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Toroidal ordering in crystals
and nanostructures
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1. States with a broken symmetry are traditionally the focus
of attention of the condensed state physics. The physical
nature of a change in macroscopic symmetry is connected
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with the appearance of this or that type of ordering. The
modern technologies of nano- and heterostructures provide
the possibility of controlling not only the parameters of the
energy spectra and wave functions, but also the macroscopic
symmetry of a system. The physical manifestations of the
violation of macroscopic symmetry in nanostructures can be
more vividly pronounced than in bulk materials [1, 2].
Formally, the response of a system to external actions is
determined by a set of matrix elements of the operators of
physical quantities, whose structure, in turn, is governed by
the macroscopic symmetry of the system. Nanostructures
differ from the conventional bulk materials with an analo-
gous symmetry because of the difference in the characteristic
spatial scales of the variation of the potential energy
determining the symmetry of a system. In bulk materials,
this scale is on the level of interatomic distances. In
nanostructures, this scale can be substantially larger, reach-
ing the maximum characteristic dimension at which the
concept of the wave function of charge carriers remains
valid, i.e., the coherence length. Correspondingly, the char-
acteristic scale of spatial changes in the wave functions of
charge carriers in the nanostructures is substantially greater
than in the bulk materials, and, as a result, the magnitudes of
matrix elements determining both the equilibrium character-
istics of the system and its response to external actions that
disturb equilibrium also substantially exceed those in the bulk
materials.

In nonmagnetic materials, the spatial symmetry is
determined by the charge distribution. The symmetry of
magnetic materials is connected with the ordering of micro-
scopic magnetic moments and currents, which breaks the
time-reversal invariance. The type of ordering in this case is
characterized by an order parameter [3] whose symmetry
corresponds to a change in the macroscopic symmetry of the
system upon its transition into an ordered state (in the general
case, the order parameter is a tensor which represents one of
the irreducible representations of the symmetry group of the
low-temperature phase).

Thus, for instance, in the case of a symmetry group
formed by the operations of spatial and time inversion,
which has four vector representations, four vector order
parameters can exist [4, 5]: polar vector of electric polariza-
tion P invariant relative to the inversion of time ¢; axial -odd
vector of magnetic moment M; polar z-odd vector of the
toroid moment T whose symmetry also coincides with the
symmetry of the electric current j and vector potential A, and
axial 7-even vector G which characterizes the ordering of spin
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Figure 1. Geometrical image of a toroid moment.

currents in the system. The electric polarization P and the
magnetization M play the role of the order parameters in
ferroelectrics and in ferromagnets, respectively.

In the ordered state characterized by a vector T, a
breakdown of both spatial and time symmetry takes place.
This situation is possible in multiferroics —substances in
which there coexist ferroelectric and magnetic ordering [6—
10]. In multiferroics, the electric effects can substantially
change the magnetic properties of the system, and the
magnetic field changes the electrical properties, which
accounts for the significant interest in these materials from
the viewpoint of practical applications. However, the break-
down of both time and spatial symmetry can be connected not
only with the presence of magnetic moments and electric
polarization, but also with the existence of a nonzero
spontaneous electric-current density in systems with toroidal
ordering [11].

An object with the symmetry of a toroid moment (Fig. 1)
was apparently introduced for the first time by Zel’dovich [12]
when considering the phenomenon of parity violation. Parity
nonconservation allows the existence of a pseudoscalar a
which changes its sign upon coordinate inversion. Conse-
quently, a particle which possesses spin S can also be
described by a vector T related to spin S as follows:

T=aS.

Later on, a t-odd polar vector in crystals appeared in Ascher’s
works in connection with the consideration of the possibility
of the existence of spontaneous currents [13] and kinetomag-
netic and kinetoelectric effects [14], where 31 magnetic classes
that allow the existence of this vector were defined. It is
important, however, that by itself the electric current j cannot
be considered as an order parameter, since this is forbidden by
the requirement of the gauge invariance of the system energy
[15, 16]. Indeed, if it is the current j that is chosen as the order
parameter, then the Landau expansion for the free energy in a
magnetic field H (H = rot A), namely

L,
F=aj* +bj* +... A,

is obviously noninvariant relative to the gauge transforma-
tion A — A + Vy, where x(r, ¢) is an arbitrary function.

In the classical theory of electromagnetism, the toroid
moments appear as a third independent family (together with
electric and magnetic moments) of electromagnetic multi-
poles [17, 18]. The toroid dipole moment appears in the same
order of multipole expansion as the electric and magnetic
quadrupoles [17-20]. The connection of the current density

with the toroid dipole moment density has the form
j=crotrotT, (1)

and the total toroid moment of a volume element is expressed
through the current density as follows:

Ts :ﬁj[r (rj) —2r%] &°r. (2)

The role of the conjugate field (source) for the order
parameter in the expansion of the free-energy density in the
powers of the toroid moment density is played by the total
current J = (¢/4m) rot B. In this case, since the symmetry of
the toroid moment also coincides with the symmetry of the
Poynting vector, the vector product [EH] can also serve as its
source. Thus, the expansion of the free-energy density in a
series in the powers of the toroid parameter in external fields
takes the form

F=oT?+BT*+ ... —yT[EH] — TrotB, (3)

where, as usual, o o< (0 — 0.), 0. is the transition temperature,
and o, f3, and y are the parameters of the material. The concept
of the toroid moment as an order parameter was introduced
in Refs [5, 11] (see also Refs [2, 21, 22]), and in Refs [23, 24] it
was proposed to call substances with a nonzero density of
toroid moment toroics.

