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Modern methods for the statistical
description of dynamical stochastic systems

V I Klyatskin

1. Introduction

S M Rytov gave much attention to the development of
functional methods of stochastic system analysis at All-
Moscow Radiophysics Seminars he led. He dubbed them
radiomathematics. 1 participated in these seminars from the
end of the 1960s. S M Rytov frequently asked, me in
particular, a question: “What are you studying?”’ I tradi-
tionally answered that solutions of stochastic equations
(ordinary and partial differential, or integral) are func-
tionals from random coefficients of these equations and
that T am studying the dependence of the statistical
characteristics of these solutions on various models and the
statistical parameters of these coefficients. For about 30
years I considered this answer to be exhaustive, and only
during the last 10— 15 year did I realize all the topicality of
the question “What are you studying?”’ and the total
inadequacy of my usual answer. This is related to the fact
that in recent years the attention of both theorists and
experimenters has focused on the question of the links of
dynamics pertaining to averaged characteristics of problem
solution to the solution behavior in specific realizations. This
is especially relevant to geophysical problems related to the
atmosphere and ocean in which, by and large, the respective
averaging ensemble is absent and experimenters as a rule
deal with individual realizations. In this case, the results of
statistical analysis frequently not only have nothing in

common with the behavior of solutions in specific realiza-
tions but often simply contradict them. It is namely this that
I would like to demonstrate in this report.

Three approaches are currently utilized in the analysis of a
stochastic dynamical system.

The first approach is based on analyzing the Lyapunov
stability of solutions to deterministic linear ordinary differ-
ential equations

d
@ x(1) = A(t) x(1)

and traditionally attracts the attention of many researchers.
One analyzes here the upper bound of the problem solution

which is termed its characteristic exponent. When this
approach is applied to stochastic dynamical systems, it is
common that, to interpret and simplify the obtained results at
the final stage, statistical analysis is invoked and statistical
averages such, for example, as

(Ax(ry) = lim_ ! (In[x(1)]),

t—+oo |

are computed.

The drawbacks of this approach to stochastic dynamical
systems are as follows:

(1) Such simplifying features of random parameters as
stationarity in time, homogeneity, and isotropy in space are
exploited only at the stage of final analysis.

(2) When passing to continual generalizations of ordinary
differential equations (for example, in mechanics or the
electrodynamics of continuous media), i.e., to partial differ-
ential equations (to fields), the analysis of Lyapunov stability
is only possible through the series expansions of solutions in
complete sets of orthogonal functions. If such a technique is
applied to stochastic problems, a question emerges as to
whether the operations of series expansion and statistical
averaging are permutable. In particular, when statistical
characteristics of random processes and fields are approxi-
mated by singular (generalized) functions (as, for example, in
the approximation that fluctuations of system parameters are
delta-correlated), these operations are not, as a rule, permu-
table.

The second approach is also traditional and relies on the
analysis of moment and correlation functions of solutions to
stochastic problems.

The drawback of this second approach is that commonly
used methods of statistical averaging smooth the qualitative
features of separate realizations and it is not uncommon for
the obtained statistical characteristics to have nothing in
common with the behavior of separate realizations.

In certain circumstances there exist, however, physical
processes and phenomena occurring with the probability
of one (i.e., happening in almost all realizations). They
are called coherent (see monographs [1—4] and work [5]
where this question is thoroughly discussed). To describe
such phenomena, the third approach is applied. It is rooted
in the method of statistical topography which studies,
instead of moment functions, the statistical characteristics
of some functionals describing precisely these coherent
phenomena.

Below, we will illustrate these approaches as applied to
simple physical problems.
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2. Examples of dynamical systems

2.1 Diffusion of a passive inertialess admixture

in a random velocity field

As the first example let us consider the relative diffusion of
inertia-less particles in a random hydrodynamical flow with
the velocity field u(r,7) in the framework of the simplest
kinematic equation for each particle:

% (1) =u(r(r),1), r(0)=ro.

Numerical modeling of this problem indicates that the
dynamics of the system of particles are essentially dependent
on whether the velocity field is solenoidal or divergent. Thus,
Fig. la presents in a schematic way a fragment of the
evolution exhibited by a system of particles (a two-dimen-
sional case) for a particular realization of a solenoidal velocity
field u(r) stationary in time. Nondimensional time here is
related to statistical parameters of the field u(r). Initially, the
particles were uniformly spread over the circle. In this case,
they continue to fill the area confined by the deformed
contour in a fairly uniform way. Only a strong contour
irregularity of a fractal character develops.

