
Abstract. We review the problem of evaluating the energy loss
of an ultrarelativistic charged particle crossing a thermally
equilibrated high-temperature e�eÿ or quark±gluon plasma.
The average energy loss DE depends on the particle energy E
and mass M, the plasma temperature T, the QED (QCD)
coupling constant a �a s�, and the distance L the particle travels
in the medium. Two main mechanisms contribute to the energy
loss: elastic collisions and bremsstrahlung. For each contribu-
tion, we use simple physical arguments to obtain the functional
dependence DE�E;M;T; a �s�;L� in different regions of the
parameters. The suppression of bremsstrahlung due to the
Landau±Pomeranchuk±Migdal effect is relevant in some re-
gions. In addition, radiation by heavy particles is often sup-
pressed for kinematic reasons. Still, when the travel distance L
is not too small, and for large enough energies [E4M 2=�aT �
in the Abelian case and E4M=

�����
a s
p

in the non-Abelian case],
radiative losses dominate over collisional ones. We rederive the
known results and make some new observations. In particular,
we emphasize that for light particles (m 2 5 aT 2), the differ-
ence in the behavior ofDE�E;m;T; a �s�;L� in QED andQCD is
mostly due to the different problem setting in these two cases. In
QED, it is natural to study the energy losses of an electron
coming from infinity. In QCD, the quantity of physical interest
is the medium-induced energy loss of a parton produced within
the medium. In the case of an electron produced within a QED
plasma, the medium-induced radiative energy loss DErad be-

haves similarly to DErad in QCD (in particular, DErad / L2 at
small L), despite the photon and gluon radiation spectra being
drastically different because the bremsstrahlung cones for soft
gluons are broader than for soft photons. We also show that the
average radiative loss of an `asymptotic light parton' crossing a
QCD plasma is similar to that of an asymptotic electron cross-
ing a QED plasma. For heavy particles (M 2 4 aT 2), the
difference between DErad in QED and in QCD is more pro-
nounced, even when the same physical situation is considered.

1. Introduction

Evaluating the energy loss of a charged particle passing
through usual matter is a standard problem in nuclear
physics, studied very well both theoretically and experimen-
tally (see, e.g., Ref. [1]). It is known, for example, that for
heavy particles (protons) of not too high an energy, the main
contribution to the energy loss is made by collisions with
individual atomic electrons, while for light particles (elec-
trons) of similar energies, it is made by bremsstrahlung.

The energy loss problem can also be posed for a particle
passing through a hot ultrarelativistic plasma.1 In particular,
onemay ask what happens if a particle carrying a color charge
passes through a hot QCD medium. In the limit where the
medium temperature T is very high, T4LQCD, this medium
is a quark±gluon plasma (QGP), i.e., a system of quarks and
gluons with a small effective Coulomb-like interaction
as�T �5 1. 2 Of course, colored particles do not exist as
asymptotic states, but we can imagine several thought
experiments where the energy lost by an energetic parton
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1 In this paper, we consider thermally equilibrated and nonexpanding

(static) plasmas.
2 We use the term QGP in this restricted sense, which is a natural

generalization of the conventional definition of a plasma [2]. When

E Shuryak first proposed this name, he had this analogy in mind [3].

Unfortunately, in realistic heavy-ion collisions, the temperature reached



crossing aQGP could in principle bemeasured.We consider a
fast heavy meson (for example, a B-meson), consisting of a
heavy quark and a light antiquark, coming from infinity (i.e.,
created in the remote past) and entering a tiny thermos bottle
filledwith theQGPona laboratory table, as depicted inFig. 1.
In the hot environment, the heavy quark sheds its light
partner and travels through the plasma losing its energy.
When it leaves the bottle, it picks up a light antiquark or two
light quarks to form a heavy colorless hadron. The difference
in energy between the incoming meson and the outgoing
heavy hadron roughly coincides with the heavy-quark energy
loss.

This situation is probably the cleanest one from the
theoretical standpoint. If the heavy quark mass is very large,
M4T, the density of such quarks in the plasma is exponen-
tially suppressed, and thus the passing heavy quark is tagged.
But it is not possible, of course, to do such an experiment in
reality. Hot QCD matter is produced in heavy-ion collisions
for a few 10ÿ23 of a second, and studying its interaction with a
B-meson beam is impossible. It is possible, however, to access
the energy loss of heavy or light particles produced within the
plasma (via a hard partonic subprocess). A quark±anti-
quark pair created with a large relative transverse momen-
tum in a hard partonic process gives rise to two distinct
hadron jets. In heavy-ion collisions, the energy loss of the
quark between its production and its escape from the QGP
softens the pT-spectrum of the leading hadrons in the
associated jet, compared to the case of proton±proton
collisions. This effect, called jet quenching and first antici-
pated by Bjorken [4], is now well established by the RHIC
experiments [5±8]. 3 A similar effect in cold nuclear matter at
lower energies, namely, the attenuation of hadron energy
distributions in deep inelastic scattering on nuclei, has been
observed by the HERMES [10] and CLAS [11] collabora-
tions.

Considering a parton produced in a (perturbative) QGP,
there are two distinct cases. Either the produced parton is
light or it is a heavy quark. For light partons of a sufficiently
high energy E4T, the dominant energy loss mechanism (at
not too small L) is gluon bremsstrahlung. This problem was
previously considered in Refs [12±22]. To correctly evaluate
radiative losses, it is important to take the generalization of
the Landau±Pomeranchuk±Migdal (LPM) effect [23±25] in
QCD into account. In brief, bremsstrahlung is a process
where the radiation field accompanying a charged particle is
shed. But a newborn `undressed' particle must first `dress' in
its proper field coat before it can radiate again. If the time
needed for such dressing (formation time) is large, the
radiation intensity and hence the radiative energy loss are
suppressed. For heavy quarks, bremsstrahlung is further
suppressed compared to the light parton case [26] and the
relative contribution of collisional losses increases. When the
mass of the particle is not too large,M5

���������
aET
p

in QED and
M5

����
as
p

E in QCD, and the travel distanceL is not too small,
radiative losses still dominate over collisional ones.

Our goal is to rederive and explain the results in a
relatively simple way. We do not attempt to perform precise
calculations (as regards radiative losses, they are very
difficult, maybe impossible to do in a model-independent
way) and only give the physical reasoning elucidating the
parameter dependence of DE�E;M;T; a�s�;L� in different
regions of the parameters. This physical emphasis and an
accurate analysis of the radiation spectra for light and heavy
particles are some distinguishing features of our review
compared to review [27].

As emphasized above, studying the energy loss of a parton
produced in a QGP is of phenomenological interest to heavy-
ion collisions. It is, however, also instructive to discuss the
problem of energy loss in QED. In this case, it is more natural
to consider an asymptotic (on-shell) particle entering and
then leaving a domain containing the ultrarelativistic e�eÿ

plasma, but the production of a charged particle within the
QED plasma can also be considered in principle. 4 Thus, we
found it useful to calculate the energy loss of an ultrarelati-
vistic charged particle in every different situationwe can think
of, even though some of them are academic.

In Section 2, we first discuss the collisional contribution
to the energy loss, considering the cases of QED and
QCD, and of heavy and light particles. For collisional
losses, the way the particle is produced (in the remote past
outside the plasma or inside the plasma) is not important.
In Sections 3 and 4, we discuss the radiative energy loss of an
asymptotic particle crossing a high-temperature plasma.
Section 3 is devoted to QED, where this physical situation
is more natural. In Section 4, we study the similar problem in
QCD, where the `asymptotic' partons should be understood
as constituents of colorless hadrons when entering the
plasma. In Section 5, we consider the case of a particle
produced in a plasma, both in QED and QCD. We show
there that the quadratic dependence of the induced radiative
loss on the plasma size L at small enough L is not a feature
specific to QCD. It also holds in QED with the same
parametric dependence of the coefficient of L2 (although
logarithmic factors may differ). The differential gluon and

is not high enough to have as�T �5 1, and whether the system can be

reliably described perturbatively is questionable. In this paper, we only

consider a situation where the effective coupling is small and the

perturbation theory applies.
3 See Ref. [9] for a recent review on jet quenching.

L

DE � Eÿ E 0

B b

QGP

B or Lb

E E 0

Figure 1. A heavy quark passes through a thermos bottle filled with the

QGP.

4 For instance, we can think of the energy loss of a charged lepton

produced in a heavy-ion collision (although it would be small in this case,

due to the smallness of the QGP size compared to the lepton mean free

path).
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photon radiation spectra are qualitatively different, however.
Because this might be useful to jet-quenching phenomenol-
ogy, the induced gluon energy spectra corresponding to light
and heavy quark radiation are discussed in some detail.
Finally, we briefly summarize and give some general remarks
in Section 6.

2. Collisional energy loss
of a fast charged particle

The collisional loss of a fast charge crossing a hot plasma was
first calculated by Bjorken [4]. This was done in the context of
QCD, and was the basis of Bjorken's proposal to use jet
quenching as a signature of QGP. Bjorken's result for the
collisional loss (per unit distance) of an energetic light parton
(light quark q or gluon g) is given by

dEcoll

dx

����
q; g

� CRp a 2
s T

2

�
1� nf

6

�
ln

ET

m 2
; �2:1�

where nf is the number of thermally equilibrated quark
flavors, CR � CF � 4=3 (quark) or CR � Nc � 3 (gluon),
and m is an effective infrared cutoff. To the logarithmic
accuracy, to which (2.1) is derived, m can be taken as the
Debye screening mass in the QGP, m � gT.

More detailed studies of the collisional losses in QED and
QCD plasmas were performed, for instance, in Refs [28±34].
We review this issue below, emphasizing the difference
between the two cases of a tagged (heavy) and untagged
(light) particle.

2.1 Hot QED plasma
2.1.1 Ultrarelativistic muon. We consider the case of an
ultrarelativistic muon of mass M and four-momentum
P � �E; p� passing through a hot e�eÿ plasma of tempera-
ture T, with E4M4T. The last inequality ensures that
there are no muons in the heat bath. The muon can lose its
energy in either Coulomb collisions with electrons and
positrons (Fig. 2a) or Compton collisions with photons
(Fig. 2b).

We first consider the losses due to Coulomb scattering.
The differential Coulomb5 cross section is given by

dsCoulomb

dt
� a 2

�tÿ m 2�2 ; �2:2�

where t � Q 2 � �Kÿ K 0�2 is the Mandelstam invariant
momentum transfer and m � eT is the Debye screening mass
in the QED plasma. The total Coulomb scattering cross

section is given by

sCoulomb � a 2

m 2
� a

T 2
: �2:3�

The momentaK andK 0 in Fig. 2 refer to thermal particles
and are of the order ofT. We note that they are slightly off the
mass shell, K 2 � K 0 2 � m 2, due to medium effects, which
does not affect the estimates below, however. Since the
integral for the total collisional loss is saturated in the region
jtj4 m 2 (as we see in a moment), we can write t � ÿ2KQ �
ÿ2�jKjQ0 ÿ KQ�. We have Q0 � ÿt=�2jKj� � ÿt=T on the
average. The mean energy loss in a single scattering is thus

hDEi1 scat �
1

sCoulomb

�
dt

dsCoulomb

dt

ÿt
T
� aT ln

jtjmax

m 2
: �2:4�

The logarithm arises from the broad logarithmic interval
m 2 5 jtj5 jtjmax, implying (to logarithmic accuracy) that the
energy transfer in a single collision is small compared to E.

Introducing the Coulomb mean free path,

lCoulomb � 1

nsCoulomb
� 1

aT
; �2:5�

where n � T 3 is the particle density in the plasma, we estimate
the energy loss rate per unit distance as

dECoulomb

dx
� hDE i1 scat

lCoulomb
� a 2T 2 ln

jtjmax

m 2
: �2:6�

The maximal transfer jtjmax is given by

jtjmax �
�sÿM 2�2

s
�

ET ; M 2 5ET ;

E 2T 2

M 2
; M 2 4ET ;

8<: �2:7�

where s � �P� K�2 �M 2 � 2PK, and hence s � ET in the
domain of small masses and s �M 2 in the domain of large
masses. We thus see that the logarithmic factor in (2.6)
takes different forms in the mass domains M 2 5ET and
M 2 4ET,

dECoulomb

dx
� a 2T 2

ln
ET

m 2
; M 2 5ET ;

2 ln
ET

mM
; M 2 4ET :

8>><>>: �2:8�

Two remarks are in order here.
(1) Strictly speaking, using (2.2) for the differential cross

section is not correct. First, it is written for static and scalar
plasma particles, while the particles are moving and have
spin. Second, the diagram in Fig. 2a was evaluated with the
model expression 1=�tÿ m 2� for the photon propagator, while
the actual expression is more involved. Third, neither the
S-matrix nor the cross section is well defined in the medium,
because there are no asymptotic states in the medium, and the
relevant quantity is not s tot but the damping rate z of the
ultrarelativistic collective excitation with the muon quantum
numbers, related to themuonmean free path by l � zÿ1. This
damping rate was evaluated in Ref. [35], with the result 6

l � zÿ1 �
�
1

2
aT ln

C

a

�ÿ1
: �2:9�

a b
P

K

Coulomb scattering Compton scattering

Q

P 0

K 0

P

K

P 0

K 0

Figure 2. Typical graphs for collisions of a muon with plasma particles.

5 Following the usage adopted in the literature on this subject, we use the

word `Coulomb' in a generalized sense, also including screened Coulomb,

i.e., Yukawa.

6 The calculation was done for QCD, but the Abelian result is directly

obtained from the result for zq by setting cF � 1 in Ref. [35].
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Thus, the mean free path involves an extra logarithm of the
coupling constant compared to our estimate (2.5). This is
because (2.9) depends on magnetic interactions in addition to
Coulomb scattering [35, 36]. Hence, strictly speaking, it is
(2.9) that should be taken as the definition of l to be used in
Sections 3±5. However, keeping track of the logarithms of the
coupling constant is a difficult problem, which we do not
address. The only logarithms we keep are those depending on
the particle energy E. Hence, throughout our study, we use
l � 1=�aT �, which coincides with the Coulomb mean free
path in (2.5).

(2) A more standard way to define the mean free path is
not as in (2.5) but ltr � 1=�ns tr�, where

s tr �
�
ds �1ÿ cos y� �2:10�

is the transport cross section involving an additional
suppression factor for small-angle scattering. The trans-
port mean free path ltr conveniently describes standard
transport phenomena associated with collisions (viscosity,
electric conductivity, etc.). 7 For the problem of collisional
energy loss, the use of definition (2.10) is equally warranted
when deriving (2.6) (the estimates for hDE i1 scat and l
would be different, but their ratio would not change).
Scale (2.5) also appears not to be very physical in the
problem of radiative losses. Almost all the results there
depend not on l as such but on the combination q̂ � m 2=l,
which is a transport coefficient. The `isolated' scale l only
enters arguments of certain logarithms. We return to this
point when concluding in Section 6. We only stress now
that, irrespectively of whether it is observable, the notion of
mean free path defined in (2.5) or (2.9) proves to be very
convenient and instructive, and we use this definition
throughout the paper.

We now turn to collisional losses due to Compton
scattering (Fig. 2b), and focus on the region M 2 5ET. For
M 2 5 juj5 s � ET, the differential Compton scattering
cross section is given by

dsCompton

dt
� a 2

su
: �2:11�

This gives the total Compton cross section

sCompton � a 2

s
ln

s

M 2
� a 2

ET
ln

ET

M 2
: �2:12�

The logarithm occurs from the integration in the domain
M 2 5 juj5 s ' jtj (recall that s� t� u � 2M 2). Similarly
to (2.4), we find the energy loss in a single Compton
scattering as

hDE i1 Compton scat �
1

sCompton

�
dt

dsCompton

dt

ÿt
T
� s

T
� E :

�2:13�

Therefore, the characteristic energy transfer is of the order
of E. (Experimental projects to produce energetic photons by
scattering energetic electrons on laser beams are based on this
property of Compton scattering [38].) Introducing the

Compton mean free path

lCompton � 1

nsCompton
� E

a 2T 2 ln �ET=M 2� 4 lCoulomb ;

�2:14�
we obtain

dECompton

dx
� E

lCompton
� a 2T 2 ln

ET

M 2
: �2:15�

We note that the logarithm in (2.15) arises from the same
logarithmic integral (over u) as for the total Compton cross
section (2.12), and that it is present only in the mass domain
M 2 5ET.

