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Abstract. The Leontovich approximate condition for electro-
magnetic fields at the dielectric—-metal interface, valid for a
small surface impedance , is generalized to the case of arbi-
trary magnitudes of {, which provides a broader range of
applicability of the impedance approach. The exact boundary
condition found is expanded in a series of odd powers of the
parameter (. Being linear in ¢, the Leontovich condition differs
from the exact equation in main order only by terms ~ . Thus,
in describing wave fields in this approximation, it is not only
linear terms that prove to be correct, but also terms of order { 2,
The accuracy of an impedance approximation turns out to be
higher than its developer himself believed. On the basis of the
generalization made, the errors of different-order approxima-
tions are analyzed for the descriptions of polariton propagation
and wave reflection near the interface between an isotropic
dielectric and metal submedia. It is shown that in the polariton
theory the Leontovich approximation provides a sufficiently
high accuracy not only in the infrared range, but also in the
whole visible range. In the reflection problem, this approxima-
tion is reasonable in most of the visible range within a wide
interval of the angles of incidence; however, it is inapplicable
when simultaneously the waves are short and the angles of
incidence are large. In this domain, the accuracy of the descrip-
tion may be substantially raised only beyond the framework of
the Leontovich approximation.
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1. Leontovich impedance approximation

Substantial features of electromagnetic field structure near
the surface of an ordinary metal are connected with the large
absolute value of the complex permittivity in metals, |ey| > 1.
This suggests that inside a metal the derivatives of compo-
nents of an electromagnetic field in the direction normal to its
surface are large compared to those in the tangential
directions. In these conditions, it follows from the Maxwell
equations that in a plane wave inside an isotropic metal near
its surface the tangential components of electric and magnetic
fields are approximately connected by the Leontovich
relationship [1]:

E +(H xn=0. (1)

Here, n is the unit vector of an outward normal to the metal
surface, and { = {(w) is the metal surface impedance (see
Refs [1-4]). The parameter { dependent on the wave
frequency w is uniquely related to the complex permittivity

Em:

, >0, ("<0 (2

(the permeability pu,, of metal is assumed to be equal to unity).
The signs of the components {’ and {” in formula (2) are
determined by the energy dissipation conditions inside the
metal [2].

According to the standard boundary conditions, the
components E; and H; are continuous at an interface of a
metal and a medium; hence, as Leontovich noted [1],
approximate relationship (1) which is valid for small
impedance can be used as a boundary condition for finding
the field outside the metal near its surface.

Boundary condition (1) derived in Ref. [1] is based on the
above-given qualitative speculation concerning the structure
of an electromagnetic field inside a metal. In Section 3, by
using the standard boundary conditions, we will write them
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out in terms of the impedance which may be arbitrary and not
necessarily small. In the exact equation obtained we will single
out the part responsible for relationship (1). Then, the
remainder will define the degree of accuracy for the
impedance approximation. This remainder is presented by a
simple function of impedance {, which after expanding in an
odd-power series of parameter  starts with the term ~ (° (see
Section 4). The fact that the correction to condition (1) is
proportional to the impedance cubed was already mentioned
[1, 3], as applied to the problem of electromagnetic wave
reflection from a metal surface. On the other hand, this means
that in describing wave field characteristics in the Leontovich
approximation, it is not only the linear terms that are correct,
but also the quadratic terms of order { 2. Thus, the Leontovich
impedance approximation corresponds to two orders of the
perturbation theory.

As is shown in classical monograph [4], the Leontovich
method works perfectly in radiophysics. Nevertheless, in the
present work we will be more interested in the optical
frequency range. Usually, an analysis of the function &y ()
in real metals [5, 6] results in the conclusion that the
impedance approximation is well suited for an infrared
spectral range and is less applicable to the visible range
where the parameter { is not so small. However, from the
analysis given in Sections 4 and 5 it follows that in real metals
the Leontovich approximation is often admissible in the
visible spectral range as well. For enhancing the calculation
accuracy and expanding the range of applicability of the
impedance approximation, we will suggest a generalized
impedance approximation.

2. Wave fields near the interface
between a crystal and an isotropic medium
in terms of impedance

Let us consider wave fields near the interface between a
crystal (anisotropic dielectric) and an isotropic medium. For
the sake of generality, we now make no assumptions
concerning the value of the permittivity &, for the isotropic
medium. In the subsequent discussion, however, we will come
to a real metal by setting this quantity complex-valued and
large in modulus.