For the potential velocity field u(r), however, particles
uniformly spread over a square at the initial instant of time
form cluster areas as they evolve with time. Figure 1b presents
a fragment of such an evolution, obtained through numerical
simulation. We emphasize once again that formation of
clusters in this case is a purely kinematic effect. Apparently,
after averaging over an ensemble of realizations of the
random velocity field this feature of the dynamics of particles
will disappear.

Consider the joint dynamics of two particles. In this case,
the probability density for the distance between the particles
(provided the initial distance between them is small) is log-
normal and moment functions of the distance (for example, in
the two-dimensional case) grow with time exponentially:

(1"(1)) = Iy eXp{é [Z(DS —DP)n+ 3Dpn2} } ’

where D% and DP pertain to the solenoidal and potential
components of the spectral function of field u(r, 7).

There also exists a deterministic function called the curve
of typical realization (CTR), which describes the main
tendency of temporal behavior exhibited by the random
process /(7). For the problem considered here, this function,
similarly, turns out to be an exponential function of time:

1*(t) = loexp{%(Ds — DP) z} ,

and it is related to the Lyapunov exponent.

The CTR is essentially dependent on the sign of the
difference D® — DP. In particular, for a solenoidal velocity
field (DP =0) we have an exponentially growing typical
realization. In the other limit, for a potential velocity field
(D* = 0), the typical realization is an exponentially decaying
curve, i.e., particles would tend to coalesce. Consequently,
clusters should form, i.e., zones of particle centering located in
regions largely devoid of particles, which agrees with the
results of numerical simulations. Thus, the inequality
D*® < DP should hold for particle clustering in this problem.

The exponential growth of moments arises from over-
shoots of the process /() relative to the curve of typical
realization /*(¢) both toward large and small values of /. It is a
purely statistical effect caused by averaging over the entire
ensemble of realizations.

Thus, we arrive at an apparent contradiction between the
character of behavior exhibited by statistical characteristics
of the process /(z) and its behavior in concrete realizations.
Let us formulate two clarifying remarks.

Remark 1. The curve of typical realization (CTR)

The statistical characteristics of a random process z(7) are
described by the probability density P(f;z) = (5(z(1) — 2))
and integral distribution function

F(t;z) = Prob(z(1) < z) = (0(z(1) — z))
= JZ dz' P(;2'),

where d(z) is the Dirac delta function, and 6(z) is the

Heaviside function equal to 1 for z > 0, and to 0 for z < 0.
The curve of typical realization for the random process

z(¢) is referred to as a deterministic curve z*(z) which is the
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Figure 1. Results of modeling diffusion of a system of particles in solenoidal (a) and potential (b) random velocity fields.
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Figure 2. On the definition of the curve of typical realization for a random
process.

median of the integral distribution function and is defined as a
solution of the algebraic equation

y 1
F(t;z%(1) = 5
The motivation behind it is the property of a median that for
any time interval (¢, #2) the random process z(7) evolves as if
it twists around the curve z*(¢) in such a way that the mean
time during which the inequality z(¢) > z*(¢) holds, coincides
with the mean time during which the opposite inequality,
z(1) < z*(¢), is observed (Fig. 2), namely

1
(Tapsz0) = (Tetnez) = 5 (2 = 11).

The curve of typical realization, although obtained with
the help of contemporaneous probability density, is defined,
nevertheless, for any time ¢ € (0, c0).

For a Gaussian random process z(), the CTR coincides
with the mean value of the process, namely z* (1) = (z(1)).

Remark 2. Log-normal random process
Define the log-normal random process by means of a
stochastic equation

Sa) = [t 67),  yOm) =1,

where z(¢) is the Gaussian process with parameters (z()) = 0
and (z(1)z(t')) = 2D5(¢ — t'). Its contemporaneous prob-
ability density is described by the Fokker—Planck equation

0 0 0 0
(a—cxa—yy> P(z,y,a)—D@y @yP(t,y,fx),

P(0;3,0) = d(y = 1).

The characteristic feature of the solution to this equation is
the emergence of a long flattened rail for Dt > 1 implying the
increased role of large overshoots of process y(¢; o) in forming
contemporaneous statistics. As a consequence of this, its
moment functions

(y"(t;)) = exp {n(n —%)Dz} ,

<Wlt;a)>:e’(p {”(”*%)Df}, n=1,2,...

grow exponentially with time for n > a/D.