We see that losses due to the Coulomb and Compton
scattering are of the same order, although the two
processes differ drastically. Compton scattering is rare,
lCompton 4 lCoulomb, but, as mentioned above, it is very
efficient in transferring energy. Summing the Coulomb and
Compton contributions to the collisional loss in the domain
M 2 5ET, we obtain 8

dEcoll

dx

����
mÿ
� p

3
a 2T 2

�
ln

ET

m 2
� 1

2
ln

ET

M 2
�O�1�

�
; M 2 5ET :

�2:16�

In Compton scattering, when M 2 5ET, we have juj5 s
to the leading logarithmic accuracy, implying that jtj '
jtjmax ' s. Therefore, in this mass region, Compton scatter-
ing is characterized by a final state consisting of a soft muon
and a hard photon (of energy ' E) ejected from the plasma.
This constitutes the main difference from the case of
Coulomb scattering, where the leading (logarithmically
enhanced) contribution to the cross section is made by
processes with small energy transfer. But beyond the leading
logarithmic approximation, the constant Coulomb and
Compton contributions to dE=dx are made by similar typical
configurations, where the final muon and the scattered
particle have almost equal shares of the initial energy E [33].

We finally note that for M 2 4ET, the Compton loga-
rithm in (2.16) should be dropped, and the Coulomb
logarithm is modified (see (2.8)), giving

dEcoll

dx

����
mÿ
� 2p

3
a 2T 2

�
ln

ET

mM
�O�1�

�
; M 2 4ET : �2:17�

2.1.2 Ultrarelativistic electron. At first sight, the collisional
loss of an energetic electron crossing an e�eÿ plasma is given
by (2.16) with the muon massM4 m replaced by the electron
thermal mass in the medium mth � eT � m. But as noted
above, the leading Compton contribution corresponds to the
situation where the incoming particle loses almost all its
energy. Therefore, it seems impossible to distinguish the
final soft electron from a thermal electron. In other words,
when an energetic electron becomes soft after interacting with
the plasma, it effectively disappears. In addition, the incom-
ing electron can be annihilated with a thermal positron. A
similar situation arises when discussing a positron energy loss
in usual matter.

One way to better define an observable energy loss in this
case is to require the final electron to be hard enough, e.g., to

7 For a thorough discussion of transport phenomena in a QGP, see [37].

8 See Ref. [33] for the exact calculation, where the constant beyond the

logarithmic accuracy is also evaluated.
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have the energy E 0 > E=2. Under this constraint, the final
energetic electron cannot be confused with a thermal electron
[the Fermi±Dirac thermal weight of electrons involves an
exponential suppression, nF�E 0� ' exp �ÿE 0=T �5 1 for
E 00E=24T ]. Requiring the presence of an energetic
electron in the final state allows discarding the annihilation
channel, as well as the leading (logarithmic) Compton
contribution. Only the Coulomb contribution, which to the
logarithmic accuracy corresponds to small energy transfers,
should be kept.

With this setup, we obtain

dEcoll

dx

����
eÿ ;E 00E=2

� p
3
a 2T 2

�
ln

ET

m 2
�O�1�

�
�2:18�

from (2.16).

2.2 Quark±gluon plasma
2.2.1 Tagged heavy quark. Here, we consider the case of an
ultrarelativistic heavy quark �E4M4T � crossing a QGP.
For clarity, we focus on the limit M 2 5ET. (For M 2 4ET,
as in QED, the Compton logarithm is to be dropped and the
Coulomb logarithm modified; see (2.8).) The purely colli-
sional energy loss does not depend much on the production
mechanism of the heavy quark. This quark can be produced
in a hard process within the medium (as in heavy-ion
collisions) or preexist inside a heavy meson coming from
infinity. The crucial difference between these two situations
reveals itself when studying the radiative energy loss of a
quark induced by its rescattering in the plasma.

The calculation of the heavy quark collisional loss in a
QGP is similar to the case of amuon crossing an e�eÿ plasma.
The main change consists in the running of the coupling as.
This must be taken into account, not only to improve the
accuracy of predictions but also to obtain the correct energy
dependence of dE=dx.

The contribution to dE=dx from the Coulomb scattering
of a fast heavy quark on thermal quarks and gluons is easily
inferred from the QED case. The Coulomb differential cross
section is / a 2

s , and the scale at which as must be evaluated is
given by the invariant momentum transfer t itself. Due to the
running of as, the logarithmic integral appearing in the fixed-
coupling (QED) expression (2.4) is modified to [32]

a 2

� ET

m 2

djtj
jtj !

� ET

m 2

djtj
jtj a 2

s �t� : �2:19�

Using as�t� � 1= ln �jtj=L2�, we can integrate the right-hand
side of (2.19) exactly and rewrite it as

a 2 ln
ET

m 2
! as�m 2� as�ET � ln ET

m 2
: �2:20�

A similar discussion applies to the contribution from
Compton scattering on thermal gluons. 9 To the logarithmic
accuracy, Compton scattering is dominated by the u-channel
exchange. The relevant scale determining the coupling in the
differential cross section for this contribution is of the

order O�u�. The total Compton scattering cross section in
QCD is obtained from QED expression (2.12) by replacing

a 2

�ET
M 2

djuj
juj !

� ET

M 2

djuj
juj a 2

s �u� : �2:21�

In other words,

a 2 ln
ET

M 2
! as�M 2� as�ET � ln ET

M 2
: �2:22�

Using (2.20) and (2.22) in (2.16), we obtain the fast heavy
quark collisional loss in the limitM 2 5ET (after performing
the thermal average over the target quarks and gluons and
introducing color factors [34]) as

dEcoll

dx

����
Q

� 4p
3

T 2

��
1� nf

6

�
as�m 2� as�ET � ln ET

m 2

� 2

9
as�M 2� as�ET � ln ET

M 2
�O�a 2

s �
�
: �2:23�

The term beyond the logarithmic accuracy � O�a 2
s � was

found in Ref. [34]. Similarly to the QED case, the Compton
leading logarithm in (2.23) corresponds to final state config-
urations with a soft (but tagged) heavy quark jet and a hard jet
initiated by a gluon of energy ' E knocked out of the
plasma.10

2.2.2 (Untagged) light parton. Similarly to the case of QED, it
would bemisleading to pretend to obtain the energy loss of an
energetic light parton by replacing themassM in (2.23) by the
light thermal parton mass� gT. First, even though this is not
done in practice, it is theoretically possible to observe the
events with a soft tagged heavy quark. But for a light (and
hence untagged) parton, this is impossible. Second, light
quarks may annihilate with light antiquarks in a heat bath,
and this adds to the intrinsic uncertainty of what the energy
loss of a light parton is.

As regards Compton scattering, the situation is even
worse than in QED, where the detection of an energetic
photon in the final state would at least signal that Compton
scattering had occurred. In QCD, it is very difficult to
distinguish the hadron jet initiated by a hard final gluon
produced in Compton scattering from the hadron jet initiated
by a hard final quark having undergone soft Coulomb
exchanges.

For a light (or, more generally, untagged) parton, the
observable energy loss must be defined, at the partonic level,
with respect to the leading (i.e., most energetic) parton.When
E 0 < E=2, or equivalently juj < s=2, the corresponding
energy loss is DE � Eÿ jK 0j � E 0 ÿ jKj ' E 0 � juj=�2jKj�.
When E 0 > E=2, we have DE � Eÿ E 0 � jtj=�2jKj�, as in the
case of a tagged parton. The Compton contribution to dE=dx
therefore has the form

dECompton

dx
� n

� s

M 2

djuj a 2
s

sjuj
� juj
T

Y
�
s

2
ÿ juj

�

� jtj
T

Y
�
juj ÿ s

2

��
: �2:24�

9 In QCD, the terms Coulomb and Compton refer not to different

processes, as they do in QED, but to different kinematical regions

associated with the same process. The amplitude M�Qg! Qg� is

dominated by the Coulomb diagram with a soft gluon exchange when jtj
is small. The same amplitude is dominated by a Compton-like diagram

corresponding to the u-channel exchange when juj is small.

10We note that such configurations are presently not counted in the RHIC

experimental setup, due to a lower energy cut-off used in the selection of

heavy quark tagged events. Under those experimental conditions, only the

Coulomb leading logarithm should be kept in (2.23).
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We note that in contrast to the `tagged' case, the Compton
contribution has no logarithmic enhancement. The reason is
clear: the logarithm ln �ET=M 2� in (2.23) came from the small
u region. But with the `untagged' physical definition in (2.24),
small u corresponds to small energy transfer, and does not
make any important (logarithmic) contribution to the energy
loss.With such a definition, we also note that the annihilation
channel contribution does not yield any logarithm either.

Thus, as regards the leading logarithms, we are left with
only the t-channel Coulomb logarithm arising from the broad
interval m 2 5 jtj5ET. This Coulomb logarithm can be
inferred from (2.23). The generalization to the gluon case is
obvious, and we obtain

dEcoll

dx

����
q; g

� CRpT 2

��
1� nf

6

�
as�m 2� as�ET � ln ET

m 2
�O�a 2

s �
�
;

�2:25�

with CR � 4=3 (3) being the quark (gluon) color charge.
Replacing as�m 2�as�ET � ! a 2

s in (2.25), we recover the
fixed-as Bjorken result in (2.1). We stress that Bjorken's
result is valid in the logarithmic approximation and is
specific to the untagged experimental setup.

3. Radiative loss
of a fast asymptotic charged particle. QED

We now discuss the radiative energy loss due to bremsstrah-
lung. In this section, we consider the case of an asymptotic
charged particle (i.e., produced in the remote past) crossing a
finite-size plasma layer. This is a natural experimental setup
in QED, where it is possible to prepare an on-shell energetic
electron entering the plasma with its already formed proper
field `coat.' We therefore consider the QED case first. In
Section 4, we study the somewhat academic but instructive
case of an `asymptotic quark' crossing a QGP.

3.1 Fast electron
Here, we evaluate the radiative energy loss of an on-shell
energetic electron going through an ultrarelativistic e�eÿ

plasma. We assume that E4T and m � eT4m, where
m � me is the electron mass. The electron is scattered by the
plasma particles, changes the direction of its motion, and
emits bremsstrahlung photons.

L5 k: Bethe±Heitler regime.We first consider the case of
a very thin plasma layer of size L5 l, where the electron
mean free path l is the characteristic distance between
subsequent elastic scatterings.11 As discussed in Section 2, l
is given by (2.9), or rather by (2.5), because we neglect
logarithms of the coupling constant in our study. The
probability that the incoming electron undergoes Coulomb
scattering is� L=l5 1, and the probability of having several

scatterings is further suppressed. The average energy loss
after crossing the length L is thus

DE�L5 l� � L

l
DE rad

1 scat ; �3:1�

where DE rad
1 scat is the radiative energy loss induced by a single

Coulomb scattering.12 It is obtained from the photon
radiation spectrum derived by calculating the two diagrams
in Fig. 3,

DE rad
1 scat �

�
dIrad
do

o do : �3:2�

The result for the radiation spectrum does not depend
much on the nature of scatterers. It depends mainly on the
characteristic scattering cross section and hence on the
characteristic momentum transfer q?. As is argued in what
follows, the Compton scattering plays virtually no role here,
andwe can consider only the Coulomb scatterings. Therefore,
we can replace the plasma particles by static sources and use
form (2.2) for the differential cross section. The integral
giving the total Coulomb cross section in (2.3) is saturated
by the values jtj ' q 2

? � m 2 and, in most estimates (with the
few exceptions to be considered in what follows), we can
assume q? to be of the order of the Debye mass m.

In the soft-photon approximation o � jkj5E, which is
sufficient for our purposes,13 the photon radiation intensity is
given by

dIrad �
X
i� 1; 2

e 2
����PeiPk

ÿ P 0ei
P 0k

����2 d3k

�2p�32o ; �3:3�

where ei are two transverse photon polarization vectors.
When the photon radiation `angle' h � k?=o and the
electron scattering `angle' hs � q?=E are small, y; ys 5 1, the
sum over photon polarizations gives

dIrad � a
p2

do
o

d2hJ 2
e ; �3:4�

Je � h 0

y 0 2 � y 2
m

ÿ h

y 2 � y 2
m

; �3:5�

J 2
e �

y 2
s

�y 2 � y 2
m��y 0 2 � y 2

m�
ÿ
�

ym
y 2 � y 2

m

ÿ ym
y 0 2 � y 2

m

�2

; �3:6�

where ym � m=E and h 0 � hÿ hs.
We are interested in the small-mass and large-mass limits,

respectively corresponding to ym 5 ys and ym 4 ys. We then

11 In this paper, L denotes the distance traveled by the particle in the

plasma, to be distinguished from the plasma size Lp. For thermal

equilibration to occur, the size of the medium should be much larger

than the transportmean free path of plasma particles (which is of the same

order as the transport mean free path of an energetic electron),

Lp 4 ltr � 1=�a 2T �4 l. Thus, the situation L5 l, implying L5Lp, is

quite unrealistic for an asymptotic electron, for which we expect L � Lp,

unless the electron is crossing the plasma near its edge. (The limit L5 l is
somewhat more meaningful in the case of particles produced within a

plasma, which we considered in Section 5.) However, in order to better

understand what happens in the more physical situation with larger L, we

find it instructive to first consider the case L5 l.

12 The radiative energy losses induced by a single scattering is referred to as

Bethe±Heitler losses in this paper.
13 In fact, the characteristic frequency of emitted photons contributing to

DErad is of the order ofE (see, e.g., spectrum (3.9) below). But this modifies

the result obtained in the soft-photon approximation only by numerical

factors, which is not our concern here.

E

X X

o
a

Source Source

b

Figure 3. The two diagrams for photon radiation induced by the electron

Coulomb scattering.
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have

ym 5 ys )
�
d2h

2p
J 2
e ' ln

y 2
s

y 2
m

) o
dIrad
do
' 2a

p
ln

y 2
s

y 2
m

; �3:7�

ym 4 ys )
�
d2h

2p
J 2
e '

1

3

y 2
s

y 2
m

) o
dIrad
do
' 2a

3p
y 2
s

y 2
m

: �3:8�

Equation (3.7) is valid to the logarithmic accuracy. The
logarithm arises from the first term in (3.6) and from the
angular regions ym 5 y5 ys and ym 5 y 0 � jhÿ hsj5 ys.
Asymptotic expressions (3.7) and (3.8) are conveniently
incorporated into the following interpolating formula for
the energy spectrum,

o
dIrad
do
� 2a

p

�
d2h

2p
J 2
e '

2a
p

ln

�
1� y 2

s

3y 2
m

�
� a ln

�
1� q 2

?
3m 2

�
:

�3:9�

The exact expression displays the same qualitative behavior,
but is more complicated [39].

When q? � m4m (implying ys 4 ym), we obtain

DE rad
1 scat �

� E dIrad
do

o do � aE ln
m 2

m 2
; �3:10�

and for the Bethe±Heitler (BH) energy loss per unit distance,

dEBH

dx
�L5 l� � DE rad

1 scat

l
� a 2ET ln

m 2

m 2
: �3:11�

We now discuss a possible modification of this result due
to Compton scattering. Essentially, there is none. (This is in
contrast to the collisional loss. We have seen in Section 2 that
the contributions due to the Compton and Coulomb scatter-
ing are of the same order there.) Indeed, for Compton
scattering, DE rad

1 scat is of the same order as for Coulomb
scattering, DE rad

1 scat � aE, but the corresponding mean free
path (2.14) is much larger and

dE rad
Compton

dx
�L5 l� � aE

lCompton
� a 3T 2 �3:12�

is much smaller than the BH contribution in (3.11) induced by
Coulomb scattering. Compton contribution (3.12) is even
smaller than collisional loss (2.18), and is not mentioned any
more in this paper.

We see that when L5 l, the BH radiative loss of an
energetic electron crossing an ultrarelativistic plasma,
Eqn (3.11), is much larger than its collisional loss (2.18),

L5 l) dEBH

dEcoll
� E

T
4 1 : �3:13�

It is instructive to compare this with the energy losses of an
ultrarelativistic particle in usual matter [1], consisting of
nonrelativistic electrons and static nuclei. The basic differ-
ence between usual matter and the e�eÿ plasma is that
screening effects do not play an important role in the
former. Certainly, the electric fields of individual electrons
and nuclei are screened at atomic distances � 1=�am�, but
these are comparatively large distances (see the footnote
below). Screening in usual matter can affect the arguments
of certain logarithms, but is otherwise unimportant for order-

of-magnitude estimates. In the following digression on usual
matter, we neglect logarithms.

We first consider collisional losses. Weighing the
eÿeÿ ! eÿeÿ Coulomb differential cross section ds=dt �
a 2=t 2 with the energy transfer DE�t�, we obtain�

dE

dx

�usual matter

coll

� nZ

�
a 2

t 2
DE�t� dt ; �3:14�

where n is the number of atoms per unit volume and Z is the
number of electrons in an atom. Using t � ÿ2KQ '
ÿ2�mQ0 ÿ KQ�, we have Q0 � DE�t� ' jtj=�2m�. We
obtain, up to some logarithm,�

dE

dx

�usual matter

coll

� nZa 2

m
: �3:15�

We note that the order of magnitude of the collisional energy
loss in a hot plasma is recovered from (3.15) by replacing
Z! 1, n! T 3, and m! T.

