
at any fixed point R in space. This is indicative of the
emergence of a cluster (caustic) structure in the intensity
field. The formation of statistics (for instance, of moment
functions hI n�x;R�i� proceeds through large overshoots of
the process I�x� with respect to this curve.

The description of intensity fluctuations, obtained in the
first order of the MSP, is valid for b0�x�4 1. As the
parameter b0�x� increases further, this approximation
becomes violated and the nonlinear character of the equation
for the complex phase of the wave field has to be taken into
account. This range of fluctuations, called the region of strong
focusing, is very difficult for analytical research. For even
larger values of parameter b0�x�, the statistical characteristics
of intensity reach saturation, in which case b�x� ! 1 as
b0�x� ! 1. This region of the parameter b0�x� variations is
called the region of strong intensity fluctuations.

In this region, the statistical characteristics of the wave
field cease to depend on the distance and one has


I n�x;R�� � n! ; P�x; I � � exp�ÿI � :

In this case, the mean specific area of regions within which
I�x;R� > I and the mean specific power concentrated in these
regions are constant and do not describe the behavior of the
wave field intensity in separate realizations. Likewise, passage
to a statistically equivalent random process is not informative
in this case since its curve of typical realization assumes a
constant value. An understanding of the wave field structure
in specific realizations can only be gained in this case from the
analysis of such quantities as the specific mean length of
contours and mean specific number of wave field intensity
contours. These quantities continue to grow with the
parameter b0�x�, implying that the splitting of contours
takes place (see Fig. 4).

3. Conclusions

In closing, I would like to reiterate once more the main point
of this talk. The approach to analysis of stochastic dynamical
problems rooted in the ideas of stochastic topography, which
enables, given the one-point statistical characteristics of
processes and fields, determining quantitative and qualita-
tive characteristics of behavior of their particular realizations
for all times (in the entire space), has emerged as a result of
discussions with experimenters who largely deal with separate
realizations. For a comprehensive description of stochastic
dynamical systems, it is insufficient to formulate a basic
equations with respective boundary and initial conditions. It
is necessary first and foremost to understand which coherent
phenomena (occurring with the probability of unity, i.e., in
almost all realizations of their solutions) are contained in
these systems, and proceed with a statistical analysis in a
related way.

The work was carried out with support from the Russian
Foundation for Basic Research (projects Nos 07-05-006a and
07-05-92210-NtsNIL.a).
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Development of the radiative transfer
theory as applied to instrumental imaging
in turbid media

L S Dolin

1. Introduction

This talk presents the basic elements of instrumental imaging
theory in media with strongly anisotropic scattering and a
technique devised to compute images of diffusively reflecting
objects, accounting for the effects of light absorption and
multiple scattering. It discusses peculiarities of different
variants of the radiative transfer equation in the small-angle
approximation, used in the imaging theory and optical
coherence `tomography' (OCT) of turbid media. A new
method of computing the temporal moments of a pulsed
light beam transmitted through a layer of a turbid medium is
described. The results of theoretical and experimental studies
of shadow noises in OCT images of turbid media with
fluctuating optical parameters are outlined.

By scattering light a turbid medium limits the visibility
range of objects located within it and becomes visible itself.
Therefore, the development of the methods and theory of
instrumental imaging in turbid media was directed toward
solving two interconnected tasksÐ the removal of the
adverse influence of the medium on the visibility of objects,
and the remote sensing of inherent optical properties of the
medium itself.

The Koshmider equation [1] expresses the fundamental
result of the imaging theory by relating the image contrast of a
black object (observed in the sky background near the
horizon) to the light attenuation coefficient in the atmo-
sphere. The relationships for estimating the contrast of the
image and visibility range of underwater objects under
natural illumination were obtained in a now classical work
by Duntley [2]. In this case, it was assumed that the angular
size of the observed object is small, so that its apparent
radiance is attenuated by the medium according to Buger's
law. The need in a more universal imaging theory emerged in
connection with the development of laser methods of under-
water vision.