A toroid moment can be connected with both the orbital
currents and localized moments, including those of a purely
spin nature. By substituting the expression for the current
density written through the magnetization, namely

j=crotM,
into formula (2), we obtain
Ts = %J(r x M) d’r,
which for the discrete moments goes over into the relationship

1
TE:EZriXMi. (4)

The simplest configurations of magnetic moments that
possess a nonzero toroid moment are displayed in Fig. 2a,b.

————

Figure 2. Simplest configurations of magnetic moments: (a, b) with a
nonzero toroid moment, and (c, d) with a zero toroid moment (for an
explanation, see the main text).
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The configuration shown in Fig. 2a also possesses a quadru-
pole moment, whereas the configuration given in Fig. 2c has a
quadrupole moment, but it does not have a toroid moment.
Note that, as follows from Eqn (4), the definition of the toroid
moment is single-valued and is independent of the choice of
the origin under the condition that the total magnetic moment
be equal to zero. However, even in the case of a nonzero
magnetic moment, for example, in multiferroics, the concept
of the toroid moment as an order parameter remains valid [20,
25]. The appearance of a toroid moment at the point of a
phase transition in this case can be detected by calculating,
according to formula (4), an increase in the toroid moment
connected with an increase in magnetic moments. Indeed, for
the toroid moment of a system of two magnetic moments M
and M, (Fig. 2d) oriented along the y-axis and located on the
x-axis at the points x; and x,, respectively (x, = x; + d), we
have

Ts = xi M| + xoMs = x1 (M 4 M>) + dM, (5)

i.e., the toroid moment obviously depends on the absolute
value of x|, which is connected with the choice of the origin.
At My = M, = M, the symmetry of the system does not
allow the existence of a toroid moment. This can directly be
checked by selecting the origin in the middle between the
moments (x; = —d/2, Ts = 0). The transition into the toroid
state occurs upon a change in the magnitudes of the magnetic
moments corresponding to the configuration shown in
Fig. 2d: M, = FOM. The change in the toroid moment,
calculated from formula (5), no longer depends on the choice
of the origin and coincides with the total toroid moment
calculated with formula (5), when the ‘correct’ choice of the
origin in the middle between the moments is made. In
experiments, the appearance of a toroid moment can be
detected by the appearance of an antisymmetric component
of the magnetoelectric tensor oy, — oy;. It is precisely in this
way that the appearance of a toroid moment was registered at
the transition into the spin-flop phase in the strong magnetic
field in Cr,0O3 [26], and in the ferromagnetic compound
Ga,_,Fe, O3 [27]. A toroidal ordering was also revealed in a
whole series of other compounds (see Ref. [25]), and recently
toroidal domains have been identified by the optical method
of the second harmonic generation in the compound
LiCoPOy4 [28].

The thermodynamic properties of materials with a toroid
moment are determined by expansion (3) and are independent
of the nature of the toroid moment (spin or orbital), except for
the magnitude of the coefficient y, which characterizes the
magnetoelectric effect in the expressions

M=9ExT, P=yTxH. (6)
In spin toroics, the magnitude of y is determined by spin—
orbit interaction and in the general case this coefficient is
small. In the toroics of an orbital nature, this coefficient is
determined by the Coulomb interaction and does not
contain a spin-orbital smallness; therefore, the magneto-
electric effect can be great.

Figure 3 illustrates the physical mechanism of the
appearance of a magnetoelectric effect in an orbital toroic.
In the absence of external fields, the magnetic moments of
the current contours located symmetrically relative to the
toroid axis exactly compensate each other, and the total
magnetic moment equals zero. The charge that creates

Figure 3. A schematic of the appearance of a magnetoelectric effect in an
orbital toroic.

electric currents is also uniformly distributed over the
surface of the toroid, and the electric polarization is absent.
The external magnetic field orients the local current contours
which form the toroid moment. The presence of a macro-
scopic toroidal symmetry at the microscopic level indicates
the existence of a specific hardness of the construction of
local currents, which limits their possible deformations. As
can be seen from Fig. 3, the current contours are strung on
the torus and a change in their orientation is unavoidably
connected with a redistribution of the contours over the
torus, which is accompanied by a redistribution of the charge
and the appearance of electric polarization. On the other
hand, the electric field, by transferring the charges, simulta-
neously moves the current contours over the surface of the
toroid, which leads to the disturbance of the mutual
compensation of the magnetic moments of elementary
current contours and to the appearance of a total magnetic
moment of the toroid.

According to formula (6), the toroid moment is dual to the
antisymmetric component o, of the magnetoelectric tensor:
P; = oy Hy, 1.e., the toroics represent a subclass of magneto-
electrics [4, 7]. In a wider context, the toroics form a subclass
of antiferromagnets. A fundamental difference of the toroics
from other antiferromagnets is connected with the fact that
the transition into the toroidal state is accompanied by the
appearance of a singularity at the transition point of a new
response function. This is the function of response to the
current:

1
0—-10."

Tind = x1J, AT~

where 0. is the transition temperature. This function can be
measured by placing the specimen between the capacitor
plates through which a displacement current is passed,
namely

J=Jp= 19 .
4mt Ot

The presence of ‘its own’ conjugated field, whose role is

played by the current, as well as of a special response

function, explains the need to use, as the order parameter,

precisely the density of toroid moment in those antiferro-

magnets where the symmetry allows its existence.

The special properties of toroics that are orbital in nature
manifest themselves at the microscopic level. The presence in
the system of a nonzero material z-odd polar vector T, whose
symmetry is analogous to the symmetry of the quasimomen-
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tum, indicates the possibility of the existence of a linear-in-
quasimomentum invariant in the expression for the energy:

AE(K) x Tk. (7)

Thus, the spectrum of elementary excitations in an orbital
toroic is asymmetric in the quasimomentum [2, 16]. Depend-
ing on the magnitude of the spin—orbit interaction, the
asymmetry of the spectrum must also be present in spin
toroics, but the asymmetry in this case is small. It should be
noted that the orbital antiferromagnetic ordering also
appears in models of highly interacting particles [29], where
it is known as a ‘flux phase’.