By choosing the coordinate x-axis along the wave
propagation direction in the interface plane, and the y-axis
along normal n to it (see Fig. 1a), we can present a stationary
electromagnetic field in the form

() G)nbee] o

Here, the wavenumber k = k. is substituted by the dimen-
sionless refraction parameter n = k/ko, where kg = w/c, ¢ is

Figure 1. Dielectric-metal structure in the attached coordinate system (a),
the wave fields arising in the structure for surface polariton propagation
(b), and in bulk wave reflection in a dielectric (c).

the speed of light, and ¢ is time. Parameter n characterizes the
reduced phase velocity of wave field propagation in a
medium: v = ¢/n = w/k. Wave field (3) in this case can be of
two types. It describes either polaritons (the wave fields
localized along the interface, see Fig. 1b) or a stationary
field arising as the result of the reflection of a plane bulk wave
in the crystal from the interface (see Fig. 1c).

In the first case (for polaritons), the vector amplitudes in
formula (3) can be written out in the form

EIO ! "
Cif o | exp (ipi —pi') ky
1

11

E{ E}
Crm ( ™|+ Cre| 1P
Hry Hrg

x exp [(ipy, + po) ky]

E] .
+Cyy (H‘é > exp (ipyy —pi) kv, » =0,

y<0.
(4)

Here, C, are the amplitude coefficients. Indices I and II refer
to two independent wave branches in the crystal. Subscript
TM indicates that the magnetic field in the corresponding
mode is orthogonal to the sagittal plane xy in which the wave
vectors of all partial waves reside. Similarly, subscript TE
reveals that the electric field in this mode is orthogonal to the
same sagittal plane. The complex parameters p, = p, + ip,
(0 =L1II) and pm = prm = p1E = p, — ip,, are responsible
for localization of the wave field (4) near the interface y = 0.
Localization arises under the condition p/ > 0 (« = I, II, m).
It is assumed that the conditions mentioned hold true. These
inequalities can be easily realized if we substitute an isotropic
medium for the crystal.

In the second case (the reflection problem), the wave field
in the isotropic medium (for y < 0) has the same form as in
formula (4). However, the field inside the crystal (for y > 0)is
now represented as the superposition of three rather than two
components responsible for the bulk wave falling onto the
interface and two reflected waves, namely, a bulk wave of the
same branch as the falling wave and a bulk or nonuniform
(localized) wave of the other branch. Later on, this expression
will not be used, so we do not present it.

In both the cases (for polaritons and reflection), the
stationary wave field at the interface should satisfy the
ordinary electrodynamic continuity conditions for the tan-
gential components of the electric and magnetic fields [2]:

9 Ht

El‘ -

y=+0

y:+0: Ht)y:_o' (5)

We define concrete characteristics of the wave field in the
isotropic medium possessing the permittivity &, by using the
concept of impedance (2). From the Maxwell equations we
derive the expression for the wave localization parameter py,
in this medium:

. Xz R
Pm:PI/n—lpr/r/l: n_n;_lzé,_nv (6)

where we introduced the notation

R(in) =4/1 - ((n)*. (7)
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From the same equations it follows that the vector amplitudes
of the wave field in the medium have the form

(ET°M ) _ <C(R,CH,O)T>
HY,, (0,0,1)" ®)

E%\  [¢0,0,-1)"
HFIQE a (R7 é’n70)T 7

where the superscript T stands for transposition. We do not
present the vector amplitudes in a crystal because, as will be
shown, their explicit form is insignificant.

For polaritons, standard boundary conditions (5) in view
of relationships (8) reduce to the system of four algebraic
equations in the unknown coefficients C,:

E). Ef, (R 0 ¢
Ei By 0 UR|f Cu | 9)
HY Hy. 0 -1 Crm
H. HY. 1 0 ) \Cw

Here, for the sake of convenience some factors are included in
the coefficients C,.