Pioneering works in this area were performed under the
supervision of A V Gaponov-Grekhov in the Radiophysical
Research Institute (NIRFI in Russ. abbr.) (Gor'ky) in the
1960s. They have led to the design of the first prototype of a
laser-pulse system of underwater imaging with the help of
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which the feasibility of an essential increase in the visibility
range of underwater objects was demonstrated in sea
conditions. It relied on laser target illumination and pulse
gating of a useful signal. It was at that time that the main
results laying the foundation for the modern theory of laser
location and instrumental imaging in turbid media were
obtained: based on the radiative transfer equation (RTE) in
the small-angle approximation, an analytical model was
proposed for blurring and attenuation of a laser beam in its
passing through a medium with strongly anisotropic scatter-
ing [3, 4]; formulas were derived for gauging the character-
istics of underwater object images taking into account the
effects of light absorption and multiple scattering in water
[5 ± 10], and a universal technique was suggested for estimat-
ing the potential range of underwater imaging systems of
different types, including laser-based ones [11 ± 14].

The plausibility of applying the phenomenological radia-
tive transfer theory to the analysis of coherent light beam
propagation in a turbid medium was a subject of certain
concern. It was partly removed owing to Refs [15 ± 17], which
derived the equation for the coherence function of a wave
beam in a medium with strongly anisotropic scattering and
showed that the Fourier transform of the coherence function
satisfies the RTE in the small-angle approximation and,
consequently, that it is a wave analogue to the light field
radiance (these results were reported at SMRytov's seminar
in 1966, through the initiative of MAMiller who was in
charge of theoretical research in hydrooptics at NIRFI and
offered everyday help with his advice and criticism to
researchers involved in this work). The justification of RTE
in a more general formulation was a subject of intensive
research, with results reported in a set of reviews and
monographs [18 ± 20].

Later on, different variants of RTE solutions in the small-
angle approximation were used for developing the theory of
laser location and imaging of underwater objects through a
rough sea surface and lidar methods of determining the
optical characteristics of natural scattering media, and also
in problems concerning the optical tomography of biological
tissues.

2. How to build a model image
on the basis of the radiative transfer equation

When solving the problems of imaging theory in turbid media
one can assume, without loss of generality, that the observing
system (Fig. 1) comprises the illuminating source S and
optical receiver R, whereas the image is formed by detecting
the power of the incoming signal PR as a function of
coordinates r0 of the point at which the axes of the directivity
patterns of the source nS and the receiver nR intersect the
surface of the object Sob. To determine the signal PR, the
radiative transfer equation [21] is applied:�

1

c

q
qt
� nHr � a

�
I�r; n; t� � s

�
4p
I�r; n 0; t� x�g� dn 0 �Q ;

�1�

where I�r; n; t� is the intensity of radiation (radiance) at a point
in space r in the direction of unit vector n at the instant of time
t, c and a � s� k are the speed of light and attenuation
coefficient in the medium, respectively, s and k are the
scattering and absorption coefficients, x�g� is the scattering
phase function normalized as 2p

� p
0 x�g� sin gdg � 1,

g � arccos�nn 0� is the scattering angle, dn 0 is the solid angle
element around the direction n 0, andQ are the volume sources
of radiation.

Scattering phase functions of natural turbid media exhibit
well-expressed anisotropy. They therefore can be described
with sufficient accuracy by the expression

x�g� � �1ÿ 2pb� x1�g� � pb
2p

; �2�

where pb�2p
� p
p=2 x�g� sin g dg is the backscattering probabil-

ity, pb 5 1, x1�g� is the narrow part of the scattering phase
function satisfying the conditions 2p

� p
0 x1�g� sin g dg � 1, and

x1�g�5 pb=�2p� for g > p=2. The power of a received signal
PR�r0; t� is expressed through the radiance of light IR�ÿn; t�
incident on the receiver aperture as

PR�r0; t� � SR

�
IR�ÿn; t�DR�#� dn ;

where SR is the area of the detector entrance pupil, and
DR�#� is its directivity pattern: DR�0� � 1, # � arccos�n nR�.
The light field from source S is expanded as a sum of
`directed' I1 and diffusive I2 components. The first of them
plays the major role in illuminating the object, while the
second one corresponds to a signal reflected by the medium
(backscattering noise, `haze'). The field I1 is identified with
that emitted by the source S in an `auxiliary' medium with a
narrow scattering phase function x1�g�, scattering coefficient
s1 � sÿ 2sb, and absorption coefficient k1 � aÿ s1 �
k� 2sb, where sb � pbs is the backscattering coefficient of
the real medium. Computation of the diffusive field compo-
nent in the approximation of single light scattering over large
angles reduces to finding the field of distributed radiation
sources

Q � sb
2p

�
4p
I1 dn

in the auxiliary medium. In this case, the total power of the
received signal is presented in the form