The qualitative estimates made in Ref. [11] show that the
orbital toroics can possess strong diamagnetism in the
nonsuperconducting state (superdiamagnetism). The mate-
rial magnetization M pertaining to the existence of a current
contour with an area S and current J can be represented as
M = aJS, where a is a certain constant. The paramagnetic
component of the response to the external field, Mg, in this
caseis related to a change in the area of the contour projection
perpendicular to the direction of the magnetic field (i.e., to the
orientation of the contour): Mg = aJ8S. The diamagnetic
component of the response is determined by a change in the
current traversing the contour: dM; = aSdJ. When the
magnetization serves as the order parameter A4 and the
current density j = ¢ rot M, we can write for the total current
J~ A/p, where p is the characteristic dimension of the
contour projection (S ~ p?). Consequently, M, ~ —ad 8p,
OMg ~ 2aA dp, and the total change in the magnetization
OM = 3Mg + dM; ~ ad dp proves to be of the same sign as
that of 8Mg, i.e., the response of the contour with current has
a paramagnetic nature.

If the role of the order parameter is played by the toroid
moment density, then the current defined by Eqn (1) is
J~ A/p?, and the diamagnetic and paramagnetic compo-
nents of the response exactly compensate for each other.
However, in the case of a spatially inhomogeneous system,
there are grounds to expect that the total response will be
diamagnetic, since the inhomogeneity can prevent a change in
the orientation of the contour with current, thereby suppres-
sing the paramagnetic component of the response.

The microscopic theory of superdiamagnetism [16] in
spatially inhomogeneous toroics is based on the analogy
between the toroidal order parameter and the vector
potential. An essential difference between the toroidal
order parameter and the usual vector potential is connected
with the fact that the uniform vector potential does not have
a physical sense and can be eliminated by a uniform shift in
the momentum space (by a gauge transformation), whereas
the asymmetry of the spectrum with respect to the
quasimomentum in orbital toroics cannot be eliminated by
any transformation, and it can lead to the observed physical
effects.

In a toroic with a spatially inhomogeneous orbital order
parameter, an effective pseudomagnetic field B¢y = 4nrotT
can be introduced. The toroidal order parameter in this case
plays the role of an effective vector potential. The pseudo-
magnetic field renders on the charge carriers an action
analogous to that of a usual magnetic field. The magnitude
of the pseudomagnetic field, which is determined by the
nature of toroidal ordering, can be very large in toroics
orbital in nature. Correspondingly, the susceptibility y of the
system with respect to the true field B is determined by the

differential susceptibility in the total field By = Ber + B:

_ O*F(Buot)

)

B=0

As is well known [30], the differential susceptibility in strong
magnetic fields can be negative and large in magnitude, which
is manifested, in particular, in the existence of diamagnetic
domains [30, 31]. In the case of a spatially inhomogeneous
toroic, the differential susceptibility in a strong pseudomag-
netic field is nothing but the response of the system to a weak
external magnetic field and, consequently, this response can
be strongly diamagnetic.

Pseudomagnetic fields appear also in the description (in
the mean-field approximation) of multiparticle effects in
models of the quantum Hall effect [32, 33], of superfluid
He3-A [34], and of high-temperature superconductivity with
the violation of z invariance [35, 36]. Recently, on the basis of
the analogy between the density of the toroid moment and the
vector potential, it was shown [37] that in the region of a
domain boundary in a multiferroic a pseudomagnetic field
appears, which establishes a force that is analogous to the
Lorentz force, but acts on light, which explains the mechan-
ism of the optical magnetoelectric effect [38].

The asymmetry of the spectrum in the quasimomentum
means that the group velocities of carriers, V(k)=
(1/h)dE(k)/dk, with quasimomenta that are equal in
magnitude and opposite in direction no longer compensate
for each other as in ordinary materials. In this case, the total
macroscopic current under equilibrium conditions becomes
zero upon integration over the occupied states with the
equilibrium distribution function fo(k) = fo(E(k)), since the
integrand is reduced to the total derivative:

o &k 2e [dE(K) &k
i= 2eJV(k)f(k) Qn) 7 J dk fo(EK)) (2n)?
d ¢k _
:Ja()(Zszo (8)

However, under nonequilibrium conditions, if the none-
quilibrium distribution function is not reduced to a function
that depends only on the energy, f(k) # f(E(k)) (i.e., in
particular, it does not possess a quasi-Fermi form), the
integrand in formula (8) is no longer reduced to the total
derivative and in the system there appears a macroscopic
current

where 7 is a dissipative constant. Current (9) constitutes a
current flowing in a nonequilibrium system in the absence of a
gradient of electrochemical potential. The appearance of such
a current is known as the anomalous photogalvanic effect
(APGE) [39, 40]. Earlier, APGEs were described in systems
without a center of inversion, which were connected with the
asymmetry of charge-carrier scattering upon intraband
collisions and/or interband transitions [39-42]. The velocity
of carriers in this case is an odd function of quasimomentum,
and the macroscopic APGE current appears due to an
antisymmetric additive to the distribution function in the
second order in the variable field. For describing this additive
to the distribution function when solving the kinetic equation
(or the equation for the density matrix) it is necessary to go
beyond the framework of the Born approximation [39].
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In bulk materials, states with a nontrivial symmetry are
realized, as a rule, as a result of complex interparticle
correlations and require the imposition of sufficiently rigor-
ous restrictions on the parameters of interparticle interac-
tions. In nanostructures, a state with an assigned spatial
symmetry can be formed using traditional methods of
engineering of wave functions, and the violation of invar-
iance with respect to time inversion can be imitated by the
action of an external magnetic field. Thus, it has been shown
in Ref. [43] that a spectrum asymmetric in momentum, which
is characteristic of systems with a toroidal type of ordering, is
formed in asymmetric nanostructures (tunnel-coupled asym-
metric quantum wells) in a magnetic field H parallel to the
layers. The presence in this system of a material vector T with
a symmetry of the toroid moment, which determines the
asymmetry of the spectrum with respect to the quasimomen-
tum, directly follows from symmetry considerations:

TxIxH, (10)
where lis the polar vector directed along the axis of growth of
quantum wells.