3. Exact boundary condition
at an arbitrary impedance value

We eliminate the quantities Cty and Crg related to an
isotropic medium from Eqns (9) and reduce the system of
four equations to that of two equations:

EY E? —RHY —RH.
Ix Ly 4 Iz 1z ( G > ~0. (10)
E. Ep. H{/R Hf/R)]\Cu
Taking into account the matrix identity

(—RH,'; —RH,OIZ> <—Hg —HIOL,>
H{/R Hj./R Hp).  Hyp,

+(1—R)< 1(:1'0 IZ'O'Z ) (11)
H /R Hy,/R
and the explicit form of two-dimensional vectors

E = (E[X,EU)T and H, = (Hy,, th)T residing in the
xz plane, namely

E = Ci(E L)' + Cu(Ef En)' (12)

H, = Ci(H{,, HY)" + Cu(Hy,, Hyp.)" (13)
system (10) reduces to the following equation

{EI+CHt><n+C(1—R)NHt}y:+O:O, (14)

where the function R({n) was defined in formula (7), and
N(¢{n) is the 2 x 2 matrix:
0 1

N(¢n) = 1
R(Cn)

Analysis of the reflection problem yields the same formula
(14). The above-mentioned complication concerning making
allowance for the additional partial wave does not affect the
final result. Notice that equation (14) is equivalent to an
initial set of conditions (5) and in this sense is exact.
Impedance { in Eqn (14) is not assumed to be small and this

(15)

expression only includes crystal fields (12) and (13). Thus,
equation (14) is the natural generalization of Leontovich
boundary condition (1).

4. Generalized impedance approximation

The dielectric properties of an isotropic medium possessing a
large permittivity &y, (i.e., a small impedance () are similar to
those of metals. In this case, function R({n) in equation (14)
[see formula (7)] can be expanded in powers of the small
parameter (Cn)z, holding an arbitrary number of terms and
calculating the characteristics of the wave fields with any
desired precision. This expansion comprises odd powers of
the parameter (:

E[+CH[XH

[P 25 (28 — DI

+24 n < 1+;(Cn) 261 241 |Hi =0, (16)
where the set of matrices N, (m = 2s + 1) is defined by the
expression

(0 1
Nm*(m 0)‘

Equation (16) is qualitatively distinct from the Leonto-
vich condition (1): in the matrix relationship between vectors
E. and H, the refraction factor n arises in an explicit form. In
the reflection problem, the factor # is uniquely related to the
angle of wave incidence that is assumed to be prescribed. In
the case of a polariton, n is the unknown parameter that is
determined from the existence condition for a nontrivial
solution to the homogeneous system (10) and, of course,
depends on ( itself. One might think that an uncertainty arises
in the structure of expansion (16) with respect to {. However,
one should keep in mind that the refraction factor n = ¢/v
essentially presents the dimensionless ‘slowness’ of the
polariton and should be of the order of unity, sufficiently
weakly depending on { for |{| < 1. For example, in Section 5.1
we will show [see formula (29)] that for an isotropic dielectric
with the permittivity & the estimate n ~ /& (1 —(%/2) is
valid.

In view of the given considerations, from expansion (16) it
follows that the discrepancy between Leontovich approxima-
tion (1) and the exact boundary condition starts from the term
~ 3; hence, in the framework of this approach the quadratic
corrections (~ (%) to the wave fields are correct. It is
interesting that Leontovich himself paradoxically under-
estimated the accuracy of the approximation introduced. In
Ref. [1] he compared the reflection coefficient of the
electromagnetic wave, calculated in approximation (1), with
its exact expression that follows from the Fresnel formula,
and it appeared to him that they differ by terms of the order of
¢%. Meanwhile, a more thorough consideration gives a
difference that is of the next order: ~ {* (see Section 5.2).
This is a rather good accuracy even in the visible wavelength
range. For example, for aluminium [6] the parameter
|¢] = 0.25 corresponds to the vacuum wavelength
Ao = 0.45 pum, which is the boundary value between violet
and blue light. In this case, |¢]> ~ 0.016 and moving to a
longer wavelength range substantially improves the accuracy
(see Table 1).

Equation (16) makes it possible to intentionally improve
the accuracy of the description by breaking the series at will
and in this sense it is the generalized impedance approximation.

(17)
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Table 1. Values of the components of the surface impedance { = {’ +i{”
in the visible and near-IR spectral ranges for aluminium at room
temperature (using data taken from Ref. [6]).

