
Abstract. Using elementary geometric tools, we apply essen-
tially the same methods to derive expressions for the rotation
angle of the swing plane of Foucault's pendulum and the rota-
tion angle of the spin of a relativistic particle moving in a
circular orbit (the Thomas precession effect).

1. Introduction

Jean Bernard L�eon Foucault conducted his first pendulum
experiment in Paris in January 1851, aiming to prove rotation
of the Earth by evidently demonstrating the rotation of the
swing plane of the pendulum. Originally, the suspension
length of the pendulum was 2 m. The next experiment was
set up with the suspension length 11 m at the Observatory of
Paris. Louis-Napol�eon Bonaparte, the first president of the
French Republic and nephew of famous French emperor
Napol�eon I, was informed of Foucault's work and proposed
that he conduct an experiment at the Panth�eon. The
experiment took place on 31 March 1851, with the pendulum
bob weight 28 kg suspended under the Panth�eon dome by a
steel wire 67 m long.

From the standpoint of a ground-based observer,
remote stars rotate clockwise and make a complete revolu-
tion in 1 sidereal (star) dayÐ23 hours, 56 minutes, and
4.091 seconds. Aristarchus of Samos, who proposed the first

consistent heliocentric system ca. 270 BC, related the obser-
vable rotation of stars to the Earth's axial rotation. Similar
ideas were expressed by a representative of the Pythagorean
school, Philolaus, in the 5th century BC, and by Heraclides in
the 4th century BC. If the hypothesis of the Earth's axial
rotation is correct, the swing plane of Foucault's pendulum
must be retarded due to inertia, rotating with respect to the
Earth. If the Earth is stationary, as was believed by the
majority of Greek philosophers, including Aristotle and
Ptolemy, the swing plane of the pendulum should not rotate.

From the technical standpoint, the experiment with
Foucault's pendulum was accessible to all ancient and later
civilizations, including the Greek one; however, it was
realized only in modern times. For one and a half thousand
years, it was considered that the problem of star rotation does
not require additional attention; this was related toAristotle's
authority and the success of the Ptolemaic geocentric system,
which described (and describes, up to this day) the motions of
planets with a high degree of accuracy. The interest in this
issue and related discussions were renewed in the 16th century
after the work by Nicolaus Copernicus, and mainly were
concluded after Johannes Kepler's work at the beginning of
the 17th century.

The observed rotation rate of the swing plane of
Foucault's pendulum, _jE � ÿ11� per hour, is not equal to
zero and is given by ÿ360�=23:93 � ÿ15� per hour (the
negative sign indicates that the rotation is clockwise).

If an observer connected with the reference frame of
remote stars mentally transports Foucault's pendulum along
a meridian to the North Pole, keeping a constant angle
between the swing plane and the meridian at every moment,
then a uniform rotation of the transferred plane with respect
to the stars is to be discovered in that reference frame. The
respective rotation angles jS and jE for one sidereal day
relative to the stars and the initial meridian are connected by
jS � 2p� jE. For small swing angles of the pendulum, in the
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adiabatic approximation,

jS � 2p�1ÿ cos#� ; �1�

where # is the polar angle of the pendulum. The adiabatic
condition means that the Earth rotation period significantly
exceeds the swing period.

The equation for the rotation of the swing plane of
Foucault's pendulum, as an illustration of the laws of
classical mechanics (see, e.g., [1] and also Section 3 below), is
included in university programs for physics faculties.

Foucault's pendulum placed on the North Pole rotates by
jE � ÿ360� per day. On the Equator, the pendulum does not
rotate. In handbooks, it can be found that the Panth�eon in
Paris is on the parallel # � 41:15� (in geography, the latitude
is a � p=2ÿ #). It follows from the above equations that
_jE � ÿ11:3� per hour, which correspond to observations of
Foucault's pendulum and excludes the accompanying `sky
rotation' with high accuracy.

The experiment with Foucault's pendulum gives the first
evidence of the Earth's rotation by ground-based means.

In the course of motion on the surface of the Earth, the
swing plane of the pendulum, as a consequence of the laws of
classical mechanics, remains parallel to itself [2±5]. This
surprising fact allows investigating the problem of evolution
of Foucault's pendulum by geometric methods.

At the equilibrium point, the velocity of the pendulum
bob is in the plane tangent to the Earth surface. The swing
plane of the pendulum can be characterized by a vector
orthogonal to it. This vector is also in the plane tangent to
the Earth surface. For displacements in the absence of
external forces and/or torque moments, the tangent vectors
undergo parallel transport. For example, a tangent vector of
Minkowski space±time M� R1;3, the 4-velocity remains
fixed, i.e., parallel to itself, under a displacement of an
inertially moving particle. Vectors tangent to curved sur-
faces, e.g., to a spherical surface S 2 or to the physical
relativistic velocity space, generally change when displaced,
remaining inside the tangent space. In the comoving locally
Euclidean reference frame, their evolution looks like inertial
motion. In the first case, the displacement is in Minkowski
space±time. In the last two cases, the displacement is along the
spherical surface and in the physical relativistic velocity space.

