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Abstract. The paper presents a historical review of theoretical
concepts regarding the nature of the ferroelectric transition in
crystals with a perovskite structure. We discuss Ginzburg’s
phenomenological theory, including the idea of the soft pho-
non mode as a reason for the ferroelectric transition. The role
played by the dipole—dipole interaction in softening the optical
phonon mode is considered in the framework of the theory of
lattice dynamics. The experimental data and theoretical results
are presented that prove that the ferroelectric transition in
perovskite crystals is due to the soft mode and is a displace-
ment-type transition.

1. Introduction

This report can be considered a historical review of the
evolution of theoretical concepts regarding the nature of the
ferroelectric transition in ion crystals. The material presented
is mainly based on reviews [1-3] published earlier in Physics—
Uspekhi. Of course, the reviews of ferroelectricity published in
Uspekhi are more numerous than the references given above,
and we do not limit ourselves to presenting reviews [1-3]. Nor
do we limit our consideration to long-known facts and
theories concerning ferroelectricity. Instead, we consider
some problems concerning the physics of ferroelectrics that
have not been solved yet. Nevertheless, we start by consider-
ing the accepted phenomenological theory of ferroelectricity
suggested by Ginzburg [1, 4] more than 60 years ago, which is
still efficiently used.
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2. Phenomenological and model theories
of ferroelectricity

The transition to the ferroelectric state is related to the origin
of spontaneous electric polarization in a system, which is
usually associated with its dipole moment. Ginzburg sug-
gested writing the free energy of a ferroelectric in accordance
with the Landau general theory of phase transitions in the
form

1
F(T,n, P) =5 Cri(niy +nz +135)

+ Ca(naahaz + M33my + Niita) + ar(PE + P3 + P3)
+an (P} 4 Py + P}) + an(PP; + PR P} + P3P})

+ai (PY + PY+ PS) + gii(ny P+ 1Py +n3P3),
@2.1)

where C;; are the elastic constants, #, i is the stress tensor, and
P is the polarization vector. The free energy is expanded into a
series, up to the sixth power, in the polarization. The last
summand is responsible for a relation between the crystal
tensions and the polarization. In the simplest case where
tension effects are neglected, we can express the free energy as

F(T,P):a1P2+a11P4+a111P6. (22)

All the coefficients in (2.1) and (2.2) for the free energy
depend on the temperature. Nevertheless, most of them are
usually considered temperature independent in calculations.
An important part of the theory is the temperature depen-
dence of the coefficient a;, which is given by

a =a(T-T,), (2.3)
where o is a positive constant and T is the temperature of the
system transition into the ferroelectric state. At T > T¢, the
term quadratic in P is positive and the free energy, as a
function of polarization, has a single minimum at P = 0. At
T < T, the quadratic summand is negative and the thermo-
dynamic potential has two minima at P = £+ Py, where Py =
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Figure 1. Free energy F of a ferroelectric as a function of polarization P for
T>T.(a)and T < T¢ (b).

v/—ai1/(2ay,) is the equilibrium polarization (see Fig. 1). The
relation for F describes a second-order phase transition for
ap; > 0 and a first-order phase transition for a;; < 0.

In problems with a spatially nonuniform polarization,
free energy (2.1) may include a polarization gradient
summand. Equation (2.1) may also include an external
electric field E:

F(T,P) = a;P* 4 a;,P* — PE. (2.4)
In equilibrium, the condition 8F/0P = 0 implies

2a;P + 4a,,PP? =E. (2.5)
In a weak field, we can write the relation

PzpwﬁggﬁE, (2.6)

where ¢ is the total static dielectric constant and &, is the high-
frequency dielectric constant due to excited electron shells.
From (2.5) and (2.6), we obtain the Curie—Weiss law for ¢ at
T=>T.:

2n
s , 2.7
AT T 27
according to which the dielectric constant should tend to
infinity in the phase transition into the ferroelectric state.
In the framework of the phenomenological approach,
relation (2.5) was generalized by Ginzburg to the case of an
alternating field [4]:
1 .
uP" +vP' +a\ P+ 2a P? :EEoexp(m)t). (2.8)
The first two summands in (2.8) include time derivatives of
the polarization and can be respectively written as —w?P and
iwP. Hence, at T > T., we obtain the dielectric function

2n/

= 8o . 5 29

e(w) = eoo + PR CY P (2.9)
where

=4 (2.10)

Expression (2.9) is the standard dispersion relation, from
which, in particular, the Lidden—Saks—Teller formula can be
derived:

(2.11)

where the frequencies of the longitudinal wp and transverse
T excitations in the system respectively determine a zero and
a pole of ¢(w). It follows from Eqns (2.9) and (2.11) that
oL = w;, and Eqns (2.3) and (2.10) imply that the transverse
excitation should exist in ferroelectrics, the so-called soft
mode at the frequency that tends to zero as the temperature
approaches T. The other situation is also possible, in which
the properties of the ferroelectric system are determined not
by an oscillating but by a relaxation mode. Then in (2.8) we
should neglect the second derivative of P and write the
dielectric function as

2n/a1
; =¢ 2.12
() = b + (2.12)
where
1
=— 2.13
TuTToT (2.13)

is the relaxation time. The result obtained means that the
relaxation time tends to infinity near the transition.

We do not thoroughly consider the phenomenological
Ginzburg theory and the results that follow from it, because
there are numerous reviews and monographs in this field (see,
e.g., Refs [5, 6]). Recently, Bratkovsky and Levanyuk [7]
presented a review of theoretical investigations in the frame-
work of the Ginzburg theory for thin ferroelectric films and
nanosructures of various types. In what follows, we mainly
discuss theoretical problems concerning the nature of
ferroelectricity itself and the reasons for its appearance in
crystals.

As was mentioned above, the anomalous behavior of the
low-frequency dielectric function in a ferroelectric phase
transition, which is related to the presence of a ‘soft’
transverse optical mode in a system, was first mentioned by
Ginzburg [1, 4]. Because no other low-energy transverse
modes except phonons are present in ion crystals, it is natural
to ascribe the lattice distortion in the ferroelectric transition
to the loss of stability by one of the lattice normal vibrations.
Later, Cochran [8, 9] presented the ferroelectric transition
problem as just a problem of the loss of the lattice dynamics
stability.