For a log-normal process one finds (In y(¢)) = —az and,
consequently, the parameter —o = (1/¢)(In y(¢)) is the Lya-
punov characteristic exponent, while the CTR of the process
y(t; o) turns out to be a curve exponentially decaying with
time:

y*(0) = exp ({In (1)) = exp(~a) .

Consider now a continual generalization to the problem
of the diffusion of an inertialess passive admixture. In this
case, the admixture density field p(r,¢) is described by the
continuity equation

(%4—% u(r, l)) pr, ) =0, p(r,0)=

The total admixture mass is preserved as the admixture
evolves with time, namely

M=M= J drp(r, 1) = J dr p,(r) = const.

To describe the local behavior of admixture field realiza-
tions in space in a random velocity field u(r, ), one needs the
probability distribution for the admixture density. Based on
stochastic equation (1), we derive an equation for the
probability density of the admixture density (concentration)
field:

0 ot
(57D0A> P(l',[;p) :Dp 6’7/) P(Ll;p),

where the diffusion coefficient in the p-space, D, = DP, is
only related to the potential component of field u(r, 7). The
solution to this equation takes the form

0
P(r,1;p) = Dyt 2

| 2
In® [pexp (21)/po(r)]

X €Xp 4Dt

(2)

If the initial admixture density is everywhere uniform,
po(r) = poy = const, the probability distribution of density is
independent of r and can be described by the equation

0 2,
5, Pp) =Dy 52" P(t;p). 3)

From equation (3) it follows, in particular, that the
probability distribution is log-normal and moment functions
of the density field, beginning from the second one, exponen-
tially grow with time t = D,

(p"(r,1)) = p{exp [n(n—1)7].

From the viewpoint of single-point characteristics of
density field p(r, ), the problem in this case is statistically
equivalent to a random process p(f), whose probability
density obeys Fokker-Planck equation (3), whereas the
CTR exponentially decays with time at any fixed point in
space:

p*(t) = poexp(—1).
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This gives evidence of the presence of a clustering behavior for
fluctuations of medium density in arbitrary divergent flows.

The probability distribution (2) also enables learning
about some characteristic features of the spatio-temporal
structure of the density field realizations.

Remark 3. Statistical topography of a random density field
To be more illustrative, we limit ourselves here to the case of
two dimensions as well. In statistical topography, important
knowledge of the spatial behavior of realizations is provided
by the analysis of isolines defined as

p(r,t) = p = const.

In particular, the mean values of such functionals of the
density field as the total area where p(r, 1) > p:

Stt.p) = [ aro(o(e) — p) = [ar |~ oot 7).

o

and the total mass of the admixture comprised within this
area:

M(t,p) = | drp(e,1) 0(p(e,0) = p)

- J dr Jm dppo(p(r,1) ~ 7).

p

are defined by a single-point probability density and are
expressed as

(S(t,p)) = J

P

o}

a5 [dr Ple.c:7).

(Mtt.0)) = |~ 457 [ar Ple. 7).

14
Hence, it is seen, in particular, that for ¢ > 1 the mean area of
the regions, where the density is in excess of a given level p,
decays with time according to the law

exp (—%) Jdr po(r),

while the mean mass of the admixture inside them, namely

1
(St ~

tends monotonically to the total mass. This once again
confirms the conclusion drawn earlier that admixture
particles tend to coalesce with time in clusters — the compact
regions of augmented density surrounded by rarefied regions.

It should be noted that for a spatially homogeneous field
p(r, 1) these expressions can be simplified, yielding for specific
quantities per unit area the following expressions

(stt)) = | dp (). (i) = | a7 P

P 0
linked with the solution to equation (3).
2.2 Waves in a randomly inhomogeneous medium

As the second example, let us consider the problem of wave
propagation in random media.

We begin with a one-dimensional problem which corre-
sponds to waves in layered media.

Let a layer of a chaotically inhomogeneous medium
occupy the space Ly < x < L, and a plane wave uy(x) =
exp [ — ik(x — L)] be incident on it from the region x > L.
Due to the presence of inhomogeneities, there appears a wave
reflected from the layer with the reflection coefficient
Ry =u(L)—1, and a wave leaving the layer with the
transmission coefficient 7; = u(Ly). Inside the layer, the

wave field satisfies the boundary value problem:
2

)+ K2+ ()] () =0,
i du(x)

(L) + k  dx

L “ kK dx

x=Ly
where the function &(x), which we regard as a random one,
describes the inhomogeneities of the medium.

Under the assumption that the statistical characteristics of
function ¢(x) are known, the statistical problem amounts to
searching for the statistical characteristics of the wave field
intensity /(x) = |u(x)|* inside the inhomogeneous medium
and at its boundaries.