PR � Pob � Pb ; �3�

Pob � SROR

p

��
Sob

R�r 0�

�
� �1
ÿ1

E �s��r 0; t 0�E �r��r 0; tÿ t 0� dt 0
�
dr 0 ; �4�

S R

s, k, x�g�

Sob
R�r0�

nS n nR

Figure 1. Schematics of observations.
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Pb � SROR

2p

���
V

sb�r�

�
� �1
ÿ1

E
�s�
0 �r; t 0�E �r�0 �r; tÿ t 0� dt 0

�
dr ; �5�

where Pob is the signal power from the object; Pb is the power
of the volume backscattering signal; OR �
2p
� p=2
0 DR�#� sin# d# is the effective solid receiving angle;

E �s��r 0; t�� �nN>0�nN� I1 dn and E
�s�
0 �r; t� �

�
4p I1 dn are the

irradiance of the object surface at point r 0 and spatial
irradiation of the medium at point r at the instant of time t,
and E �r��r 0; t� and E

�r�
0 �r; t� are, respectively, the irradiance of

the object and medium due to an auxiliary d-pulse source of
light with a unit energy and the directivity pattern of the
detector. The integration in formula (4) is performed over the
object's surface Sob, whereas that in formula (5) is carried out
over the illuminated volume V of the medium. For a
stationary illumination (when functions with superscript (s)
are time independent), the time convolution drops out from
formulas (4) and (5), and the functions with superscript (r) in
the integrands become irradiances of the object and medium
from the auxiliary continuous light source with unit power.
Formulas (3) ± (5) allow the received signal to be expressed
through the reflection coefficient of the observed object,
backscattering coefficient of the turbid medium, and irradia-
tion fields created by the real and auxiliary radiation sources
in a turbid medium that scatters light only `forward'.

For the given positions of the source, the detector, and the
object of observation, the functions E �s; r� and E

�s; r�
0 in

Eqns (4) and (5) depend not only on variables r, r 0 and t, but
also on the coordinates of object point r0, toward which point
the directivity patterns of the source and detector. If the field
of view of the observing system is sufficiently small and the
distance zob to the object is large compared to the `source±
detector' base, then, for stationary object illumination, the
dependence of the signal Pob on r0 is given by the formulas

Pob�r0; zob� � PS

p

��
Sob

R�r 0�Aob�r0 ÿ r 0; zob� dr 0; �6�

Aob�r?; z� � SROR
�E
�s��r?; z� �E

�r��r?; z� ; �7�
where PS is the power of the illuminating source, and �E �s; r� is
the distribution of irradiance in the plane z � const due to
real and auxiliary illuminating beams with unit power, when
the beam axes are oriented toward a point r? � 0 in this
plane.

The functions �E �s; r� could be termed the effective
directivity patterns of the source and receiver. In order to
retrieve the image, at least one of them should be narrow.
In the standard television system, an image is formed
owing to the directivity pattern �E �r�, and in a system with
a running light beam, owing to �E �s�. According to Eqn (6),
a turbid medium transforms the image as a linear filter of
two-dimensional signals. The function Aob�r?; z�, dubbed
the point spread function (PSF), characterizes the structure
of the image of a pointwise object and serves as an
analogue of the pulse characteristic for filters of electric
signals. To find this function, it suffices to know the
directivity patterns of the source and detector and the
distribution of irradiance e�r?; z� in a cross section of an
infinitely narrow light beam transmitted through a medium
layer of thickness z. The normalized spatial spectrum of

this distribution,

T �k; z� �
�1
0 e�r?; z� J0�kr?� r? dr?�1

0 e�r?; z� r? dr?
;

is called the modulation transfer function of the turbid
medium layer.

For a pulse illumination of the object, the energy of a
useful signal at the image element can be estimated from
Eqns (6) and (7):Wob�r0� �

�
Pob�r0; t� dt. This knowledge is

what is needed to estimate the image quality. When comput-
ing Wob it is necessary to make the substitutions in Eqn (6):
Pob !Wob and PS !WS, where WS is the energy of the
sounding pulse.