Another possibility of the arising ferroelectric instability
is related to the presence of ions with a negative individual
rigidity at the central (symmetric) position in the paraelectric
phase. This means that the potential in which such an ion
would move at fixed equilibrium positions of the rest lattice
ions has several local minima shifted from the symmetric
position. In this case, the phase transition to the ferroelectric
state is related to the ion ordering in one such equivalent
minimum and an anomalous system behavior may be
observed for the relaxation processes near the point of
transition to the ferroelectric state.

Experimental results show that there are two definite
groups of ferroelectrics. In one of them (displacement-type
ferroelectrics), the ferroelectric state arises due to the loss of
stability by one of the dipole transverse optical vibrations of
the lattice in the paraclectric phase at low temperatures.
When this mode ‘freezes’ at T = T, a dipole moment arises
in every crystal cell. In the other group (order—disorder-type
ferroelectrics), the dipole moments actually exist in the
symmetric paraelectric phase; however, they are disordered
at T > T.. In Fig. 2, two typical samples of both ferroelectric
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Figure 2. Structure of a ferroelectric before and after the phase transition:
(a) a displacement-type ferroelectric BaTiOs with the Ti ion displaced
along the (001) axis, (b) the order—disorder transition in NaNO-.

groups are shown. These are a perovskite BaTiOs crystal as an
example of a displacement-type ferroelectric and an NaNO,
crystal as an example of an order—disorder-type ferroelectric.
In BaTiOs at T' = T, a relative displacement of the Ti and O
sublattices occurs, which is related to one of the transverse
optical modes of perovskite oscillations. The transition in
NaNO; is related to jumps of nitrogen ions and their
ordering. In what follows, we do not deal with order—
disorder-type ferroelectrics and only consider displacement-
type transitions.

The relation between the microscopic theory of ferro-
electric phase transitions in crystals and lattice dynamics was
directly confirmed in experimental investigations of phonon
spectra in displacement-type ferroelectrics. ‘Soft’ transverse
optical (TO) lattice vibrations were observed in these crystals
by means of infrared spectroscopy, Raman scattering, and
inelastic scattering of thermal neutrons [5, 6]. It is obvious
that the most important system properties responsible for the
existence of the ferroelectric phase transition in crystals,
namely, the instability of critical TO lattice vibrations at low
temperature and the temperature dependence of the optical
phonon frequency resulting in stabilized TO vibrations at
high temperatures, can only be calculated in the framework of
the microscopic theory of lattice dynamics. This is a rather
difficult problem, which has not completely been solved yet.

In developing a consistent microscopic theory of the
ferroelectric instability, simple models play an important
role; in contrast to formal general expressions, simple models
comprise information on qualitative features and distinctions
in the crystal and electron structure and the type of chemical
bonds for the compounds under study.

For a long time, in the framework of the simple atomic
theory of ion crystals with the long-range Coulomb attraction
between ions and short-range repulsion taken into account,

the approach to solving the ferroelectric instability problem
was developed based on the idea of the contributions of short-
range and long-range dipole forces (local field) to the squared
frequency of the critical TO lattice vibrations (see review [2]).

All known ferroelectrics are dielectrics or semiconductors
having greater or lesser bond ionicity. Hence, the simplest
model capable of taking substantial features of the phenom-
enon into account is the model of polarizable point-like ions
with charges Z! and dipole electron polarizabilities of ions o
(sis the sublattice index). In this model for a cubic crystal with
two ions in an elementary cell [10], we can obtain the
following expressions for the frequencies of the optical
phonons with the momentum ¢ = 0:

Q%o = 902 -

QgD, (2.14)

Qo = Q% + —92 (2.15)

where Q2 = 4me? /o, pis the reduced mass of the cell, vy is
its volume, Q7 is the positive contribution of short-range
forces, and Qf is the negative contribution of the regular
part of the dipole—dipole interaction (local field). An
additional contribution to the frequency of longitudinal
optical phonons QEO is associated with the macroscopic
field arising under longitudinal optical (LO) vibrations of
the lattice, which is responsible for the splitting of LO- and
TO-frequencies in polar crystals.

It follows from (2.14) that the ferroelectric instability of
the cubic phase arises under the condition Q7 < Q3 which
is possible due to either an anomalous reduction in 7 or an
anomalous increase in Q3. In a particular system, the choice
between these two possibilities is hindered for a number of
reasons. The main reason is the limited applicability of the
model of polarized point-like ions for describing crystals with
ferroelectric properties. The main problem in this model is the
absence of a consistent microscopic description of the
contribution of short-range forces to the optical frequencies,
thati 1s of QO However, it is possible to study the dependence
of Q bp On experimentally measured macroscopic parameters
of an ion crystal in this model by writing the expression for
Q3 as

Z Z2%
QéD_(sx+2)<3> 02—

et 2, 2.16
where Zg = (e + 2)Z;i/3 is the dynamic Born charge. The
dielectric constant &, in this model is given by the known
Lorentz—Lorenz formula

4TCﬂ/’U()
1 —4nB/(3vg) ’

where f§ = > a;.

It follows from (2.14), (2.16), and (2.17) that an increase in
the electron dielectric constant ¢, favors the greater con-
tribution of the dipole forces to Q2 that is, a greater
instability of TO vibrations of the lattice. An increase in the
dynamic Born charge Z. should be simultaneously observed
in this case. Just this behavior is observed in compounds with
the structure like NaCl and CsCl. This tendency is more
pronounced in semiconductor compounds 44B° (GeTe,
SnTe). Compounds 4*B° have a very small “ionicity,” that
is, their effective ion charges are very small: Z; =~ 0.2—0.3.
The contribution of dipole forces to Q3 noticeably
increases due to large permittivity values &,, ~ 30—40. It

=14 (2.17)
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can be shown [11] that the contribution of short-range
forces, that is, the parameter Qg, is not as small in 4*B°
compounds as in other binary ion crystals and that the
ferroelectric instability in these crystals is completely
determined by the large contribution of the dipole—dipole
interaction Q2.