We next discuss radiative losses. We assume (as we also
did for a hot plasma) that thematter layer is thin enough, such
that DE�L�5E. In addition, we first assume the scattered
energetic particle to be an electron and the medium to be
hydrogen �Z � 1�. Then the radiative losses due to scattering
by electrons and nuclei (protons) are of the same order.When
q?5m, the characteristic energy loss in a single scattering is
� aE times the suppression factor � q 2

?=m
2 ' jtj=m 2 [see

(3.8)]. Hence, instead of (3.14) and (3.15), we obtain the BH
radiative loss in the form�

dE

dx

�hydrogen

BH

� n

�
a 2

t 2
�aE � jtj

m 2
djtj � na 3E

m 2
: �3:16�

Neglecting logarithms, estimate (3.11) for radiative losses in
an ultrarelativistic (thin) plasma is obtained from (3.16) by
replacing n! T 3 and m! m � eT, instead of m! T as in
the case of collisional losses.14

In cold hydrogen, the characteristic ratio of radiative and
collisional losses is

dEBH

dEcoll
� aE

m
; �3:17�

with an additional suppression factor a compared to (3.13)
due to the different screening properties of plasma and usual
matter. That is why radiative losses in usual matter dominate
only at relatively high energies E4m=a. For electrons in
hydrogen, the critical energy where the radiative and
collisional losses are equal is Ec � 350MeV [40].

The physics of collisional and radiative losses differ in one
important respect. The energetic particle loses a tiny fraction
of its energy in a collision with an individual electron, much
like a cannon ball loses a tiny fraction of its energy in a
collision with an individual air molecule. The drag force
dp=dt � dE=dx is an adequate physical quantity to describe
this. On the other hand, about half of the original particle
energy is lost during a single radiation act. Estimate (3.16)
refers to an average drag force, but the fluctuations of this

14 This can be understood by noting that in the plasma case, because of

screening at the scale m, only the region jtj0m 2 4m 2 contributes. (In

usual matter, screening occurs at some scale jtjmin 5m 2.) Therefore, the

factor jtj=m 2 in (3.16) disappears and the t-integral is saturated by jtj � m 2.
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quantity are very large. That is why radiative losses are
usually described not in terms of drag force (3.16) but in
terms of the radiation lengthX0, the average distance at which
about half of the energy (more precisely, the fraction 1ÿ 1=e)
is lost. This is especially sensible if we recall that
ÿdEBH=dx / E and the energy therefore decreases exponen-
tially.

We see in what follows that although the radiative
energy losses of light partons passing a QCD plasma
strongly fluctuate for the same reason as electron radiative
losses occur, the notion of radiation length is not very
reasonable there because the linear BH law in (3.16) does
not hold and the energy dependence of dE=dx is more
complicated. Anticipating the discussion in what follows, we
also note that the radiation spectrum of sufficiently heavy
quarks (but not of heavy Abelian charged particles!) turns
out to be soft, and hence the physics is more similar to the
physics of collisional loss and the drag force fluctuations are
suppressed.

When Z > 1 and the incoming particle is heavy, M4m,
two new effects become relevant. First, radiation mainly
occurs when the incoming particle is scattered on a heavy
nucleus, due to the enhancement factor Z 2 (the nucleus
charge squared) compared to the cross section in hydrogen.
The collisional loss is still due to scattering on electrons and
involves only the factor Z (the number of electrons in an
atom). Second, the radiation intensity is suppressed at small
momentum transfers by the factor � q 2

?=M
2. We obtain

dEBH

dEcoll
� ZaEm

M 2
: �3:18�

The suppression factor q 2
?=M

2 � m 2=M 2 is also effective
for radiative losses of a massive particle passing through an
ultrarelativistic QED plasma [see (3.8) and (3.37)]. The
meaning of the condition m � eT4m imposed at the
beginning of the section now becomes clear. When m4M, a
particle of mass M passing through a plasma can be
considered light. When M4 m, it can be considered heavy,
and its radiative loss in a QED plasma is suppressed, at least
for L5 l [see (3.37) below] by the factor � m 2=M 2.15

L4L�: LPM regime. After this digression, we return to
the case of a hot plasma and consider amedium of a very large
size. Estimate (3.1) is correct for small L5 l, the factor L=l
bearing the meaning of the electron scattering probability. At
first sight, this estimate can be extended to the region L4 l,
with the factor L=l interpreted as the number of electron
scatterings, but this is not correct because the basic assump-
tion underlying the derivation of (3.1)Ð that one photon is
emitted in each scatteringÐ is invalid here.

Indeed, the radiation process takes time. The particle is
not ready to radiate again until its accompanying radiation
field coat is formed. Strictly speaking, it takes an infinite
time for the coat to be fully developed such that the particle
can be treated as an asymptotic state. But if we are interested
only in the emission of photons in a particular wave-vector
range, we are not obliged to wait forever and should only
ensure that the corresponding Fourier harmonics of the
radiation field are already present in the coat. The length at
which a harmonic corresponding to radiation of the photon
of a frequency o at an angle y is formed, the formation

length, is given by16

`f�o; y� � E

k 2
' 1

oy 2
' o

k 2
?
; �3:19�

where k 2 ' 2Eo�1ÿ cos y� ' Eoy 2 is the virtuality of the
internal electron in Fig. 3a.

The formation length� 1=�oy 2� can be interpreted as the
length at which a photon of the energyo emitted at an angle y
acquires a phase of the order of unity in the frame comoving
with the particle. The last condition is, indeed,

hphase disbalancei � otÿ kk`

� `
�
oÿ

����������������������
o2 ÿ o2y 2

p �
� `oy 2 � 1 ; �3:20�

where we assume that the electron moves with the speed of
light, t � ` (this can be done because k? ' oy4m).

The crucial observation is that even if the electron is
scattered several times before traveling the distance `f�o; y�, it
cannot emit (to the leading order in a) more than one photon
with the energy o at the angle y. Indeed, in this case, we
cannot speak about independent photon emissions, and we
are dealing with coherent emission of a single photon in a
multiple scattering process. As a result, photon emission with
`f�o; y�4 l is suppressed compared to the situation where it
would be additive in the number of elastic scatterings. This is
known as the Landau±Pomeranchuk±Migdal (LPM) effect
[23±25].

At fixed o and for m4m, radiation spectrum (3.9)
induced by a single scattering arises from the angular
domains ym 5 y5 ys and ym 5 y 0 � jhÿ hsj5 ys, i.e., from
the formation lengths

E 2

om 2
5 `f�o; y�5 E 2

om 2
: �3:21�

In the integrated spectrum, we haveo � E, and therefore BH
radiative loss (3.11) arises from the photon formation lengths

E

m 2
5 `f�E; y�5 E

m 2
: �3:22�

For E4T, we have E=m 2 4 l, and therefore the radiated
photons contributing to the BH loss in (3.11) are formed far
away from the medium layer of size L5 l.

What happens when the medium size increases, that is,
L4 l? Using the estimate E=m 2 for the typical formation
length of radiated photons (which was obtained for a thin
medium with a size L5 l), we would naively expect the
energy loss to be approximately given by DE rad

1 scat in (3.10) up
to the scale L � E=m 2, with the entire medium acting as a
single effective scattering center. But this is not so. The critical
size L� beyond which DE�L� strongly differs from DE rad

1 scat

happens to be much smaller than E=m 2. It is approximately
given by the geometric mean of l and E=m 2,

l5L� �
�������
lE
m 2

s
� 1

aT

����
E

T

r
5

E

m 2
: �3:23�

15 This suppression, which, as can be inferred from (3.8), is due to the

suppression of radiation in the cone y < yM �M=E, is sometimes called

the dead cone effect [26].

16 For our purposes, it is better to speak about the formation length rather

than the formation time. In the rest frame of the virtual electron, the

formation time/length is of the order of 1=
������
k 2
p

. In the laboratory frame, it

is multiplied by the Lorentz factor E=
������
k 2
p

. In general, the angle y entering
(3.19) is the angle between the photon and the electron from which it is

radiated (the final electron in Fig. 3a).
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To find how this scale arises, we consider the limit L!1. In
this case, all radiated photons are formed in the medium, and
the estimate of the typical photon formation length `med

f is
modified compared to the case of the vacuum. To see this, we
substitute the typical electron deviation angle y 2

s at the length
`med
f for y 2 in estimate (3.19),

`med
f � 1

oy 2
s �`med

f � �
1

oNm 2=E 2
; �3:24�

whereN � `med
f =l is the number of electron scatterings on the

distance `med
f . The last estimate in (3.24) relies on the

Brownian motion picture, namely, on the assumption that
the transverse momentum transfers in successive elastic
scatterings are not correlated. We obtain

`med
f �o� �

����������
lE 2

om 2

s
: �3:25�

Substituting o � E, we thus obtain estimate (3.23) for the
characteristic in-medium formation length L�.

Scattering centers located within the distance � L� act as
one effective scattering center, inducing a single photon
radiation act. For L4L�, the medium contains L=L�

effective scattering centers, and the estimate of the radiative
energy loss is obtained as this number times the energy lost in
a single photon radiation act,17

DE�L4L�� � aE
L

L�
� aL

�����������
m 2

l
E

r
� a 2L

���������
ET 3
p

: �3:26�

This estimate was obtained under the assumption that the
typical momentum transfer squared after N electron scatter-
ings is q 2

?�N� � Nm 2 (m being the typical transfer in one
scattering). In fact, this is correct only when the q?-
distribution in a single elastic scattering decreases rapidly
enough at large q?, such that the average hq 2

?i is well defined.
But for Coulomb scattering, the integral

hq 2
?i �

�
dq 2
? q

2
?

m 2

�q 2
? � m 2�2 �3:27�

diverges logarithmically as the ultraviolet cut-off
q 2
?
��
max
� jtjmax � ET!1. It can be shown (see Ref. [14] or

Appendix A for an alternative derivation) that the typical
transfer after N Coulomb scatterings scales as �N lnN� m 2

instead of Nm 2. The presence of this logarithm somewhat
modifies the estimate of L� in (3.23), but otherwise does not
affect the above heuristic derivation. We thus find

L� �
��������������������������

lE
m 2 ln �L�=l�

s
�

���������������������������������
lE

m 2 ln
ÿ
E=�lm 2��

s
; �3:28�

DE�L4L�� � aE
L

L�
� a2L

��������������������
ET 3 ln

E

T

r
: �3:29�

The parameter dependence of this last result agrees with
that found in Ref. [41]. At both small L5 l [see (3.1)] and
large L4L� [see (3.29)], the radiative energy loss is propor-
tional to L. But the proportionality coefficients in those two
regions are different. At largeL, the slope is smaller as a result
of the LPM suppression. The behavior of DE�L� is repre-
sented schematically in Fig. 4.

It is worth noting that for L4L�, the in-medium energy
spectrum of the radiated photons can be easily obtained from
(3.25),

o
dIrad
do
�L� � a

L

`med
f �o� � a

�����������
ooc

E 2

r
; o >

E 2

oc
; �3:30�

where we introduce the energy scale

oc � L2m 2

l
: �3:31�

With the correct logarithmic factor included as discussed
above, spectrum (3.30) is given by

o
dIrad
do
�L� � a 2L

����������������������������
o
E 2

T 3 ln
E 2

oT

r
: �3:32�

Integrating this spectrum over o up to o � E, we recover
(3.29). The LPM suppression is more pronounced at low o,
where the photon formation length in (3.25) is larger.

In the case of usual matter, the LPM effect was observed
experimentally for energetic electrons crossing thin metal
foils, first at SLAC [42] and more recently at the CERN SPS
[43]. An accurate description of the data based on rigorous
theoretical calculations is available [24, 44].

Intermediate region k5L5L�. The region l5L5L� is
transitional between the BH and LPM regimes. The energy
loss in this region is the same as that induced by a single
effective scattering with the typical momentum transfer
q 2
?�N� � �N lnN� m 2, where N � L=l. The energy loss is

estimated similarly to (3.10):

DE�l5L5L�� � aE ln

�
L

l
m 2

m 2

�
: �3:33�

17 This energy is given by (3.10), but without the mass-dependent

logarithmic factor. This is because our estimate `med
f � L� displays no

logarithmic spread, contrarily to (3.22). This can also be expressed [using

(3.19)] by noting that the electron traveling in the medium is off the mass

shell, with a characteristic virtuality of the order of k 2
med � E=L� ���������������

Em 2=l
p

� a
����������
ET 3
p

. This is in contrast to the logarithmic spread

m 2 5 k 2 5 m 2 in the vacuum.

DE

LPM

BH

l L� L

Figure 4. Schematic plot of the radiative energy loss of an asymptotic light

�m5 m� and fast �E4T � charged particle crossing a hot e�eÿ plasma, as

functions of the distance L traveled by the particle in the plasma. The

dotted line represents the collisional energy loss DEcoll�L� � a 2T 2L.
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This estimate is associated with the photon formation
lengths

E

m 2L=l
� `f

��
min

5 `f 5
E

m 2
�3:34�

[cf. (3.22)]. Result (3.33) holds because the radiated photon
`sees' only one effective scattering center, i.e., `f

��
min

4L. This
condition is precisely equivalent to L5L�.

The regimes L5 l and l5L5L� smoothly match when
L � l [see (3.11) and (3.33)]. Comparing (3.33) and (3.29), we
now see that the former estimate of DE�L � L�� involves an
extra logarithmic factor and dominates at this point. It is
associated with photons radiated outside the medium.
Adding the LPM linear term (3.29) to (3.33), we obtain

DE�L0L�� � aE ln

�
L�

l
m 2

m 2

�
� aE

L

L�
: �3:35�

The linear regime sets in when the second term starts to
dominate. This occurs at the scale

L � L� ln
�
L�

l
m 2

m 2

�
; �3:36�

which is somewhat larger than L�.

3.2 Energetic muon
What happens if the ultrarelativistic particle going through
the plasma is heavy, i.e.,M4 m � eT? As already mentioned,
the intensity of the BH radiation formassive charged particles
is suppressed by the factor� m 2=M 2 [see (3.8)]. ForL5 l, we
therefore have

DE�L5 l� � aE
L

l
m 2

M 2
� a 3T 3E

M 2
L : �3:37�

The suppression factor � m 2=M 2 in (3.8) arises from an
integral over the photon radiation angle of the type

y 2
s

�
y 2
M

dy 2

y 4
� y 2

s

y 2
M

; �3:38�

which is saturated by the angles y 2 � y 2
M �M 2=E 2.

We note that for a massive particle, expression (3.19) for
the vacuum formation length is modified,

`f�o; y� ! `f�o; y;M� � 1

o�y 2 � y 2
M�

: �3:39�

The characteristic formation length of emitted photons is
therefore of the order of

` heavyf � 1

oy 2
M

� E

M 2
: �3:40�

If M 2 5 aET, then `heavyf 4 l4L, i.e., the photons are
mostly formed outside the medium.

We now consider the behavior of the radiative energy loss
for larger lengths. There are two distinct cases, depending on
whetherM 2 is smaller or larger than a

����������
ET 3
p

. The appearance
of this scale is easy to understand from our previous study of
the light-particle case. We showed, in particular, that the
result in (3.26) (or, more accurately, (3.29)) in the domain

L4L� corresponds to the electron in-medium virtuality of
the order of k 2

med � a
���������
ET 3
p

. We thus expect strong modifica-
tions of DE�L� compared to the light-particle case, when
M 2 4 a

���������
ET 3
p

, and milder modifications whenM 25 a
���������
ET 3
p

.
(A) M2 5 a

���������
ET 3
p

. The condition M 2 5 a
���������
ET 3
p

is
equivalent to the condition that formation length (3.40)
exceed the scale L� given in (3.23) or (3.28),

E

M 2
4L� �

�������
lE
m 2

s
, M 2 5

����������
m 2E

l

r
� a

���������
ET 3
p

: �3:41�

When L somewhat exceeds l, the medium still acts as a
single effective scattering center, transferring the momentum
q 2
? � �L=l�m 2 to the massive particle. The energy loss is given

by aE times the suppression factor q 2
?=M

2 � �L=l��m 2=M 2�
because q 2

?=M
2 5 1. The result coincideswith (3.37), which is

therefore valid as L increases up to the scale L�� defined by

L�� � l
M 2

m 2
4 l : �3:42�

Hence, we can write

DE�L5L��� � aE
L

l
m 2

M 2
� a 3T 3E

M 2
L : �3:43�

As soon as the suppression factor disappears, the problem
reduces to the already discussed case of light particles.
Vacuum formation length (3.40) is modified in the medium
to L�. For large lengths L4L�, the dependence of DE on L is
linear with the same slope as for light particles,

DE�L4L�� � aE
L

L�
: �3:44�

As for a light particle, we can infer that in the intermediate
region L��5L5L�, we have [see (3.33)]

DE�L��5L5L�� � aE ln

�
L

l
m 2

M 2

�
� aE ln

L

L��
: �3:45�

The overall behavior is displayed by the solid line in Fig. 5.
It is similar to the case of a light particle (see Fig. 4), with the
scale L�� playing the role of l. We also note the relation

L� �
�������������������
L�� `heavyf

q
; �3:46�

which is analogous to (3.23).
(B) M2 4 a

���������
ET 3
p

. This case corresponds to formation
length (3.40) being smaller than L�,

E

M 2
5L� , M 2 4 a

���������
ET 3
p

: �3:47�

If the vacuum formation length in (3.40) is less than
the would-be in-medium formation length L�, then the
LPM effect never plays a role. The linear law in (3.37)
is valid for all lengths. Indeed, it naturally extends up
to the scale L � E=M 2, where the suppression factor
�L=l��m 2=M 2� � L=L�� is still present. As L increases
further, the suppression factor stays frozen, but the number
of emitted photons increases,

DE
�
L4

E

M 2

�
� L

E=M 2

�
E=M 2

L��

�
aE � aE

L

l
m 2

M 2
: �3:48�
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This coincides with (3.37). The behavior of DE�L� in this case
is represented by the dash-dotted curve in Fig. 5.

