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B B Kadomtsev’s classical results
and the plasma rotation
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1. Introduction. Stages of Kadomtsev’s work

at the Kurchatov Institute

This report is focused on three theoretical works by
B B Kadomtsev concerning controlled thermonuclear
fusion, which in my opinion give a good idea of several
periods of his work affiliated with the Kurchatov Institute.
Kadomtsev was a highly productive theorist with a very wide
spectrum of interests. Therefore, in choosing which of his
works to present in a report like the present one, I could only
rely on my subjective impressions. The first period is
distinctive for a series of research undertakings on the so-
called energy stability principle [1]. Two other works to be
considered deal with trapped particle instability [2] and
reduced equations describing plasma dynamics [3]. All these
works became classical and opened up a new area of further
investigations. Moreover, each of them gives a striking
example of the productivity of the theory that was later
brilliantly confirmed in experiment. What follows is intended
to illustrate the importance of these works from a present-day
perspective with special reference to plasma rotation, a new
phenomenon that was not discussed in the periods in
question. In modern tokamaks, plasma can rotate at a high
speed, and this rotation is presently regarded as a key factor
promoting plasma confinement. Rotation requires modifica-
tion of most results obtained for motionless equilibrium
plasma.

The first period of Kadomtsev’s work at the Kurchatov
Institute roughly covers the years of 1956—1962. In 1956,
Boris Borisovich joined the Theory Division headed by
Mikhail Aleksandrovich Leontovich, who immediately
appreciated the young researcher as a man of great intelli-
gence. Within a few years, Leontovich managed to bring
together a small but highly efficient team of gifted theorists
with high scientific potential. In this context, Vitaly Dmit-
rievich Shafranov should be given credit for having intro-
duced his fellow-student Boris Kadomtsev to M A Leonto-
vich.

Boris Borisovich started with kinetic research, partly
continuing his previous investigations in Obninsk, but very
soon his exceptional ability to see the essence of an issue made
him switch over to the problem of macroscopic plasma
confinement. This ability to see all sides of a problem and
focus on its key aspects distinguished Kadomtsev throughout
all periods of his scientific work. It is this ability that put him
in the forefront of a new science, the theory of high-
temperature plasma, and made him one of its leading actors.
He began to develop the theory of plasma stability and
continued this work one way or another for the rest of his
life. In this period, Kadomtsev completed several important
studies on the magnetohydrodynamic (MHD) stability of the
plasma in magnetic traps and formulated the energy principle
of stability of MHD equilibrium, which will be discussed
below. His efforts culminated in experimental verification of
the ‘minimum B’ principle in the laboratory of M S Ioffe [4].

This period logically ended in the defense of his doctoral
thesis (1961) and election as a Corresponding Member of the
USSR Academy of Sciences (1962).

In the second period (1962-1970), Boris Borisovich
elaborated the theory of magnetized plasma turbulence and
related transport processes. This greatly contributed to the
understanding that Bohm diffusion (long considered to be an
insurmountable obstacle for thermonuclear fusion) is not
inevitable and can be obviated. Further development of this
theory brought Kadomtsev to the concept of a tokamak-
based thermonuclear reactor. In parallel, Boris Borisovich
continued the search for instability, a key prerequisite for a
fusion reaction in tokamaks, and discovered trapped particle
instability. In 1970, he was elected a Full Member of the
Academy and awarded the USSR State Prize.

During the next period (1971-1990), large tokamaks
were built at the Kurchatov Institute and in leading research
centers abroad. Powerful gyrotron heating was used to obtain
record-breaking plasma parameters in the tokamak T-10. The
subsequent tokamak T-15 was a unique machine with super-
conducting windings. At that time, Boris Borisovich showed
special interest in tokamak physics as a whole. He formulated
principles of plasma self-organization in tokamaks and
continued to develop the theory of stability with reference to
disruption instability, of primary importance for tokamak
operation. Simultaneously, he made an important contribu-
tion to a physics of nonlinear phenomena (the well-known
Kadomtsev—Petviashvili and Kadomtsev—Pogutse equa-
tions, the latter being considered in Section 4 below). In
1984, Boris Borisovich Kadomtsev was awarded the Lenin
Prize. The period under consideration naturally ends with
participating in ambitious international projects initiated by
Evgenii Pavlovich Velikhov. After 1990, Kadomtsev pub-
lished a few reviews of tokamak plasma physics, serving as a
basis for the International Thermonuclear Experimental
Reactor (ITER) project, in which Boris Borisovich was an
active participant. Kadomtsev described the history of
tokamak concept from the very first idea to ITER in review
[5]. The world’s thermonuclear community recognized the
outstanding scientific contributions of Boris Borisovich
Kadomtsev by awarding him the J C Maxwell Prize (1998)
of the American Physical Society.

2. Energy stability principle

The macroscopic stability of the plasma in fusion devices, first
and foremost MHD stability, became a priority issue in the
second half of the 1950s. Researchers very soon recognized
the importance of flute instability in magnetic traps, at which
plasma tongues stretch parallel to the magnetic field and
penetrate through the lines of force without perturbing the
field. This instability is an MHD analog of Rayleigh — Taylor
instability, which it is natural to analyze from the energy
standpoint.