In polyatomic cubic ferroelectrics with a perovskite-type
structure, there is one more reason for the increased
contribution of the dipole forces to QIZ)D, which was first
mentioned by Skanavi [12] and Slater [13]. This reason is
related to the specific features of the local field factor f in
polyatomic crystals, which determines the relation between
the mean field E and the local field Ejoc (Eijoc = E+fP). In
two-atom crystals, the Lorentz factor of the local field is
f=4m/3. Calculation of internal fields in crystals with a
perovskite-type structure performed in Refs [12, 13] shows
that the internal field in the perovskite structure is not
Lorentzian and some structural constants of the internal
field are of the order of 30, that is, an order of magnitude
greater than the Lorentz factor. This may result in an
anomalously large contribution of dipole forces to one of
the frequencies of TO lattice vibrations in the cubic phase.

The model approach to the ferroelectric instability
problem given above and the conclusion concerning the role
of the dipole—dipole forces and local field factors in the origin
of ferroelectricity in ion crystals have often been criticized.
This is mainly connected with the model treatment of the
interaction forces in ion crystals. However, in the framework
of the exact microscopic theory of lattice dynamics, Kvyat-
kovskii [14, 15] showed that relations (2.14) and (2.16) are
valid not only for the model of the polarized atom but also for
all types of ion crystals.

Before starting the discussion of microscopic theories of
lattice dynamics and ferroelectric instability, we consider an
important problem concerning the concept of polarization
itself, which is a principal part in the theory of ferroelectricity.
The above speculations were based on the classical considera-
tion of ion crystal physics. This is not critical because the
phenomenon of ferroelectricity, in contrast to magnetism,
may exist in the framework of classical physics as well. It is
known [16] that the macroscopic polarization P for a finite-
size body is the mean polarization density field p(r):

P(r) = [ par.

V (2.18)

where V' is the body volume. According to the Maxwell
equations, the polarization density p(r) satisfies the relation

divp(r) = —p(r), (2.19)
where p(r) is the total charge density. The polarization p(r)
exists only inside the body. Using Eqn (2.19) and integrating
(2.19) by parts, we obtain

P(r) = ler(r) dr + J r(p(r)ds) .

> ) (2.20)

We may choose the integration surface in (2.20) outside the
body, in which case the second term in (2.20) vanishes. Thus,
the macroscopic polarization of a finite-size sample is
uniquely determined by its dipole moment, that is, by the
first term in (2.20), which completely agrees with the
statement presented at the beginning of this review.

It is not easy to define the concept of polarization for an
electrically neutral system with a periodic charge density

distribution. The dipole moment of such a system depends
on how the sample was cut, on its surface condition, and so
on. Moreover, the absolute value of the polarization can be
neither defined theoretically nor measured (see review [3] and
the references therein). We can only measure the variation of
polarization if some external factors change, such as the
external electric field or the internal state of the crystal, for
example, as a result of the phase transition from the nonpolar
to the ferroelectric phase. Such variations are determined by
the bulk properties of the crystal and this part of the
polarization can be theoretically defined for an infinite
sample as well. For this, we should consider the variation of
polarization AP rather than the polarization P itself. It is
convenient to separate the variation of polarization into a
sum of two contributions, the contribution of the displace-
ments of atomic nuclei and the electron contribution:

AP = AP, + APy . (2.21)

In the case of the ferroelectric transition, the contribution of
atom nuclei is determined as [10]

1 1 nucl
APy = ~ Adpyg = - Z Z"™(5)AR(s) (2.22)

where vy is the volume of the elementary cell and Z ™ (s) and
AR(s) are the charge and displacement of the sth nucleus.
Summation in (2.22) ranges over a single elementary cell.
Expression (2.22) represents the dipole moment resulting
from ion displacements.

The electron contribution to the polarization can be
determined as [17]

APy = lJ Opy(r)dr, (2.23)
0

Vo JQ

where dp (r) satisfies an equation similar to Eqn (2.19):

div dpy(r) = —3p(r) (2.24)
with dp(r) being the electron density variation due to the
displacement of nuclei. Integrating Eqn (2.23) by parts, we
obtain the electron contribution to the polarization of the
crystal in the form

AP, = iJ rdp(r)dr —&-LJ r (ndp,)dsS. (2.25)
Qo Yo Js

Vo

The first term in (2.25), in addition to nucleus displacement
(2.22), yield the dipole moment of an elementary cell.
However, there exists the additional term in (2.25), which
actually describes the transfer of polarization between cells.
In the case of polarizable point-like ions, this term is zero and
the crystal polarization is given by the sum of the dipole
moments of elementary cells. For a continuous electron
charge distribution, as in crystals, we just do not know, as
was mentioned in Ref. [17], how to proceed with the second
summand in (2.25), especially if we calculate the uniform
polarization of the crystal as a whole. Based on this fact, it
was concluded in [17] that the density distribution in an
elementary cell of a periodic crystal is not sufficient for
determining its polarization. Moreover, it was stressed that
each term in (2.25) depends on the choice of the elementary
cell; however, their sum is invariant with respect to such a
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choice. Hence, to exactly define the value of the electron
contribution to the polarization, we need some additional
information on the properties of the periodic distribution of
density or should use some other definition of the polariza-
tion distinct from that defined by Maxwell equation (2.19). In
the framework of classical physics, we can represent the
variation in the electron density as
3p(r) =Y 8p,(r—R,). (2.26)
n
This means that the variation in the electron density is directly
related to its variation in each ion. Then we can rewrite
Eqn (2.19) for the Fourier components of the charge density
and polarization in the form

iqdp(q) = —dp(q) - (2.27)

Now we obtain the following expression for the variation of
the electron density in the long-range approximation (q — 0):

iadp(e) = [dr exp a0 Y3, (- R,). (229

Expanding the exponential in a small vector ¢, we obtain

iqop(q) = Il/J dr (1 + iqr) Z:apn(r _R,). (2.29)
Using the electric neutrality condition
JdrSp(r) =0, (2.30)
we find
1
SP(0) =— ) ddy, 2.31
0= >3 @31)

where 0d; is the dipole moment of the sth ion and the sum is
taken over s within a single elementary cell:

3d, = JrSp(r) dr. (2.32)

Thus, expression (2.31), in addition to the contribution of the
displacements of nuclei in (2.22), does yield the dipole
moment of an elementary cell in this model.