The geometric basis of an effect currently known as the
Thomas spin precession was discovered in 1913 by French
mathematician �E Borel [6], who described the effect of
precession of axes of a rigid body in a circular orbit and
pointed out its relation to the noncommutativity of Lorentz
transformations. Borel noted an analogy between transfor-
mations of vectors on a spherical surface and in the physical
relativistic velocity space, and estimated the angle of the
circular orbital rotation of rigid body axes in the lowest
quadratic order in velocity.

That same year, two young mathematicians from G�ottin-
gen, Ludwig F�oppl and Percy Daniell [7], derived an exact
formula for the precession angle, 1 according to which the
coordinate axes of a rigid body for the rest-frame observer
turn for one period of a uniform circular motion through the
angle

fS � 2p�1ÿ cosh y� ; �2�

where cosh y � g � �1ÿ v 2=c 2�ÿ1=2 is the Lorentz factor, v is
the velocity of the body, and c is the speed of light. Nearly at
the same time, the relativistic precession was discussed by
Ludwig Silbertstein [8].

In the early 1920s, Enrico Fermi [9], and later Arthur
Walker [10], established a transport rule for vectors to
construct preferred reference frames in the general theory of
relativity. In the Fermi±Walker transport, vectors tangent to
the physical relativistic velocity space behave analogously to
the axes of a rigid body in the theory of Borel et al [6±8].

The precession of axes of an accelerated rigid body is
known to physicists as the Thomas precession, since Llevellyn
Thomas [11] uncovered its fundamental importance for the
theory of fine structure of atomic spectra. Thomas based his
results on Willem de Sitter's paper on the relativistic
precession of the Moon, published in a book by Arthur
Eddington [12].

Group-theory aspects of spin precession were introduced
to physicists by Wigner [13]. The term `Wigner rotation' is
used not only as a synonym of `Thomas precession' but also,
more generally, as a synonym of the rotation of a rigid body
under coordinate transformations.

The history of early studies of Thomas precession is given
in [14].

Recently, the geometric nature of the spin precession
effect of a relativistic particle has again attracted attention.
It was shown in [15] that the rotation angle fS is determined
by an integral over the surface limited by the closed trajectory
of the particle in the physical relativistic velocity space. This
property characterizes parallel transport of vectors in a
Riemannian space (see, e.g., [16]). Parallel transport in the
relativistic velocity space and Thomas precession were
discussed in [17] in detail.

Rotation angles jS and fS correspond to a geometrical
phase that occurs in many areas of physics [4, 5, 18].

The known analogy between rotations and Lorentz
transformations is of heuristic value. In particular, we recall
that the relativistic velocity addition theorem can be obtained
as the composition law for arcs of the great circles on a sphere
of imaginary radius in a four-dimensional Euclidean space
with one imaginary coordinate (time). By introducing the
imaginary coordinate (time), it is possible to transform a
hyperboloid of physical relativistic velocities into a sphere of
imaginary radius in a four-dimensional Euclidean space.

Both for Foucault's pendulum and for Thomas preces-
sion, the surface along which a displacement occurs can
therefore be considered a sphere. This suggests that the
rotation effects of Foucault's swinging pendulum and
Thomas precession, obviously, are geometrically identical;
this does not necessarily contradict the different physical
natures of these systems.

The aim of this methodological note is to show that
expressions for the rotation angles jS and fS can be
obtained by the same method using elementary geometrical
tools for parallel transport of vectors over corresponding
surfaces. In the first case, this is the Earth's surface, i.e., a
spherical surface in the Euclidean space R3. In the second
case, this is the physical relativistic velocity space, i.e., the
hyperboloid u 2 � 1 in the tangent space TxM of Min-
kowski space±time.

The obvious tangent-cone geometric method used to
derive the main equations in Sections 3 and 4 is often used to
illustrate the effect of curvature on the parallel transport of
vectors along a spherical surface (see, e.g., Appendix 1 in [1]).

1 The paper by F�oppl and Daniell was recommended for publication by

David Hilbert.
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This method was used in [2] and [3] 2 to describe the evolution
of Foucault's pendulum. In Section 2, we recall the main
principles of parallel transport. In Section 3, based on the
consideration of Foucault's pendulum evolution from the
dynamic standpoint, we show that the evolution is reduced to
parallel transport of the swing plane of the pendulum over a
spherical surface, and obtain Eqn (1). In Section 4, the
tangent-cone method is generalized to the case of Thomas
precession and is used to obtain expression (2).

2. Parallel transport

2.1 Euclidean space
The concept of parallel transport originates in Euclidean
geometry. Two vectors are said to be parallel if two straight
lines passing through the initial and final points of the vectors
are parallel in the sense of the 5th Euclidean postulate, and the
vector directions coincide. A continuous transformation that
keeps the vector length constant and the vector parallel to
itself at every infinitesimal step is called parallel transport.
For a vectorA at a point P, there is one and only one vectorA 0

at a point P 0 that can be constructed by parallel transport ofA
from P to P 0.