The following ‘energy principle of stability’ of static
equilibria is quite obvious for simple Hamiltonian systems:
owing to the positive definitiveness of the kinetic energy, the
positive definitiveness of the potential energy guarantees the
stability of the initial equilibrium (in accordance with the
Lyapunov theorem). S Lundquist was the first to suggest this
approach in relation to MHD problems in 1951 [6]. It was
further developed by Kruskal, Kalsrud, Schliiter, Rosen-
bluth, Longmire et al. (see, for instance, Refs [7, 8]) during
the next 6 years. Some important results were obtained, and
comprehensive mathematical formulation of the energy
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principle for arbitrary MHD systems was proposed by
Bernstein, Frieman, Kruskal, and Kalsrud (BFKK princi-
ple) in 1958 [9]. By that time, the works of Kadomtsev and the
above authors had already contained main elements of the
BFKK energy principle [10]. However, due to the comprehen-
siveness and generality of the BFKK formulation, the energy
principle of MHD stability is presently associated with
Ref. [9], most frequently cited in plasma physics publica-
tions. This paper was followed by a large number of others
reporting application of the energy principle to the descrip-
tion of stability of concrete magnetic systems, modes, etc.

The energy stability principle for an MHD system with the
Hamiltonian

2 2

_ _ [PV g P B g,
H—K+W—Jr 5 dr+Jr(y—l+8n)dl (1)

is formulated as a requirement for positive semi-definitiveness
of the second potential energy variation:

FW=0 (2)

in the vicinity of static equilibrium position V =0,
Vp = rot B x B/4n (standard notations are used: V and p
are the macroscopic velocity and pressure, respectively, of the
plasma with adiabatic exponent y, confined by magnetic field
B in volume I' assumed to be fixed for simplicity). It is
convenient to express quantity 8> W in terms of displacement
& of a plasma element:

1 k
e ILCL
~ [ {4 (ol Bl + [ rot e x B rot)

+EVpdivE + yp div? a} . (3)

This expression clearly demonstrates the physical nature of
possible instability: the second and the third terms on its
right-hand side are responsible for two feasible instability
mechanisms, one associated with the electric current flowing
in the plasma, the other with its pressure, whereas perturba-
tion of the magnetic field and plasma compressibility serve as
stabilizing factors. Productivity of the energy principle is
closely related to self-conjugacy (hermiticity) of linearized
force operator F, understood in the usual sense:

| nP@atr = | erma

(arbitrary vectors & and n vanish at the boundary of the
integration domain I').

Self-conjugacy of the force operator F guarantees the
necessity of stability condition (2) and its completeness for
systems with magnetic surfaces, such as the majority of the
known magnetic traps. In other words, the following
assertion can be proved: if the potential energy of a certain
displacement & is negative, there is an eigenmode of the small-
oscillation equation

pE =F(&),

which exponentially grows with time [9]. The set of eigen-
modes forms a complete system.

Kadomtsev applied this principle to the analysis of flute
modes and found the stability condition

yp(VU)?
vau+%>o, 4)

where U = [ d//B is the integral taken along a magnetic field
line (along the flute length). The first term in condition (4)
describes the ‘mean magnetic well’ effect contributing to
stability and showing itself as the magnetic field grows from
the plasma confinement region. The second term takes
account of the stabilizing effect of plasma compressibility.
Kadomtsev summarized this and some other practical
applications of the energy principle in a comprehensive and
easily understandable review [1].

The energy principle has an important nuance. The
Lyapunov theorem demands sign-definiteness of the func-
tional [strict inequality in formula (2)], hence there is the
problem with neutral displacements that do not change
potential energy W, i.e., those corresponding to zero
frequency in terms of eigenmodes. It is these displacements
that cause concern as regards nonlinear instability. More-
over, it can be shown that such neutral displacements always
exist in MHD systems and that they are nontrivial, i.e.,
nonreducible to global displacements and turns of the
plasma as a whole, which are of no interest for the problem
under consideration. In the systems with nested magnetic
surfaces, whose state is beyond boundary stability, neutral
perturbations reduce to relabeling transformations of fluid
elements that do not perturb physical quantities characteriz-
ing plasma state, viz. pressure, density, and magnetic field
[11]. Thus, the energy principle in the form of expressions (2),
(3) is exhaustive for plasma static equilibria in the systems
with magnetic surfaces. However, the existence of relabeling
symmetries suggests the possibility of a shift in equilibrium
along such transformations, i.e., the flows. Therefore,
attempts to extend this approach to the case of plasma with
flows seem natural.

