 nm in thickness.
The number of layers is increasing and their thickness
decreasing with advances in technology. As a result, such
nanostructures as multilayer films and superlattices have
become available.

Multilayer nanostructures are systems composed of
alternating layers of different materials as thick as a few
nanometers to several hundred nanometers. Multilayer films
consist of amorphous or polycrystalline materials, while
superlattices are single-crystalline structures. Multilayer
nanosystems exhibit two characteristic examples of thermal
conduction in which phonon mean free path is either smaller
or larger than the period defined as the thickness of an
elementary nanostructure composed of two or more layers.

As shown in experiment, the former type of thermal
conduction shows weak dependence on the thickness, i.e.,
phonons with the mean free path close to the film thickness
have little effect on heat transfer.

The thermal resistance of a multilayer system is calculated
as the sum of resistances of the constituent films and
interfaces. In the case of amorphous films, thermal resis-
tances of the interfaces are, as a rule, low compared with layer
resistance. Therefore, thermal conductance of a multilayer
film is practically independent of the period. The weak
influence of interface resistances was confirmed experimen-
tally for such contact pairs as Y2O3 ± SiO2, and ZrO2 ±Y2O3

[67].
The second type of thermal conductance is inherent in

superlattices. If the phononmean free path is 10 times ormore
larger than the period, the interference of waves reflected
from different interfaces leads to discontinuities of phonon
frequency distributions due to:

Ð a substantial decrease in the group velocities of
phonons, especially high-energy acoustic ones;

Ð an increase in the number of scattering and umklapp
processes.

If the phonon mean free path is not sufficiently long so as
to cause discontinuity of frequency distribution, the effects of
a single interface become the main factor responsible for
thermal resistance in the superlattice; these effects arise from:

Ð different scattering patterns in contacting materials;
Ð defects and dislocations in materials with different

lattice constants;
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Ð surface roughness;
Ð diffusion and fusion of materials.
Moreover, thermal resistance of multilayer systems is

influenced by the lattice period and the temperature depen-
dence of thermal conductivity of the materials. Experiments
with Si±Ge contact pair superlattices showed that the thermal
conductivity of a material decreases with decreasing the layer
thickness if it is much smaller than the critical one. An
increase in the lattice period, as a rule, leads to a rise in
thermal conductivity, provided the film thickness does not
exceed the threshold value at which surface defects begin to
manifest themselves and lower the thermal conductivity.
When the lattice period is greater than the film critical
thickness equaling the phonon mean free path, its further
growth does not cause an additional rise in thermal con-
ductivity, and thermal conductance of the lattice largely
depends on the number and resistances of the interfaces.

Surface roughness of superlattice layers is usually small.
However, the effect of surface properties may be enhanced by
physical and chemical processes when growing one material
on the surface of another. Also possible is asymmetric
formation of interfaces due to the difference between
residual events during the growth of material A on the
surface of material B, and material B on the surface of A.

As interface density (the number of contacts per lattice
thickness) increases, thermal conductivity of the lattice made
from A ±B materials approaches that of the corresponding
AB alloy. It may be either higher or lower than alloy thermal
conductivity. It is supposed that the key factor in this case is
the difference between acoustic impedances of materials A
and B: the greater it is, the lower the lattice thermal
conductivity. Heat flux directionality may also play a certain
role.

The following main approaches are applied to the
theoretical description of thermal conduction in superlattices
[67]:

Ð consideration of phonons as heat waves;
Ð representation of phonons as particles transferring

elementary thermal perturbations with the use of the
Boltzmann equation;

Ð numerical simulation based on molecular dynamics
methods.

The theory of multilayer films is incomplete. Many of its
provisions need experimental verification, while a wealth of
experimental data await theoretical interpretation. Suffice it
to mention the lack of experimental observations reliably
confirming the prediction of discontinuities in phonon
frequency distributions. On the other hand, there are no
theoretical models for the evaluation of interface density
effects on lattice thermal conductivity that may be either
higher or lower than that of the corresponding alloy. Such
models must ensure the possibility of describing the lattice
properties in alloys with different acoustic impedances that
are equally poorly studied in experiment.