In a Euclidean space, the vector sum and difference are
defined by parallel transport and the triangle rule. The
condition for parallel transport can be written as

dA � A 0 ÿ A � 0 ; �3�

where dA is an infinitesimal displacement. In a Euclidean
space, condition (3) also holds for finite displacements.

Parallel transport allows a simple description in analytical
geometry. A Cartesian reference frame is defined by a set of
base vectors ei at a chosen initial point P, which is then
parallel transported to other points in space:

dei � e 0i ÿ ei � 0 : �4�

Contravariant coordinates of a vector A are fixed by the
decomposition A � Aiei, and covariant coordinates are
defined by the scalar products Ai � ei A. Because the basis is
orthonormal, ei ej � di j, where di j � d i j � diag �1; 1; . . . ; 1�,
we have Ai � d i jAj � Ai and AB � AiB

i.
In the reference frame thus defined, parallel transport

does not change vector coordinates,

dAi � d�ei A� � dei A� ei dA � 0 ; �5�

and does not therefore change the scalar product:

d�AB� � �dAi�Bi � Ai�dBi� � 0 : �6�

2.2 Riemannian space
A Riemannian space is locally Euclidean. At any point, it is
possible to find a reference frame where the metric tensor
becomes Euclidean, and hence, for any point P 0 in the vicinity
of P, the deviation of themetric tensor from the Euclidean one
is small, being of the second order in the distance between P
and P 0.

In a local Euclidean reference frame originating at a point
P, trajectories passing through P, x � vl�O�l 3�, where l is
the infinitesimal distance from P, define elements of lines or
geodesics. 3 A curve is called geodesic if each of its infinitesi-
mal elements is an element of a geodesic. In a Euclidean space,
straight lines define the shortest distances between two points.
Correspondingly, in a Riemannian space, elements of
geodesics define the shortest distances between nearby
points, and a geodesic, between any points in the vicinity of
a curve connecting them.

In a local Euclidean reference frame, parallel transport is
defined by Eqn (3) in the first order in the displacement.
Generally, parallel transport is defined in relation to a
transformation along a curve, where a vector is parallel
transported for each infinitesimal step at every point.
Parallel transport preserves scalar products, lengths, and
angles between vectors locally and therefore along the whole
curve.

For the parallel transport along a straight line of a
Euclidean space, the angle between a vector A and the vector
tangent to the trajectory remains fixed. This property holds
locally in a Riemannian space. Together with the requirement
of a fixed length, it uniquely defines the parallel transport of a
vector along a geodesic in a two-dimensional Riemannian
space. In higher-dimensional spaces, there exists an addi-
tional freedom of rotation ofA around a vector tangent to the
trajectory vector. For parallel transport in a Euclidean space
and locally in a Riemannian space, A remains in the initial
plane spanned byA and a vector v tangent to the trajectory at
the point P. This property forbids any rotations and uniquely
defines parallel transport in Riemannian spaces of higher
dimensions. 4

2.3 Riemannian space as a hypersurface of Euclidean
space
ARiemannian space can be embedded into a Euclidean space
E of a higher dimension and considered as a hypersurface
S � E. A Cartesian reference frame on the hyperplane P�P�
tangent to S at a point P defines a locally Euclidean reference
frame S at P. In the vicinity of P 2 S, metric relations and
algebraic operations on vectors belonging to P�P� and S
coincide in the first order in the distance from P. This allows
operating with geometrical objects in a Riemannian space
locally in the same way as in the Euclidean space.

For parallel transport in the vicinity of P 2 S, vectors
belonging to the tangent space TPS satisfy Eqns (3) and (4).

Vectors of a Euclidean space E have components
orthogonal to TPS. The conditions for parallel transport do
not limit a change of these components. For any extension of
the definition, a parallel transport of a vector S in A 2 TPE is

2 In 1954, R LMills and C N Young were the first to introduce fields with

non-Abelian gauge symmetry groups into elementary particle physics.

3 The trajectory of a test particle passing through the center of mass of a

freely falling lift (point P) deviates from a straight line in the order O�l 3�,
where l is the distance from P; the particle gravitational acceleration is of

the order O�l �. The absence of O�l 2� terms in the equation for the

trajectory implies that in the infinitesimal neighborhood of P, the motion

is inertial. An external force and acceleration are equal to zero at P

according to Newton's second law.
4 It is also possible to consider geodesics originating at P2 in the

hypersurface P2 spanned by A and a vector v tangent to the trajectory.

Such geodesics form a two-dimensional hypersurface S2 tangent to P2 at

the point P. For parallel transport from P to P 0 2 S2, a geodesic is entirely

in S2, and the vector A remains tangent to S2. This property forbids

rotations of the vector and leads to the above result for A 0 at P 0 with the

accuracy O�l 2�. In the limit l! 0, the parallel transport is well defined.
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not the parallel transport in E in general. From the standpoint
of E, a precession of A occurs.