Such an attempt was made by Frieman and Rotenberg as
early as 1960 [12]; they derived the energy condition from the
general linearized equation of motion

pE+2p(VV)E—F(E) =0, (5)

where p and V are the stationary values of mass density and
plasma flow velocity, and the operator F is modified
compared with the operator F in Eqn (3) but still retains the
property of hermiticity. Conservatism of the system [anti-
symmetric operator with € in Eqn (5) drops out of the energy
balance equation in integration] again permits obtaining (in
analogy with the static energy principle) a sufficient condition
for stability in the form

W~ lj d3r{—l rot* [¢ x pV] — [€ x rot [§ x pV]| rot V
2)r p
V2 V2
+7 div? (p&) + (av 5 —2V(VY) a) div (pg)
+ % (rot2 [ x B] + [& x rot [§ x B]] rot B)
+gvpdivg+ypdiv2a} >0, (6)

which is too (unnecessarily) ‘rigorous’, unlike the condition in
the static case, and is not satisfied for systems of any practical
interest barring a few rather special cases (e.g., plasma flow
strictly along magnetic lines of force, V|| B). Interest in this
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Figure 1. Transport barrier in the JT-60U tokamak, Japan (see Ref. [13]). (a) Jumps in electric field E, and effective coefficients of ion (y;) and electron ()
heat conductivity in the barrier zone. Ion heat conductivity decreases to 3¢ calculated from a neoclassical (NC) theory (dotted curve). (b) Large
temperature (7., 7;) and density (n.) gradients in this zone illustrate the notion of ‘transport barrier’; ¢ is the safety factor measured by the MSE

(Motional Stark Effect) method.

problem was lost for the next 20 years because the role of
macroscopic plasma motion (flow) was deemed unessential at
a flow rate much lower than the speed of sound. It should be
noted that this argument is not quite correct since the
characteristic size of spatial inhomogeneity of the flow may
be significantly different from that of pressure, density, and
magnetic field inhomogeneities, hence the taking into account
plasma motion at much lower flow velocities can be
important. However, such a possibility was disregarded in
early thermonuclear experiments.

Interest in plasma flows was renewed with the advent of
new powerful plasma-heating sources in modern tokamaks.
Uncompensated injection of fast atomic beams into a
tokamak sets the plasma in rotational motion with a rate
that may reach the same order of magnitude as the speed of
sound. In this case, improved confinement regimes associated
with the appearance of relatively narrow layers of nonuni-
form rotation develop. Figure 1 demonstrates the so-called
transport barrier phenomenon typical of such regimes. A
narrow layer undergoes a jump in the electric field and,
accordingly, in the rate of plasma rotation. A temperature
jump in this layer corresponds to a sharp fall in effective heat
conductivity. The presence of such a layer makes it possible to
significantly increase permissible parameters of the plasma
confined within the barrier. Taken together, these facts
dictated the necessity of studying plasma rotation effects in
both the stability problems and closely related problems of
transport theory.

One of the probable causes of the excessively large
discrepancy between the sufficient Frieman—Rotenberg
stability condition (6) and the necessary MHD stability
condition is underestimation of the relationship between
the displacement and the speed inherent in the real
dynamics of the system. This assertion is illustrated by a
simple example sometimes referred to as the Prendergast
problem. Let us consider the motion of a charge over a
symmetric hill in a gravitational field and in a vertical
magnetic field. The magnetic field does not change the
charge energy and conclusions based on analysis of the
sign of the second variation of potential energy point to
possible instability at any hill slope. Positive definiteness of
the potential energy guarantees stability only in a gravita-
tional well, even though the magnetic field clearly affects the

Equilibrium states

Invariant constancy lines

q

Figure 2. A case of degenerate equilibrium [dark curve (blue in on-line
version)]. Oscillations (dots) occur along invariant constancy lines.

charge dynamics. The magnetic field being strong enough,
equilibrium at the top of the hill or rotation around it may
prove stable. This is easy to see since the problem has an
exact solution. The redundant freedom in variable functions
can be eliminated by taking account of conservation laws
inherent in the system, differing from the law of conserva-
tion of energy. Thus, the generalized angular momentum
must be conserved in this problem. In the general case, in
the presence of additional motion invariants shown by level
lines on the conditional phase plane (Fig. 2), it is enough to
study perturbations &y retaining the meaning of such
invariants instead of arbitrary displacements &. Interest-
ingly, using this procedure and taking into account the law
of conservation of the generalized angular momentum in
variations allow, in our example, obtaining an exact
(necessary and sufficient) stability criterion.

In 1965, V T Arnold suggested this idea in application to
hydrodynamics [14, 15] and proposed taking into account the
conservation of vorticity in the analysis of flow stability. In
MHD conditions, vorticity is not conserved, whereas systems
with magnetic surfaces retain (under certain conditions) cross
helicity /; and its ‘counterpart’ I»:

11:JVBd3r, IZ:JVDd3r. (7)
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Here, D and B are linearly independent, the former being
divergenceless vector frozen into the plasma and also
tangential to the magnetic surfaces; integration in formulas
(7) is taken over the volume between any adjacent magnetic
surfaces. The use of Arnold’s scheme to take account of
limitations on the variable functions, which are imposed by
the condition of conservation of quantities (7) in variations,
permitted obtaining common equilibria with flows and
simultaneously a milder stability condition [16, 17] as against
the Frieman— Rotenberg condition (6). In the general case,
elimination of excess freedom in variations of independent
variables (coordinates and momenta of ‘fluid elements’ in the
medium) is achieved by splitting perturbations in accordance
with invariance of quantities of the form

J PV,
r

where P is the canonical momentum (bearing in mind
perturbations), V(r) is the equilibrium velocity field in
volume I', and A is the weight factor related to system
topology. It is essential that such splitting should be taken
into account in both the first and the second functional
variations. Although consideration of the first variation
yields an equilibrium condition of the most general func-
tional form, the stability condition may still be far from the
necessary one.