As to the electric polarization

PxTxH (11)
in the magnetoelectric effect (MEE), it follows from formulas
(10) and (11) that two types of MEEs nonlinear in the
magnetic field should exist, namely, so-called longitudinal
and transverse magnetoelectric effects. In the case of the
longitudinal (with respect to the growth direction, i.e., to the
asymmetry vector ) effect, the electric polarization changes in
weak magnetic fields quadratically in the field strength:

Py=oyH2, (12)
where 1||x, and o) is a proportionality factor depending on
the degree of departure from equilibrium. Notice that,
because of the symmetry of the system and the presence in
it of a polar axis 1, there is a certain polarization Py o< 1 even
in the absence of external fields. The longitudinal magneto-
electric effect represents an addition to Py related to the
deformation of the wave functions of charge carriers in the
magnetic field.

Of greater interest is the transverse magnetoelectric effect,
in which case the plane of a heterostructure is inclined relative
to the direction of the magnetic field in such a manner that
one component of the magnetic field, H, (which forms the
toroid moment), is directed along the plane of quantum wells,
and another, H, (which causes a redistribution of current
orbits in the toroidal configuration), is oriented along the
asymmetry vector 1 of the heterostructure. In this case, an
electric polarization arises in the lateral direction of the
heterostructure along the plane of the quantum wells:

P. = o, H.H, x H*sin ¢ cos ¢ (13)
(here, ¢ is the inclination of the plane of the heterostructure
relative to the direction of the magnetic field, and o, is the
corresponding proportionality factor), which occurs already
on a scale of the lateral dimensions of the heterostructure,
which in practice corresponds to dimensions on the order of
several millimeters (but can also correspond to substantially
greater sizes). Therefore, the transverse MEE, in contrast to

the longitudinal effect, can easily be observed, and the
preparation of specimens in this case does not require the
application of lithography to creating the potential contacts,
because it suffices to have two alloyed metallic contacts of
arbitrary size and shape, spaced apart on the plane.

In the case where the breakdown of the symmetry relative
to time inversion is caused by an external magnetic field, it is
of interest to study the nonequilibrium properties, for the
observation of which it is fundamentally important that the
spectrum of elementary excitations be asymmetric.

2. The photogalvanic effect (PGE) and the magnetoelectric
effect (MEE) were measured by our team both on undoped
asymmetric heterostructures, in which no equilibrium charge
carriers exist, and on doped structures with a finite density of
equilibrium carriers. In both cases, we always used the
photoexcitation of nonequilibrium carriers from the valence
band by illuminating the heterostructure with light consisting
of photons with the energies greater than the energy gap
width (band-band transitions). In the case of PGE, the
strength of the spontaneous current, according to formula
(9), is determined by the degree of departure from equilibrium
of the entire electron system and in doped structures with a
significant number density of equilibrium carriers proves to
be substantially less (as experiments showed, by many orders
of magnitude) than in undoped structures.

As to the MEE, its appearance is primordially in no way
caused by the nonequilibrium behavior of charge carriers and
is a consequence, as was said above, of a redistribution of
current trajectories of the orbital motion of charge carriers,
which are responsible for the toroid moment, simultaneously
with which there occurs a redistribution of the charge itself in
the transverse or longitudinal (with respect to the asymmetry
vector) direction. However, in this case as well, as was noted
in Ref. [43], the magnitude of the electric polarization is very
sensitive to the degree of departure from the system equili-
brium, since the expression for the electric dipole moment in
the first approximation contains the total derivative of energy
with respect to the quasimomentum and vanishes when
summing over occupied states with an equilibrium distribu-
tion function. According to paper [43], with switching-on
dissipation, for instance, by using optical excitation, we
should expect a sharp increase in electric polarization. As to
the equilibrium polarization, it, in the limit of a strong
magnetic field, should arise only in higher orders of
magnitude in the holding potential [43].

It should be noted, however, that it is impossible to
observe equilibrium polarization in a system with free
equilibrium carriers, i.e., in a metallic system, such as a
doped heterostructure, since under equilibrium conditions
the electric field inside a metallic system should be zero. In our
case this means that the redistribution of charge carriers
caused by factors that are responsible for the magnetoelectric
effect is completely compensated by free carriers in such a
manner that a uniform charge distribution would be estab-
lished over the entire volume. Thus, it occurs that, for doped
(metallic) asymmetric heterostructures as well, the observa-
tion of a magnetoelectric effect is possible only under
nonequilibrium conditions, i.e., in our case, upon optical
excitation of charge carriers.

Samples of asymmetric heterostructures investigated, the
scheme of measurements, and the geometry of experiments on
the photogalvanic and magnetoelectric effects. Experiments on
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Figure 4. Energy profiles of two asymmetric undoped three-well
Al,Ga;_,As/GaAs (x = 0.25) heterostructures with (a) tunnel-coupled
(S1) and (b) separated (S1a) quantum wells. Levels of the size quantization
and corresponding electron wave functions are shown.

Table 1. Layer-by-layer arrangement of two asymmetric undoped three-
well Al,Ga,_,As/GaAs (x = 0.25) heterostructures with tunnel-coupled
(S1) and separated (Sla) quantum wells.