We let ei denote basis vectors of TPS. The same vectors
are basis vectors of P�P�. In the infinitesimal vicinity of
P 2 S, parallel transport conditions (3) and (4) for vectors
A 2 TPE can be written as

ei dA � 0 ; �7�
ei dek � 0 : �8�

In the first order, the components of A tangent to S do not
change. Equation (8) shows that Christoffel symbols become
zero in the locally Euclidean reference frame.

The Fermi±Walker equation [9, 10, 19] also fixes the
change of the components of A normal to TPS. In the
problems of Foucault's pendulum and Thomas precession,
the normal components are zero. In this case, Eqns (7) are
kinematically complete. For vectors in TPS, the Fermi±
Walker equation is equivalent to Eqn (7).

Parallel transport from P to P 0 inside a hypersurface in
the case where P 0 is near P can be regarded as the
corresponding parallel transport of a vector inside P�P�
with a subsequent projection on P�P 0� (Fig. 1). The result is
independent of the point in the intersection of P�P� and
P�P 0� at which the projection is made. Because parallel
transport is defined for infinitesimal displacements, it is
defined for the whole trajectory.

Equations (7) and (8) lead to the conclusion that if the
basis vectors and the tangent vectorA are parallel transported
simultaneously along some curve, then coordinates ofA in the
local basis remain invariant. This property follows from
Eqns (7) and (8) and the vector decomposition A � Aiei, i.e.,

d�ei A� � dei A� ei dA � Akek dei � ei dA � 0 : �9�

Vectors e# and ej forming a spherical basis in S 2 are
related by parallel transport along a meridian for a fixed
azimuthal angle. Therefore, the parallel transport of A along
a meridian does not change the local coordinates of A. In
particular, the orientation of the swing plane of Foucault's
pendulum relative to remote stars can be naturally (although
not uniquely) defined by the parallel transport of the swing
plane of the pendulum along a meridian into a local reference
frame of an observer on the North Pole.

The synchronization of reference frames in the special
theory of relativity assumes that the basis vectors of frames S 0

are obtained by boost transformations of the basis vectors of
some preferred reference frame S. The statements that the
one-parametric family of boosts in a two-dimensional plane
defines some geodesic in the hyperboloid u 2 � 1 of relativistic
velocities and that the boost of basis vectors is a parallel
transport along a geodesic are proved in the Appendix. As a
consequence, we note that parallel transport of a polarization
4-vector a along a geodesic does not change the local
coordinates of a.

The general mathematical formalism necessary to
describe Riemannian spaces can be found in [1, 16, 19]. A
sphere embedded in a three-dimensional Euclidean spaceR 3

and a hyperboloid of physical relativistic velocities embedded
in the relativistic velocity space TxM are still simple enough
and allow using elementary geometric methods.

3. Rotation of the swing plane of Foucault's
pendulum

3.1 Dynamic conditions
We focus on those dynamical aspects of the evolution of
Foucault's pendulum that are closely related to the problem
geometry (see also [2±5, 18]).

The pendulum suspension center moves along a circular
trajectory. The Coriolis force due to rotation of the Earth acts
on the pendulum. The reaction force of the pendulum
suspension resists gravity. 5

Gravity is directed towards the center of the Earth and the
direction of the reaction force depends on the bob position.
The radial components of the gravity force and reaction force
are mutually compensated. The reaction force creates a
tangent (in the small-angle approximation) component to
the Earth surface that tends to return the pendulum to the
equilibrium position.

The Coriolis force appears in the pendulum equation of
motion due to rotation of the reference frame connected to
the Earth,

FC � 2mv�X ; �10�

wherem and v are themass and velocity of the pendulum bob,
and X is the Earth rotation frequency. The velocity v is
tangent to the surface. At the equator, both v and X belong
to the tangent plane, and therefore FC is parallel to the free-
fall acceleration. As a result, the Coriolis force does not create
a torque. If the pendulum moves along the equator, its swing
plane does not rotate relative to the direction of motion. This
remains valid for the pendulum motion along any great circle
of a sphere.

The problem of dynamic evolution of the pendulum can
now be reformulated as a pure geometric problem of parallel
transport of the pendulum swing plane. The pendulum
trajectory at a fixed # can be approximated by a set of great
circle arcs of the sphere. Along every such arc, the pendulum
preserves its state because the swing plane does not rotate

P
0

P

A
0

A

aS

±(P)

±(P
0
)

Figure 1. Parallel transport of a vectorA between two nearby points P and

P 0 along a hypersurface S. Here,P�P� andP�P 0� are hyperplanes tangent
to S at the points P and P 0. The vector A is parallel transported (in the

sense of Euclidean geometry) inside P�P� to the intersection of P�P� and
P�P 0� and is then projected on P�P 0�. At the final stage, A is parallel

transported in the sense of Euclidean geometry insideP�P 0� to a point P 0.
The distance between P and P 0 is small, of the first order in the angle a, and
the change in the vector length djAj � �1ÿ cos a�jAj is small, of the second

order in a. In the continuum limit, the length jAj remains constant.