It is methodically relevant to draw attention to a
misapprehension widespread in the literature that the formal
addition of conserved quantities [e.g., integrals (7)] with
undetermined Lagrange multipliers to a variable functional
and variation of the new functional automatically lead to an
improved (milder) stability condition. This procedure
described, for instance, in the well-known review [18] leads
only to a more general class of equilibria but does not restrict
perturbations in variations and therefore results in a loss of
information about the derived integrals of motion in studies
of convexity of the functional, i.e., again in a more stringent
stability condition than in the Arnold method. The same
drawback is inherent in most studies of nonlinear stability
and flow stability performed later as recommended in
Ref. [18].

Another purely physical cause of the difficulties encoun-
tered in the energy approach is concerned with negative
energy waves. Indeed, energy analysis of perturbations for
the study of stable oscillations in the system of interest may
prove unproductive if these oscillations possess not only
positive but also negative energy. It should be emphasized
that Kadomtsev paid his attention to negative energy waves,
but his well-known work [19] concerned only interaction
between electromagnetic waves in media with different
dispersions. It is important for our purposes that MHD
oscillations may have negative energy, too. Indeed, the
following dispersion equation for eigenfrequency w formally
follows from the Frieman—Rotenberg equation (5):

Aw* —=2Bo—-C=0, (8)
where for & in the form of normal modes, viz.
&(r, 1) = &(r) exp (—iw1) (9)

the coefficients 4 = fp|%\2 d’r, B= —i jp&* (VV)Edr, and
C =~ [E"F[g]d’r are real by definition. The solution of

equation (8) has the form

B+ svVB2+ AC
o= 2ENE AT (10)
A
where s = 1 or s = —1 for a given eigenwave. Therefore, the
eigenwave is unstable only if B2 4 AC < 0. The eigenmode
energy can be written out as
1

E =3 (Alof* + C)exp (2y1), (11)
where the increment y = Im w. Because the energy is con-
served, E in expression (11) cannot depend on time and must
be zero for any unstable eigenmode with y # 0.

The energy of a stable eigenmode with y = 0 is given by
the expression

E=sovVB*+ AC

and can be either positive (positive energy waves, PEWs) or
negative (negative energy waves, NEWs). NEWs exist as
eigenmodes with —B%/4 < C <0 and sign(B) = —s. It
follows from Eqns (8), (12) that all NEWs are asymmetric,
i.e., show spatial dependence in the direction of the stationary
flow, so that B # 0. As shown in Ref. [20], there is an interval
of equilibrium parameters within which PEWs and NEWs co-
exist. When their frequencies coincide (resonance conditions),
the energy may be transferred from a NEW to a PEW, which
leads to instability. In point of fact, such NEW/PEW pairs
constitute a universal mechanism of any asymmetric instabil-
ity in an ideal MHD system with flows.

Eigenmodes with purely real or purely imaginary eigen-
values producing a spectrum symmetric with respect to the
origin of coordinates on the plane Re w —Im w are referred to
below as symmetric. They correspond, in particular, to static
equilibria or modes homogeneous along the flow direction
(B=0). The standard energy principle holds true for
symmetric modes because their energy (12) is always non-
negative and passes through zero during the transmission
from stability zone to instability zone. Certainly, this
principle is violated in the case of excitation of NEWs in the
system since zero energy is attainable in a wholly stable zone,
too.

This NEW-related inconveniency can also be avoided by
taking into account the necessary number of additional
integrals of motion, at least in the case of a discrete
spectrum. The linear equation of motion (5) has an infinite
set of energy type integrals [21] but not-reducible-to-energy
integrals:

En _ 1J<p|i(n+l)|2 o &-’*(n) F[g(n)}) d3r,

(12)

3 (13)

where i(") is the nth derivative in time. In the main, these
integrals are independent. E; corresponds to energy, and
integral E| to type (7) invariants. Higher order invariants
(13) have no explicit nonlinear analogs. Using a recurrent
relation directly following from equation (5), namely

F

(n)
52 = —avw)geeh + K (149)

it is possible to express all integrals (13) through initial
perturbations &, =§&|,_, and & = &|,_,. Specifically, one
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finds

Buiaro) = 3 | (5 1780l = 200V 9) &of” - & Flea]) o'
(15)

Integrals of motion (13) can be introduced into the
Lyapunov functional by the method of Arnold [15] using the
Lagrange multipliers 4,,:

E.a()v Z;‘n a07

The following theorem provides a sufficient condition for
formal stability of the system described by equation (5).