29, pm* Aluminium

C/ "
0.40 0.0229 0.267
0.45 0.0246 0.244
0.50 0.0234 0.215
0.55 0.0236 0.197
0.60 0.0253 0.178
0.65 0.0268 0.163
0.70 0.0296 0.150
0.75 0.0316 0.142
0.80 0.0353 0.136
0.85 0.0373 0.135
0.90 0.0331 0.135
0.95 0.0259 0.133
1.00 0.0199 0.129
1.10 0.0121 0.118
1.20 0.0092 0.108

* )0 is the vacuum wavelength.

Surely, one should judge the quality of approximation by
comparing the solutions obtained with the corresponding
exact (or more accurate) solutions, rather than by estimating
the accuracy of writing the boundary condition. With this
aim, we will perform below such an analysis using the
example of two simple problems with known exact solutions.

5. Wave fields at the interface
between an isotropic dielectric
and an isotropic metal

In order to estimate the accuracy of describing particular
wave characteristics in the framework of initial (1) and
generalized (16) impedance approximations, we will consider
below two different stationary wave fields with the TM-
polarization, corresponding to a surface polariton and
reflection problem, near the interface between two isotropic
media: a dielectric with the permittivity ¢ and a metal with the
surface impedance {. As was mentioned, exact solutions are
known for both these cases [2].

5.1 Quasibulk polaritons

In the problem on TM-polariton propagation along the
interface between two isotropic media (see Fig. 1b), the
depth profile of the electromagnetic field in the dielectric is
described by the expression

(I]i((i))) =C (5%) exp (ip' —p") ky.

For the parameters involved in Eqn (18), by full analogy with
Eqns (6) and (8), we obtain

(EO) _ n(7p>170)-r
H’ ¢(0,0,1)7 )’
. &
p=p'+ip"=4[-5-1.

(18)

(19)

(20)

Leontovich boundary condition (1) in this case takes
especially simple form

E'—(H=0, ie, pn+{e=0. (21)

Taking into account formulas (20) and (21), we arrive at the
following expression for the refraction parameter

n:\/z_:(l 71528>.
2
In view of the above consideration, notice that in this
expression the term quadratic in { is correct.
In the next approximation (16), retaining only one term,
~ (3, in addition to relationship (1), we obtain the expression
for the refraction parameter

_ 1o, 3.4,
n—\/§<1 2Cs+8g8>.

(22)

(23)

The additional term in formula (23) characterizes the relative
accuracy of expression (22):

An 3 4,

Pl {e”. (24)
We now estimate error (24) in the short-wavelength region of
the visible range (/g = 0.45 pm), assuming for the estimate
|{| & 0.25 and & = 2.25. It turns out that even in this spectral
range the Leontovich approximation provides rather high
precision in determining the refraction parameter:
An/n ~ 0.7%. Actually, this is the estimate of the upper
error boundary for the whole visible range — the accuracy
increases at longer wavelengths.

Of course, the expression (23) for n is far more accurate.
The estimate of the error in this case can be obtained in a
manner quite similar to that used in deriving formula (24): nis
calculated in the approximation that makes allowance for the
additional term ~ (° in expansion (16), then expression (23) is
subtracted from the result and the difference is divided by
n = /¢. Omitting details, we obtain the error for approximate
expression (23):

An 5 63

HN_EQS7 (25)

which at the same parameters yields the relative error of order
0.1%.

Itisinteresting that the insertion of approximate formulae
(22) and (23) within the limits of their accuracy into exact
equation (20) yields the same expression for the localization
parameter:

p=p +ip" =—("+il") Ve,

in which the first omitted terms are on the order of {3 and {°,
respectively. Such a coincidence is explained by the fact that
formula (26) is exact [2]. Since {” < 0 [see relationship (2)],
the localization condition for the wave field, p” =
—{"\/e > 0, is fulfilled in this case.

It should be noted that in this case the existence of
polariton localization itself is a consequence of nonzero
impedance for the metal under consideration, { # 0. At
{ =0, when the metal is an ideal conductor, from formula
(26) we obtain p = 0, so that the polariton features a bulk
character and is not damped when propagating, and its wave
field does not penetrate into the metal. At small imaginary
parts of impedance (", the value of p” is also small, and the
wave field is characterized by weak localization, and the
polariton becomes quasibulky.