5 The centrifugal force removes a vector orthogonal to the swing plane of

the pendulum from the space tangent to the Earth's surface. This effect

leads to a perturbation of the free-fall acceleration g. It can be neglected

with the accuracy X2R sin#=jgj � 0:003, where jXj � 2p=23:93 per hour,
R � 6371 km is the radius of the Earth, sin# � 1, and jgj � 9:81 m sÿ2.
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relative to the arc direction. The pendulum swing occurs by
inertia. However, relative to the circle of a polar angle #, the
swing plane does rotate because of the non-Euclidean
spherical geometry of the surface. In the continuum limit,
where the arc lengths vanish, the initial trajectory defined by
the polar angle # is restored and the rotation angle of the
pendulum swing plane is obtained.

Earth's oblateness is f � 1=300 ( f � �aÿ c�=a, where a is
the equatorial radius and b is the polar radius). We regard the
Earth as an ideal sphere and neglect small deviations from the
corresponding law of parallel transport connected with that
ellipsoidal form.

3.2 The tangent-cone method in the problem of Foucault's
pendulum
In Fig. 2, the Northern Hemisphere of the Earth is covered by
a cone with apex B. The cone touches the Earth surface at the
parallel set by the polar angle # � �BOA. The vector
(orthogonal to the swing plane) moves together with the
pendulum along the circle. At each point of the trajectory,
the vector is in the tangent space of the sphere and the cone.
Assuming the sphere radius to be equal to unity, we obtain

OA � �n sin#; cos#� ; �11�

CA � �n sin#; 0� ; �12�

BA �
�
n sin#;ÿ sin2 #

cos#

�
; �13�

where n � �cosj; sinj� is the unit vector in the equatorial
plane. To find the vector BA, we write BA � �n sin y; z� and
fix z using the orthogonality condition

BAOA � 0 : �14�

The metric on the cone R 3 induced from the Euclidean
space is Euclidean. Indeed, we can choose a reference frame
�r;j� on the cone, where r is the distance (Euclidean in the
sense of R 3) from the point B, and j is the azimuthal angle
defined above. The infinitesimal distance between two points
on the cone is

dl 2 � dr 2 � cos2 #r 2 dj 2 : �15�

By changing the variable j! j= cos# (where we recall that
the angle # is constant), we can obtain the result that the
metric tensor on the cone becomes Euclidean in the polar
coordinate frame.

Thus, it is possible to cut the cone along the line BA,
unfold it, and place it on a plane, as shown in Fig. 3. The
metric in the unfolded cone remains Euclidean, and the
distances between points on the cone and angles do not
change.

Parallel transport in a Euclidean space is simple and
evident. It is shown in Fig. 3 for a vector originating at a
point A and directed along the meridian.

The pendulum rotates with the Earth counterclockwise.
The swing plane of the pendulum rotates clockwise in the
direction of the rotation of the stars. In the reference frame
related to the Earth, the rotation angle jE is negative. Its
value is determined by the ratio of the arc length AA0 along
the pendulum path, 2pjCAj, to the radius jBAj of the circle
shown in Fig. 3. The arc length AA0 is equal to the length of
the circle in Fig. 2 with the center at C and the radius jCAj,
where jBAj is the slant height of the cone. The vector lengths
defined by Eqns (12) and (13) are jCAj � sin# and
jBAj � tan#. Therefore,

jE � ÿ
2pjCAj
jBAj � ÿ2p cos# : �16�

The rotation angle relative to remote stars is given by Eqn (1).
Equation (16), obtained for the Northern Hemisphere,

where #4 p=2, is also valid for the Southern Hemisphere. To

CC

OO

AA

BB

Figure 2. The Earth is shown as an ideal sphere centered at a point O, with

the radius jOAj. Foucault's pendulum is placed at a point A on the circle of

the polar angle # � �BOA. For one sidereal day, the pendulum completes

one revolution around the Earth. Parallel transport of the swing plane of

the pendulum can be simply presented as parallel transport of a vector

normal to the plane. This vector belongs to the tangent space of the sphere

as well as of the conical surface (looking like a Vietnamese hat) with the

apex at B; the cone touches the Earth surface at the latitude of the

pendulum. The point C is the center of the circle alongwhich the pendulum

moves. The points B, C, and O belong to the Earth's rotation axis.

A

B A
0

Figure 3. Parallel transport of a vector that is orthogonal to the swing

plane of a pendulum. The pendulum, located initially at a point A, rotates

with the Earth counterclockwise and reappears at the point A in one

complete revolution. In the plane, however, the pendulum arrives at a

point A 0 6� A that is physically the same as A. The path in the plane is not

closed. The angle jE shown by the oriented arc around point A 0,
jjEj < 2p, determines the rotation angle of the swing plane of the

pendulum in the reference frame related to the Earth. Points A and B are

the same as in Fig. 2.
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see that, we should mirror reflect Fig. 2 relative to the
equatorial plane and repeat the argument.