Theorem. If there exist real numbers A, and integer
N € [0, 00] such that the form (16) is positively definite for all
& and &, then the form (16) is the Lyapunov functional and the
equilibrium state is formally (spectrally) stable.

The proof of this theorem and more detailed description
of this approach can be found in Ref. [22]. Under certain
assumptions, the theorem also provides necessary conditions
for spectral stability because, given that the system is stable,
there exist such 7, whereat the functional U is nonnegative at
any perturbation.

The productivity of this approach can be illustrated by a
simple example of Rayleigh—Taylor instability of a rotating
cold gravitating gas. All equilibrium quantities can depend
only on radius rin a cylindrical system of coordinates (r, @, z).
The equilibrium velocity is expressed as

(16)

0P
V=rQ(re,, rQr) =35 (17)
where Q(r) is the angular frequency of rotation in a

gravitational field with the potential @(r), and e, = rVe.
The stability condition for such rotation is fairly well known.
It is the Rayleigh criterion (a necessary and sufficient
condition of spectral stability) reducible in the present case
to the requirement for the so-called epicyclic frequency x to be
real:

(18)

Let us apply the above-described variational method to this
problem. In this case, all invariants (13) are local, and the first
two, Ey and Ej, have the following form for the modes
rotating with frequency Q(r):

1 *TA
§(|§| & Bg)
1 0Q
5(@ T S N ()
E = %(usg 20QAE] — *TBF,>
1| 0@ 1P
_EHI,Fgr_zggq, (4Q +r )\é,l}

where B is the matrix: B = 2rQQ,{6i|8j1, and 0 is the
Kronecker symbol. Choosing E; for U and putting 4; 21 =0
in formula (16) leads to the spectral stability condition that is
exactly the Rayleigh criterion (18). As follows from Eqn (19),

the energy principle (U = Ej) gives a more rigorous sufficient
stability condition: 027 /0r > 0, confirming the efficiency of
the proposed method.

Another example is E P Velikhov’s magnetorotational
instability (MRI) [23] supposed to be responsible for
turbulent processes in accretion disks. Let us calculate
energies and eigenmode frequencies in an experiment simulat-
ing magnetorotational instability. Consider an incompressi-
ble conducting fluid rotating across a uniform magnetic field
B = Bje. with angular velocity

2
Q]Il
r2

V=rQ(rle,, Q)= , (20)

given in the cylindrical system of coordinates (r, ¢, z). Let us
choose, for definiteness, r,/r = 5, where r; and r, are the
inner and outer radii of the fluid-containing channel,
respectively, and Q; is the angular velocity at radius r;. A
detailed study of the stability of such a flow was reported in
Refs [20, 24] for normal modes represented in the form
E(r, 1) = &(r) exp (—iwt + im¢ + ik.z).

Figure 3 depicts the frequency and the energy of
axisymmetric (m = 0) and nonaxisymmetric (m = 1) eigen-
waves depending on the equilibrium parameter Q;/wa that
characterizes rotational velocity (w4 is the Alfvén frequency).
The instability zone is shaded. In the axially symmetric case
(Fig. 3a), only positive energy waves can be excited in the
system. The value of Q; /wa ~ 2.0 (MRI threshold for m = 0)
corresponds to the point of merging of two branches in
Fig. 3a. The nature of axially symmetric MRI is unrelated to
negative energy waves and can be associated with a mechan-
ism resembling Rayleigh — Taylor instability [23].

Positive and negative energy waves with m = 1 (Fig. 3b)
can coexist in the system when Q;/wa > 1. In this case, the
instability threshold is Q;/wa ~ 1.7 (which corresponds to a
radial mode with n, = 0), when NEW and PEW frequencies
coincide as mentioned earlier. The discreteness of the
spectrum also permits utilizing the above combined func-
tional (16). This example is considered at greater length in
Ref. [22].

To sum up, generalization of the classical energy principle
for the case of dynamic equilibria, i.e., flows, is feasible, albeit
not universal.

3. Trapped particle instability

During the second period of work at the Kurchatov Institute,
Boris Borisovich Kadomtsev devoted much attention to the
nature of plasma turbulence in tokamaks and the closely
related problem of anomalous particle and energy transport
across a magnetic field. According to Oleg Pavlovich Pogutse,
a disciple and the then closest associate of Boris Borisovich,
Kadomtsev thought of something as simple as flute instability
but unique to tokamaks. In the long run, Kadomtsev arrived
at the notion of trapped particle instability [2, 25], the nature
of which can be described as follows.