We summarize the results in this section by briefly
discussing the different slopes that appear in Figs 4 and 5.
We consider a fixed energy E and progressively increase the
particle mass. When the particle is light (see Fig. 4), the slope
for L5 l is larger than the slope for L4L� by the factor���������
E=T

p
. As the mass increases (see Fig. 5, solid line), the linear

regime at small L extends to L�� (instead of l) and has a slope
reduced by the factor m 2=M 2. This slope is still larger than the
slope at L4L� as long as M 2 5 a

���������
ET 3
p

. When
M 2 � a

���������
ET 3
p

(see Fig. 5, dashed line), L�� coincides with
L�, the two slopes also coincide, and DE�L� is given by (3.37)
for all L. AsM increases further (see Fig. 5, dash-dotted line),
DE�L� is still given by (3.37); in particular, its slope decreases
as � 1=M 2.

Comparing this slope with the slope � a 2T 2 for the
collisional energy loss (see Section 2), we see that the
radiative losses of a massive QED particle parametrically
dominate over collisional ones (dotted line in Fig. 5) when
the mass is not too large or, equivalently, at large enough
energies:

M 2 5 aET , E4
M 2

aT
: �3:49�

This condition for the dominance of radiative losses in aQED
plasma is actually equivalent to the vacuum formation length
` heavyf � E=M 2 being larger than the mean free path l. It is
also interesting to note that (3.49) can be put in correspon-
dence with energy losses (3.15) and (3.18) of amassive particle
crossing usual matter with the replacements Z! 1, m! T,
and n! T 3.

4. Radiative loss of an `asymptotic parton'

An experiment where an incoming energetic parton (con-
stituent of an asymptotic hadron) enters a preexisting QGP,
suffers radiative energy loss, and then escapes the QGP is,
unfortunately, not feasible. We nevertheless regard the
problem of evaluating the radiative loss of such an `asymp-
totic parton' crossing a QGP as an instructive and useful

theoretical exercise. We spend some time on it before passing
to the more realistic case of a parton produced in amedium in
Section 5.

The problem of the energy loss of a parton coming from
infinity is somewhat better posed (at the level of a thought
experiment at least) for a tagged heavy quark than for a light
parton. When the quark is heavy (i.e., when the quark mass
satisfies the condition M4LQCD), we can think, as was
discussed in the Introduction, of a heavy meson (or heavy
baryon) scattering in a thermos bottle containing the QGP.
The heavy-quark energy loss in the QGP is roughly the same
as the energy difference between the initial heavy meson and
the final fast hadron with the same flavor.

If the projectile is a light meson (e.g., a pion), it contains
at least two light valence quarks, and the energy loss of a
single quark in the QGP is unobservable because of the
absence of tagging. We can still imagine a thought experi-
ment where the net energy loss of the light projectile
constituents passing through some medium could be
observed. We consider the situation where the two valence
quarks of the incoming pion materialize as two separate jets
after crossing the medium. For the jets to be well separated,
they should have a large relative transverse momentum. This
can happen if the pion enters the medium in a compact
configuration (i.e., with a large relative transverse momen-
tum between the quarks) and loses coherence due to in-
medium rescatterings. Although the sum of the total energies
of the final jets should coincide with the initial pion energy,
the energy loss of light quarks after the pion dissociation
should affect the energy distribution of the leading hadrons
within the jets. The pion diffractive dissociation process in
cold nuclear matter, p� A! 2 jets �A, has been studied
experimentally [45] as a tool to access the pion wave
function [46]. The light-quark energy loss in nuclear matter
should in principle affect this process. A similar experiment
with a QGP can be considered. Therefore, the energy loss of
an `asymptotic light parton' crossing a QGP is observable in
principle.

In what follows, we study the cases of both light and heavy
partons, with a parton considered light if its mass is less than
the Debye mass m � gT in a QGP, and heavy otherwise. We
assume that m4LQCD, and hence, with this definition, a light
parton �m5 m� can also be heavy in the usual sense
�m4LQCD�. We follow the same reasoning as in QED (see
Section 3) and study the behavior of the radiative loss in
different regions of the distance L traveled by a colored
particle.

4.1 Light parton
We consider the case of a light quark rather than of a gluon,
since it is technically more convenient (we also discuss heavy
quarks, and it is instructive to see what changes as the mass
increases). In the following formulas, the parameterm stands
for the quark mass when LQCD 5m5 m, but should be
replaced with LQCD if the quark is actually light in the usual
sense, m9LQCD. All the results for a gluon are qualitatively
the same as for a light quark, with the replacementm! LQCD

and with modified color factors (but those are not our
concern in this paper).

L5 k: Bethe±Heitler regime. For L5 l, it is sufficient to
determine the radiative loss induced by one scattering, as
in (3.1). The gluon radiation amplitude Mrad induced by a
single elastic scattering also includes, besides the diagrams in
Fig. 3 (with proper color factors), the diagram with the three-

BH

LPM

No LPM

DE

L�L�� L

Figure 5. Radiative energy loss of a heavy charged QED particle. Solid

line: moderately heavy particle, m 2 � aT 2 5M 2 5 a
���������
ET 3
p

. Dashed line:

M 2 � a
���������
ET 3
p

. Dash-dotted line: M 2 4 a
���������
ET 3
p

. Dotted line: collisional

loss.
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gluon vertex shown in Fig. 6. This diagram is evaluated, for
instance, in Ref. [47] for a massless quark. The generalization
to a massive quark is trivial and for o5E (we work
consistently in this approximation, as we did in QED), the
sum of the three diagrams gives

Mrad /
�

h

y 2� y 2
m

t at b ÿ h 0

y 0 2� y 2
m

t bt a ÿ h 00

y 00 2� y 2
m

�t a; t b�
�
e :

�4:1�

In this expression, the parameters h � k?=o, h 0 � hÿ hs �
hÿ q?=E, and ym � m=E are the same as in (3.5). We also set
h 00 � hÿ hg, with hg � q?=o. The parameter yg can be
interpreted as the scattering angle of the virtual gluon with
the energy ' o in Fig. 6. The color factors can be
conveniently grouped in terms of the commutator �t a; t b�
and anticommutator ft a; t bg of color matrices. Equation
(4.1) can then be rewritten as

Mrad /
�
�t a; t b�

�
Jq ÿ 1

2
Je

�
� ft a; t bg 1

2
Je

�
e ; �4:2�

where Je [already given in (3.5)] and Jq are given by

Je � h 0

y 0 2 � y 2
m

ÿ h

y 2 � y 2
m

; �4:3�

Jq � h 00

y 00 2 � y 2
m

ÿ h

y 2 � y 2
m

: �4:4�

The soft-gluon radiation intensity can be obtained by
squaring (4.2), summing/averaging over color indices, and
normalizing by the elastic scattering cross section. For Nc

quark colors, we obtain

dIrad � as
p2

do
o

d2h

�
Nc

�
Jq ÿ 1

2
Je

�2

�N 2
c ÿ 2

Nc

�
1

2
Je

�2�

� as
p2

do
o

d2h

�
Nc J

2
q ÿ

1

2Nc
J 2
e �

Nc

2

��Jq ÿ Je�2 ÿ J 2
q

��
:

�4:5�

In the second expression, the terms are organized so as to
facilitate the integration over angles. Considering a light
quark with m5 m and using (3.7), we see that the first term
in the right-hand side of (4.5) contributes to the energy
spectrum as

o
dIrad
do

����
broad

� as ln
y 2
g

y 2
m

� as ln
�
m 2

m 2

E 2

o2

�
; �4:6�

the logarithm arising from the broad angular domain
ym 5 y5 yg. The second term is similar to the one in the

QED case [see (3.4)]. Its contribution to the spectrum is

o
dIrad
do

����
narrow

� as ln
y 2
s

y 2
m

� as ln
m 2

m 2
; �4:7�

arising from the narrow angular domain ym 5 y5 ys. The
third term in the right-hand side of (4.5) does not bring any
logarithm into the energy spectrum and is neglected in what
follows. Integrating (4.6) and (4.7) over o, we see that the
terms / J 2

q and / J 2
e contribute similarly to the radiative

loss,18

DE rad
1 scat � asE ln

m 2

m 2
: �4:8�

Thus, in the case of a light quark, m5 m, we have

DE�L5 l� � L

l
DE rad

1 scat � asE
L

l
ln

m 2

m 2
�4:9�

similarly to the QED case [see (3.1) and (3.10)].
To recapitulate, at a fixedo5E, we have ys 5 yg, and the

differential energy spectrum receives two logarithmic con-
tributions: a QED-like contribution from the narrow region
ym 5 y5 ys and a contribution specific to QCD from the
broad region ym 5 y5 yg. The second contribution (which
dominates at large Nc) is given by

o
dIrad
do

����
broad

� as

�
d2hJ 2

q : �4:10�

Using that k? ' oh and neglecting the quark mass, we can
write spectrum (4.10) as

o
dIrad

do d2k?

����
k?4 om=E

� as
q 2
?

k 2
?�k? ÿ q?�2

; �4:11�

which is the well-known Gunion±Bertsch spectrum [47].
We emphasize that spectrum (4.10) is obtained fromQED

spectrum (3.4) by replacing the electron scattering angle
ys � q?=E � m=E with the virtual gluon scattering angle
yg � q?=o � m=o [cf. (4.3) and (4.4)]. This fact has interest-
ing consequences.

(1) At a fixed o5E, the broad angular domain
ym 5 y5 yg contributing to (4.10) translates into the inter-
val in gluon formation lengths

o
m 2

5 `f�o�5 E 2

om 2
; �4:12�

which can be compared to the corresponding interval (3.21) in
the case of QED. Therefore, in QCD, the gluon starts to be
formed at much shorter lengths

`f�o�
���
min
� o

m 2
�4:13�

than the photon in QED. Because `f�o�
��
min
/ o in QCD, we

expect the LPM suppression of energy loss to increase with
increasing o [in QED, the opposite was true; see the remark
after (3.32)]. We discuss this in more detail below.

E

X

Source

o

Figure 6. The diagram with a three-gluon vertex contributing to the third

term in (4.1).

18 This is because we haveo � E in the integrated spectrum, and the broad

and narrow angular domains then coincide.
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(2) Because o � E in the integrated spectrum (in which
case the broadQCDdomain y5 yg coincides with the narrow
QED domain y5 ys), the typical formation lengths in QED
and QCD are in the same range [see (3.22)],

E

m 2
5 `f�o � E �5 E

m 2
: �4:14�

We hence anticipate that the average radiative loss of a light
quark has a parameter dependence similar to that of an
electron for all travel distances L.

(3) On the other hand, if the characteristic frequencieso in
the integrated spectrum are much smaller than E, then the
broad angular domain is indeed broader than the narrow one,
andwe obtain different parametric behaviors for the radiative
loss in QCD and QED. We see in Section 4.2 that this is
exactly what happens for heavy quarks.

L4L�: LPM regime. The derivation of the light quark
energy loss for L4L� follows the same lines as in QED, with
some differences discussed below. First, for L4L�, similarly
to the photon case, a single gluon is emitted in a multiple
scattering process composed of N � `med

f �o�=l individual
scatterings. This amounts to exchanging N gluons in the
t channel. This N-gluon state can be either a color octet or a
color singlet (higher representations do not contribute to the
quark scattering amplitude). In the color singlet case, the
physics is the same as in QED, and the radiated gluon is
emitted within a narrow cone19 with the angle y 2

s �N� �
Nm 2=E 2. For the color octet, the physics is the same as for
the process with one gluon exchange discussed above
involving two cones, but with the narrow and broad cone
angles now being of the order of y 2

s �N� � Nm 2=E 2 and
y 2
g �N� � Nm 2=o2, respectively. In the large-Nc limit, the

probability of having a singlet t-channel N-gluon state is
suppressed by 1=N 2

c compared to the probability of having an
octet. This suppression is of the same order as the suppression
of the Abelian contribution yielding the narrow radiation
cone in a single-gluon exchange [the second term in (4.5)]. In
other words, the dynamics of gluon emission in a multiple
scattering process is roughly the same as for single scattering,
the only difference being that the characteristic momentum
transfer m 2 is multiplied by the factor N � `med

f �o�=l.
The in-medium gluon formation length `med

f �o� is
obtained from (3.19) by replacing the gluon radiation angle
y 2 with y 2

g �N� � Nm 2=o2:

`med
f �o� � o

Nm 2
) `med

f �o� �
�������
ol
m 2

s
: �4:15�

The gluon formation length increases with o, the opposite
behavior compared to QED [see (3.25)]. The gluons with
o � E are formed within the length L� given in (3.23), leading
to the same parameter dependence of the radiative loss as in
QED:

DE�L4L�� � asE
L

L�
� asL

�����������
m 2

l
E

r
� a 2

s L
���������
ET 3
p

: �4:16�

However, there are differences between the dynamics of
energy losses by an electron and a light quark.

(1) Similarly to QED, due to the long tail in the Coulomb
scattering potential, the typical transverse momentum

exchange q 2
typ�N� after N scatterings is not exactly Nm 2. As

shown in Appendix A, it is q 2
typ � �N lnN� m 2 in QED, but in

QCD this simple dependence is replaced by (A.25) due to the
running of as. For very largeN, q 2

typ�N� is given by expression
(A.26), which does not involve the factor lnN. This means
that the factor � ��������

lnE
p

in the energy loss of energetic light
partons in the large-L region disappears for asymptotically
large energies ln �E=T �4 ln �m=LQCD�. Instead of (3.28) and
(3.29), we then have

L� �
�����������������������������

lE
m 2 ln m=LQCD

s
; �4:17�

DE�L4L�� � asE
L

L�
� a2sL

����������������������������
ET 3 ln

m
LQCD

r
: �4:18�

When the energy is large but not asymptotically large, the
dependence is more complicated:

DE�L4L�� � a2sL

����������������������������������������������������������
ET 3

as
ÿ
m 2

�����������������
E=�lm 2�p �

as�m 2� ln
E

T

s
: �4:19�

(2) Because of the difference between the gluon and
photon formation lengths in (4.15) and (3.25), the gluon
energy spectrum is not described by (3.30) but is given by

o
dIrad
do
�L� � as

L

`med
f �o� � as

������
oc

o

r
; o > lm 2 ; �4:20�

where oc is still given by (3.31), but now depends on the
parameters m and l appropriate for a non-Abelian plasma. As
expected, the LPM suppression in QCD increases with
increasing o, contrarily to QED. We note that below lm 2,
the formation length is less than l andwe are in the incoherent
BH regime where the spectrum is given by (4.6) times the
number of rescatterings L=l.

Inserting the logarithmic factor discussed above, we
obtain

o
dIrad
do
�L� � a2sL

��������������������������
T 3

o
ln

m
LQCD

s
; �4:21�

where we assume that ln �o=T �4 ln �m=LQCD� [otherwise,
the expression is more complicated, similarly to (4.19)].