In introducing a nonzero impedance, both the parameter
n and speed v of polariton propagation become complex
values. This is related to dissipation of the wave field
penetrating into the metal, which, in turn, limits the mean

(26)
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free path L of polariton in its propagation along the metal
boundary. Principally, the concept of the polariton itself
retains a physical meaning until its mean free path is
substantially longer than the wavelength 1 in dielectric:
L > /. The polariton mean free path L can be estimated
from the relationship LImk =1, where k = wn/c is the
wavenumber. In view of w/c = 21/A/¢, we obtain

A

T 2nIm(n/veE)
By substituting the parameter »n from expression (22) into
formula (27), in the Leontovich approximation we find

A

(27)

Taking into account relationship (23), this estimate has a low
accuracy characterized by the relative error ~ {? (or more
precisely ~ (”?); however, this is just the case where a high
accuracy is not necessary. The estimates based on formula
(28) with the parameters {’ and {” for aluminium, taken from
Table 1, and with the typical value of ¢ = 2.25 show that, with
increasing the wavelength A¢ in the interval 0.4—1.2 um, the
ratio L/ rises approximately from 12 to 70, i.e., the criterion
L/2 > 1holds perfectly in the IR range, and rather well in the
whole visible range.

We note that actually all the analytical estimates of this
section can be directly obtained from the exact solution for
the problem on propagation of TM-polarization waves
localized near the interface between two isotropic media
with two different permittivities (see Ref. [2]). If one medium
is metal, then the corresponding permittivity should be
considered a complex parameter with a large absolute value
and negative real part. In this case, the exact expression for n
in terms of the impedance concept, which is valid for all values
of impedance {, is written out in the form

b 3
1+ %

Hence, the Leontovich approximation can be considered
quite reasonable, as applied to the description of the
polariton. It gives exact expression (26) for the localization
parameter p, and formula (22) for the refraction parameter n,
which is characterized by relative error (24) not exceeding 1%
for Al in the visible wavelength range.

(29)

5.2 Reflection problem

The total wave field in the dielectric in this case comprises
separate fields of two volume components, namely, the wave
falling to the interface and the wave reflected from it:

(B0 = (B0 ) exn ik

Or
+Cr<llj:]of>exp(ipky), y=0. (30)
Here, the following notation was introduced:
O +p,1,0)"
(Foe) = ("mbo ) a1)
H™ €(0,0,1)
p=cotl, n=+/esin0, (32)

where 6 is the angle between the wave vector of the incident
wave and the y-axis (see Fig. 1c).

Leontovich boundary condition (1) in this case yields the
relationship

(EY = CHIC + (EY = CHI)CT =0, (33)
from which we obtain the reflection coefficient
Cct 1—y
e - 4
r Ct 14y (34)

Here, we introduced notation y = {y/¢/ cos 6. Expression (34)
is valid in the case where the parameter y can be assumed to be
small. In this case, the angle of incidence 6 a fortiori cannot be
close to 90° which corresponds to grazing incidence.

In the next approximation, by retaining the term ~ (* in
expansion (16) and neglecting higher-order terms, instead of
expression (34) we have

r_1*}5+(1/8)}53sin220
14y —(1/8) x3sin?260

(35)

It is easy to verify that the relative difference between the
second and first approximations is determined by the
quantity
Ar 1 .
—’:—X3sm220.
r 4

(36)

Worthy of note, however, is the fact that the expansion
parameter y in formulas (34), (35) at an ordinary choice of
the parameters |{| = 0.25 and ¢ = 2.25 is not small even at
angles 6 far from normal incidence. Hence, in a short-
wavelength part of the visible range the error Ar/r in
approximation (1) is not so small as in the polariton theory
despite its smallness compared to the above-mentioned
Leontovich pessimistic estimates. At 6 = 45°, the estimates
yield |Ar/r| ~ 4%.

Similarly to obtaining estimate (25) one can show that
formula (35) is characterized by the relative error

%:%ﬁsin“za.

In this case, error (37) is two orders of magnitude less,
|Ar/r| ~0.06 %, at the same values of the parameters
(I¢] =0.25,6 = 2.25,0 = 45°).

Relative errors (36) and (37) are shown in Fig. 2 versus the
wavelength and angle of incidence. The curves are plotted by
using the data for aluminium taken from Table 1. As one can
see in Fig. 2a, the accuracy of the Leontovich approximation
noticeably rises at longer wavelengths. Nevertheless, in the
short-wavelength part of the visible range the error is
maintained at an admissible level, but only for the angles of
incidence far from the singular value 6 = 90°. In the next
approximation, the accuracy is much better. From Fig. 2b
one can see that in this case, even for the greatest considered
angle of incidence 6 = 80°, the error in the short-wavelength
part of visible range is less than 1.5%.