If a turbid medium is sounded with light pulses of
duration Dt, a signal backscattered at an instant t returns
from the depth zt � ct=2 from a layer with a thickness of
cDt=2. As follows from Eqn (5), if the optical axes of the
source and detector are directed toward the point r0 in the
plane z � zt, the power of the detected signal is expressed in
the form

Pb�r0; zt� � cWS

4p

� �
1
sb�r?; zt�Ab�r0 ÿ r?; zt� dr? ; �8�

Ab�r?; z� � SROR
�E
�s�
0 �r?; z� �E

�r�
0 �r?; z� �9�

through the medium backscattering coefficient sb and
distributions �E

�s; r�
0 �r?; z� of spatial irradiance in the cross

section of real and auxiliary light beams at a distance z from
the source. Formulas (8) and (9) are applicable provided the
pulse length cDt is small relative to the photon mean free path
1=a and the scale Dz of longitudinal inhomogeneity sb. They
indicate that the pulse imaging system is equally applicable to
observing objects in a turbidmedium and spatial variations of
the backscattering coefficient of the medium proper. The
distributions �E

�s; r�
0 and �E �s; r� differ only slightly in an

auxiliary medium with a narrow scattering indicatrix. Thus,
computing images of the object or medium, one can set
Ab�r?; z� � Aob�r?; z� and use one and the same PSF.

Formulas (8) and (9) underlie the theory of laser sounding
of the ocean and atmosphere and algorithms for the remote
assessment of their optical characteristics. These formulas can
also be adapted to describe images of a scattering medium,
obtained using the method of optical coherence tomography
[22]. In OCT setups, a continuous light is used with
femtosecond coherence times and the interferometric
method is exploited to determine the depth from which the
backscattered signal comes. Optical signals are emitted and
received by the end of a single-mode optical fiber. This creates
conditions for the backscattering amplification effect to
manifest itself [23], which is missing from the transfer
equation. In order to address it, the development of a wave
model of OCT-imaging [24] was needed, relying on the hybrid
method of evaluating field fluctuations in a medium with
coarse and fine inhomogeneities of permittivity [25]. It was
shown [24] that the OCT system with a heterodyne detector
can be brought into correspondence with an equivalent
system of pulse location with direct signal detecting, while
the specifics of the single-position sounding method can be
taken into account by setting

Ab�r?; z� � SROR

�
2E 2�r?; z� ÿ E 2

ns�r?; z�
�
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in Eqn (8), where E is the total irradiance of the medium at
point r?; z, and Ens is the medium irradiance through
nonscattered (direct) light from the source.

Thus, the theory of stationary light beam propagation in a
medium with a narrow scattering indicatrix can serve as a
basis for computing images formed by active vision systems,
both continuous and pulsed. In order to analyze the
performance of passive observing facilities, one also needs a
model of a natural light field.

3. Analytical models of light fields
for problems of imaging theory

The theory describing the propagation of a narrow light beam
in media with strongly anisotropic scattering relies on the
radiative transfer equation in the small-angle approximation
[12]. Assuming that the beam propagates in the direction of
the z-axis, this equation can be cast in the form�

cÿ1
q
qt
� nz

q
qz
� n?H? � a

�
I�r?; z; n?; t�

� s1

��
1
I�r?; z; n 0?; t� x1

ÿjn? ÿ n 0?j
�
dn 0? ; �10�

where r? and n? are the components of r and n in the plane
z � const, and nz � �1ÿ n 2

?�1=2.
A rigorous analytical solution of Eqn (10) can only be

obtained in the approximation nz � 1, which ignores the
effects of photon multipath propagation (distortion of the
light signal as it travels through the medium, the formation of
stationary angular radiance distribution in a continuous
beam at large optical distances from its source). Originally,
this equation was exploited in the theory of multiple
scattering of fast charged particles in matter [26 ± 29]; with
its assistance, an expression for the angular distribution of
particles in an infinitely broad beam was found [26, 27] and
the functions of the type

� �
1 I�x; y; z; nx; ny� dy dny, which

characterize the structure of a thin beam, were analyzed [28].
The solution to Eqn (10) at nz � 1 and an arbitrary boundary
condition for the radiance at the source aperture,
I�r?; 0; n?� � I0�r?; n?�, was obtained in Ref. [3] and later
generalized for stratified turbid media in Ref. [30]. According
to this solution, the distribution of irradiance
E�r?; z� �

� �
1 I dn? over the cross section of a light beam

exiting the layer of a turbid medium with a narrow scattering
phase function x1�g� and optical parameters a�z�, s1�z�, and
k1�z� � aÿ s1 is expressed in a spectral form as

E�r?; z� �
��
1
F�k; z�T�k; z� exp �ÿtk � ikr?� dk �11�

through the functions

F� 1

�2p�2
��
1

��
1
I0�r?; n?� exp

�ÿ ik�r?� zn?�
�
dr? dn?;

T � exp

�
ÿ
� z

0

s1�zÿ z 0��1ÿ xS�kz 0�
�
dz 0
�
; �12�

tk �
�z
0

k1�z 0� dz 0 ; xS� p� � 2p
�1
0

x1�g� J0� pg� g dg ;

the first of which (F ) determines the beam structure at a
distance z from the source in an absolutely transparent
medium, while the second (T ) represents the modulation

transfer function of the turbid medium layer through which
the beam was traveling.