4. Thomas precession

Figure 4 shows a three-dimensional projection of the
relativistic velocity space and the embedded hyperboloid
u 2 � 1 of physical relativistic velocities. The scalar
product is calculated using the Minkowski metric gmn �
diag�1;ÿ1;ÿ1;ÿ1�. A particle with a 4-velocity A is initially
at the point u � �g; gv=c� of the hyperboloid.

4.1 The tangent space of the physical relativistic velocity
space
4.1.1 The polarization vector. The axial polarization 4-vector
is determined by a three-dimensional axial vector a in the rest
frame of a particle as the expected value ŝ=s, where ŝ is the spin
operator and s is the particle spin. Because transformations of
three-dimensional vectors under Lorentz transformations are
ill-defined, the polarization of a relativistic particle should be
described by a four-dimensional vector. In the rest frame, it
can be defined as

a � �0; a� ; �17�

where a 2 � ÿa 2 � 1 for pure states and a 2 � ÿa 2 < 1 for
mixed states.

In the rest frame u � �1; 0�, therefore,
ua � 0 : �18�

The scalar product is Lorentz invariant, and hence Eqn (18) is
valid in all inertial frames.

This statement can be complemented by a more general
one. The equivalence principle means that all phenomena in a
comoving local inertial frame occur in the same way as in a
global inertial frame. Representation (17) and condition (18)
are therefore also valid in comoving inertial reference frames
of accelerated particles. In such frames, the allowed changes
of a are limited by rotations of the spatial component of the
vector.

It is possible to arrive at Eqn (18) differently. Using the
angular momentum tensor and the 4-momentum pl � mul,
the Pauli±Lubanski vector is constructed as

J i � 1

m
ei j k lMjk pl : �19�

This vector is proportional to the polarization 4-vector
J i � sa i. To see this, it is sufficient to choose the reference
frame where p � �m; 0�. In this frame, the particle is at rest
and its orbital momentum is zero; and the tensorMjk, related
to its spin only, defines the spatial part of the vector J i.
Equation (18) is valid because p � mu and the tensor ei j k l is
totally antisymmetric (e0123 � �1).

From the geometrical standpoint, Eqn (18) means that a
belongs to the tangent space of the hyperboloid u 2 � 1
embedded in the relativistic velocity space TxM. Further-
more, TxM is the tangent space toM at point x 2M.

Parallel transport of the polarization vector is used in two
senses. First, it is used in the sense of parallel transport inM,
e.g., along a spiral particle trajectory in Minkowski space±
time. Second, it is used in the sense of parallel transport in
TxMju 2�1, e.g., along the circle of a fixed g on the
hyperboloid of 4-velocities for some x 2M.

The polarization vector implicitly depends on the particle
position x 2M and velocity u 2 TxMju 2�1. Vectors a and a 0

of two particles at points x and x 0 can be matched when the
particle 4-velocities are the same, u � u 0. Two observers at
points x and x 0 moving with the same velocities u � u 0 belong
to the same inertial reference frame, up to some rotation. The
second observer turns the axes of his frame in the direction of
the axes of the first observer's frame. Then the observers
communicate the coordinates a and a 0.

Exactly the same result can be obtained by parallel
transporting the vectors a and a 0 in Minkowski space±time
as if these vectors belonged to the space±time TxM, although
according to Eqn (18), they belong to the tangent space
TxMju 2�1.

For x � x 0 and u 6� u 0, the polarization vectors are
matched by using the scheme of parallel transport in the
physical relativistic velocity space along the geodesic connect-
ing points u and u 0.

For x � x 0 and u 6� u 0, the vector a 0 is parallel transported
�x 0; u 0� ! �x; u 0� in M, then it is parallel transported
�x; u 0� ! �x; u� along the geodesic in TxMju 2�1, and after
that a 0 matches a. Because parallel transport inM does not
change the vector coordinates, and, hence, parallel transports
inM and TxMju 2�1 commute, the result is independent of
the order of the operations.

Thus, the polarization vectors can be regarded as vectors
TxMju 2�1 for any chosen value of x, e.g., x � �0; 0�, and can
be characterized by the 4-velocity u 2 TxMju 2�1 only.

As a result, an observer based in some reference frame,
e.g., at the origin, is able to analyze and make consistent
conclusions on the character of the spin precession for a
particle moving with any velocity and acceleration.

In quantum mechanics, the uncertainty relation does not
allowmeasuring positions and velocities simultaneously. This
restriction does not create difficulties because particle
localization is not important and only transport in the
velocity space contributes to the precession.

4.1.2 Angular momentum of a mechanical top. The angular
momentumL of amechanical top is a three-dimensional axial
vector in the rest frame. The same arguments as for the
polarization vector lead in a relativistically invariant way to
a 4-vector characterizing the angular momentum of a
mechanical top. As a result, we come to the representation
J � �0;L� in the rest frame and to the conclusion that the
4-vector J is tangent to the physical relativistic velocity space,
i.e., uJ � 0. In view of the noted similarity, amechanical top is
often regarded as a mechanical image of a spinning electron.

Under the action of an external force applied to the center
of mass in a chosen direction, the mechanical top is parallel
transported from one inertial reference frame to another. For
this reason, the mechanical top is convenient to represent
coordinate axes of inertial reference frames.