Even if we distract ourselves from the difficulties related
to the definition of polarization, it is clear that any calculation
of electron density variations, which inevitably arise in
ferroelectric transitions, should be performed within quan-
tum mechanics. Presently, the most popular quantum
mechanical approach to the calculation of properties of an
electron—ion system is the density functional method [18]. We
consider such calculations in Section 3.

3. First-principle calculations
of ferroelectric systems

We do not thoroughly consider the density functional method
here, and only recall some important details. It has been
proved that the energy of the ground state of a system of
interacting particles (in our case, electrons) is a unique
functional of the density distribution p(r) for these particles,

and hence p(r) implicitly defines all the properties of the
ground state of the system. The actual density distribution is
given by the minimum condition for the energy functional:

SEa{p(r)}

R

(3.1)

The electron energy includes the kinetic energy, the energy of
the interaction with ions, the Coulomb interaction between
electrons, and the exchange-correlation energy. Nominally, it
can be written in the form

Eel - Ekin + Eife + Eefe + Exc . (32)

Kohn and Sham [19] suggested seeking a solution of
Eqn (3.1) for the density p(r) in the form of the density of a
system of noninteracting electrons placed in an external self-
consistent field:

p(r) =" W[ (3.3)

For the wavefunctions ;(r), we can write the Kohn—Sham
equation [19] as

292
(_h v + Veff(r))‘//i:f;ilﬁia

- (3.4)

where V(r) is the effective potential.

All the parameters needed for finding the total electron
energy and the effective potential, except the exchange-
correlation energy, are known. Within various approxima-
tions for the exchange-correlation energy (we do not consider
them due to the limitations of our review; for further details,
see reviews [20] and [21]), these equations can be solved and
the total crystal energy for various crystal structures can be
calculated. This approach also allows calculating the electron
contribution to the dynamic matrix of crystal vibrations.

Since the 1980s, several ion crystal properties have been
calculated [22-24], including the properties of oxides with a
perovskite structure, by the density functional method. It was
found from these calculations that the energy of the distorted
ferroelectric phase in BaTiO3, KNbOj3, and PbTiOs; crystals is
less than that of the cubic phase. In an SrTiOj; crystal, the so-
called antiferrodistortion phase has a minimal energy. In
Fig. 3, the calculation results are shown [22] for the total
energy of a BaTiOs crystal as a function of the Ti ion
deviation u from the equilibrium. It follows that just the
rhombohedral lattice is the most energetically preferable
crystal structure at 7 = 0. Calculation results are also given
for various volumes of an elementary cell, showing that at a
smaller cell volume, i.e., at higher pressure, the energy
difference between the paraelectric and ferroelectric phases
reduces. This means that at a sufficiently small pressure, the
phase transition to the ferroelectric state disappears. This fact
additionally hinders first-principle calculations because it is
difficult to precisely determine the equilibrium distances
between atoms. In some works, the phonon spectra of
perovskite crystals in the cubic phase were also calculated. It
was shown that at 7= 0, these spectra have an unstable
optically active mode with w3 (q) < 0.

Despite good success in calculating eigenenergies for
various phases of ion crystals, it is difficult to distinguish a
physical reason for a particular instability of the cubic phase.
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Figure 3. Calculation of rhombohedral (solid line) and tetragonal (dashed
line) phase energies at various ratios of the lattice parameter ¢/a for two
volumes of an elementary cell.

Nevertheless, as was shown above, the nature of the ferro-
electric instability has been determined in the framework of
phenomenological theories of ion crystals. It is explained by a
large negative-sign contribution from polar-active phonon
modes of long-range dipole—dipole interactions between ions.
The concepts of ions and ion dipoles are absent in the
framework of the density functional method and we are only
dealing with a periodic distribution of the charge density,
which is given by sum (3.3) over Bloch wave functions.
Moreover, the serious problems mentioned above inevitably
arise in this approach in describing the electric polarization of
an ion crystal with a periodic electron density distribution.

In the early 1990s, an approach was suggested for
determining the uniform polarization of a periodic crystal
[25, 26], which avoided the difficulties concerning determina-
tion of the dipole moment in the theory of infinite systems.
This approach is based on the definition of polarization in
terms of the current across the system:

aPel(l‘) .
ot - Jel(r7 t) .

(3.5)

Relation (3.5) can be easily verified by using (2.24) and the
continuity equation
apel(rv t)

div jy(r,t) + ———==0.
IVJCl(r7 )+ al

(3.6)
Writing (3.5) in terms of Fourier components P (q, ) and
je1(q, @), we obtain

jel(q7 CO)

Pi(q, ) = -1 =" .

L (3.7)

In the adiabatic approximation @ — 0, the expression for the
static and uniform polarization takes the form

Py = — lim (lim Im M) .
w—0 \ q—0 w

(3.8)

The current operator, in contrast to the coordinate operator,
is a well-defined parameter and its mean value over the
quantum mechanical state of the system can also be easily
calculated in the case of a crystal with periodic boundary
conditions. Finally, under a variation of the external para-
meter A (for example, a displacement of the ion sublattice), the
electron polarization is given by the formula

i 2e . B u? 2
Px - (27_[)3 Im Z Uy Uy ) >

n=1

where uy,(r) is the Bloch amplitude periodic in r, 7 is the zone
index, and the sum is taken over filled zones. The integral in
the right-hand side of Eqn (3.9) is closely related to the so-
called Berry phase [27] for the nth zone. We consider neither
the relation between the Berry phase and the electron
polarization nor the technique for calculating the crystal
polarization by using this approach. These problems are
thoroughly considered in recent review [28].