In tokamaks and some other toroidal systems with
nested magnetic surfaces created by lines of force with
ergodic winding, flute instability of a low-pressure (com-
pared with magnetic field pressure) plasma is stabilized by
magnetic shear, i.e., the intersection of magnetic lines of
force at adjacent magnetic surfaces. Physically, such a
stabilization is achieved by efficient redistribution of local
perturbation of electrostatic potential over the entire
magnetic surface under the effect of rapid (with thermal
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Figure 3. Energy (arbitrary units) and frequency of the most unstable eigenmodes: (a) axially symmetric with m = 0, and (b) asymmetric with m = 1. The

instability region is shaded [20].

speed) charge flow along magnetic lines of force. As a result,
a magnetic surface becomes an equipotential that hinders
percolation of plasma flutes arrayed in the poloidal direction
along the radius, as in open traps. However, the concept of
free flow of charges over magnetic surfaces during their
motion along magnetic lines of force is not quite correct.
Figure 4 depicts projections of typical trajectories of charged
particles in the tokamak magnetic field onto its poloidal
(left) and toroidal (right) cross sections (for definiteness,
Fig. 4 displays a situation in which directions of toroidal
current and toroidal magnetic field coincide; the trajectories
of positively charged particles are only presented). Figure 4a
shows the so-called transit particles whose trajectories
enclose both magnetic and geometric axes of the tokamak
and only slightly deflect from the respective magnetic
surface. The trajectory thickness in the figure is given by
the diameter of the particle’s Larmor orbit. Figure 4b
presents particle trajectories having a small cosine of the
pitch angle, i.e., angle « between the directions of particle
velocity and magnetic field. Such particles are highly
sensitive to magnetic field nonuniformities along the trajec-
tory and may be trapped between magnetic mirrors formed
at the magnetic surface due to nonuniformity of the toroidal
magnetic field (Br ~ 1/r, where r is the distance to the
tokamak axis). Poloidal projections of trapped particle
trajectories are sometimes called ‘banana’ orbits for their
shape. In other words, the trajectory of a trapped particle
does not enclose the entire magnetic surface but spreads over
a part of its area only. Therefore, it can be imagined for
sufficiently low-frequency processes that such particle move-
ments fail to ensure exact compensation for perturbation of
the electric potential by longitudinal motion along the lines
of force. The trapped particle simply cannot move under the
action of perturbation, being confined between the magnetic
mirrors. Certainly, the fraction of trapped particles is

Poloidal cross section Median surface: z = 0

z

z y a

Poloidal cross section Median surface

y b

z

Figure 4. Typical trajectories of transit (a) and trapped (b) particles in a
tokamak starting from the same point with opposite velocities. The dark
color (blue in the on-line version) corresponds to v > 0, the light one to
v <0.

relatively small. The maximum mirror ratio on a magnetic
surface of radius p is given by
l1+e¢
II= + ,
l1—e¢

(1)
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and those particles whose pitch angle « satisfies the relation

Yl
cos o —

-1
<y TR V2,

where ¢ = p/R, and R is the major radius of the tokamak
(magnetic axis radius), prove to get trapped. Thus, the
fraction of trapped particles (in the case of isotropic
distribution in the phase space) ~¢ <1, and charges
produced due to them are to a large extent compensated
by redistribution of transit particles. Owing to this effect,
the increment of trapped particle instability is relatively
small [2].

How then can plasma rotation affect this instability?
Seemingly, toroidal rotation at the tokamak periphery may
not appreciably influence the instability because it simply
leads to cooperative displacement of particles (both trapped
and transit) along the torus; the effect of poloidal rotation is
not so obvious. Indeed, rotation of a magnetized plasma
(i.e., collective motion of ions and electrons) is normally
associated with the presence of a radial electric field, the
electric drift being the sole type of drift motion whose
velocity does not depend on the charge sign (the central
region of the plasma column in a tokamak is usually
negatively charged). As shown in Fig. 4b, a positively
charged trapped particle starting parallel to the field
direction deflects inwardly due to toroidal drift and
acquires kinetic energy in the presence of a radial electric
field. This excess energy may be sufficient for the particle to
pass through a magnetic mirror and become a transit
particle. For a particle with energy E, the mirror ratio in
formula (21) should be effectively decreased by 1 + e¢’4y,/E
times, where ¢(p) is the electric potential, and 4y, is the half-
width of the banana orbit. A particle starting from the same
point in the opposite direction drifts outward from the
original magnetic surface and, consequently, turns out to
be trapped even more strongly. Electrons drift in opposite
directions, but the charge sign in the above correction for
the mirror ratio also changes. The situation at the center of
the plasma column is more interesting due to the known
asymmetry of the velocity space at certain |coso| values;
namely, one of the two particles starting in opposite
directions may prove to be transit, while the other trapped
(Fig. 5). The former remains transit even if it loses speed
when moving away from the center, while the latter is still
trapped; only radii of their orbits decrease in the poloidal
cross section. It should be borne in mind that particle

Poloidal cross section Median surface: z = 0

Start

\

Figure 5. Asymmetry of the trajectories of particles starting from the same
point with opposite velocities in the center of a tokamak.

trajectories in the core region barely follow the magnetic
surfaces (see Fig. 5), whereas rotation diminishes this
difference. Naturally, the effect will be opposite when
¢'(p) has the opposite sign.

Nevertheless, it can be concluded that trapped particle
instability does not suffer variation to any great extent in a
rotating plasma.