A statistical analysis of the solution to this problem
indicates that for a sufficiently thick layer, namely,
D(L — Ly) > 1 [where the quantity D is related to statistical
characteristics of ¢(x)], |Tr| — 0 with probability one and,
consequently, |Ry| — 1,1i.e., the half-space (L) — —o0) of the
randomly inhomogeneous medium totally reflects the inci-
dent wave. Thus, a dynamical localization of the wave field in
this layer occurs.

However, the mean value of wave field intensity is
constant in the half-space of the random medium, while
higher moments normalized to their values at the layer
boundary are described by the expression

(I"(L = x)) = exp [Dn(n — 1)(L — x)],

i.e., the intensity of the wave field has a log-normal
probability distribution, and moment functions grow expo-
nentially along the direction deep into the medium.

In this case, the CTR for the wave intensity in the medium
is described by an exponentially decaying function

I*(x) =2exp [ — D(L — x)]

and coincides with the Lyapunov exponent; the quantity
loe = 1/D, dubbed the localization length, sets the spatial
scale for the decay of the wave field intensity in separate
realizations.

Thus, it becomes apparent that the statistics form through
large overshoots relative to the typical realization curve.
Figure 3 shows two realizations of wave field intensity in a
sufficiently thick layer, obtained through numerical simula-
tions. It apparently illustrates the tendency of fast exponential
decay (with large overshoots toward both ever larger intensity
and zero).

Consider now wave propagation in a randomly inhomo-
geneous three-dimensional medium based on the scalar
parabolic equation

Gl i ik
o U(x,R) = % ArU(x,R) —}—3 &(x,R) U(x,R),

U(0,R) = Uy(R). (4)
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Figure 3. Numerical simulation of dynamic localization for two realiza-
tions of medium inhomogeneity.

Here, x is the coordinate in the direction of wave propagation,
R are the coordinates in the transverse plane, and ¢(x, R) is the
deviation of permittivity from unity.

On introducing the amplitude and phase of the wave field
as

U(x,R) = A(x,R) exp {iS(x,R) },

the transfer equation can be written for the intensity of the
wave field I(x, R) = |U(x, R)| in the form

0 1
o I(x,R) + I Vr{Vr S(x,R)I(x,R)} =0,

I(0,R) = I)(R) . (5)

Hence, it follows that in the general case of an arbitrary
incident beam the wave power in the plane x = const is
preserved:

Eo = .[I(x, R)dR = JIO(R) dR.

Equation (5) shares its form with Eqn (1). It therefore can
be treated as the transfer equation for a conservative
admixture in a potential velocity field. As a consequence,
realizations of the intensity field have a cluster character,
whereas this clustering manifests itself through caustic
structures. By way of example, Fig. 4 displays photos of a
cross section of a laser beam propagating in a turbulent
medium in a laboratory setup, for various fluctuations of
permittivity. The appearance of the caustic structure of the
wave field is vividly seen.

Let us introduce the amplitude and phase of the wave field
and the complex phase of the wave:

U(x,R) = A(x,R) exp (iS(x,R)) = exp (¢(x,R)),

Figure 4. Cross section of a laser beam propagating in a turbulent medium
in laboratory conditions (a) in the region of strong focusing, and (b) in the
region of strong (saturated) fluctuations.

where
o(x,R) = y(x,R) +1iS(x,R).

7(x,R) =In A(x,R) is the wave amplitude level, and
S(x,R) is the wave phase fluctuations relative to the phase
kx of the incident wave. Proceeding from parabolic equation
(4), one can obtain, for the complex phase, a nonlinear
equation of the so-called Rytov method of smooth perturba-
tions (MSP):

o .
a ¢(X, R) = Zlik Ar ¢(X, R)

+i [Ve ¢(x,R)]” +i g e(x,R).

For the case of a plane incident wave, which will only be
considered further, it can be assumed that Uy(R) = 1 without
loss of generality and, consequently, that ¢(0,R) = 0. In this
case, the random field ¢ (x, R) is statistically homogeneous in
the plane R and all its single-point statistical characteristics
are independent of the parameter R.

Remark 4. The Rytov smooth perturbation method

The method of smooth perturbations was proposed by
S M Rytov when analyzing the problem of light diffraction
by ultrasonic waves in 1938. A M Obukhov applied this
method in 1953 to treat the diffraction effects accompanying
wave propagation in random media in the framework of
perturbation theory. Earlier, analogous studies were carried
out in the approximation of geometrical optics (acoustics).
This technique has not lost its relevance even now providing
the basic mathematical apparatus for various technical
applications.