All the problems mentioned above concerning the use of
the density functional method for ion crystals led some
investigators to conclude [28, 29] that all classical theories of
ion crystals are wrong. The reasons are as follows. In the
framework of this approach, it is impossible to introduce the
concept of well-defined ions in a crystal, and hence the
concept of crystal polarization as a sum of dipole moments
of individual ions has no physical meaning. Based on
formulas (3.5)-(3.9), the authors of [28, 29] reached the
conclusion that the crystal polarization is determined by the
current across the crystal and is expressed in terms of the
Berry phase of Bloch periodic functions rather than in terms
of a redistribution of the electron charge and variation of the
dipole moment of the cell. We note that the use of the Berry
phase for describing a polarization process in crystals is not a
transition to new physics but merely the use of another
mathematical language.

Kvyatkovskii [30] showed that Eqn (3.9) for the electron
polarization can be obtained in the framework of the long-
wavelength approximation by using the dipole moment
operator instead of the current operator. We do not discuss
the details of this work. We only note that formula (3.9)
directly entails the conclusion needed. With this aim, we use
the known relation [30]

”;f}k) .

(v ra) = (v
Integration over the coordinate in (3.10) is taken within a
single elementary cell; hence, the integral in the left-hand side
of (3.10) has a well-defined value. From formulas (3.9) and
(3.10), we can also conclude that under changing the
parameter 4, the polarization varies due to either a current
flow or a change in the dipole moment of the elementary cell.

This circumstance is more pronounced in another
approach to the calculation of ion crystal properties, which
has been developed by our group at the Theoretical Depart-
ment of the Lebedev Physical Institute, Russian Academy of
Sciences [31-36]. This approach, which we call the method of
the deformable and polarizable ion, is based on representing
the total electron density in a crystal in the form of a sum of
individual densities of overlapping ions rather than as the
density of a system of noninetracting electrons residing in a
self-consistent periodic potential. We note that this approach,
similarly to the Kohn—Sham method, is based on the density

(3.9)

o
ok,

o (3.10)
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functional method and is therefore a first-principle approach.
We briefly describe the essence of the method in Section 4. It is
thoroughly considered in our papers [30-36], in review [3],
and in works by a group from Krasnoyarsk, which success-
fully used this method for calculating various properties of
ion crystals (see, e.g., Refs [37-39]).

4. The method of the deformable
and polarizable ion

The total electron density in a crystal can be represented as a
sum of individual densities of overlapping ions:

D=3 pr-R (4.1)
i
The total crystal energy can then be written as
{Z p(r } +EN, (4.2)
where EN is the energy of interacting nuclei (or ions),
02 ZNzN
e
EN — L 4.3
72 R R 43

Z,-N is the nucleus charge, and the electron contribution to the
total energy is given by formula (3.2). This approach was used
by Jensen and Lenz [40, 41] in the early 1930s. For the kinetic
and exchange-correlation energies, they used the local
approximation suggested by Thomas [42] and Fermi [43].
The density functional method involving expression (4.1) for
the electron density was used for calculating properties of ion
crystals by Kim and Gordon [44]. The electron density
p;(r = R;) for an individual ion was calculated in that work
by the Hartree—Fock method. It was assumed in [44] that
during the formation of a crystal, the electron density
distribution in each particular ion remains constant in
accordance with the ‘rigid’ ion model. For better conver-
gence of the calculation, the sum of single ion energies can be
added to and subtracted from the expression for the total

energy:
or [E{Z p;(r Ri)} - ZE{pi(r - Ri)}}
R)}+EN.

+ Z E{p(r

By neglecting the overlapping of more than two ions
simultaneously and the eigenenergy of ions added in (4.4)
(the third summand), we can rewrite the expression for the
total energy in the form

zz| |+Z”’

where V;; describes the short-range repulsion between ions
and Z; is the ion charge. Here, Z;=ZN +Z¢, and
VAR [ pi(r) dr. Thus, the Gordon-Kim model in its orlglndl
form reduces in accordance with formula (4.5) to the known
model of rigid ions [45]. The results of calculations in [44]
show that this model with no adjustable parameters describes
the static properties of alkali halide crystals sufficiently well.
However, like any rigid ion model, it has some drawbacks
because it does not account for the difference in the electron

(4.4)

(4.5)

density distributions for a free ion and for an ion residing
inside a crystal. In addition, the Gordon—Kim model cannot
be used for calculating some ionic crystals, in particular,
peroxides, because the oxygen ion O?>~ does not exist in the
vacuum and is only stabilized in the crystal environment field.
Moreover, in calculating ionic crystals, the possibility of the
formation of a dipole and other multipole moments must be
taken into account.

In solving these problems [46—48], a number of difficulties
arose, which have not been overcome. One such problem is to
determine the eigenenergy of an ion having multipole
moments. It was shown above that in order to pass from
expression (4.2) for the total crystal energy to formula (4.5),
which has the form of the total energy in the rigid ion model,
we had to subtract and add the sum of energies of single ions.
In the Gordon-Kim approach, which uses the electron
densities of free ions, the added sum of ion energies can be
neglected because it is independent of the crystal environ-
ment.

The situation is quite different if multipole moments of
ions are taken into consideration. In that case, we must
specify what should be added to crystal energy (4.2) and
subtracted from it if the electron density depends on these
moments. This problem can be solved consistently only by
using the methods developed by M A Leontovich in the
theory of nonequilibrium thermodynamics [49], which was
done in our work [31-36].