Equation (10) served as a `bridge' connecting for the first
time the theory of radiative transfer with that of wave
propagation in randomly inhomogeneous media. This link
was made explicit when considering the propagation of a
wave beam u � V�r?; z� exp �iotÿ ikz� through a medium
with the large-scale fluctuations of permittivity e �
hei�1� de�r?; z��. Based on the equation�

D? ÿ 2ik
q
qz
� k 2de

�
V � 0

for the field correlation function

G�r?; z; q?� �
�
V

�
r? � q?

2
; z

�
V �
�
r? ÿ q?

2
; z

��
; �13�

an equation of the form [16, 17]�
Hr? Hq? ÿ ik

q
qz
ÿ ik 2

�
b�0� ÿ b� r?�

��
G � 0 ;

b� r?� �
k

4

�1
ÿ1



de�r? � q?; z� x� de�r?; z�

�
dx;

k � o

������heip
c

was derived. It was also shown that the Fourier transform of
the correlation function:

I�r?; z; n?� � 1

l 2

��
1
G�r?; z; r?� exp �ikn?q?� dq? ;

l � 2p
k
; �14�

satisfies Eqn (10) with the coefficient nz � 1, describing the
radiation field in a medium with optical characteristics

x1�n?� � 2p

l 2b�0�
�1
0

b� r?� J0�kn?r?� r? dr? ;

s1 � kb�0� ; k1 � 0 :

The implication was that the mathematical apparatus of the
radiative transfer theory can be employed to analyze the
influence of a randomly inhomogeneous medium on the
correlation and energy characteristics of a wave beam with
due regard for its diffractive broadening, provided that its
radiance is defined not in the energy terms (as the radiation
flux per unit area and per unit solid angle), but through
relationship (14).

The influence of a photon spread in ranges on the
characteristics of nonstationary light fields was explored
with the help of an equation of the Fokker±Planck type [12]:�

1

c

q
qt
� nz

q
qz
� n?H? � k1 ÿ d2

4
s1Dn?

�
I�r?; z; n?; t� � 0

�15�

with the coefficient nz � 1ÿ n 2
?=2. Equation (15) follows

from Eqn (10) under the condition that the scattering phase
function be narrow compared to the width of angular
radiance distribution, and contain only the integral indica-
trix parameter d2 � 2p

� p
0 g 2x1�g� sin g dg. On the basis of
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Eqn (15), a theory of multiple scattering for sinusoidally
modulated light beams was developed [31]. It was shown that
the sinusoidal component of the radiation field behaves
similarly to a wave with specific dispersive properties. This
equation was exploited as well for the analysis of the spatio±
temporal structure of a pulsed light beam [32] and the
construction of simple analytical models of stationary
radiation fields formed by sources of various types in
strongly absorbing media with narrow scattering phase
functions [33].

The radiation field of a d-pulsed source Q�r; n; t� �
�Q�r; n� d�t� in a turbid medium with an absorption coeffi-
cient k1 is expressed in the form

I � 1

2p

�
�I

�
r; n; k1 � i

o
c

�
exp �iot� do

through the solution �I�r; n; k1� of the transfer equation with a
stationary source �Q�r; n�. Hence, the integral parameters of
the pulsed signalÐ its mean propagation time �t and typical
duration DtÐcan be found by differentiating �I�r; n; k1� with
respect to the parameter k1:

�t �
�
tI dt�
I dt
� ÿ 1

c

d ln �I

dk1
; �16�

�Dt�2 �
� �tÿ �t �2 I dt�

I dt
� 1

c 2
d2 ln �I

dk 2
1

: �17�

Owing to relationships (16) and (17), the models of stationary
radiation fields presented above turn out to be very useful also
for the theory of pulsed signal propagation in turbid media.