4. Reduced magnetohydrodynamic equations

Large tokamaks were extensively designed and built in
different countries in the 1970s. The striking success of the
tokamak T-10 at the Kurchatov Institute and the Princeton
Large Torus (PLT) opened the gate to bigger tokamaks of
the next generation, such as the T-15 in the USSR, the
Tokamak Fusion Test Reactor (TFTR) and Doublet III in
the USA, the Tore-Supra in France, the Joint European
Torus (JET) in the UK, and the JT-60 in Japan. In those
years, Kadomtsev formulated the concept of switching from
physical research to thermonuclear engineering. He became
interested in plasma self-organization, which needed non-
linear equations to be described. As is known, consideration
of nonlinearity is equally important to address disruption
instability, which is especially dangerous for tokamak
plasma that first develops as a helical mode and thereafter
leads to ejection of plasma and current channel onto the
chamber wall. The physics of such instability was high-
lighted in the report by S V Mirnov at the present session
(p. 725 of this issue). We shall focus here on the formalism
invoked for the description of this instability.

A simplified (but adequate for the phenomenon under
consideration) nonlinear model is needed because both MHD
equations and drift equations are too complicated for
comprehensive three-dimensional simulation, mainly by
virtue of their multiscale nature. For example, MHD
phenomena involve physical processes having totally differ-
ent (by several orders of magnitude) spatial and temporal
scales, including Alfvén, thermal, inertial, resistive and so
forth. Direct numerical simulation of such complex phenom-
ena is impracticable since small-scale errors accumulate into
uncontrollable errors on large scales. Moreover, the power of
even the best supercomputers is thus far insufficient for such
calculations with the necessary accuracy within observable
time. Therefore, Boris Borisovich decided to derive simplified
(reduced) equations suitable for practical numerical simula-
tion based on kink mode dynamics, including a nonlinear
one.

The main objective of such a work was to derive equations
describing the low-frequency nonlinear dynamics of tokamak
plasma by canceling out higher-frequency stable magneto-
acoustic oscillations from original MHD equations. In
practical terms, this objective could be achieved by perform-
ing expansion in a small parameter characteristic of tokamaks
(poloidal-to-toroidal magnetic field ratio ¢ = B, /By < 1)
and thereby moving from a three- to a two-dimensional
problem. Somewhat later, the idea of reduced equations for
tokamaks and stellarators was further developed in the works
by such reputed researchers as M Rosenbluth, R Haseltine,
and R White, and in many studies by H Strauss (see, for
instance, Ref. [26]); this explains why the equations first
derived by Kadomtsev and Pogutse [3] are not infrequently
associated with the name of Strauss.

Of utmost importance was simplifying the description of
the nonlinear dynamics of Alfvén perturbations by utilizing
the freezing-in equation for an effective magnetic field defined
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by a single scalar flow function :

B. =By —u % Boey = Vi x V), (22)

where u is the rotational transform angle in a tokamak with
major radius R, and eg = pV6 and RV( are the unit vectors in
the poloidal and toroidal directions, respectively. For ¢ < 1,
this freezing-in equation for the magnetic field reduces to the
freezing-in equation for field B,, automatically fulfilled for
incompressible flows withv = v, divv, = 0, with the frozen-
in flux y: 0y /0t + vV = 0. Then, the Euler equation reduces
to

dv 1
—+VP=—(B,V)B,,
pler 4n( )

where

uBoy
2nR?2

1 2
P =g (2BB{+ B} + 4y’ % BR) +

plays the part of pressure. Thereby, the plasma motion
problem is reduced to the problem of two-dimensional flow
of an incompressible ideally conducting fluid with the frozen-
in magnetic field B,. The reduced equations under discussion
made it possible to simply and demonstrably simulate the
evolution of so-called bubbles, disruptions, and other non-
linear phenomena in tokamaks. This reduction procedure
proposed by Kadomtsev and Pogutse for an ideal single-fluid
MHD model provided a basis for a new field of research on
nonlinear dynamics of magnetized plasma. Its principles were
later applied to simplify more complicated models, such as
Braginskii’s two-fluid dissipative equations employed for the
description of peripheral plasma.

For all the advantages of this reduction procedure, it is
not free from some drawbacks. It is easy to see that
perturbations of B and divv, can be neglected only in the
principal order of expansion in parameter e. Therefore, the
procedure lacks self-consistency, and the dynamics of the
system violate the assumptions on which they were derived.
Moreover, the reduced equations do not admit stationary
states with flows due to broken relabeling symmetry intrinsic
in original MHD equations (as mentioned in Section 2, it is
relabeling symmetry that signifies the admissibility of sta-
tionary flows in the hydrodynamic system of interest). In
order to overcome this drawback and generalize the Kadomt-
sev—Pogutse approach, the research group headed by
V P Pastukhov in the Plasma Theory Division of Kurchatov
Institute NFI undertook the development of the method for
adiabatic separation of fast and slow motions, allowing ideal
and weakly dissipative dynamic systems to be reduced using
different small parameters [27]. A given method is essentially
the generalization of the classical Van der Pol method to the
case of continual Lagrangian systems.