Obviously, expansions (34) and (35) can also be derived
from the known exact Fresnel formula [1, 2], which in our
notations takes the form

/1 (1/4) 72 sin? 20
L+ /1 - (1/4) 22 sin> 26

(37)

r

(38)

where the parameter y can already take an arbitrary value.
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25 80} a
|Ar/r], %
20 F
70°
15
T
50°
3T aoe
|
b

0 |
80°
1.0+
70°
0.5+
60°
50°.
0-—1 .
0.4 0.6 0.8 1.0 1.2

Ao, pm

Figure 2. Relative error in calculations of the reflection coefficient r versus
wavelength 4¢ at various angles of incidence: in the Leontovich approx-
imation (a), where |Ar/r| ~ {3, and in the next approximation (b), where
|Ar/r] ~ ¢ 3. Values of the angles of incidence 0 are given alongside of each
curve.

6. Conclusions

One of the main results of these notes is obtaining exact
formula (14) for electromagnetic fields in a dielectric at the
boundary with a metal at an arbitrary impedance of the latter.
The generalized form of the impedance approximation (16)
that follows from equation (14) gives the possibility of
controlling the accuracy of calculated wave characteristics
for electromagnetic fields by retaining the desired number of
terms in expansion (16) in powers of impedance (. If
necessary, one can utilize the exact boundary condition (14)
expressed in the same terms of the surface impedance. Since
expansion (16) comprises odd powers of impedance {, by
cutting off the series on the term of order (" (m = 1, 3,5,...),
we have definitely correct summands of order (™! in
calculating the parameters of wave fields. The dielectric
adjacent to an isotropic metal may be an isotropic body or
anisotropic crystal.

The impedance approximation formulated by Leontovich
(m = 1) differs from the exact boundary condition by terms
on the order of ~ {3. This is just the order of magnitude for
the error in describing the coefficient of electromagnetic wave
reflection from the boundary between an isotropic dielectric
and a metal. At the same time, the Leontovich approximation
yields the higher accuracy ~ {* in describing the propagation
velocity for the polariton wave field, and the calculated
polariton localization parameter near the interface coincides
with the exact relationship altogether.

Notice that the accuracy in the description of reflection in
this approximation is worse not only because of the lower
degree of the parameter { that defines the error. As we have
seen, the small parameter in this case is {/ cos 0 rather than (,

which eliminates the possibility of describing grazing inci-
dence near 0 = 90°. This is why, as one can see from Fig. 2a, at
large angles of incidence and short wavelengths correspond-
ing to insufficiently small { (i.e., for cos 0 < {) the Leontovich
approximation fails. However, as follows from Fig. 2a, far
from the singular angle 0 ~ 90° the Leontovich approxima-
tion remains admissible over all the visible range. To enhance
the accuracy of the description near the grazing incidence it
suffices to fall outside the limits of the Leontovich approx-
imation by adding to the term that is linear in impedance the
next expansion terms of our generalized impedance approx-
imation (16). Figure 2b demonstrates that just the first such
term reduces the calculation error by 1-2 orders in magni-
tude.

In view of the very small penetration depth d, of the
electromagnetic field in metal, the metal half-space in our
consideration (and in practice) can be replaced by a thin metal
deposition (metallization) of the dielectric surface without
affecting the results of the consideration. It is important that
the thickness of the deposition be noticeably greater than the
characteristic depth dp. On the basis of the criterion
kpld, =1 and taking into account the fact that py, = 1/(n
and k = 2mnn/2y, we obtain the following estimate for the
depth dp,:

_ AoltP
" am|e)

For aluminium at Ao =0.6 pm, formula (39) yields
dyy =~ 0.018 pm.

In Section 5, the test analysis of the discussed impedance
approximations was performed for an example of two exactly
solvable problems concerning the surface polariton and
reflection of a plane wave from the boundary of the isotropic
dielectric-metal structure. Meanwhile, similar unsolved pro-
blems on a metallized crystal boundary promise a richer
physical picture for both the polariton and reflection cases
to judge from the available material [7, 8] obtained in zero
approximation { = 0 when the metal is an ideal conductor.
The analysis performed in this work constitutes the basis for a
more general consideration of these problems as well.

(39)
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