The spatial structure of a narrow light beam is described
by Eqn (15) with a large error. For this reason, Eqn (10) with
the coefficient nz � 1ÿ n 2

?=2, which is devoid of this draw-
back, holds some interest for a certain set of applications.
Based on this equation, a theory was developed for plane
pulsed wave propagation in a turbulent medium [34]. An
approximate solution to this equation was also obtained for a
monodirected d-pulsed source [35]. The analysis of this
solution has, in particular, shown that the time moment (17)
is determined from Eqn (15) with a noticeable error and
depends not only on the scattering phase function dispersion
d2, but also on the parameter

g � 2p
d 2
2

�p
0

g 4x1�g� sin g dg;

which characterizes its form.
The absence of an exact analytical solution to Eqn (10)

with the coefficient nz � 1ÿ n 2
?=2 does not exclude the

possibility of finding the integral characteristics of its exact
solution. If one passes on in Eqn (10) to dimensionless
variables [34] s � ct and z � ctÿ z, then for the moments of
longitudinal radiance distribution in the pulse volume, viz.

Mm�r?; n?; s� �
�1
0

zmI�r?; z; n?; s� dz; m � 0; 1; . . . ;

�18�
follow the equations [36]�

q
qs
� n?H? � a

�
Mm�r?; n?; s�

� s1

��
1
Mm�r?; n 0?; s� x1

ÿjn? ÿ n 0?j
�
dn 0? �

m

2
n 2
?Mmÿ1 ;

�19�

which yield the exact analytical solution because they are
identical to the stationary equation (10) with the coefficient
nz � 1. The momentM0 is found directly by replacing z! s,
I!M0, and I0 !M0 �r?; n?; 0�, while computation of the
higher moments requires solving the RTE with volume
sources. Notice that temporal moments of the radiation field
can easily be expressed through the spatial ones (Mm),
provided the shape of the light pulse varies only slightly as it
displaces over the proper length.

4. Fluctuating light fields and images

Random distortions of images occur when objects are
observed through a turbulent atmosphere, rough water
surface, or turbid medium, the optical parameters of which
vary randomly in space (when the Earth is observed from
space, the role of such amedium can be played by fragmented
cloudiness). In order to analyze the influence of turbulence on
images, the wave theory is routinely used; in the other cases
mentioned above, the methods and apparatus of the radiative
transfer theory are employed.

The theory of instrumental imaging through the rough
water surface [37, 38] is similar to that of underwater imaging
in the sense that in both cases the signals from the object and
the medium are determined from relationships (4) and (5).
The influence of the surface on the image is taken into account
by substituting fields E �s; r� found with regard for light
refraction at the air±water interface into these relationships.
The fields E �s; r� are expressed through the radiance of light
incident on the water surface and Green's function of the
transfer equation in the small-angle approximation. This
yields the general expression for a random realization of an
image, which is further used to analyze its statistical
characteristics. One need not solve the transfer equation all
over again.

The theory of imaging in turbid media with fluctuating
optical characteristics calls for qualitatively new solutions to
the RTE. Such solutions are also necessary for problems of
the optical diagnostics of similar media. The research on light
propagation in turbid media with randomly inhomogeneous
optical characteristics was initially prompted by problems of
Earth's radiative balance [39]. In that case, relatively simple
models of scattering objects were employed (a homogeneous
layer of turbid medium with a fluctuating optical thickness or
a smoothly inhomogeneous layer). Later on, the focus shifted
toward statistical models of radiative transfer in media with
three-dimensional concentration inhomogeneities of absorb-
ing and scattering substances [40 ± 43]. Along with models of
the statistically mean radiation field, the models of its
fluctuations were developed, too. In particular, equations
have been obtained for computing the mean radiance and the
function of the spatial radiance correlation for a light beam
leaving a layer of a turbid medium with a narrow scattering
phase function and randomly inhomogeneous coefficients of
absorption and scattering [41]. These equations have allowed
one to quantitatively describe the bleaching effect of the
medium, caused by fluctuations in its parameters, and also
the processes of random modulation of radiance distribution
in a narrow light beam upon its multiple passing through
absorbing inhomogeneities and the `smoothing' of occurring
radiance fluctuations because of multiple `forward' scatter-
ing. It was shown that relative radiance fluctuations can grow
without limits as the thickness of the scattering layer increases
and that a stationary regime of fluctuations (their saturation)
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can settle down depending on the medium parameters [41, 44,
45].