4.1.3 Particle 4-acceleration. Taking the derivative of both
sides of the equation u 2 � 1, we obtain wu � 0. The
acceleration w � du=ds (as well as the polarization) belongs
to the tangent space TxMju 2�1.

4.2 The tangent-cone method in the problem of Thomas
precession
We consider a cone tangent to the hyperboloid at a point A
and along a fixed-g circle, i.e., along the particle trajectory in
the relativistic velocity space. In the circular orbit, the tangent
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spaces of the hyperboloid and the cone coincide. The
polarization vector a belongs to both tangent spaces.

Let B be the cone apex. The vectors in Fig. 4 are

OA �
�
g;

ngv
c

�
; �20�

CA �
�
0;

ngv
c

�
; �21�

BA �
�
gv 2

c 2
;
ngv
c

�
; �22�

where n is the unit vector in the plane of the particle rotation.
We can fixBA by writingBA � �w; ngv=c� and findingw from
the orthogonality condition

BAOA � 0 : �23�

Equations (20)±(22) are similar to Eqns (11)±(13).
The vector BA is tangent to the hyperboloid. Under the

parallel transport, its rotation angle coincides with the
rotation angle of the polarization vector.

The metric induced on the cone can be obtained as
follows. The cone points are characterized by the vectors

BX � r
�
v

c
; n

�
; �24�

where n � �cosf; sinf; 0� lies in the rotation plane �ux; uy�.
The vector BX is obtained by stretching BA and rotating it
around the u0 axis. An infinitesimal variation of BX tangent
to the cone surface can be written as

dBX � qBX
qr

dr� qBX
qf

df � dr
�
v

c
; n

�
� r�0; dn� ; �25�

where dn � �ÿ sinf; cosf; 0� df, n dn � 0.

The length of a 4-vector is defined by the scalar product

jXYj �
�������������������
ÿXYXY
p

: �26�

The infinitesimal distance between two points on the cone is
given by

dl 2 � ÿdBX dBX � dr 2

g 2
� r 2df 2 : �27�

To bring dl 2 to Euclidean form, we rescale f! f=g and
r! gr and obtain

dl 2 � dr 2 � r 2df 2 : �28�

The metric induced on the cone from the Minkowski
space±time is therefore Euclidean. Equation (28) defines it in
the polar reference frame.

The cone in Fig. 4 can therefore be cut along BA, unfolded
preserving distances and angles, and placed on a plane as
shown in Fig. 5.

The particle rotates counterclockwise, while the polariza-
tion vector rotates clockwise. In the comoving reference
frame, the rotation angle fE is negative. Its value is
determined by the ratio of the length of the arc AA 0 along
the particle trajectory, i.e., 2pjCAj, and the circle radius jBAj.
The trajectory is a circle of a fixed latitude on the hyperboloid
of physical relativistic velocities, as shown in Fig. 4. The
length of the circle is determined by the radius jCAj.

In the plane of Fig. 5, the angle corresponding to the arc
AA 0 along the trajectory exceeds 2p. The distances between
points A, B and A, C can be obtained using Eqns (21) and
(22):

jCAj � gv
c
; �29�

jBAj � v
c
: �30�

CA and BA are spatial vectors, and their lengths are real.
Finally, we obtain

fE � ÿ
2pjCAj
jBAj � ÿ2pg : �31�

A

B
A
0

Figure 5. The tangent cone with the apex B shown in Fig. 4 is cut along the

segment BA and unfolded in the plane. The point A belongs to the cone

and the hyperboloid. For one revolution of a particle fromA toA 0 along a
circular orbit, the polarization vector rotates by angle jfEj > 2p in the

comoving frame. Points A (� A 0) and B are the same as in Fig. 4.

A

O

B

C

Figure 4. Three-dimensional projection of the relativistic velocity space.

The set of relativistic velocities forms a hyperboloid with u0 � �
��������������
1� u 2
p

,

where u � gv=c, and v is the three-dimensional velocity. The vector

OA � �g; ngv=c� specifies the initial 4-velocity of a particle in a circular

orbit of constant g. The vector BA is orthogonal to the vector OA and

hence belongs to the space tangent to the hyperboloid. The cone with the

apex B (looking like a flipped Vietnamese hat) touches the hyperboloid at

the point A as well as the whole circular orbit with the center C. The point

O is the apex of the light cone. Points O, B, and C belong to the same axis.
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In an inertial reference frame where the origin x � y �
z � 0 coincides with the axis of a spiral trajectory inM, the
rotation angle fS � 2p� fE is given by Eqn (2).

In the space TxM, such a reference frame is in the vertex
of the hyperboloid u � �1; 0�. From the standpoint of the
problem of Foucault's pendulum, it can be considered an
analogue of a local reference frame of an observer on the
North Pole.