Intermediate region k5L5L�. In this region, the
analysis for an electron in Section 3.1 can be carried over
directly to the QCD case of a light quark, yielding the result

DE�l5L5L�� � asE ln

�
L

l
m 2

m 2

�
: �4:22�

As in the QED case, the result in (4.22) corresponds to the
medium acting as a single effective scattering center. The
medium size dependence enters only through the total
momentum transfer q 2

? � �N lnN� m 2, where N � L=l.
Equation (4.22) represents the so-called factorization term

noted previously in Refs [12, 13, 15, 41]. Although the main
goal of Ref. [15] was to address the radiative loss of a quark
produced in a plasma, it is mentioned there that in the case of
an `asymptotic quark' entering the medium, the factorization
term can be droppedwhen calculating the induced energy loss.
As a consequence, the result in Ref. [15] for DE in the region
l5L5L� is DE / asoc, instead of (4.22). But for an
asymptotic quark, there is actually no distinction between

19 In contrast to what happens in the BH regime, this cone does not

produce any logarithmic factor [see footnote 17].
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the induced and the total radiative energy loss, 20 and
factorization term (4.22) should be kept. Although the
factorization term has a weak (logarithmic) dependence on
L, it actually dominates over the term calculated in [15].
Indeed, for L5L�, we have asoc 5 asE.

To illustrate this point, we show the gluon radiation
spectrum in the region l5L5L� in Fig. 7. For L5L�, we
haveoc � L2m 2=l5E, and the spectrum is given by (4.20) or
(4.21) in the interval lm 2 5o5oc. As mentioned above, for
o5 lm 2, the spectrum is given by (4.6) times L=l. For
o4oc, the gluon formation time is larger than L, and the
spectrum is the same as for a single effective scattering, i.e., it
is again obtained from (4.6) by replacing m 2 ! m 2L=l. This
flat part of the spectrum makes the dominant contribution to
the light-quark energy loss [see (4.22)].

Hence, the law DE�l5L5L�� / L2 [13±15, 17] for the
induced energy loss of a light quark produced in a medium
(we review this case in Section 5) is not valid for an asymptotic
quark. Combining (4.9), (4.22), and (4.16), we see that the
average radiative loss of an asymptotic light quark is similar
to that of an asymptotic electron crossing a QED plasma. It is
shown in Fig. 4.

4.2 Heavy quark
We have found that the radiative energy loss of an asymptotic
light quark crossing a QGP has the same parameter
dependence (apart from a logarithmic factor when L4L�)
as for an electron crossing a hot e�eÿ plasma, despite
drastically different radiation spectra in these two cases. We
see in what follows that the heavy-quark radiative loss is
different from the heavy-muon loss in QED, and has a richer
parameter dependence. The non-Abelian dynamics manifests
itself more clearly for a heavy than for a light quark radiative
energy loss.

We first consider the BH regime, L5 l.
For heavy quarks,M4 m, the gluon radiation intensity is

suppressed, similarly to the case of heavy leptons in QED.

However, in the non-Abelian case, the suppression (dead
cone effect) is not so strong because soft gluons are emitted
in a cone broader than in QED [see (4.10) and the related
discussion]. Estimate (3.9) for the QED radiation spectrum
should be replaced with

o
dIrad
do

����
1 scat

� as

�
d2hJ 2

q � as ln
�
1� y 2

g

y 2
M

�

� as ln
�
1� m 2

M 2

E 2

o2

�
: �4:23�

Integrating this spectrum over o and multiplying by the
scattering probability L=l, we obtain

DE�L5 l� � asE
L

l
m
M
� g 5T 2E

M
L : �4:24�

Hence, for L5 l, the radiative loss of an asymptotic heavy
quark is suppressed by the factor� m=M instead of� m 2=M 2

in the QED case [see (3.37)].
A very important distinction between QCD and QED is

that spectrum (4.23) of a heavy quark is soft. Indeed, the
characteristic energy of emitted gluons is ochar � mE=M5E,
and the spectrum decreases rapidly (as 1=o2) beyond this
scale. (In contrast, the photon radiation spectrum of a heavy
charged particle remains flat: mass effects result in a uniform
suppression � m 2=M 2 for all o.) Result (4.24) arises from
small gluon energies, o � ochar. The typical gluon angles
contributing to (4.24) are of the order of y 2

char � y 2
g �

m 2=o2
char � y 2

M. Hence, the characteristic gluon formation
length is

`QCD heavy
f � 1

ochar y
2
char

� ochar

m 2
� E

mM
: �4:25�

Similarly to the Abelian case, the behavior of the radiative
loss at larger lengths depends on the ordering of different
length scales: the mean free path l, the characteristic
formation length, or the scale L�� where the suppression
� m=M disappears. The ordering of these scales depends on
the heavy-quark mass. In the Abelian case, we had two mass
regions (3.41) and (3.47). In the non-Abelian case, there are
three distinct regions.

(A)M2 5 a s

���������
ET 3
p

. In this case, the smallest length scale is
l � 1=�asT �. For L5 l, law (4.24) holds. When L exceeds l,
the energy loss can be represented as being induced by one
effective scattering with the momentum transfer m 2

eff �
�L=l�m 2,

DE�L� � asE
m
��������
L=l

p
M

� a 2
s E

���������
LT 3
p

M
: �4:26�

This law is valid in the region

l5L5L�� � l
M 2

m 2
� M 2

a 2
s T

3
: �4:27�

At the scale L��, the suppression� meff=M disappears and the
physics becomes the same as for light quarks.WhenL exceeds
L�� but is less than the in-medium formation length L� given
by (4.17), there is still one effective scattering, and we are in
the intermediate region. When L4L�, the number of
effective scatterings increases as L=L�, and the radiative loss

L

l

1

lm2 oc o

1����
o
p

1

as
o

dI

do

����
L

E

Figure 7. The gluon radiation spectrum of an asymptotic light quark

crossing a hot QCD medium of size L, with l5L5L� (double

logarithmic plot).

20 This is because an `asymptotic on-shell quark' does not radiate in the

absence of a medium. This is in contrast to a quark produced in a hard

subprocess, which radiates even in the vacuum (see Section 5 for a further

discussion of this point).
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is given by the light-quark estimate in (4.18). A schematic plot
of the energy dependence is shown in Fig. 8.

(B) a s

���������
ET 3
p

5M 2 5 a sE
2. When M 2 exceeds as

���������
ET 3
p

,
the scaleL� becomes smaller than the scaleL�� where the dead
cone suppression disappears. Before proceeding, we note that
the estimate L� � ��������������

lE=m 2
p

for the in-medium formation
length no longer holds in this case, and L� should be replaced
with another scale ~L�.

Indeed, we recall that the in-medium formation length is
defined by the condition that it coincides with the vacuum
formation length for an effective scattering with the transfer
m 2
eff � �L=l� m 2. For a light quark, this condition is given by

L � E

m 2
eff

) L� �
�������
lE
m 2

s
: �4:28�

For amassive quark, the vacuum formation length is given by
(4.25), and hence

L � E

meffM
) ~L� �

�
lE 2

m 2M 2

�1=3

�
�
L� 4

L��

�1=3

� 1

T

�
E

asM

�2=3

: �4:29�

We note that the condition as
���������
ET 3
p

5M 2 5 asE 2 defining
the mass interval under consideration is equivalent to
l5 ~L�5L�.

For L4 ~L�, the size of an effective scattering center
responsible for the emission of one gluon is � ~L�, and the
dead cone suppression factor � meff=M stays frozen at the
value�

meff
M

�
max

� m
M

������
~L�

l

s
�
�
as

���������
ET 3
p

M 2

�2=3

: �4:30�

In this region, the energy loss displays a linear dependence on
L with the slope [48]

DE�L4 ~L�� � asE
L

~L�

�
meff
M

�
max

� asL
�
m 2E

lM

�2=3

� a 7=3
s T 2L

�
E

M

�2=3

: �4:31�

The schematic plot of DE�L� looks like Fig. 4, but with two
qualitative distinctions: (1) the scale L� is replaced with ~L�;
(2) in the region between l and ~L�, DE�L� / ����

L
p

[as in (4.26)]
instead of DE�L� / lnL in (3.33).

We now discuss the energy spectrum of emitted gluons.
We consider the caseL4 ~L�.We expect the spectrum to differ
from that for light quarks [see (4.20) and Fig. 7] if the typical
angle ytyp contributing to (4.20) becomes smaller than the
parameter yM �M=E. The typical angles associated with
(4.20) are given by

y 2
typ �

1

o`med
f �o� �

�����������
m 2=l
o 3

r
; �4:32�

where we use (4.15). The condition ytyp < yM is hence
equivalent to�����������

m 2=l
o 3

r
<

M 2

E 2
, o > ô �

�
m 2E 4

lM 4

�1=3

� T

�
asE 2

M 2

�2=3

:

We note that L4 ~L� is equivalent to ô5oc. When o > ô,
the spectrum is given by

o
dI

do
� as

L

`med
f

y 2
typ

y 2
M

� asL
m 2E 2

lM 2

1

o2
� as

������������
ocô 3

o4

r
�o > ô� :

�4:33�

For o < ô, the spectrum is given by (4.20). The overall
spectrum is shown in Fig. 9. We note that the behavior
/ oÿ2 that we find for o > ô differs from the behavior
/ oÿ7=2 obtained in Ref. [26]. Integrating the spectrum, we
recover the average loss in (4.31), which is dominated by
o � ô. Noting that

ô � E

�
meff
M

�
max

� mE
M

������
~L�

l

s
; �4:34�

we can rewrite average loss (4.31) in the compact form

DE�L4 ~L�� � as ô
L

~L�
; �4:35�
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Figure 8. Radiative energy loss of an asymptotic heavy quark with

M 2 5 as
���������
ET 3
p

. (Dotted line: collisional loss.)
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Figure 9.The gluon radiation spectrum of a heavy quark produced in a hot

QGP for as
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ET 3
p

5M 2 5 asE 2 and for L4 ~L�.
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which can be compared with the light-quark estimate
in (4.16).

(C) M 2 4 a sE
2. Finally, for very large masses, the LPM

effect does not play any role and BH linear law (4.24) holds
for all lengths. Indeed, whenM 2 exceeds asE 2, the formation
length ~L� becomes smaller than l and gluons are emitted in
individual incoherent scatterings. In this case, radiative losses
are suppressed compared to collisional ones, as can be verified
by comparing the slope in (4.24) with the slope � a 2

s T
2 for

collisional loss. We therefore stress here that radiative loss
(4.24) might be difficult or impossible to observe (even in a
thought experiment). (See Section 6 for a further discussion of
this point.)

As noted above, the spectrum of emitted gluons is soft in
this case and is given by (4.23) times the number of scatterings
L=l. The spectrum starts to decrease as � oÿ2 at the scale
mE=M rather than at ô, as it did in the intermediate mass
region.

The linear energy dependenceDE�L� / Emay suggest the
description of heavy-quark radiative losses in terms of the
radiation length, as is usually done for ultrarelativistic
electrons in usual matter. But it is not convenient here for
two reasons: (1) in contrast to ultrarelativistic electrons,
collisional losses here dominate over radiative ones; (2) the
spectrum of emitted gluons is soft and the energy loss
fluctuations are much smaller, for example, than for
electrons forming atmospheric showers.

5. Radiative loss
of a particle produced in a plasma

We now consider a charged particle produced inside a
plasma. This situation is much more natural for QCD,
where an energetic parton can be produced in a hard partonic
subprocess inside the hot medium formed in heavy-ion
collisions. However, we start by considering the less natural
but simpler QED case of an electric charge produced in a
QED plasma. We then study the QCD case.

5.1 Hot QED plasma
5.1.1 Electron. When an energetic charged particle is created
in a hard process, it radiates bremsstrahlung photons. This
radiation occurs even when the particle is created in the
vacuum, and should be distinguished from the medium-
induced radiative loss.

In this section, we consider the case of a fast and light
charged particle produced in a hot QED plasma (for example,
we can think of deep inelastic scattering in a QED plasma, or
of direct lepton production in a QGP), and focus on its
medium-induced radiative loss. This loss is associated with
the Fourier components of the particle radiation field coat
that had a chance to be formed within the distance L traveled
by the newborn particle in the plasma, such that those
components can be released as emitted photons during
subsequent rescatterings. In other words, only the photons
whose formation length (3.19) does not exceedL contribute to
the induced radiative loss:

`f�o; y� � 1

oy 2
9L : �5:1�

In the case of the asymptotic particle studied in Sections 3
and 4, we found some contributions to the energy loss arising
from `f 4L. In particular, in the BH regime L5 l, electron

energy loss (3.11) arises from the photon formation lengths
`f 4E=m 2 4L [see (3.22)]. Due to prescription (5.1), this
contribution should now be disregarded. We should only
count those photons whose formation length does not exceed
L, which results in an additional suppression in medium-
induced radiative losses. Thus, when a light particle is created
inside a plasma, there is no BH regime whatsoever. 21 We see
shortly into what kind of behavior it is transformed.

On the other hand, the result in (3.26) [or, more
accurately, (3.29)] for the radiative energy loss in a thick
medium,L4L�, should also hold when the particle is created
not in the remote past but in the plasma. Indeed, result (3.26)
corresponds to the formation lengths `med

f �o� � `med
f �E � �

L�5L, thus satisfying prescription (5.1). When L4L�, the
particle forgets the conditions of its birth.

We first consider the region L5 l. In this case, the
particle undergoes one scattering with the probability
� L=l. The photon emission amplitude is given by the sum
of the two diagrams in Fig. 10. For small photon frequencies
o5E and small scattering and emission angles, it can be
evaluated asM/ e e J�L� with

J�L� � h 0

y 0 2
ÿ h

y 2

�
1ÿ exp

�
ÿ ioLy 2

2

��
; �5:2�

where L is the distance traveled by the particle between its
production and scattering. We assume the particle to be
massless. The term / h is the contribution of the diagram in
Fig. 10a, and the term/ h 0 is the contribution of the diagram
in Fig. 10b.

Result (5.2) for the amplitude is rigorously derived in
Appendix B, but its structure looks rather natural in the
context of the above heuristic reasoning. When L is large
compared to formation length (5.1), the rapidly oscillating
factor � exp �ÿioLy 2=2� can be dropped and the current
J�L� is reduced to expression (3.5) for an asymptotic particle.
On the other hand, for a photon formation length larger than
L, the contribution of the diagram in Fig. 10a is suppressed
and only the second diagram remains, corresponding to a
photon emission from the final electron line, as in the absence
of rescattering. Because we are interested in the medium-
induced radiation intensity, we must subtract the last
contribution from the scattering cross section, which yields

o
dI

do

����
induced

� a
L

l

��
d2h

���J�L���2 ÿ ��J�0���2��
� 2a

L

l
Re

��
d2h

h

y 2

�
h

y 2
ÿ h 0

y 0 2

��
1ÿ exp

�
ÿ ioLy 2

2

���
:

�5:3�
The averaging is done over the transverse momentum q?
exchanged in the scattering (we recall that h 0 � hÿ hs �

X

Production
point

a

X

b

Figure 10. Photon radiation of an electron produced and scattered in a

QED plasma.

21 For heavy particles, this is not so (see the discussion below).
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hÿ q?=E ). We average over the azimuthal directions of hs
first. Using the identity�

df
2p

�
h

y 2
ÿ hÿ hs

�hÿ hs�2
�
� h

y 2
Y�y 2

s ÿ y 2� ; �5:4�

we obtain

o
dI

do

����
induced

� a
L

l

��
dy 2

y 2

�
1ÿ cos

oLy 2

2

�
Y�y 2

s ÿ y 2�
�
:

�5:5�

We must now average over y 2
s with the normalized

probability P�y 2
s � obtained by squaring the momentum

Fourier harmonic of the screened Coulomb (Yukawa)
potential [see (2.2)]:

P�y 2
s � �

m 2=E 2

�y 2
s � m 2=E 2�2 : �5:6�

The result is

o
dI

do

����
induced

� a
Lm 2

lE 2

�1
0

dy 2

y 2�y 2 � m 2=E 2�

�
1ÿ cos

oLy 2

2

�
:

�5:7�
When oLm 2=E 2 5 1, which is true in the region L5 l we are
now considering, the integral is saturated by the emission
angles 22

y 2 0
1

oL
>

1

EL
4

1

El
4

m 2

E 2
: �5:8�

The integral in (5.7) is of the order ofoL. Hence, the spectrum
is evaluated as

o
dI

do

����
induced

� a
L2m 2

l
o
E 2
� a

ooc

E 2
; �5:9�

and the energy loss is given by

DE�L5 l� � aoc � a 3T 3L2 : �5:10�

It is interesting to note the analogy with the discussion of
the energy loss of an asymptotic and massive particle in
Section 3.2. The effective cutoff y 2 > 1=�EL� that arises here
is similar to the `dead cone' cutoff y 2 >M 2=E 2 in integral
(3.38), with the parameter

���������
E=L

p
playing the role of mass.

Estimate (5.10) can actually be obtained by replacing
M 2 ! E=L in (3.43).

We see that DE�L� has not a linear but a quadratic
dependence for small L. The reason for this is quite
transparent, as we qualitatively explained before. When a
hard electron is just born, its radiation field coat has not
developed yet and the electron is not able to radiate. Roughly
speaking, the capacity dE=dx to radiate vanishes atL � 0 and
then increases linearly with L. The integration

DE �
� L

0

dx
dE

dx
�5:11�

yields another factor � L.