The essence of our generalizations of the Gordon—Kim
model is as follows. First, according to the Leontovich
nonequilibrium thermodynamics theory [49], we define a
nonequilibrium state of each ion, in which the electron
density distribution has a different multipole symmetry.
This implies that we define ions having some effective radius
Ky, dipole moment P, quadrupole moment Q, and so on. For
this, the Kohn—Sham equation is solved for a single ion with
the auxiliary fields having the corresponding symmetries,
which can be written as

Vexi(t, K;) = —r'K; Py (cos8) (4.6)
where P; (cos 6) is the Legendre polynomial and, in the case of
the dipole symmetry, K; is just the amplitude of the external
electric field. Solving the Kohn—Sham equation, we obtain the
electron density distribution

p(r) = po(Ko,x) + K;0p,(Ko, 1) P;(cos0) . (4.7)

According to the standard electrodynamics, we can define the
multipole moment P; as

P = K,Jdrrlép,(Ko,r) Py (cos 0) (4.8)
and the corresponding polarizability as
P/ /
n= = drr'8p,(Ko,r) P;(cos0). (4.9)
i

Using the Leontovich nonequilibrium thermodynamic
theory, we can calculate the eigenenergy of the ion and
represent it in the form

Elfr'ffjdrz‘prﬁ) 2“01 dr’%JrF{p )}, (4.10)
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Figure 4. The energy of a BaTiO; crystal versus the ion displacement
amplitude in the ferroelectric phase (zero energy is calculated from the
cubic phase energy, the values on the axes are in atomic units). The large
and small circles respectively refer to the results of calculations with
quadrupole distortions of the oxygen ion density neglected and taken into
account.

where F{p(r)} is the contribution of the kinetic and
exchange-correlation energies. Thus, the expression for the
total energy can be written as

B = {E{Zp,—u “R)b - Y B (ptr - R} + £

1

+ D Esa{pir =Ry} (4.11)

The nonequilibrium thermodynamic theory substantially
simplifies the expression for the eigenenergy of an ion. In
particular, the dipole contribution Eifrllf can be reduced [36] to

the simple expression known in classical electrostatics:

P2
= (4.12)
Just this value should be added to the expression for total
energy (4.11).

We do not thoroughly discuss the results of our study
performed in the framework of the model of deformable and
polarizable ions; we just present some important examples.
We have shown [35] that in the distorted ferroelectric phase in
a BaTiOj crystal, the ion displacements from the equilibrium
state of the cubic phase agree well with experimental data only
if both dipole and quadrupole distortions of the electron
density for oxygen ions are taken into account. If only the
dipole distortions are taken into account, then the ion
displacements are overestimated by a factor of two and the
reduction in the total energy in the ferroelectric phase is
overestimated by an order of magnitude, as shown in Fig. 4.
In simple models for the polarizable ion, this circumstance
was ignored.

Another example is the calculation of the electron
contribution to the dielectric constant ¢,,. We have shown
that if only the dipole distortions of the electron density are
taken into account, the expression for the total energy
formally coincides with that obtained in the most general
phenomenological model of deformable and polarizable ions.
In our approach, all the parameters involved in the formula
for the total energy are explicit density functionals, in contrast
to the case in phenomenological models, and can be
calculated by numerical methods relatively easily. With a
term that describes the interaction of the dipole with the
electric field added to the total energy, we can calculate the
dipole moment from the minimum energy condition. Solving
the equation for P thus obtained and recalling that

4nP
we obtain
(1)
sm:IJer, (4.14)
1 — (4n/3)oc

where o, is the polarizability of the elementary cell. We note
that we obtained an expression of the Clausius—-Mossotti type
for the dielectric constant of a crystal, which is a direct
consequence of the long-range dipole—dipole interactions
between elementary cells. The cell polarizability obtained in
our approach substantially differs from the sum of polariz-
abilities of free ions. It comprises the effects of both the non-
Lorentzian corrections for a local field and the short-range
dipole—dipole interactions. We showed earlier [3] that these
differences can be substantial.

We can also obtain an analytic expression for the dynamic
Born charge Z. [12], which describes the origin of polariza-
tion in a crystal resulting from the shift of ion sublattices
responsible for the transverse optical mode with the momen-
tum ¢ = 0. The expressions for Z. s obtained in this way
formally coincide with those in the most general phenomen-
ological model of polarizable and deformable ions.

All this proves that our method of the deformable and
polarizable ion can be substantially considered a microscopic
justification of old (however, not necessarily wrong) phenom-
enological models. In addition, the method preserves the
simplicity and clarity of the previous theories of ion crystals.
Similarly to ‘old’ phenomenological theories, it illustrates the
role of non-Lorentzian corrections for a local field in the
phenomenon of electric polarization in perovskite crystals. In
the framework of this approach, the problem of the ferro-
electric instability becomes absolutely clear. This instability is
caused by the dipole—dipole interaction between ions in an
optically active mode. Our calculations also demonstrate the
important role played by quadrupole distortions of the
electron density of oxygen in the phenomenon of ferro-
electric instability: these distortions promote stabilization of
the soft optical mode, since without the quadrupole moment
of oxygen, many perovskite crystals would be pyroelectrics
rather than ferroelectrics. In addition, the correctness of the
phenomenological models for an ion crystal in describing the
nature of the ferroelectric transition confirmed by us in the
framework of the density functional allows using such models
in solving certain problems that are still being discussed in the
theory of ferroelectricity.
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One such problem is the nature of the ferroelectric
transition, namely, the question of whether it is a displace-
ment-type transition or an order—disorder transition. In the
above consideration, we assumed that ferroelectric transi-
tions in perovskite crystals are classic examples of the
displacement-type transition. However, the nature of the
ferroelectric transition in pervoskites has been discussed for
a long time.

5. Anomalies of X-ray diffused scattering
in perovskites

The first discussion of possible transitions of the order—
disorder type in perovskites has started since works by
Homes et al. [50, 51], in which specific features of diffuse
X-ray scattering observed in the cubic phase of BaTiO3 and
KNDbO; crystals were reported. The intensity of the diffuse
scattering had the shape of leaves in planes normal to the
principal axes of the cubic crystal. These two-dimensional
leaves disappeared systematically under phase transitions
into tetragonal, orthorhombic, and rhombohedral structures.