For all that, the available data on thermal conduction in
nanofilms allow for the following conclusions [67]:

Ð the thermal resistance of interfaces essentially mani-
fests itself at an acoustic impedance ratio of the lattice contact
pair higher than 1.1;

Ð the difference between acoustic impedances leads to a
rise in the reflection coefficient of incoherent phonons and to
the appearance of discontinuity in the frequency spectrum of
coherent phonons whose group velocity decreases;

Ð phonons from different parts of a given frequency
spectrum are scattered differently: propagation of high-
frequency phonons with wavelengths on the order of several
atomic layers is hampered by the scattering characteristic of
alloys, while that of low-frequency phonons with greater
wavelengths is hampered by scattering typical of multilayer
films;

Ð the thermal resistance of interfaces depends on surface
roughness, diffusion, and residual properties of physical and
chemical transformations during the growth of one material
at the surface of another, heat flux directionality, and
temperature;

Ð the phonon thermal conductivity of a superlattice may
be either higher or lower than that of the corresponding alloy
and tends to it as interface density increases.

It is predicted that heat flux propagation parallel to
interfaces should be accompanied by a rise in thermal
conductivity compared with that of an alloy due to forma-
tion of surface modes. At the same time, measurements of this
constituent in GaAs±AlAs superlattices revealed an approxi-
mately fourfold decrease in thermal conductivity relative to
its values in materials of contact pairs.

Very few theoretical works treat nanofilm thermal
conductivity as a consequence of electron±phonon interac-
tion. Studies conducted in the framework of the local
temperature concept have demonstrated a wide dispersion
of results depending on the conditions at interfaces between
materials.

8. Conclusions

From the standpoint of irreversible thermodynamics, resis-
tance R is a parameter defined by the ratio of potential
difference DjX of the physical quantity X to the flux FX of a
given quantity:

R � DjX

FX
:

In the case of thermal resistance, the role of a heat flux
potential is played by temperature, and temperature differ-
enceDT in the numerator corresponds to the heat fluxQ in the
denominator [absolute thermal resistance (2)]. Replacement
of the heat flux by its density q turns thermal resistance into a
specific one (1) that characterizes the thermal properties of a
unit area of cross section or of a surface of the material.
Because specific thermal resistance is unrelated to the
quantitative characteristics of materials, it is a thermodyna-
mically intense quantity depending only on the properties of a
given material. In contrast, absolute thermal resistance is an
area-dependent thermodynamically extensive quantity.

When considering contact phenomena to determine
thermal resistance, the potential difference between interact-
ing surfaces is used along with the heat flux across the contact
zone. Thermal contact resistance is a variable depending on
many factors, which accounts for the nonlinearity of thermal
processes in the contact zone and the impossibility of flux±
potential interrelation via constant coefficients. This problem
can be addressed in two ways:

Ð presentation of contact resistance as a function of
parameters that influence it:

R � f �x1; x2; . . . ; xn� ;
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Ð disuse of the notion of `contact resistance' and
establishment of a direct relation between the flux and the
potential of a physical quantity in the form

FX � f �DjX� ;

as in the diode theory for obtaining relationships of the type

j � f �U� :

The former approach is preferred when applying to real
joints.

The thermal contact theory closely resembles the Holm
theory distinguishing the main components of electrical
contact resistance and describing their influence on electron
emission and tunneling across the contact zone. Also, the
constituents of thermal contact resistance also have analogs
in electrical resistance. In other respects, these theories differ.
Suffice it to say that components of contact electrical
resistance are analyzed by quantum-mechanical methods
due to the explicit discreteness of electric current carriers,
while constituents of thermal contact resistance are calculated
relying on continuous medium methods; this necessitates the
introduction of fictitious thermal conductivity and empirical
coefficients.