It is instructive to discuss a more heuristic derivation of
estimate (5.10), not using the exact expression (5.2) of the
radiation amplitude but simply consisting in integrating
spectrum (3.6) (derived for an asymptotic particle) over o
and y with the constraint 1=�oy 2� < L. The corresponding
integration domain is shown in Fig. 11. Because y 2 4 m 2=E 2,
the angular spectrum can be approximated by m 2=�E 2y 4�.
The energy loss is then given by the expression

DE�L5 l� � a
L

l

� E

0

do
� 1

1=�oL�
dy 2 m 2

E 2y 4

� a
Lm 2

lE 2

� E

0

dooL � aoc �5:12�

arising from typical values y 2 � y 2
min � 1=�EL� and o � E.

This coincides with (5.10).
We emphasize, however, that although the simple and

physically transparent argument given above leads to the
correct result, it is heuristic and does not therefore allow
detecting a subtle dynamical feature displayed in the accurate
derivation based on (5.2). 23 Indeed, the argument leading to
the heuristic estimate in (5.12) implicitly assumes that the
momentum transfer is fixed at the value q 2

? � m 2, i.e., it refers
to a hypothetical model where Coulomb probability density
(5.6) is replaced with P�y 2

s � � d�y 2
s ÿ m 2=E 2� [corresponding

to the scattering potential V�r� � J0�mr�]. On the other hand,
under the replacement y 2

s ! m 2=E 2, expression (5.5), which
follows from the diagram analysis, would yield

o
dI

do

����
q 2
?�m 2

� a
o2L3m 4

lE 4
; �5:13�

which leads to an energy loss that is suppressed compared to
expression (5.12). Thus, estimate (5.12) fails for the hypothe-
tical model where P�y 2

s � � d�y 2
s ÿ m 2=E 2�.

22 The last inequality in (5.8) follows from E4 lm 2 � T. We also assume

that EL4 1, i.e., even though L is smaller than l, it is still larger than the

wavelength of the energetic particle.

y2

y2min

1

E o

Figure 11. Photon energies and emission angles satisfying `f�o; y� < L.

23 In other words, the diagrams in Fig. 10 describing photon emission

during a single scattering of a particle produced in a plasma dictate slightly

different dynamics compared to the single-scattering diagrams for an

asymptotic particle in Fig. 3 supplemented by constraint (5.1). On the

other hand, the physical arguments that underlie the derivation of the

multiple scattering dynamics based on single-scattering diagrams and the

notion of the formation length seem to work in all cases.
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For the more realistic Yukawa potential, the results based
on (5.5) and (5.12) are the same, but the integrals are
saturated in different kinematical regions. With heuristic
prescription (5.12), the characteristic radiation angle
y 2
rad � 1=�oL� is much larger than the characteristic scatter-

ing angle y 2
scat � m 2=E 2. In the more accurate formula (5.7),

both angles are large [see (5.4)]:

y 2
rad � y 2

scat �
1

oL
: �5:14�

A distinctive feature of the Yukawa scattering potential is
that it allows very large transfers compared to the typical
transfer � m. Thus, the constraints y 2

s 5y 2 [see (5.4)] and
y 2 � 1=�oL�4m 2=E 2 [see (5.8)] can be realized simulta-
neously.

We now consider a larger medium, L4 l, with the
Yukawa scattering potential. The electron is now scattered
N � L=l times. If L5L�, only one photon is emitted. The
amplitude of photon emission in the multiple scattering
process is evaluated accurately in Appendix B. It turns out
that the leading contribution to the radiation spectrum arises
from the region where one of the scattering angles is large, as
in (5.14), while all other scattering angles are relatively small,
� m=E. In other words, one of the N scattering momenta is
� ���������

E=L
p

(assuming o � E ) and is much larger than the
characteristic momentum transfer meff � m

����
N
p

due to all
other scatterings. 24 Any of the N scatterings can be distin-
guished in this way, which gives the factor N � L=l in the
radiation spectrum. This is still given by integral (5.7), with
the factor L=l interpreted as the characteristic number of
scatterings instead of the scattering probability. The estimate
for the energy loss is still given by (5.10), which therefore
holds in the extended range L5L�,

DE�L5L�� � aoc � a 3T 3L2 : �5:15�

Finally, for L4L�, restriction (5.1) is not effective, as we
already mentioned. We obtain the same dependence (3.29) as
for a particle coming from infinity. The results are
represented in Fig. 12. For large lengths, DE is linear in L,

with dE=dx / ����
E
p

, which is familiar from Sections 3 and 4.
For L smaller than L�, DE�L� displays quadratic depen-
dence (5.15).

5.1.2Muon.We now consider the radiative losses of amassive
particle created in a plasma. As was also the case for a particle
coming from infinity, the behavior of DE�L� is different in
regions (3.41) and (3.47).

(A) M 2 5 a
���������
ET 3
p

. We show that there is no difference
with the case of light particles in this region, and the behavior
ofDE�L� is the same as in Fig. 12.We recall that for a massive
particle, the vacuum formation length is given by (3.39).

When L5L�, we showed previously that the induced
radiative loss of a light QED particle arises from o � E and
y 2 � 1=�oL� � 1=�EL�. Therefore, if

1

EL
4 y 2

M �
M 2

E 2
; �5:16�

then result (5.10) for a light particle also applies to a heavy
particle. Intuitively, this happens when M is small compared
to the effective `mass' � ���������

E=L
p

of the light particle [see the
discussion below (5.10)]. To see that condition (5.16) is
satisfied, we note that M 2 5 a

���������
ET 3
p

implies L�5E=M 2.
When L5L�, we have M 2 5E=L�5E=L. Therefore, the
result in (5.15) is also valid for a moderately massive particle.

The effects due to a nonzero mass are also irrelevant in
the range M 2 5 a

���������
ET 3
p

for large lengths L4L�. Indeed,
when L4L�, the electron radiative loss arises from o � E
and the photon formation lengths 1=�oy 2� of the order of L�,
implying y 2 � 1=�EL��4 y 2

M, where we again use
L�5E=M 2. Therefore, the result for a light particle in
(3.29) is valid in the regionM 2 5 a

���������
ET 3
p

.
An equivalent way to understand this is as follows. The

length above which the mass can be neglected is determined
by m 2

eff � �L=l� m 2 �M 2, i.e., by the scaleL�� [see (4.27)]. For
M 2 5 a

���������
ET 3
p

, we have L��5L�, and mass effects can a
fortiori be neglected when L4L�.

(B) M 2 4 a
���������
ET 3
p

. In this region, the characteristic
vacuum formation length `f � E=M 2 is smaller than the
scale L� and shows up first. Quadratic law (5.15) extends
only up to the scale L � E=M 2, after which it is replaced by
law (3.37), the same as for asymptotic and heavy QED
particles.

5.2 Quark±gluon plasma
5.2.1 Light parton. An energetic, high-p? light parton
produced in a proton±proton collision can be `observed' via
the jet of hadrons that it produces. These hadrons are the
products of the parton bremsstrahlung induced by its sudden
acceleration at the moment of its creation. In the process of
building its asymptotic �t! �1� field coat, the initially
`bare' parton radiates quasicollinear DGLAP gluons. The
parton energy at the time of its production can in principle be
determined by measuring the total jet energy.

If the parton is produced in a finite-size plasma, the
parton energy loss due to its rescatterings in a hot medium
can affect the structure of the hadron jet. In particular, this
medium-induced energy loss leads to the suppression of
large-p? hadrons (jet quenching) in ultrarelativisitic heavy-
ion collisions compared to proton±proton collisions. Also,
medium-induced gluon radiation enhances the hadron
multiplicity within the jet. Here, we want to derive the
medium-induced radiative energy loss of a light quark. As24 The condition

���������
E=L

p
4 m

���������
L=l

p
is equivalent to L5L�.

LPM

DE

l L� L

Figure 12.Radiative energy loss of an electron produced in aQEDplasma.

The quadratic dependence in (5.15) at L5L� is replaced by the linear

dependence (3.29) at L4L�. (Dotted line is the collisional loss.)
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explained in Section 5.1, the formation length of the medium-
induced gluon radiation must be smaller than L [see (5.1)].

We first consider the regionL5 l. The physics is the same
as in the Abelian case, with the only difference that the
characteristic Abelian radiation cone width � m=E must be
replaced with the non-Abelian one� m=o [see Section 4.1 and
the comments below (4.11)]. Thus, QED expression (5.7) is
transformed into

o
dI

do

����QCD

induced

� as
Lm 2

lo2

�1
0

dy 2

y 2�y 2 � m 2=o 2�

�
1ÿ cos

oLy 2

2

�
:

�5:17�
Spectrum (5.17) has two different forms, depending on
whether the gluon vacuum formation length `f�o� � o=m 2 is
smaller or larger than L:

o
dI

do

����QCD

induced

� as
L

l
ln

Lm 2

o
; o < Lm 2 ; �5:18�

o
dI

do

����QCD

induced

� as
oc

o
; Lm 2 < o < E : �5:19�

The contributions of these regions to the induced energy loss
are

DEQCD; 1�L5 l� � as oc ; �5:20�

DEQCD; 2�L5 l� � as oc ln
E

Lm 2
: �5:21�

The second contribution is logarithmically enhanced.
Expression (5.21) for the light parton radiative loss in the

BH regionwas obtained inRef. [19]. Its origin is the same as in
QED. Namely, the energy loss arises from radiation angles
larger than the typical scattering angle, y 2 �
1=�oL�4 m 2=E 2 in QED, and y 2 � 1=�oL�4 m 2=o2 in
QCD. Hence, as was also the case for QED expression
(5.10), the QCD loss in (5.21) is specific to a Yukawa
scattering potential.

In the region l5L5L� and for small enough frequen-
cies, the medium effects come into play and the formation
length is given by (4.15). We can distinguish two (or, rather,
two and a half) regions in the spectrum.

(1) If `med
f �o�5L, implying o5oc, the spectrum is the

same as for the asymptotic particle in the LPM regime [see
(4.20) and Fig. 7]:

o
dI

do

����
induced

� as
L

l
; o < lm 2 ;

�5:22�
o

dI

do

����
induced

� as

������
oc

o

r
; lm 2 < o < oc :

The last expression arises from the typical emission angles
given in (4.32):

y 2 � 1

o`med
f �o� �

�����������
m 2=l
o3

r
4

1

oL
: �5:23�

The contribution of the region o < lm 2 to the energy loss is
small. The region lm 2 < o < oc yields

DE1�l5L5L�� � as oc : �5:24�

This contribution is specific to QCD [in QED, `med
f �o�

exceeds L if it is smaller than L�] and was identified in
Refs [13, 17]. 25

(2) When o > oc (we note that oc 5E if L5L�),
`med
f �o� > L. In this case, the radiation spectrum is the same
as for a single effective scattering with the typical scattering
angle Nm 2=o2, where N � L=l. The spectrum is then
estimated from (5.17). Estimate (5.19) follows, but is now
valid when 1=�oL�4Nm 2=o2 (which exactly coincides with
the condition o4oc):

o
dI

do

����
induced

� as
oc

o
; oc < o < E : �5:25�

This part of the spectrum arises from the typical angles

y 2 � 1

oL
�5:26�

(meaning that the formation length is of the order of L), and
contributes to the energy loss as

DE2�l5L5L�� � as oc ln
E

oc
� as oc ln

L�

L
: �5:27�

This contribution was discussed in Ref. [19]. It is the QCD
analog of QED expression (5.15) and depends on the presence
of a long high-momentum tail in the Coulomb scattering
potential.

The full radiation spectrum is represented in Fig. 13. In
the region o5oc, it is the same as for an asymptotic quark
(see Fig. 7). In the region o4oc, the spectrum is
suppressed compared to the case of an asymptotic particle
due to the constraint y 2 5 1=�oL�. This region still makes
the dominant contribution to the energy loss, however. 26

25 We do not write the exact logarithmic factor / ln �L=l� that may be

involved in contribution (5.24) in general. As noted in [13, 17], such a

logarithmic factor occurs in the case of the Coulomb scattering potential.

It is not known, however, to what degree the statement about the presence

of this factor is model independent.
26 The hard part of the spectrum makes the leading contribution to the

energy loss. Other quantities involving all the moments of the dI=do
distribution, such as quenching factors [49], may also receive the leading

contribution from the soft part of the radiation spectrum in (5.22).

1����
o
p

1

o

1

as
o

dI

do

����
L

E

L

l

lm2 oc o

Figure 13. Induced gluon radiation spectrumof a light quark produced in a

hot QCD medium for l5L5L� (double logarithmic plot).
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For high energies, the contribution in (5.27) dominates that
in (5.24). 27

Finally, when L4L�, the parameter oc becomes larger
than E and ceases to play a role. The spectrum is given by
(5.22) for all o > lm 2, as for an asymptotic particle.
Integrating over o reproduces estimate (4.16) for the
asymptotic particle energy loss in a thick medium.

The overall behavior of DE�L� is the same as in the
Abelian case (see Fig. 12). 28 We stress again that the
quadratic increase at small L5L� is a specific feature of the
medium-induced energy loss of a newborn particle. It displays
itself in both Abelian and non-Abelian plasmas.

5.2.2 Heavy quark.Finally, we discuss the radiative losses of a
heavy quark created in a plasma. As was the case for an
asymptotic quark, there are three main mass regions. But the
case of a heavy quark produced in a plasma is more
complicated. As we see in what follows, the second mass
region as

���������
ET 3
p

5M 2 5 asE 2 splits into two subdomains,
where the logarithmic dependence of DE is slightly different.

(A) M 2 5 a s

���������
ET 3
p

. In this region, the dependence of
DE�L� is the same as for light quarks. The reason for this is
basically the same as in the Abelian case. The characteristic
gluon radiation angle, which is of the same order as the
photon radiation angle, as in (5.26), or exceeds it, as in (5.23),
is much larger than y 2

M in the whole range of L and o.
(B) a s

���������
ET 3
p

5M 2 5 a sE
2. In this range, the relevant in-

medium formation length ~L� given in (4.29) is larger than l,
but smaller than the light-quark in-medium formation length
L�. The law DE�L� � L2 valid at small L is replaced by a
linear dependence not at the scale L� but at ~L�. This is the
main effect brought about by the quark mass.

In addition, there is a more subtle effect: the logarithmic
factor multiplying asoc in the estimate of DE�L� at small L
might change. Indeed, the logarithmic factors in (5.21) and
(5.27) come from integrating spectra (5.19) and (5.25) over the
respective intervals Lm 2 < o < E and oc < o < E. But a
(large enough) mass leads to an effective cutoff in the
spectrum when the characteristic angle � 1=�oL� becomes
smaller than y 2

M. This happens when the gluon energy exceeds
the scale

o& � E 2

LM 2
: �5:28�

Beyond the scale o&, the spectrum rapidly decreases as
� 1=o2. This is a characteristic behavior of the hard part of
energy spectra beyond the mass-induced cutoff [cf. (4.23) and
Fig. 9]. Evidently, the statement abovemakes sense only when
o& < E, i.e., when L > E=M 2. The results for DE�L� are
slightly different, depending on whether E=M 2 > l (i.e.,
M 2 < asET ) or E=M 2 < l (i.e., M 2 > asET ). Representing
the radiative loss as

DE�L5 ~L�� � as oc lnR ; �5:29�
we quote the estimates forR in the two relevant subregions. 29

(B1) a s

���������
ET 3
p

5M 2 5 a sET. In this subregion, we have

RB1 �

E

Lm 2
; L5 l ;

E

oc
; l5L5

E

M 2
;

o&

oc
;

E

M 2
5L5 ~L� :

8>>>>>>>><>>>>>>>>:
�5:30�

In Fig. 14, for illustration, we show the induced radiation
spectrum in the last case E=M 2 5L5 ~L�.

(B2) a sET5M 2 5 a sE
2. Here, the estimates for R

become

RB2 �

E

Lm 2
; L5

E

M 2
;

o&

Lm 2
;

E

M 2
5L5 l ;

o&

oc
; l5L5 ~L� :

8>>>>>>><>>>>>>>:
�5:31�

The logarithmic enhancement in DE�L� disappears at
L � ~L�, where the energy loss is

DE�L � ~L�� � as oc� ~L�� � asE
�
as

���������
ET 3
p

M 2

�2=3

; �5:32�

which is the same estimate as (4.30) and (4.31) for an
asymptotic heavy quark. As was mentioned, when L4 ~L�,
the quadratic law in (5.29) is replaced by a linear one, with the
slope given in (4.31).

(C) M 2 4 a sE
2. When the mass is so large, the scale ~L�

becomes smaller than l. In this case, medium effects do not
affect the formation length and it is given not by E=�meffM�
[see (4.29)] but by E=�mM� [see (4.25)]. At this scale, the
quadratic law in L is replaced by linear law (4.24), the same as
for an asymptotic heavy quark.