The principle of the method is as follows. Let a weakly
dissipative system have fast and stable collective degrees of
freedom with characteristic frequencies ~ wg and slow
collective degrees of freedom with the frequencies
~ ws ~ cop, where ¢ < 1, as before (the putative smallness
of system deviation from ideality is also related to the value of
€). Adiabatic transformation of generalized (flow) coordi-
nates o’ in the form 8,0’ = —&, Vo' is sought by analogy with
relabeling symmetry transformation. This transformation

does not change a Lagrangian with an accuracy up to terms
of order ¢*:

da LL({M‘}, {00}, {Va'}, €) d’r = O(e?) .

The velocity field of slow (adiabatic) motion has the same
functional structure and does not perturb fast degrees of
freedom. Then, the reduced equation of motion is derived
from Hamilton’s principle of least action using &, as a
variable.

The simplest model of turbulent convection and transport
is based on single-fluid magnetohydrodynamics with the
adiabaticity parameter ¢3 ~ y/csa < 1 and adiabatic velo-
city field

v B, x Vo e
a — S -
By

Here, y is the classical heat conductivity coefficient serving as
a ‘priming’ dissipative process, ¢s is the speed of sound in a
plasma with transverse size a and poloidal magnetic field By,
and @ is the toroidal magnetic flux frozen-in to the plasma
(for certain reasons, the discussion of which is beyond the
scope of this report, the use of quantity @ instead of poloidal
flux  contained in formula (22) may be more favorable). The
characteristic frequencies of the low-frequency convection
under discussion, w ~ ¢k cs, are significantly lower than
those of the following stable oscillation branches: magneto-
acoustic with the frequency w ~ k,ca, Alfvénean with
o ~ kjca, and longitudinal acoustic with @ ~ kj¢s. The
reduction procedure formalized as expansion in the para-
meter ¢ of the action integral permits cutting off the above
stable degrees of freedom and obtaining self-consistent
equations for low-frequency convection of the plasma. In
this scheme, the simplest expression for P present in
Kadomtsev—Pogutse equations is replaced by the heat
transfer equation written for the plasma entropy function,
and the heat energy fluctuation equation taking into account
all sources and sinks of energy in the system of interest (high-
frequency heating, ohmic heating, viscous heat release,
radiation losses, etc.) [27].

The reduced equations thus obtained make it possible to
use an affordable personal computer for unique numerical
calculations of the self-consistent nonlinear dynamics of a
plasma system for time periods on the order of its lifetime.
Notice that the most advanced gyrokinetic codes currently
available, in which reduction has been performed to date for a
single fast time (Larmor gyration period of charged particles),
allow only a few dozen characteristic times of turbulence
development to be computed. The results of these calculations
demonstrate universal properties of fully developed plasma
turbulence, which manifest themselves in experiments on
tokamaks and other plasma confinement devices. These
properties are as follows:

— wide frequency spectrum of observed oscillations with
one or several dominant frequencies;

— intermittency and non-Gaussian statistics;

— nondiffusive character of transverse (with respect to
magnetic field direction) transport of particles and energy;

— formation and presence of long-lived nonlinear
structures (‘filaments’, ‘blobs’, ‘streamers’, etc.) in plasma;

— well-apparent trend toward self-organization of
dynamic and transport processes (self-consistency of plasma
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S(r,0) = const

Figure 6. Cross section of isoentropic surfaces (a) and entropy fluctuation spectrum (n is the wave number) for the regime of fully developed MHD

turbulence (b) [28].

parameter profiles, L—H transitions, ‘transport barriers’,
etc.).

By way of illustration, Fig. 6 shows typical cross sections
of isoentropic surfaces and the spectrum of entropy function
fluctuations. The wide fluctuation spectrum does not lead,
however, to oscillations of an averaged entropy spatial profile
or other plasma parameters that remain quasistationary. The
essence of turbulent self-organization is that deviation from
the established profile immediately leads to the enhancement
of oscillations and transfers to compensate for such a
deviation. A practical consequence of the above physical
picture is the possibility of controling turbulent transport by
means of spatial redistribution of the sources of particles and
power introduced into the system [28].

In conclusion, I would like to emphasize once again that
many problems, the importance of which B B Kadomtsev
understood fairly well at the early stages of the development
of the hot plasma theory (in particular, plasma turbulence
and self-organization, mechanisms and methods of suppres-
sion of large-scale instabilities, physics of transport processes,
and nonlinear dynamics), remain of utmost significance in the
modern period of translating fusion research into practical
reactor-scale thermonuclear facilities. Just as much credit is
due to Kadomtsev for his remarkable physical intuition,
foresight, and ability to see exactly what is needed at the
moment and act accordingly. The principles and approaches
to the solution of the aforementioned problems, formulated
and developed by Kadomtsev, continue to be relevant and are
being successfully developed by the present generation of
theorists, his followers, as I tried to briefly illustrate in this
report.

My sincere gratitude is due to M S Aksent’eva, to whose
perseverance and enthusiasm I owe publication of the print
version of this report.
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