These equations served as a basis for developing a
statistical model of OCT Ð imaging of a layered turbid
medium with three-dimensional inhomogeneities of absorp-
tion and backscattering coefficients k � �k�z� � ~k�r?; z� and
sb � �s�z� � ~s�r?; z�, ��k � hki, �s � hsbi�, respectively.
Expressions for spatial correlation function BP (q; z1; z2� of
relative fluctuations of tomographic signal power P�r?; z�,
coming from two separate locations within a medium with
coordinates r? � q=2, z1 and r? � q=2, z2, were found and it
was shown that fluctuations of medium parameters lead to
the appearance of spatial noise with specific properties
(`shadow' noise) [46, 47] in the medium image. This noise
arises as a result of inhomogeneous shading of each medium
layer by clusters of the absorbing or scattering substance
located in the upper layers. Notice that fluctuations of k are
manifested only through the shadow noise, while those of sb
show up through the shadow noise and images of inhomo-
geneities sb proper. Figures 2 and 3 give examples of function
BP�q; z1; z2� computed for those cases when only one of these
parameters fluctuates. The computations used the formulas

BP�q; z1; z2� �
��

1ÿ 4As�q; zm�
�s�zm� ÿ 2As�0; zm�

� Bs�q; z; x��
�s�z1� ÿ 2As�0; z1�

��
�s�z2� ÿ 2As�0; z2�

� �

� exp

� � zm

0

�
4Ak�q; z 0� � 16As�q; z 0�

�
dz 0
��
ÿ 1 ; �20�

Ak�q; z� �
�1
ÿ1

Bk�q; z; x� dx ;

As�q; z� �
�1
ÿ1

Bs�q; z; x� dx ; �21�

Bk�q; z; x� �
�

~k
�
r� q

2
; z� x

2

�
~k
�
rÿ q

2
; zÿ x

2

��
; �22�

Bs�q; z; x� �
�

~s
�
r� q

2
; z� x

2

�
~s
�
rÿ q

2
; zÿ x

2

��
; �23�

z � z1 � z2
2

; x � z1 ÿ z2 ; zm � zÿ 1

2
jxj ; �24�

which are applicable under the condition that the width of
the PSF be small compared to the typical horizontal size of
inhomogeneities. As follows from the figures, fluctuations of
the absorption coefficient lead to the appearance of noise,
the correlation function of which is everywhere positive and
has the shape of a wave crest. When the backscattering
coefficient is fluctuating, the correlation function can change
its sign since the image of each inhomogeneity and its
shadow form the combined signal with sign-changing
intensity variations.

These theoretical conclusions got qualitative support
from experiments with a model turbid medium containing
absorbing inhomogeneities and the results of correlation
processing of biotissue tomograms. Figure 4 presents a
comparison between the theoretical and experimental depen-
dences of dispersion in relative fluctuations of tomographic
signal power dP�z� � BP�0; z; z� on the depth z it originated
from. In processing the tomograms, the following functions

were determined in addition to the dependence dP�z�:

R�z1; z2� � BP�0; z1; z2��������������
dP�z1�

p �������������
dP�z2�

p ;

�BP�r; x� � 1

z0

� z0

0

BP

�
r; z� x

2
; zÿ x

2

�
dz :

They correspond to the coefficient of longitudinal correlation
of relative signal fluctuations and their correlation function
averaged over the thickness z0 of the medium layer under
study. The data presented in Fig. 5 illustrate the possibility of
fitting the theoretical predictions to experimental results by
exhausting medium parameters appearing in formulas used
and, in this way, the feasibility of determining them by the
OCT method.

5. Conclusions

In this report we presented the problems of imaging theory,
which effectively use the small-angle approximation of
radiative transfer theory. The list could be further contin-
ued. However, it should be borne in mind that the accuracy of
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this approximation is strongly sensitive to the angular width
of the scattering indicatrix and absorption ability of the
medium. In seawater, for which the albedo of single
scattering (L) is commonly below 0.9, this approximation
performs reliably for optical thicknesses reaching up to
t � 15. For biological tissues, where L � 0:99, the diffusive
and directional components of irradiance in a narrow light
beam become equal already at t � 5. This calls for hybrid
models of the light field [12, 48], which allow for the effects of
multiple light scattering over large angles.

The work was carried out with the support of the Russian
Foundation for Basic Research (project No. 07-02-01179)
and the grant `Leading Scientific Schools of Russia' NSh-
6043.2006.2.
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