For L5E=�mM�, the energy loss is estimated as in (5.29).
As in the previous case, the argument R of the logarithm
depends on whether L < E=M 2 [in this case, the light-quark
estimate in (5.21) still holds] or L > E=M 2 [in this case, the
upper cutoff (5.28) is introduced in the spectrum]. To

1����
o
p

1

o

1

o2

1

as
o

dI

do

����
L

Elm2 ooc o&

L

l

1

Figure 14. Induced gluon radiation spectrum of a heavy quark produced in

a hot QGP for as
���������
ET 3
p

5M 2 5 asET and E=M 2 5L5 ~L� (double

logarithmic plot).

27 This is true irrespective of whether the contribution in (5.24) involves a

factor � ln �L=l�.
28 As regards DE�L�, the only difference between QED and QCD is the

smooth logarithmic enhancement in (5.21) and (5.27).
29We do this for completeness, although themodification of the logarithm

argument is probably too subtle an effect to be observed in experiment. In

addition, some other logarithmic factors, unrelated to the integral
�
do=o,

may occur (see footnote 25).
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recapitulate,

RC �
E

Lm 2
; L5

E

M 2
;

o&

Lm 2
;

E

M 2
5L5

E

mM
:

8>><>>: �5:33�

We observe that the law DE�L� � as oc / L2 is universal
and is not modified at small enough L, no matter how large
the quark mass is. On the other hand, the larger the mass, the
earlier the change of regime between the quadratic law and
the linear behavior. The slope of the line decreases as the mass
increases. For M 2 4 asE 2, the slope is given by BH formula
(4.24).

Our main results for a heavy quark produced in a plasma
are qualitatively represented in Fig. 15. The transition
between the quadratic and linear regimes occurs at a scale
� min �L�; ~L�;E=�mM��. It is L� for M 2 5 as

���������
ET 3
p

, ~L� for
as

���������
ET 3
p

5M 2 5 asE 2, and E=�mM� forM 2 4 asE 2.

6. Concluding remarks

The primary purpose of this review was, as for any other
review, to bring together and systematically present known
results scattered in original papers. Another goal was to
rederive those results using simple physical arguments,
rather than invoking complicated formalisms. For instance,
we tried to explain the origin of the quadratic dependence
DErad � L2 for thin plasmas or of the law DErad � L

����
E
p

for
thick plasmas in a semiheuristic way. But besides reviewing
the known results, we have made some new observations.

First, we found that the L2 law, which was generally
believed to be a specific feature of QCD, is also valid in the
Abelian case. The extra suppression at small L compared to a
linear behavior DErad�L� / L is always present when a
particle is created within the medium in a hard process. This
is because a newborn particle needs time to develop its
radiation field coat and acquire the capacity to radiate. We
stress that although the Abelian and non-Abelian physical
pictures and results are similar as regards the average
radiative energy loss, the spectra of emitted photons in a
QEDplasma and of emitted gluons in aQGP are different [for
thick plasmas, the corresponding spectra are given in (3.30)

and (4.20)]. The difference is due to different kinematics of
photon and gluon bremsstrahlung, as discussed in Sections 3
and 4. In QCD, the presence of the extra diagram in Fig. 6
(together with the diagrams in Fig. 3 with appropriate color
factors) broadens the gluon angular spectrum [see (4.6) and
(4.7)].

Another task we tried to accomplish was the systematic
analysis of the radiative energy loss of amassive particle in the
different regions of M and L. We have emphasized (see
Fig. 15) that the mass effects play no role at small enough
lengths, irrespective of how large the quark mass is. For
M 2 5 as

���������
ET 3
p

, there is no effect at large L, either. For larger
masses (where the main regions as

���������
ET 3
p

5M 2 5 asE 2 and
M 2 4 asE 2 should be distinguished), the heavy-quark loss
DErad�L� starts to deviate from the light-quark loss at some
critical length, which decreases asM increases.

We now discuss the question of the physical meaning of
the mean free path l. Definition (2.9) relates l to the so-called
anomalous damping z of ultrarelativistic collective excitations
with quark or gluon quantum numbers [35]. The anomalous
damping depends not on transport cross section (2.10) but on
the total cross section �z � ns tot�. It is not the latter but the
former that determines the scale of different transport
phenomena, and a legitimate question is whether z (or
equivalently l) is a physical observable quantity.

This question was studied in Ref. [50]. No way to measure
z was found there in the ultrarelativistic plasma, even in a
thought experiment, but it was found that in a nonrelativistic
(Boltzmann) plasma and in a certain range of parameters, z
shows up in the argument of Coulomb logarithms describing
transport phenomena.

Returning to the energy loss problem, we see that l enters
most formulas not alone but in the transport coefficient

q̂ � m 2

l
� a 2

�s�T
3 : �6:1�

For example, estimate (3.26) for the electron radiative loss in
a thick plasma is represented as DErad�L4L�� � aL

������
q̂E

p
.

The parameter q̂ describes how the transverse momentum of
the particle increases with distance, hq 2

?�L�i � q̂L. To be
more precise, q̂ is given by [cf. (2.4)]

q̂ � n

� jtjmax

m 2

ds
dt
jtj djtj / a 2T 3 ln

ET

m 2
�6:2�

and hence depends logarithmically on the energy of the
incoming particle. Recently, the coefficient of the logarithm
in (6.2) was evaluated analytically [51].

Seemingly, the parameter l may show up as a scale that
distinguishes a very thin plasma L5 l, where the particle
undergoes at most one scattering, from the intermediate
region l5L5L�, where the multiple scattering kinematics
is effective. In our whole discussion, we indeed made a clear
distinction between these two regions and treated them
differently.

As regards the radiative energy loss of a particle created in
a plasma, nothing essential happens at L � l, as can be
qualitatively seen in Fig. 12. But in the case of a light quark
produced in a QGP and at L5 l, the parameter l enters the
argument of the logarithm in (5.21) (the relation m 2 � q̂ l
must be used). But the domain L5 l describes the rather
marginal situation of a quark created near the plasma edge.
Because tagging such quarks is unrealistic, whether l can be

LPM

BH

A

B

C

DE

E

mM
L�~L� L

Figure 15. Induced radiative energy loss of a heavy quark produced in a

QGP.AÐM 2 5 as
���������
ET 3
p

, BÐ as
���������
ET 3
p

5M 2 5 asE 2, CÐM 2 4 asE 2.

(Dotted line is the collisional loss.)
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observed is questionable. In the more realistic case where
l5L5L�, the logarithm in (5.27) depends only on the
combination in (6.1). On the other hand, as we have already
noted, the contribution from low frequencies o � oc may
yield a logarithmic factor � ln �L=l�, leading to a weak
logarithmic dependence on the scale � l, which is obser-
vable in principle. This subtle question deserves further
study.

For an asymptotic particle, the situation looks different.
As is clear from Fig. 4, the dependence is essentially modified
at L � l. In addition, the slope of the curve in the BH region
L5 l is given by estimate (4.9), which explicitly involves l.
On the other hand, it is difficult to imagine how a plasma (in
thermal equilibrium) of size L � l or less could be created, as
we already mentioned in footnote 11.

Another attempt to pinpoint an explicit dependence on l
is associated with estimate (4.24) for the radiative energy loss
of a heavy quark. We have seen that when the mass is
sufficiently large, M 2 4 asE 2, this estimate is valid not only
for unphysically thin plasmas, L5 l, but also for thick
plasmas (see the dashed curve corresponding to M 2 4 asE 2

in Fig. 15). Expression (4.24) involves the combination
m=l � ��������

q̂=l
p

. But (4.24) describes only the radiative energy
loss. And as we have seen, whenM 2 4 asE 2, the radiative loss
is suppressed compared to the collisional one. For light
quarks, the radiative and collisional losses have different
patterns: the characteristic energy of the radiated gluons is
of the order of E, which is much larger than the characteristic
energy transfer in one elastic collision. But the radiation
spectrum of heavy quarks is soft. The spectrum is cut off
beyond the scale mE=M, which for large massesM 2 4 asE 2 is
smaller than the plasma temperature T. In other words, for
such heavy quarks, it seems impossible to separate the
radiative component of the net drag force dE=dx and access
m=l, and thus l. Quite curiously, for smaller masses, when
radiative losses dominate, their value is not sensitive to l. For
example, the nontrivial estimate in (4.31) depends only on q̂ in
the intermediate mass region as

���������
ET 3
p

5M 2 5 asE 2.
Nevertheless, the parameter l [and not only combination

(6.1)] seems to have an independent physical meaning. In fact,
this parameter appears under the logarithm in more refined
estimates (3.29) and (4.19) for light-particle radiative losses
(we recall that T � lm 2 � q̂l2). For the characteristic effec-
tive scattering momentum transfer, these estimates take the
behavior � �N lnN� m 2 (instead of Nm 2) into account. In the
developed LPM regime, N � L�=l � �����������������

E=�lm 2�p
. Assuming

that estimates (3.29) and (4.19) are correct, 30 the situation is
then analogous to that observed in Ref. [50] for Boltzmann
plasmas: the parameter l affects observable quantities in a
weak logarithmic way.

In other words, the physical status of l (or z) in
ultrarelativistic plasmas remains unclear. But it is indisputa-
bly very useful as a theoretical instrument that allows
obtaining meaningful physical results for radiation spectra
and energy losses.

To top things off, we mention the fascinating issue of
energy losses in N � 4 supersymmetric Yang±Mills (SYM)
theory. At weak coupling, there is not much difference with
QCD, and we expect the estimates quoted in this paper to also
apply to N � 4 SYM. The main interest in the N � 4 SYM
theory is that in the large-Nc limit, many quantities can also
be evaluated at a strong 't Hooft coupling l � g 2Nc 4 1, 31

using the duality conjecture [52]. In particular, the drag force
dE=dx acting on a heavy quark moving through a thick
N � 4 SYM plasma is given by [53]

dE

dx
� ÿ p

2

���
l
p

T 2

�������������������
E 2 ÿM 2
p

M
; l4 1 : �6:3�

This estimate is valid when M4 �lTE 2�1=3 [48, 54]. Depen-
dence (6.3) resembles the perturbative result in (4.24). One
difference is that the latter is valid in a different mass region,
namely M4 gE, and that it describes only the radiative
energy loss, which happens to be dominated by the colli-
sional loss in this region.

In Refs [55] (see also [56]), the energy losses of light
partons in a strongly coupled N � 4 plasma were estimated.
The dependence

dE

dx
� ÿl1=6�E 2T 4�1=3 �6:4�

for the mean drag force (for light partons, this quantity
involves large fluctuations) was found. This is different from
the perturbative dependence dE=dx / ����

E
p

. More studies in
this area are desirable.
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7. Appendices

A. Typical momentum broadening in Coulomb rescattering
We here consider a charged (colored) particle with E!1
moving in a perturbative QED (QCD) plasma and under-
going n successive Coulomb scatterings. The range 1=m of the
Coulomb potential is assumed to be much shorter than the
mean free path l between two successive scatterings, and
hence the elastic Coulomb rescatterings are considered
independent. We calculate the typical transverse momentum
qtyp�N� of the particle afterN scatterings. In the case of a fixed
coupling (QED), the result was found in Ref. [14] to be
q 2
typ�N� � m 2N lnN. We give an alternative derivation of this

result and generalize it to a running coupling (QCD).
We first consider the Abelian fixed-coupling case.

Coulomb scattering with the transverse momentum
exchange qi is associated with the normalized probability
density

1

stot

ds

d2qi
� P�qi� �

1

p
m 2

�q 2
i � m 2�2 ; �A:1��

d2qi P�qi� � 1 :

30 They were obtained in a model where the particle is scattered on a set of

static Coulomb sources separated by the average distance l. The presence
of the factor / ��������

lnE
p

in (2.29) is a robust model-independent feature, the

origin of the logarithm being the same as in (6.2). On the other hand, in

what particular way the argument of the logarithm is formed, whether it is

E=T, ET=m 2 � E=�aT �, or some other ratio, is a more delicate and

difficult question. Only an exact model-independent calculation (possi-

bly using the formalism in Ref. [37]) can resolve it. 31 Not to be confused with the mean free path!
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The average momentum exchange hq2i in a single Coulomb
scattering is logarithmically divergent. (The divergence is cut
off by the kinematical constraint on the maximal transverse
exchange jqjmax, but we focus on the E!1 limit, where
jqjmax !1.) On the other hand, the typical (median)
transverse momentum transfer qtyp, defined as the transfer
such that the probability of having jqj < qtyp is 1=2, is well
defined. Solving the equation�

d2qP�q�Y�q 2
typ ÿ q2� � 1

2
; �A:2�

we easily find that qtyp in one scattering equals the Debye
mass m.

We now determine the typical transfer qtyp�N� after N
scatterings, defined by�
d2q

�YN
i� 1

d2qi P�qi�
�
d 2

�
qÿ

XN
i� 1

qi

�
Y
ÿ
q 2
typ�N� ÿ q2� � 1

2
:

�A:3�

Representing the d-function as

d 2

�
qÿ

XN
i� 1

qi

�
�
�

d2r

�2p�2 exp

�
ir

�
qÿ

XN
i� 1

qi

��
; �A:4�

we use (A.3) to obtain

1

2
�
�
d2r

2p

�
~P�r��N � d2q

2p
exp �irq�Yÿq 2

typ�N� ÿ q2
�
; �A:5�

where

~P�r� �
�
d2qP�q� exp �ÿirq� � mrK1�mr� : �A:6�

The q-integral in (A.5) can be done exactly, leading to

1

2
�
�1
0

dr qtyp�N � J1
ÿ
qtyp�N � r

� �
rK1�r�

�N
� ÿ

�1
0

dr
�
rK1�r�

�N q
qr

J0
ÿ
qtyp�N � r

�
: �A:7�

In the last equation and in what follows, r is expressed in units
of mÿ1, and qtyp�N� in units of m. Integrating by parts and
using �rK1�r�� 0 � ÿrK0�r� we arrive at

1

2
� N

�1
0

dr rJ0
ÿ
qtyp�N � r

��
rK1�r�

�Nÿ1
K0�r� : �A:8�

Equation (A.8) for qtyp�N� was derived from (A.3)
without any approximation. We now assume that the
number of scatterings is large, N4 1, and derive the
asymptotic behavior of qtyp�N� in this limit.

Clearly, when N4 1, the integral in (A.8) is saturated by
r5 1. We can therefore approximate

K0�r� ' ÿ ln r; rK1�r� ' 1ÿ r 2

4
ln

1

r 2
' exp

�
ÿ r 2

4
ln

1

r 2

�
:

�A:9�
BecauseK0�r� is a slowly varying function for r5 1, it follows
from (A.8) that

1

2
' N

�
ln

1

r

�� 1

0

dr r J0
ÿ
qtyp�N � r

�
exp

�
ÿNr 2

4
ln

1

r 2

�
:

�A:10�

The integral is dominated by the region

Nr 2 ln
1

r 2
� 1 ()

N4 1
r 2 � 1

N lnN
: �A:11�

Using this, we can rewrite (A.10) as

1 ' N lnN

� 1

0

dr r J0
ÿ
qtyp�N � r

�
exp

�
ÿ�N lnN � r

2

4

�
: �A:12�

Setting u � �N lnN� r2, we rewrite (A.12) as

1 '
�1
0

du

2
J0

�
qtyp�N ���������������
N lnN
p ���

u
p �

exp

�
ÿ u

4

�
: �A:13�

Using�1
0

du J0
ÿ
C
���
u
p �

exp

�
ÿ u

4

�
� 4 exp �ÿC 2� ; �A:14�

we finally obtain [reintroducing the dimension of qtyp�N�]
q 2
typ�N � ' �ln 2� �N lnN � m 2 : �A:15�

This result also immediately follows from the expression

f �q 2
?;N � '

1

pm 2N lnN
exp

�
ÿ q 2

?
m 2N lnN

�
�A:16�

for the probability distribution of the transverse momentum
transfer q 2

? after N scatterings, derived in Ref. [14]. Indeed,
defining the typical transfer as in (A.3),�

d2q f �q 2;N �Y�q 2
typ�N � ÿ q 2� � 1

2
; �A:17�

and using (A.16), we recover (A.15).
The derivation above was performed for a fixed coupling,

and estimate (A.15) is therefore valid for QED. In QCD, the
running of the coupling must be taken into account, and this
brings about certain modifications. The effective coupling
constant depends on the transverse momentum transfer q 2.
The normalized probability density of a single Coulomb
scattering is now

P�q�
���
QCD
� 1

p
m 2

�q 2 � m 2�2
a 2
s �q 2�

a 2
s �m 2� F

�
m

LQCD

�

' 1

p
m 2

�q 2 � m 2�2
ln2 �m 2=L2

QCD�
ln2 �q 2=L2

QCD�
; �A:18�

where F�x� is a smooth function that tends to unity in the limit
m4LQCD we are interested in, and which we can therefore
choose as F � 1. The analysis is done along the same lines as
in QED.