For describing this phenomenon, the so-called eight-node
model for the perovskite structure in the cubic phase was
suggested [50, 51]. It is assumed in this model that already in
the cubic phase, the center of equilibrium of an atom B resides
not at the center of the cube formed by atoms A but at eight
points on the four axes of the (1, 1, 1) type shown in Fig. 5. In
the paraelectric phase, B atoms in different cells are
statistically distributed over the eight nodes, which main-
tains the average cubic symmetry over the crystal. The eight-
node model assumes that successive structural transforma-
tions in perovskites are transitions of the order—disorder type
with the corresponding ordering of atoms in these eight cells
over the whole crystal. We note that the absolutely random
distribution of static displacements of B atoms over the eight
cells does not result in the diffuse scattering observed. The
authors of Refs [50, 51] assumed partial ordering of B atoms,
which results in the occurrence of relatively long chains of
such atoms in the directions (1, 1, 1). No physical reasons for
this ordering were mentioned in Refs [50, 51].

Soon after paper [50] appeared, Hiiller suggested an
explanation of the specific diffuse scattering of X-rays
observed in BaTiO3 in the framework of the standard model
of a ‘soft’ mode responsible for the displacement-type phase
transition. The main idea is the possible existence of a strong

o Po |
<y

Figure 5. Perovskite structure in the eight-node model (the equilibrium
positions of a Bion are shown by eight points near the center of the cube).

anisotropy for the soft optical transverse phonon mode in
perovskite crystals. This mode is twice degenerate at ¢ =0
and its energy is actually constant for all wavevectors q that
reside in the (0,0, 1) plane, with atom displacements parallel
to the (0,0, 1) axis. In other directions, the energy sharply
increases as q increases. This means that there are quasi-one-
dimensional phonons in perovskite crystals. We note that an
anisotropy of the soft mode arises, according to the analysis
by Hiiller [52], due to specific features of long-range Coulomb
interactions, which, in turn, are related to the perovskite
crystal structure and the presence of B—O—B—0... chains.
Only these two modes were used by Hiiller in the calculation
of diffuse scattering.

In addition to the diffuse scattering in the cubic phase of
perovskites, other specific physical properties were observed
in some works, in particular, in the absorption of X-ray
radiation (extended X-ray absorption fine structure,
EXAFS) and in nuclear magnetic resonance (NMR) spectra.
The results obtained in these works were interpreted as a
confirmation of static displacements of the B atom from the
central position already in the cubic phase. Recent measure-
ments [53] of diffuse X-ray scattering in a PbTiO3 compound
did not reveal anomalies similar to those obtained in BaTiO3
and KNbOj;. From this fact, the authors concluded that the
soft modes cannot be the reason for the anomalies in the
diffuse scattering of X-rays, because they exist in PbTiO3 as
well as in BaTiO3; and KNbOs.

Among the observed effects that were treated as a
manifestation of the order—disorder-type transition, many
phenomena are described by the same pair correlation
function of displacements M ,’,‘f (1), which can be written
as [54]

Ml (1) = (uy (r(IK), 0) up(r(1'k). 1)) (5.1)
where u, (r(lk), 1) is the time-dependent component of the
atom displacement in a crystal in the direction o from the
equilibrium position at the point r(/k), [ is the cell number,
and k is the position of the atom in the cell. The mean value
denoted by the angular brackets should be taken over the
Gibbs ensemble for dynamic atom vibrations and over
various configurations in the case of a disordered crystal.

In calculating diffuse scattering, Hiiller writes the energy
of relevant modes in the form

% (q) = w3(T) +A1,z(i)q2. (5.2)

lq|

According to Hiiller’s idea, all anharmonic effects are
included in wy(7') and it is the only parameter dependent on
the temperature. The dispersion of the considered soft mode
is determined by the dipole—dipole interaction of ions and by
their electron polarization. In this case, the coefficient
A12(q/]q|) differs by a factor of 30 for various q vector
directions due to the local field effects mentioned above.

A correct description, in particular, of the temperature
dependence of diffuse scattering, requires that contributions
of all phonon modes rather than of the soft mode only be
taken into account. With this aim, we recently thoroughly
calculated [55] the phonon spectra for the cubic phase of
BaTiO3;, KNbO3, and PbTiO3; compounds by using the
phenomenological model of polarizable shells. This model
was first used by Cawley [56] for calculating the phonon
spectra of the perovskite SrTiOs crystal. Later, it was often
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Figure 6. Pair correlation function B(r) for the pairs Ti—Ti (a) and Ba—Ba (b) in BaTiO3. Nodes of the coordinate grid correspond to the positions of Ti

(a) and Ba (b) atoms. Numbers give the values of B(r).

used in calculations of numerous characteristics of perov-
skites and other ion crystals, in particular, for calculating the
temperature dependence of phonon spectra. This model was
thoroughly considered in our work [55], where references to
previous works are presented. We have calculated phonon
crystal spectra and one-time pair correlation functions of
displacements for BaTiO3;, KNbO3, and PbTiOs.

Our calculations of phonon spectra show that the
dispersion of the soft optical mode in KNbOs3 bears a strong
resemblance to that in the Hiiller model. We note that there is
a good agreement of the calculated phonon spectra at 7= 0
with the results of first-principle calculations in [57]. The
phonon spectra agree well not only in the high-symmetry
directions but also in the whole Brillouin zone. This means
that our calculations involve unstable transverse optical
modes for all the wavevectors q in the plane normal to the
(001) axis, and the polarization vectors of these modes are
directed along the (100) axis. Actually, these modes are
responsible for one-dimensional vibrations of ions in
Ti—O—-Ti—O— chains. The situation is similar with
BaTiOs. It is quite different in the case of PbTiO3, where the
optical mode does not have the anisotropy as strong as in
KNbO; and BaTiOs3, and quasi-one-dimensional phonons
are absent. This fact is explained by the participation of lead
in ion displacements in the soft optical mode, which is
confirmed by eigenvector calculations for this mode. This
means that the chain structure B—O—B—0O- and the
corresponding specific features of the Coulomb dipole—
dipole interaction are not revealed in the dynamics of the
PbTiO; lattice. This fact is mainly related to the high
polarizability of the Pb ion. It is shown below that such
behavior of the soft optical mode, in particular, affects the
diffuse scattering of X-rays.