Thermodynamic interpretation of thermal resistance
makes possible the determination of its limiting values in
respect to a contact. Specific contact resistance is an intensive
quantity characterizing the individual properties of materials.
For this reason, specific constriction resistance is convenient
to find as the thermal conduction resistance of a flat wall
thermally equivalent to the perturbed zone. The wall area is
assumed to equal the real contact area. The specific resistance
of the wall being unrelated to its area, it confirms the intensive
character of the properties of specific constriction resistance
identical for both a single microcontact and the entire
macrocontact. An adiabatically isolated material with a zero
real contact area possesses no additional thermal resistance
besides intrinsic thermal conduction resistance. From this it is
apparent that specific constriction resistance serially intro-
duced into the thermal scheme of a joint together with
resistances for thermal conduction of the materials should
vanish in the absence of a real contact area. Because specific
constriction resistance also tends to zero as the real contact
area approaches the nominal value, it has a maximum at the
real-to-nominal area ratio of 0.201. Total constriction
resistance depends on the joint area, i.e., it is a thermodyna-
mically extensive quantity with the following limits: it
vanishes when the relative real contact area is equal to unity,
and tends to infinity at a zero value of this area. In a system
with specific constriction resistance boundaries, these values
correspond to the limits of expressions (4), (5).

The following problems remain to be finalized in the
thermal conduction theory:

Ð calculation of thermal resistance in intimate contacts
reported to have a finite value in experiment [37], in conflict
with the boundary condition of the fourth kind;

Ð experimental justification of the extremum of pertur-
bation zone thickness and the thermal contact resistance limit
in the region of low contact pressures;

Ð application of equivalent models of the perturbation
zone, based on fictitious parameters of thermal conductivity
and capacity, to nonstationary processes with a characteristic
time below the microconstriction time;

Ð evaluation of thermal contact resistance taking
account of electronic and radiative constituents.

Nanoscale devices and materials are extensively used in
modern technologies. Experimental studies have demon-
strated that thermophysical processes at nanometer scales
are essentially different from analogous processes in macro-
and microstructures. Application of up-to-date methods of
molecular dynamics and quantummechanics to the computa-
tion of thermal processes in nanosystems permitted simulat-
ing the experimentally examined increase in the temperature
gradient in ideal contacts of crystals and calculating their
related thermal resistance. Moreover, new conclusions were
drawn concerning the dependence of the ideal contact
transition coefficient on phonon frequency. Experimental
data and mathematical models for their description need
novel physical interpretations. This goal can be achieved by
resolving such fundamental problems as the determination of
temperature in systems smaller than the Casimir boundary
and elucidation of heat transfer mechanisms in systems with
the phonon mean free path smaller than the lattice constant.
Further studies are needed on thermal interactions between
materials with different dielectric properties, including heat
flux propagation in metal±semiconductor and metal±dielec-
tric contacts where electron thermal conductivity is converted
into phonon thermal conductivity or splits into several
constituents.

The solution to these problems is hampered by the
imperfections of the thermal devices, such as poor accuracy
and a large time constant of heat flux sensors (the flux value
must be known to calculate thermal contact resistance). An
important tool for contact heat exchange studies is provided
by the recently developed bismuth-based gradient heat-flux
sensors with a time constant of � 10ÿ8 ± 10ÿ9 s and relative
error of 2±3% using the transverse Seebeck effect [71]. The
feasibility of direct graduation of thermal e.m.f. with respect
to heat flux density was demonstrated for Al±Si contacts at
low temperatures [30, 72, 73]. The use of sensors based on
metal±semiconductor contacts opens good prospects for the
evaluation of time constants and sensor accuracy, bearing in
mind that only a few types of currently available sensors are
suitable for reliably measuring heat fluxes at cryogenic
temperatures.
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