We first note that expression (A.8) can be rewritten for a
general scattering probability density ~P�r� as

1

2
� ÿN

�1
0

dr J0
ÿ
qtyp�N � r

��
~P�r��Nÿ1 q ~P�r�

qr
: �A:19�

If N4 1, we typically have r5 1 (with r expressed in units of
mÿ1), implying that ~P�r� ' 1 [see (A.21)]. Thus, (A.19) can be
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approximated by

1

2
' N

�1
0

dr J0
ÿ
qtyp�N � r

�
exp

�ÿ�Nÿ 1�ÿ1ÿ ~P�r���
� q

qr

ÿ
1ÿ ~P�r�� : �A:20�

Using (2.18), we obtain (expressing q in units of m)

1ÿ ~P�r� �
�
d2qP�q�

���
QCD

ÿ
1ÿ exp �ÿirq��

'
� 1=r 2

0

dq 2 1

�q 2 � 1�2
ln2 �m 2=L2

QCD�
ln2 �q 2m 2=L2

QCD�
r 2q 2

4

' r 2

4
ln2
�

m 2

L2
QCD

�� 1=r 2

1

dq 2

q 2 ln2 �q 2m 2=L2
QCD�

' as�m 2=r 2�
as�m 2�

r 2

4
ln

1

r 2
: �A:21�

Comparing with (A.9), we see that the running of as manifests
itself in the factor as�m 2=r 2�=as�m 2�. Using (A.11), we now
infer that the running of the coupling modifies the fixed-
coupling estimate in (A.15) into the form

q 2
typ�N �

���
QCD
� as�Nm 2�

as�m 2� �N lnN �m 2 : �A:22�

It is interesting to note that the typical momentum
transfer at large N, in QED and QCD [see (A.15) and
(A.22)], can be heuristically obtained from the formulas

q 2
typ�N � � m 2N

� q 2
typ�N �

m 2

dq 2

q 2
�QED� ; �A:23�

q 2
typ�N � � m 2N

� q 2
typ�N �

m 2

dq 2

q 2

a 2
s �q 2�

a 2
s �m 2� �QCD� : �A:24�

We finally remark that (A.22) can also be represented as

q 2
typ�N �

���
QCD
� m 2N

ln �m 2=L2
QCD� lnN

ln �m 2=L2
QCD� � lnN

: �A:25�

Hence, for very large N, namely lnN4 ln �m=LQCD�, we
obtain

q 2
typ�N �

���
QCD
� Nm 2 ln

m
LQCD

� NT 2 : �A:26�

The scale T 2 is nothing but the average momentum transfer
hq 2
?i associated with QCD probability density (A.18). In

QED, this quantity is logarithmically divergent, but the
running of as in QCD makes the integral for hq 2

?i convergent
even when the upper bound is set to infinity, as can be seen
from (A.24).

B. The LPM effect and Feynman diagrams
In the main body of this paper, we have operated mostly with
heuristic arguments based on formation length estimates and
single-scattering formulas. The same results can be derived by
calculating the Feynman diagrams describing photon (gluon)
radiation in the process of multiple scattering of a fast particle
in a plasma. In this appendix, we do not attempt to perform a

complete diagram analysis, but present some illustrative
calculations that might help to better understand the origin
of the LPM suppression. We restrict ourselves to the Abelian
case and mostly follow the discussion in Ref. [41].

As in Appendix A, we adopt the model where a scalar
massless particle is scattered on static centers with a Yukawa
potential:

V�x� � a
X
i

exp
�ÿmjxÿ xij

	
jxÿ xij ; �B:1�

where xi is the position of the ith center. We consider the case
of only two such centers and assume that x1 � 0,
x2 � �x2?; z�. Then the elastic scattering amplitude (Fig. 16)
is given by

Mel / e 2
�

d3q1 d
3q2

�q21 � m 2��q22 � m 2� d
�3��q1 � q2 ÿ q�

� exp �ÿiq2x2�
1

p 2
1 � iE

: �B:2�

The total momentum transfer q and the intermediate electron
four-momentum p1 are given by

q � p2 ÿ p0 ; p1 � �E; q1?;E� q1k� ; �B:3�

where we have chosen p0 � �E; 0?;E�. In the model of static
centers, the energy transfer in each elastic scattering strictly
vanishes, q 0

1 � q 0
2 � 0, which implies that p 0

0 � p 0
1 � p 0

2 � E.
We integrate over dq1k dq2k d�q1k � q2k ÿ qk� by closing

the contour in the upper halfplane of q1k and picking up the
contribution of the pole in p 2

1 at the value32

p1k � E� q1k ' Eÿ q 2
1?
2E

: �B:4�

Using the on-shell condition p 2
2 � 0, we obtain

qk ' ÿq 2
?=�2E �, and from (B.2), we then obtain

Mel / e 2
�

d2q1? d
2q2?

�q 2
1? � m 2��q 2

2? � m 2� d
�2��q1? � q2? ÿ q?�

� exp �ÿiq2?x2?� exp �iFscat� ; �B:5�

q1

p1

p0 p2

q2

Figure 16. Electron elastic scattering on two centers.

32 The contributions of the poles of q21 � m 2 and q22 � m 2 are suppressed by

� exp �ÿmz�5 1. Indeed, the distance between successive scattering

centers is z � l, where the mean free path l satisfies l �
1=�e 2T �4 mÿ1 � 1=�eT � in a perturbative plasma.
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where

Fscat � z� p1k ÿ p2k� � z

2E

��q1? � q2?�2 ÿ q 2
1?
�
: �B:6�

To evaluate the elastic cross section, we fix the long-
itudinal distance z between the scattering centers and average
jMelj2 over x2?. Integrating further over d2q? yields

sscat / a 2

�
d2q1? d

2q2?
�q 2

1? � m 2�2�q 2
2? � m 2�2 : �B:7�

We next consider the process where the scattered fast
electron emits an additional photon. There are three graphs
shown in Fig. 17.

It is convenient to define the momenta pi as in the case of
elastic scattering [see, e.g., (B.3)], such that the pi `do not
know' about the emitted photon. On the other hand, the final
momentum is now given not by p2 but by p2 ÿ k, and the
intermediate momentum p1 ÿ k appears in the graphs in
Fig. 17a and 17b. This shift of momenta leads to a
modification of the phase factors in the amplitude. For
different graphs, this modification is different, and now we
cannot suppress the phase factors as we did in the case of
elastic scattering, when passing from (B.2) to (B.7).

We now consider the details of the mechanism under-
lying the appearance of these phase factors. We first consider
the graph in Fig. 17a. The conditions �p1 ÿ k�2 � 0 and
�p2 ÿ k�2 � 0 respectively imply the relations

p1k ' Eÿ p 2
1?
2E
ÿ oy 2

1

2
; p2k ' Eÿ p 2

2?
2E
ÿ oy 2

2

2
; �B:8�

where y1; 2 are the angles between the direction of the emitted
photon and p1 �p2�. We assume that the angles are small. 33

Substituting expressions (B.8) in the phase F � z�p1k ÿ p2k�,
we obtain

F �a�rad � Fscat � oz
2
�y 2

2 ÿ y 2
1 � �B:9�

for the graph in Fig. 17a, with Fscat given in (B.6). The
corresponding contribution to the radiation amplitude is

M�a�
rad � ÿ

h0 e

y 2
0

exp

�
ioz
2
�y 2

2 ÿ y 2
1 �
�
Mel ; �B:10�

where h0 � k?=o and e is the photon polarization vector.

For the graph in Fig. 17c describing the emission from the
final line, the structure ÿh0 e=y 2

0 is transformed into h2 e=y
2
2 .

The phase factor is different from that in the diagram in
Fig. 17a due to different kinematics. In this case, putting the
intermediate momentum on the mass shell gives not the
condition �p1 ÿ k�2 � 0 but p 2

1 � 0, and hence the expression
for p1k is not modified compared to the elastic scattering case.
We have

F �c�rad � Fscat � oz
2

y 2
2 ; �B:11�

M�c�
rad �

h2 e

y 2
2

exp

�
ioz
2

y 2
2

�
Mel : �B:12�

The diagram in Fig. 17b provides two different contribu-
tions from the poles p 2

1 � 0 and �p1 ÿ k�2 � 0. They both
involve the structure h1 e=y

2
1 , but the residues have opposite

signs. In addition, the phase factors for these two contribu-
tions are different. For the pole at p 2

1 � 0, the phase coincides
with (B.11), whereas for the pole at �p1 ÿ k�2 � 0, it coincides
with (B.9). The sum of all contributions can be expressed as
Mrad � eMel e J, where

J � J1 exp

�
i
oz
2
�y 2

2 ÿ y 2
1 �
�
� J2 exp

�
i
oz
2

y 2
2

�
; �B:13�

J1 � h1

y 2
1

ÿ h0

y 2
0

; J2 � h2

y 2
2

ÿ h1

y 2
1

: �B:14�

Each term in sum (B.13) corresponds to the radiation induced
by elastic scattering on the associated center. The phase
difference ozy 2

1 =2 between the two terms can be interpreted
as the phase acquired by a photon of energy o in the frame
moving with the fast particle [see (3.20)].

Result (B.13) can be easily generalized to the case of N
scattering centers. We assume that their longitudinal posi-
tions are zn � �nÿ 1�l, n � 1; . . . ;N. Then

J�N� � exp

�
i
ol�Nÿ 1�

2
y 2
N

�XN
n� 1

Jn exp �iFn� ; �B:15�

Jn � hn

y 2
n

ÿ hnÿ1
y 2
nÿ1

; hn � h0 ÿ
Xn
m� 1

qm?
E

; �B:16�

Fn � ÿol
2

XNÿ1
m� n

y 2
m ; n � 1; . . . ;Nÿ 1 ; FN � 0 : �B:17�

The radiation energy spectrum is

o
dI

do
� a

p2

�
d2h0

����XN
n� 1

Jn exp �iFn�
����2 : �B:18�

This should be averaged over qn? with the weightY
n

m 2 d2qn?
p�q 2

n? � m 2�2 : �B:19�

The analysis of expression (B.18) confirms the physical
picture outlined in Section 3. In particular, (i) the character-
istic total scattering angle is y 2

tot � Nm 2=E 2; (ii) the contribu-
tions of different scattering centers in (B.18) are coherent (and
hence we are dealing in this case with one effective scattering)
when oNly 2

tot � oLy 2
tot 5 1, i.e., when L5 �lE 2=�om 2��1=2.

q1

p0 p2 ÿ k

p1 ÿ k

k

q2
a

q1

p0 p2 ÿ k

p1 ÿ kp1

k

q2
b

q1

p0 p2 ÿ k

p1

k

q2
c

Figure 17. The amplitude of photon radiation induced by double elastic

scattering.

33 Indeed, the radiation probability is dominated by small angles.
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The scale �lE 2=�om 2��1=2 coincides with `med
f �o� defined in

(3.25). At o � E, the last quantity coincides with the
characteristic in-medium formation length L� (i.e., the
coherence length whence one photon of energy � E is
emitted).

Results (B.15) and (B.18) were derived for an asymptotic
particle. In the case where the particle is created in the
medium, the radiation amplitude can be obtained from
(B.15) by treating the position of the first scattering center
as the creation point and by suppressing the contribution of
the diagram analogous to Fig. 17a describing the emission
from the initial line. Suppressing the irrelevant common
phase factor in front of the sum in (B.15), changing
N! N� 1 and the labeling 1! 0, etc., we derive

Jcreation�N scatterings � h0

y 2
0

exp �iF0� �
XN
n� 1

Jn exp �iFn� : �B:20�

For N � 1, we reproduce the result in (5.2).
The medium-induced radiation spectrum is

o
dI

do

���� induced
N

�
�
d2h0

�
jJj2 ÿ 1

y 2
0

�
; �B:21�

where the square of the first term in (B.20) (corresponding to
the vacuum contribution) is subtracted, as in (5.3). We obtain

o
dI

do

���� induced
N

� a
�
d2h0

�
2
h0

y 2
0

XN
n� 1

Jn cos �F0 ÿ Fn�

�
����XN
n� 1

Jn exp �iFn�
����2 � ; �B:22�

which is conveniently represented as 34

o
dI

do

���� induced
N

� a
�
d2h0

�
2
h0

y 2
0

XN
n� 1

Jn
�
cos �F0 ÿ Fn� ÿ 1

�
�

XN
n 6�m� 1

JnJm
�
cos �Fn ÿ Fm� ÿ 1

��
: �B:23�

It is obvious that the induced spectrum vanishes when L � 0,
because this implies that Fn � 0 for all n.

We first consider the contribution of the first term in
(B.23) and concentrate on a particular term in the sum

P
n. As

can be seen from (B.17), the phase difference Fn ÿ F0 is
independent of hn, and hence of qn?. We can therefore
average over qn? before integrating. Averaging over azi-
muthal directions gives [see (5.4)]

hJniazim �
�

hnÿ1 ÿ qn?=E

�hnÿ1 ÿ qn?=E �2
ÿ hnÿ1
y 2
nÿ1

�
azim

� ÿ hnÿ1
y 2
nÿ1

Y
�
q 2
n?
E 2
ÿ y 2

nÿ1

�
: �B:24�

Averaging further over q 2
n? with weight (5.6), we obtain

hJni � ÿ m 2

E 2

hnÿ1
y 2
nÿ1�y 2

nÿ1 � m 2=E 2� : �B:25�

Thus, we obtain the contribution

o
dI

do

���� induced
1st term

� a
m 2

E 2

XN
n� 1

�
d2h0

y 2
0

h0hnÿ1
y 2
nÿ1�y 2

nÿ1 � m 2=E 2�

�
�
1ÿ cos

�
ol
2

Xnÿ1
m� 0

y 2
m

��
; �B:26�

where, in each term of the sum, the averaging over qm? with
m 6� n should still be performed.

We suppose that L5L� [otherwise the physics is the
same as for the asymptotic particle, and there is no
point in analyzing (B.23) instead of (B.18)]. Then
1=�oL� > 1=�EL�4Nm 2=E 2. Thus, bearing in mind that
y 2
0 � 1=�oL� (to be verified a posteriori) and jq�m6�n�?j � m,

we derive

m 6� n) y 2
m ' y 2

0 �
1

oL
4N

m 2

E 2
: �B:27�

We arrive at estimate (5.7) of the spectrum, giving [see (5.9)]

o
dI

do

���� induced
1st term

� a
ooc

E 2
; �B:28�

which contributes to the average loss as

DE
��
1st term

� aoc : �B:29�

The integral is indeed dominated by angles of the order of
1=�oL�.

We show now that for L5L�, the contribution of the
second term in (B.23) is suppressed compared to (B.28) and
(B.29). The sum involves � N 2 terms. We consider one of
these terms, for example, the term with m � 1, n � N. The
phase difference

F1N � FN ÿ F1 � ol
2

XNÿ1
k� 1

y 2
k

is independent of qn? and we can average Jn over it as before.
In addition, choosing h1 rather than h0 as the integration
variable, we observe that F1N is independent of q1?, and we
can also average J1 over q1?. We obtain

o
dI

do

����
1N

� a
m 4

E 4

�
d2h1

h1 hNÿ1�1ÿ cosF1N�
y 2
1 �y 2

1 � m 2=E 2�y 2
Nÿ1�y 2

Nÿ1 � m 2=E 2� :

�B:30�

In contrast to integral (B.26), this integral is not dominated by
large angles with F1N � 1. Indeed, assuming yk ' y1, we are
led to the integral

�
�
Nm 2=E 2

dy 2

y 6

�
1ÿ cos �oLy 2�� ; �B:31�

which is saturated by

N
m 2

E 2
5 y 2 5

1

oL
; �B:32�

and exhibits a logarithmic behavior. Expanding cos �oLy 2�
[which we are allowed to do in view of (B.32)], multiplying the
contribution of one term in the sum in the second term in34 We use that

P
n Jn � hN=y

2
N ÿ h0=y

2
0 and

�
d2h0 �1=y 2

N ÿ 1=y 2
0 � � 0.
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(B.23) by N 2, and neglecting the logarithmic factor that is
irrelevant in the present discussion, we obtain the estimate

o
dI

do

���� induced
2nd term

� a
�
ooc

E 2

�2

: �B:33�

Integrating this over o gives the average loss

DE
��
2nd term

� a
o2

c

E
� aE

�
L

L�

�4

: �B:34�

This is indeed suppressed by � oc=E � �L=L��2 5 1 com-
pared to contribution (B.29) of the first term in (B.23).
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