We have also calculated the phonon spectra in the cubic
phase for perovskites at 7' > T.. Stabilization of the soft
optical mode in the framework of our model was
performed by reducing the polarizability of the oxygen
ion. Contour height plots are given in Fig. 6 for the scalar
function B(r(/k)) related to the pair correlation function
Mo (1) as

B(r(lk)) = rz(l_zk)z/; ra () M rg (1) (5.3)

for Ti—Ti and Ba—Ba pairs in a BaTiO3; compound. A
difference in the functions B(r(/k)) for Ti—Ti and Ba—Ba
pairs can be seen in the figure. The function for the Ti—Ti pair
is actually diagonal in Cartesian coordinates (~ J,3) and
exhibits a long-distance correlation. In this respect, it is
similar to the function obtained by Hiiller [52] in the
calculation with only the soft mode taken into account. The
function B(r(/k)) for barium ions has no peculiarities and is
standard, as in systems with a quasi-isotropic phonon
spectrum. In PbTiOs, the function B(r) for all ion pairs has
no explicit maxima along the axes and exhibits an almost
spherically symmetric dip at the origin, similarly to the case of
a Ba—Ba pair in BaTiOs. Such behavior of the functions is
related to the properties of the phonon spectra for the
compounds under consideration or, to be more precise, to
the properties of the polarization vectors of soft modes. In
BaTiOs3, there actually exist quasi-one-dimensional phonons
connected with the vibrations of titanium and oxygen ions in
the chains Ti—O—Ti—O-. In PbTiOs3, lead ions are directly
involved in the soft mode and there are no quasi-one-
dimensional phonons.

Next, we briefly consider the diffuse scattering in BaTiOs3,
in which the scattering on barium and oxygen ions can be
neglected because of the small scattering on these ions
compared to that on titanium ions. In this case, we can write
the expression for the scattering intensity as

S(q) = Nexp (—2M(q)) > exp [—igr(kk)] M} q.q5,  (5.4)
Lk

where r(/) are the distances between Ti ions.

Our calculations show that if, in contrast to only the soft
mode in the Hiiller model, all phonon modes are taken into
account, then the pair correlation function can be represented
in the form

100
M;’ﬁ:f(r(l))(O 1 o>
00 1

(5.5)

under the constraint r(/) = (0,0, na), where a is the distance
between neighboring Ti ions. This function can be repre-
sented similarly for r(/) = (0,na,0) and r(/) = (na,0,0).
Such a coordinate dependence of M ,‘“ﬁ results in the occur-
rence of three independent sums in the intensity along the
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crystallographic axes of the type

Nexp (—2M(q.)) Z exp (—ig.na) M(na)q? . (5.6)
n

It follows from (5.6) that for all vectors of the reciprocal
lattice ¢, = 2nn/a, there is a maximum independent of the
vector components ¢, and ¢.. This means that there are planes
normal to the x axis in the intensity of the diffuse scattering.
The scattering planes normal to the y and z axes arise
similarly. Thus, the appearance of diffuse X-ray scattering in
BaTiO3;, KNbOs3, and PbTiO; crystals can be easily explained
without invoking the eight-node model or additional static
ordering of atoms. The results of EXAFS and NMR
experiments can also be explained in the framework of the
dynamic approach with an anisotropic soft mode. A detailed
discussion of these problems is far beyond the scope of this
review.

6. Conclusion

We briefly summarize our discussion concerning the evolu-
tion of theoretical concepts of the nature of the ferroelectric
transition in ion crystals. First, we note that already in the
framework of the phenomenological theory of ferroelectri-
city, V L Ginzburg formulated the concept of the soft mode
whose frequency tends to zero as the temperature becomes
close to the phase transition temperature. Experimentally and
then theoretically, it was shown that the soft mode is an
optically active transverse phonon mode with the momentum
q=0.

In the framework of the simplest lattice dynamics models,
it was shown that a soft mode arises from the competition of
two contributions to the dynamic vibration matrix: the short-
range repulsion between ions and the long-range dipole—
dipole attraction.

Further development of first-principle methods for
calculating the physical properties of crystals in the frame-
work of the density functional theory (DFT) allowed
calculating the energies of cubic and ferroelectric phases and
showing that the energy of the ferroelectric phases is more
beneficial compared to the paraelectric cubic phase. In the
present report, we have shown that in the DTF framework
with the electron wavefunctions represented as the sum of
Bloch functions, interpretation of the reason for the ferro-
electric transition and determination of the nature of crystal
polarization are problematic. There are also contradictions
with the results obtained earlier in the framework of simple
phenomenological models for ion crystals. It was also shown
that the first-principle method for the polarizable and
deformable ion developed in our works, first, allows
thoroughly calculating the properties of ion crystals and,
second, may appreciably substantiate old phenomenological
theories. Differences in the interpretation of the results in the
two approaches are mainly connected with different mathe-
matical methods used rather than with physical results.

In this report, we disregard problems of consistently
taking the anharmonicity effects into account. In particular,
in discussing the specific features of diffuse X-ray scattering,
we calculated the dynamics of perovskite crystals in the quasi-
harmonic approximation, which neglects the attenuation of
phonon excitations. We have shown in [55] that the attenua-
tion effects can hardly change the results on the nature of
anomalous diffuse X-ray scattering. The fact is that exactly
anisotropic quasi-one-dimensional phonons are strongly

damped, and hence the attenuation is also anisotropic. This
means that in calculating the pair correlation function of
displacements, we should use the exact spectral density of the
single-particle Green’s function. Because the displacement
function is expressed by an integral over the whole spectrum,
the anisotropy of this function is also preserved. The results
can only slightly qualitatively change.

In addition to the attenuation of soft modes near the
phase transition into a ferroelectric state, a central line of
inelastic scattering arises, whose nature is still unclear. A
systematic anharmonic theory of lattice dynamics for ferro-
electric crystals is necessary for describing all these effects.
This problem has not been solved yet. There are also a
number of other unsolved problems in the theory of
ferroelectricity, so we have much interesting work before us.
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