Meridians on a sphere are formed by a trace of the point
�0; 0; 1� under rotation in the planes �0; 0; 1� and
�cosj; sinj; 0�, where j is the azimuthal angle numbering
the meridians. Analogous to meridians are orbits in
TxMju2�1 formed by a trace of the point u � �1; 0� for boost
transformations in the planes �1; 0� and �0; n�, where n is the
unit vector numbering the orbits. Orbits of the point
u � �1; 0� are geodesics as well as meridians on a sphere (see
the Appendix).

We note that Eqn (1) can be transformed to Eqn (2) by the
substitution #! iy, which formally corresponds to the
replacement of rotations by Lorentz transformations.

The centrifugal and reaction forces keep a particle at rest
in the comoving frame. The precession rate cannot be
estimated without knowing the Lorentz nature of the
reaction force.

The circular orbit of a particle can be approximated by a
set of small segments of geodesics on the hyperboloid of
velocities. Such segments corresponding to boost transforma-
tions are similar to the arcs of the great circles of a sphere.
Parallel transport of a polarization vector along each of these
segments does not lead to rotation locally. However, relative
to a fixed-g trajectory, the polarization vector turns because
of the non-Euclidean nature of the physical space of
relativistic velocities. In the continuum limit, the segments of
geodesics reproduce the particle trajectory. Parallel transport
along the trajectory gives the Thomas (i.e., the universal
geometric) component of spin precession.

The force of reaction related to potentials that are scalar
under the Lorentz group does not influence spin precession.
In this case, Thomas precession is the only effect. This fact
tells us about the absence of torque in scalar potentials.

In potentials that are vectors under the Lorentz group, an
external torque leading to the well-known Larmor precession
acts on the spin of the particles. This case is characteristic of
electrons in atoms [11, 20], and antiprotons and hyperons in
exotic atoms [21±23].

In [23], in particular, it was shown that the rate of spin
precession in the Bargmann±Michel±Telegdi equation [24]
consists of two parts; the first is caused by the Thomas
precession, and the second by the Larmor precession. Due
to the purely kinematic nature, the Thomas precession
influences spectroscopy and static characteristics of nuclei
[20] and hadrons [25, 26].

5. Conclusion

The tangent-cone method, used for illustration of vector
rotation for parallel transport over the surface of a sphere
and, in particular, for the description of rotation of the swing
plane of Foucault's pendulum, is generalized to the case of
Thomas precession of spin of a relativistic particle moving in
a circular orbit.

In the problems of Foucault's pendulum and Thomas
precession, vectors characterizing the system state are not
influenced by an external rotating moment and evolve by

inertia, undergoing parallel transport. We have used the close
analogy between the parallel transport over the surface of a
sphere in the three-dimensional Euclidean space and over the
surface of the hyperboloid u 2 � 1 in the four-dimensional
space of relativistic velocities. In both cases, the evolution is
reduced to parallel transport in the usual Euclidean space
represented by the tangent cone surface.

Thus, the basic equation for the Thomas spin precession
of a relativistic particle moving in a circular orbit can be
obtained by elementary geometric constructions.

Appendix.
Geodesics in the relativistic velocity space

Here, we prove two statements made at the end of Section 2.3.
1. The points u; u 0 2 TxMju 2�1 describe two inertial

reference frames S and S 0. In the frame S, u � �1; 0�. We
write u 0 as

u 0 � �cosh y; n sinh y� ; �A:1�

where v � cn tanh y is the velocity of S 0 in the frame S, and n is
the unit vector. Reference frames S and S 0 are related by a
boost in the plane �u; u 0�.

The metric induced in TxMju 2�1 is determined by the
interval ds 2 � du du and in variables (A1) is given by

ds 2 � ÿdy2 ÿ sinh2y dn 2 : �A:2�

The interval between two points on TxMju 2�1 is negative,
furthermore, ÿds 2 5 dy 2. Thus, we find� u 0

u

�����������
ÿds 2
p

5y : �A:3�

Any deviations from curve (A.1) that y-connects points u and
u 0 for fixed n increase the distance between u and u 0.

Hence, the set of 4-velocities (A.1) with constant n
determines a geodesic on TxMju 2�1. On the other hand, this
geodesic is an orbit formed by a trace of the point u � �1; 0�
for boost transformations in the plane of vectors �1; 0� and
�0; n�.

2. Basis vectors of the tangent space TxMju 2�1 can be
chosen as

ey � qu 0

qy
� �sinh y; er cosh y� ; �A:4�

e# � 1

sinh y
qu 0

q#
� �0; e#� ; �A:5�

ej � 1

sinh y sin#
qu 0

qj
� �0; ej� ; �A:6�

where er � n � �sin# cosj; sin# sinj; cos#�, e#, ej are the
basis vectors of the spherical reference frame inR3,

e# � qn
q#

; �A:7�

ej � 1

sin#

qn
qj

: �A:8�

We note that eaeb � ÿdab along the geodesic.
For a displacement y! y� dy corresponding to a boost

in the direction n, basis vectors (A.4)±(A.6) change. Their
variations satisfy the conditions

ea deb � 0 ; �A:9�
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which are the parallel transport conditions according to
Eqn (8).
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