Layer Layer thickness, A Comment
composition
S1 Sla

GaAs 100 100 Protective layer
Al,Ga,_,As 200 200
GaAs 54 54 Quantum well
Al Ga|_,As 20 200 Barrier
GaAs 60 60 Quantum well
Al,Ga;_,As 30 200 Barrier
GaAs 70 70 Quantum well
Al,Ga;_,As 200 200
GaAs 5000 5000 Buffer layer

the observation of photogalvanic and magnetoelectric effects
were performed on asymmetric (with respect to the growth
direction) heterostructures of GaAs/AlGaAs and AlGaAs/
InGaAs/GaAs systems grown by the molecular beam epitaxy
(MBE) method. The following samples were investigated.

(a) Asymmetric undoped Al,Ga;_,As/GaAs (x=
0.1—-0.25) structures with three quantum wells separated by
thin transparent barrier layers; such a structure represents a
single two-dimensional electron system with a width of about
250-350 A and with several levels of size quantization. A
layer-by-layer arrangement of one such heterostructure (S1)
is illustrated in Table 1 and its energy profile, levels of size

E, eV
0.6

0.3 -

0 50 100

X, nm

Figure 5. Energy profile of an asymmetric doped S512 heterostructure of
Al,Ga;_,As/In,Ga,_,As/GaAs system with a single level of size quanti-
zation (dashed line). In the inset to the figure is shown a planar form of the
heterostructure samples prepared using lithography, with metallized
bonding pads (for explanations, see the main text).

Table 2. Structure of an asymmetric doped heterostructure (S512)
representing a single quantum well located between two barriers signifi-
cantly differing in height (see Fig. 5).

Layer Layer X Silicon Comment
composition | thickness, A concentration
GaAs 200 3 x 107 em~3 | Protective layer
Al,Ga;_,As 300 0.28 | 7 x 10" em™* | Doped region
Al,Ga;_,As 30 0.28 Spacer
In,Ga;_,As 135 0.2 Quantum well
GaAs 4300 Bulffer layer

quantization, and appropriate electron wave functions are
shown in Fig. 4a.

(b) Asymmetric undoped Al,Ga;_,As/GaAs (x=
0.1—-0.25) structures with three quantum wells separated by
thick barriers that are impenetrable to electrons, so that the
three two-dimensional electronic layers are independent of
each other (see data for the structure Sla in Table 1 and in
Fig. 4b).

(¢) Asymmetric doped heterostructure (S512) which
represents a single quantum well In,Ga,;_,As (x = 0.2) with
a width of 135 A between barriers of Al,Ga;_ As (x = 0.28)
and GaAs that differ significantly in height. The layer-by-
layer arrangement of this heterostructure is given in Table 2
and its energy profile is displayed in Fig. 5. In this quantum
well, there is one level of size quantization below the Fermi
level. Due to silicon doping of the region of the outer barrier
lying behind the spacer, equilibrium charge carriers exist in
the system, whose two-dimensional density at room tempera-
tureis 1.2 x 102 cm=2 (0.78 x 102 cm™2 at T = 4.2 K).

Samples of the undoped S1 and Sla heterostructures
rectangular in shape (with dimensions of approximately
8 x 2 mm) each had two alloyed metallic (indium) potential
contacts symmetrically located opposite each other at a
distance of several millimeters (Figs 6¢ and 6d). The samples
of the doped structure S512, which were prepared with the aid
of lithography, had a so-called spider form (see inset to Fig. 5)
intended for the measurement of transport properties, and in
the plan view they represented a narrow strip 57 um wide, on
which metallized regions of potential contacts that were
connected by even narrower (10 pm) bridges located at a
distance of 0.27 mm from each other were applied. The
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Figure 6. Geometry of experiments as well as the scheme of measurements
of PGE and the longitudinal MEE (a, c¢), and the transverse MEE (b, d).
Mutual orientations of the directions of the magnetic field and toroid
moment relative to the plane of the heterostructure are shown.

overall length of the sample together with the bonding pads
was 1.1 mm.

Measurements of the PGE and MEE were conducted in a
special insert with an optical lead-in, placed vertically into a
Dewar-vessel insert in a superconducting solenoid for
measurements at intermediate temperatures. Light from a
halogen lamp or a blue light emitting diode was put into the
sample via a flexible light guide. The power of the supplied
radiation was 5 mW at most; the radiation power density on
the illuminated surface of the sample was approximately
0.35 mW mm~2. The contacts and the adjacent regions of
the sample were shut with a special protective shield. When
measuring the PGE and the longitudinal MEE, the planes of
the sample heterostructure layers were oriented along the
magnetic field in such a manner that the line of the potential
contacts of the samples was perpendicular to the field
direction (Fig. 6¢). In the measurements of the transverse
MEE, the line of the potential contacts of the samples was
oriented at an angle to the direction of the magnetic field in
such a manner that the line of contacts, the asymmetry vector
of the structure, and the magnetic field vector were located in
one plane (Fig. 6d).

The electric circuit for measuring the PGE and the MEE
was quite simple. Electric polarization in the magnetoelectric
effect was measured on the potential contacts by a voltmeter
with a very high input resistance or by an electrometer
(Fig. 6b). As far as the PGE is concerned, initially the PGE
current was measured in a simple closed series circuit
consisting of the sample and a standard measuring resistance
(Fig. 6a) [44]. In this case, the current determined from the
voltage drop across the measuring resistance is the short-
circuit current, since the resistance of the samples even under
maximum illumination is considerably greater than the
measuring resistance. It was possible, if necessary, to include
an additional source of voltage in the metering circuit. Under
these conditions, for example, we studied the magnetoresis-
tance of an asymmetric heterostructure in the case of
photoinduced charge carriers [45] and measured the cur-
rent—voltage characteristics of the samples [44]. Notice that
the alloying of a metallic (in our case, indium) contact to a
certain depth is accompanied by the appearance of a potential
barrier near the quantum well, which results in the appear-

ance of a region depleted of charge carriers under the contact
and in its immediate vicinity. This depleted near-contact
region has a very high resistance, especially at low tempera-
tures. Furthermore, at low temperatures the current—voltage
characteristic of the contact/heterostructure/contact system
becomes strongly nonlinear owing to the nonlinear properties
of the near-contact regions, which considerably distorts the
measured field dependences Jpgr(H) [44]. Therefore, we
further measured the PGE, just as the MEE, almost always
in a broken circuit from the potential difference Upgg across
the contacts to the heterostructure with the aid of an
electrometer or a voltmeter with a very high input resis-
tance. In this case, the effect of near-contact regions was
eliminated completely and, if necessary, the photogalvanic
current Jpgg was determined from the measured potential
drop Upge and the known magnitude of the electrical
resistance of the heterostructure at a given level of light
excitation of charge carriers.

Photogalvanic effect in a strong magnetic field. The first
experimental evidence for the existence of a sufficiently
strong PGE in asymmetric heterostructures corresponding
to the theoretical predictions of Ref. [43] can be considered to
be the work by Aleshchenko et al. [46]. The authors of
Ref. [46] detected a shift in the current—voltage curves of a
three-well asymmetric Al,Ga;_,As/GaAs (x = 0.25) hetero-
structure depending on the direction of a DC 5-kOe magnetic
field by a certain magnitude (varying with temperature) Vpgg
(~0.25V at T =~ 300 K), which was called by the authors the
PGE emf. It was understandable that it was of interest to
investigate the PGE in detail in a wide range of magnetic fields
and temperatures using heterostructures with various asym-
metric profiles, and this was performed in our subsequent
work, beginning with Ref. [44].

Figure 7 displays the results of measurements of the field
dependences of the potential difference, Upgge(H), on
various samples of undoped three-well Al,Ga;_,As/GaAs
(x =0.25) heterostructures in magnetic fields of up to
140 kOe at various temperatures and intensities of illumina-
tion with a halogen lamp. It is seen from the data given in
Figs 7a and 7b for the heterostructure S1 that in all the cases
the Upge(H) dependences represent H-odd functions that
are linear in weak fields and are nonmonotonic (with well
pronounced extrema) in strong fields. Worthy of mention
are the large values of Upgg, which reach at the maximum (at
H =~ 20 kOe), depending on the temperature and illumina-
tion conditions, 2-8 V per cm of length of the illuminated
region of the heterostructure. At room temperature, with
allowance for the measured electrical resistance (=~ 150 MQ),
this corresponds to a photogalvanic current Jp&g =~ 10 nA,
which coincides with the data obtained in the short-circuit
regime [44].

A linear increase in Upgg at small H is a direct
consequence of relations (9) and (10), i.e., of the fact that the
magnitude of the toroid moment is linear in H in weak
magnetic fields. With an increase in the magnetic field, Upgg
passes through a maximum and then decreases noticeably. It
is understandable from general considerations that, as the
magnetic length Ly = (hc/eH)]/ ? becomes, with increasing
H, less than the dimension of the three-well quantum region
of the heterostructure along the asymmetry vector, processes
of magnetic localization begin to manifest themselves; as a
result, the shape of the potential that holds the carriers affects
their behavior to a much less extent. Thus, the magnitude of
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Figure 7. Field dependences Upgg (H) of the photogalvanic effect obtained
on samples of asymmetric three-well undoped Al,Ga;_,As/GaAs
(x = 0.25) heterostructures: (a) for the structure S1 at room temperature
and illumination powers W =5 and 0.9 mW; (b) for the structure S1 at
W =5mW and T = 273, 204, and 4.2 K, and (c) for heterostructures with
different tunnel coupling (curves / and /a refer to the structures S1 and
Sla, respectively; see Table 1). The values of Upgg are given in volts per
unit length of the illuminated section of the heterostructure.

the asymmetry vector in formula (10) decreases in the range of
strong fields with an increase in strength, and the toroid
moment decreases correspondingly. The results of numerical
calculations performed for the three-well heterostructure S1
in Ref. [45] show that with increasing H the electrons almost
completely leave the two narrow quantum wells and are
localized in the widest well. This leads not only to a strong
decrease in the magnitude of the toroid moment, but also
quite substantially affects the magnitude of the magnetore-

sistance when the photoinduced carriers are moving in the
lateral plane of the heterostructure [AR(H)/R(0) = 1.85ina
field of 75 kOe) [45], which in turn leads to a stronger field
dependence of the photogalvanic current Jpgg(H) as com-
pared with Upgg(H) [44].

A comparison of the experimental data on the PGE,
obtained in heterostructures with tunnel-coupled (S1) and
separated (Sl1a) quantum wells gives evidence that the effect is
much weaker in the samples with separated quantum wells
(cf. curves I and /a in Fig. 7¢) and in the field dependences of
the PGE there is no maximum. The observed strong decrease
in the PGE in the structures with narrow quantum wells
separated by wide barrier layers impenetrable to electrons can
be explained by the fact that in this case the toroidal states of
the carriers are formed independently of each other in each
quantum well whose potential energy profile and correspond-
ing electron wave functions are much less asymmetric
(Fig. 4b). As a consequence, the integral magnitude of the
toroid moment induced by the magnetic field in each
quantum well and in the entire structure on the whole proves
to be considerably less than the one that could exist in the case
of tunnel coupling between the quantum wells composing the
structure. It is also understandable that the magnetic
localization in this case must show itself only in very strong
fields (~ 500 kOe), which explains the absence of a maximum
in the PGE field dependences.

Transverse magnetoelectric effect in the undoped heterostruc-
tures of the AlGaAs/GaAs system. The results of measure-
ments of the field dependences of electric polarization in
circumstances where a transverse magnetoelectric effect
occurs in samples of undoped three-well Al,Ga;_,As/GaAs
(x = 0.25) heterostructures are presented in Fig. 8. All the
data relate to the angle of inclination ¢ =45° of the
heterostructure relative to the direction of the magnetic
field, at which, according to formula (13), the effect is at a
maximum. It is seen that in all the cases the P.(H) dependence
take the form of symmetrical functions even in H. In the
region of weak fields, where the toroid moment grows linearly
with increasing field strength, the electric polarization is
quadratic in the field, P. ~ H?. In contrast to the PGE, in
which case the Upgg passes through a maximum with an
increase in H, the polarization in the transverse MEE
continues growing in strong fields with a tendency to
saturation, which is a consequence of two factors: a
decrease, with increasing field strength, in the toroid moment
induced by the lateral component H. of the field [see formulas
(11) and (13)], and a linear growth of the normal component
H, of the field. A comparison of the data on the transverse
MEE, measured in heterostructures with tunnel-coupled and
separated quantum wells, gives the same picture as that
observed in the case of the PGE, namely, in samples with
separated quantum wells the effect is considerably less
delineated (cf. curves 7 and /a in Fig. 8c). The measurements
of the transverse MEE, performed at different angles of
inclination of the heterostructure plane to the direction of
the magnetic field (Fig. 8d), showed that the angular
dependence of the polarization follows expression (13) with
a good accuracy.

Photogalvanic effect and transverse magnetoelectric effect in
the doped heterostructure of the AlGaAs/InGaAs/GaAs
system. Figure 9a displays the results of measurements of
the field dependences Upge(H) at room temperature in
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Figure 8. Field dependences of electric polarization P.(H) in the case of occurrence of the transverse magnetoelectric effect in samples of asymmetric
three-well undoped Al,Ga,;_,As/GaAs (x = 0.25) heterostructures: (a) for the SI structure at room temperature and illumination powers W = 5 and
0.9mW; (b) for the S1 structure at W = SmW and T = 273, 204, and 4.2 K;; (c) for heterostructures with different tunnel coupling (curves / and /a refer to
the structures S1 and Sla, respectively; see Table 1), and (d) at different inclinations of the heterostructure (S1) to the direction of the magnetic field (in the
inset to the figure, the angular dependence of P. at H = 120 kOe is given). The values of P. are given in volts per unit length of the illuminated section of

the heterostructure.

magnetic fields of up to 75 kOe in a sample of the doped
heterostructure S512; shown in Fig. 9b are the results of
measurements of the P,(H) dependences in the conditions of
occurrence of the transverse magnetoelectric effect (the angle
of inclination of the heterostructure with respect to the
direction of the magnetic field is o = 45°) in magnetic fields
up to 140 kOe at room temperature (curve /) and at the liquid-
helium temperature (curve 2).

The measurements were made on adjacent potential
contacts located at a distance of 0.27 mm from each other.
The illumination was accomplished with a halogen lamp,
which ensured, at a radiation power supplied to the sample on
the order of 5 mW, a power density on the surface of the
sample equal to 0.35 mW mm™2. It follows from the
comparison of the magnitudes of Upgg at the maximum of
the Upge (H) dependence and of the electric polarization P. in
the region of its saturation in strong magnetic fields with the
corresponding values for the undoped S1 heterostructure that
at room temperature under equal illumination conditions the
values of Upgg and P. reduced to a unit length of the
illuminated section of the sample for the doped structure are
less by a factor of approximately 3000.

The magnetoelectric effect in the doped structure, in
contrast to that in the undoped structure, strongly depends
on temperature: as the temperature decreases from room
temperature to 4.2 K, P; in the doped structure decreases by
approximately an order of magnitude (see curve 2 in Fig. 9b).

In this case, as can be seen from the data given, in the region of
strong magnetic fields noticeably pronounced oscillations of
P.(H) are observed. The period of these oscillations in the
inverse magnetic field strength coincides with the period of
oscillations for the Shubnikov—de Haas effect when measur-
ing the field dependences of magnetoresistance in the case
where the magnetic field is directed along the normal to the
surface of the sample.

Both these facts, i.e., the strong weakening of the
magnetoelectric effect with decreasing temperature and the
presence of oscillations in the P.(H) dependence at low
temperatures, indicate the above-mentioned participation of
equilibrium carriers in the compensation for the electric
polarization that arises due to the nonequilibrium photo-
induced fraction of charge carriers. It is understandable that
the extent of this compensation must be determined by the
relaxation time 7 in electron transport and, correspondingly,
by the conductivity of the system (tr < 7., where 7, is the
recombination time of the photoinduced carriers). As the
temperature decreases from room temperature to 4.2 K, the
relaxation time 7 increases substantially, which leads to an
even larger compensation (in comparison with that observed
at room temperature) for the electric dipole moment induced
by the magnetic field, which, in addition, in strong magnetic
fields (w.t > 1, where @, is the cyclotron frequency) begins
oscillating with the magnetic field.
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Figure 9. Field dependences of the photogalvanic effect: at 7= 273 K (a),
and electric polarization P. in the transverse magnetoelectric effect (b) at
T =273 K (curve /) and 4.2 K (curve 2) for a sample of an asymmetric
doped S512 heterostructure.

3. At present, diverse manifestations of a new type of ordering
are being experimentally discovered in condensed systems,
namely, of toroidal ordering which was predicted at the
beginning of the 1980s. A significant role in this discovery
has been played by the methods of engineering the energy-
band structure, which made it possible to observe the specific
features of anomalous photogalvanic and magnetoelectric
effects described in this report under nonequilibrium condi-
tions in artificially grown heterostructures. Of large interest is
the study of the possibility of existing a superdiamagnetic
state in spatially inhomogeneous toroics, which is connected
with the concept of a pseudomagnetic field [16] acting on the
charge carriers.

It should be also noted that the magnetic field can break
the symmetry of intrasubband transitions and lead to the
occurrence of an APGE connected with the appearance of an
additive, asymmetric in momentum, to the distribution
function, which apparently was observed in work [47]. It is
significant that the symmetry of the experiment in this case
also allows the existence in the system of a toroid moment and
allied asymmetry of the spectrum with respect to the
quasimomentum, which can be responsible for the APGE
examined in this report. A comparison and the revealing of
differences in the experimental manifestations of the two
mechanisms of the APGE — caused by the asymmetry of the
distribution function in momentum in the symmetric in the
electric field approximation [40, 47] and caused by the
asymmetry of the spectrum [see Eqns (7)—(9)]—require
additional study.
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Inhomogeneous magnetoelectric
interaction in multiferroics
and related new physical effects

A K Zvezdin, A P Pyatakov

1. Introduction

In this report, we consider a variety of phenomena related to
inhomogeneous magnetoelectric interaction. The intercon-
nection between the spatial modulation of the order para-
meter and electric polarization, known as the flexoelectric
effect in liquid crystals, in the case of multiferroics manifests
itself in the form of spin modulation induced by electric
polarization, and as an inverse effect of formation of spin-
induced electric polarization. This flexomagnetoelectric inter-
action also underlies the influence of the ferroelectric domain
structure on the antiferromagnetic structure and the magne-
toelectric properties of micromagnetic structures. We also
consider the influence of an inhomogeneous magnetoelectric
effect on the dynamic properties of multiferroics, in particu-
lar, on the magnon spectra.

The last decade has been characterized by a spate of
interest in media with interrelated magnetic and electrical
properties* (see reviews [1-10], and also special issues of two
journals devoted to this problem [11]). The interest in this area
is expressed, on the one hand, by enhanced attention paid to
the fundamental aspects of magnetoelectric phenomena in
multiferroics (substances in which magnetic and electric
orderings coexist), and, on the other hand, by the expectation
of concrete practical applications of magnetoelectrics in spin
electronics (in particular, as the base for magnetic-memory
devices) and in sensor technology.

The application of multiferroics will make it possible to
significantly enlarge the functional possibilities of spintro-
nics: a new degree of freedom—electric polarization —
provides the additional means to tune the magnetic and
magnetoresistive properties of spintronic elements [12] and
to realize four-state logical units [13, 14]. Moreover, the use of
magnetoelectric phenomena will make it possible in perspec-

* Since the mid-1990s, the number of published works devoted to
magnetoelectric materials has increased twofold—threefold every five
years, and has reached about 800 publications per year.

tive to avoid using electric currents for magnetic recording
[15-18], which is quite timely, since the progressively devel-
oping miniaturization of the traditionally used inductive
elements is encountering the problem of excessive heat
release because of an increase in the current density [19].

An enhanced interest in the fundamental mechanisms of
interaction between magnetic and electric subsystems in
solids has also been observed lately [10, 20-27], and the
variety of types of magnetoelectric interactions has grown
noticeably. In the classical review [28], which reflected the
level of knowledge on multiferroics in the early 1980s, it was
assumed that the polarization P and the magnetizations M; of
the sublattices (here s is the order number of a magnetic
sublattice) were coupled mainly via the interaction of the
form

1 o
ME ijkl kgl
FME = 2 SN pliPiPiMim,

ss’

which did not require any additional conditions except for
the very existence of magnetic and electric ordering;
recently, however, other interaction modes, introduced in
Ref. [28], have come to the foreground, namely, those that
are linear in the order parameters. In particular, the
association of electric polarization with the presence of
spatially modulated spin structures in the substance was
established [29-31], and effects odd with respect to field,
which make it possible to control the magnetic structure
with the aid of an electric field, have also been discovered
[32-35]. Whatever the origin of spatial modulation, i.e.,
whether as a result of competing exchange interactions, as
in frustrated multiferroics [29-33], as a result of the
magnetoelectric nature, as in bismuth ferrite [1, 36], or as a
result of establishing equilibrium micromagnetic configura-
tion [34, 35], in all cases nonzero spatial derivatives of the
magnetic order parameter, V;M;, existed, which created
prerequisites for the manifestation of inhomogeneous
magnetoelectric interaction.

2. Inhomogeneous magnetoelectric
(flexomagnetoelectric) interaction
The inhomogeneous magnetoelectric interaction of the
PinjVin; type, where n is the unit vector of the magnetic
order parameter (magnetization or the antiferromagnetic
vector), was introduced in Refs [37, 38] in connection with
the possibility of the appearance, in magnetically ordered
crystals, of long-period structures, and with the possibility of
the manifestation of the inverse effect of the formation of
electric polarization at domain boundaries [39]. The close
analogy between the spatially modulated spin structures in
ferroelectromagnets and the spatial modulation of the
director in nematic liquid crystals has been noted in Ref. [40]:
it manifests itself in the similarity of the mathematical
expressions for the energy of inhomogeneous magnetoelec-
tric interaction in ferroelectromagnets and the energy of
flexoelectric interaction in liquid crystals, where the director
n serves as the order parameter. This gives grounds to call the
inhomogeneous magnetoelectric interaction the flexomagne-
toelectric interaction.

In the isotropic case or in the case of cubic symmetry, the
inhomogeneous magnetoelectric interaction, to an accuracy
of the total derivative, takes on an elegant form [40]

Fiiexo = yP(ndivn + [n x rotn]) . (1)
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