In the first order of the MSP, the statistical properties of
amplitude fluctuations are characterized by the variance of
amplitude level, i.e., by the parameter a2 (x) = (x3(x,R)), in
which case (y(x,R)) = —0(x). Regarding the variance of
wave intensity, which is called the scintillation index, it is
written down in the first approximation as

Bo(x) = (I*(x,R)) — 1
= (exp [470(x, R)]) — 1 ~ 45 (x) .

In this case, the intensity of the wave field is a log-normal
random field and all statistical moments of the wave field
intensity grow with an increase in the parameter f,(x), i.e.,
with the distance travelled by the wave. Now, a statistically
equivalent random process /(x) can be considered, for which
the CTR of wave field intensity decays exponentially with
distance:

I =exn (-3 h).
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at any fixed point R in space. This is indicative of the
emergence of a cluster (caustic) structure in the intensity
field. The formation of statistics (for instance, of moment
functions (I"(x,R))) proceeds through large overshoots of
the process /(x) with respect to this curve.

The description of intensity fluctuations, obtained in the
first order of the MSP, is valid for f,(x) < 1. As the
parameter f3,(x) increases further, this approximation
becomes violated and the nonlinear character of the equation
for the complex phase of the wave field has to be taken into
account. This range of fluctuations, called the region of strong
focusing, is very difficult for analytical research. For even
larger values of parameter f,(x), the statistical characteristics
of intensity reach saturation, in which case f(x) — 1 as
fo(x) — oo. This region of the parameter f§;(x) variations is
called the region of strong intensity fluctuations.

In this region, the statistical characteristics of the wave
field cease to depend on the distance and one has

(I'(x,R)) =n!,  P(x,I)=exp(-1).

In this case, the mean specific area of regions within which
I(x,R) > I and the mean specific power concentrated in these
regions are constant and do not describe the behavior of the
wave field intensity in separate realizations. Likewise, passage
to a statistically equivalent random process is not informative
in this case since its curve of typical realization assumes a
constant value. An understanding of the wave field structure
in specific realizations can only be gained in this case from the
analysis of such quantities as the specific mean length of
contours and mean specific number of wave field intensity
contours. These quantities continue to grow with the
parameter f(x), implying that the splitting of contours
takes place (see Fig. 4).

3. Conclusions

In closing, I would like to reiterate once more the main point
of this talk. The approach to analysis of stochastic dynamical
problems rooted in the ideas of stochastic topography, which
enables, given the one-point statistical characteristics of
processes and fields, determining quantitative and qualita-
tive characteristics of behavior of their particular realizations
for all times (in the entire space), has emerged as a result of
discussions with experimenters who largely deal with separate
realizations. For a comprehensive description of stochastic
dynamical systems, it is insufficient to formulate a basic
equations with respective boundary and initial conditions. It
is necessary first and foremost to understand which coherent
phenomena (occurring with the probability of unity, i.e., in
almost all realizations of their solutions) are contained in
these systems, and proceed with a statistical analysis in a
related way.

The work was carried out with support from the Russian
Foundation for Basic Research (projects Nos 07-05-006a and
07-05-92210-NtsNIL.a).
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Development of the radiative transfer
theory as applied to instrumental imaging
in turbid media

L S Dolin

1. Introduction

This talk presents the basic elements of instrumental imaging
theory in media with strongly anisotropic scattering and a
technique devised to compute images of diffusively reflecting
objects, accounting for the effects of light absorption and
multiple scattering. It discusses peculiarities of different
variants of the radiative transfer equation in the small-angle
approximation, used in the imaging theory and optical
coherence ‘tomography’ (OCT) of turbid media. A new
method of computing the temporal moments of a pulsed
light beam transmitted through a layer of a turbid medium is
described. The results of theoretical and experimental studies
of shadow noises in OCT images of turbid media with
fluctuating optical parameters are outlined.

By scattering light a turbid medium limits the visibility
range of objects located within it and becomes visible itself.
Therefore, the development of the methods and theory of
instrumental imaging in turbid media was directed toward
solving two interconnected tasks—the removal of the
adverse influence of the medium on the visibility of objects,
and the remote sensing of inherent optical properties of the
medium itself.

The Koshmider equation [1] expresses the fundamental
result of the imaging theory by relating the image contrast of a
black object (observed in the sky background near the
horizon) to the light attenuation coefficient in the atmo-
sphere. The relationships for estimating the contrast of the
image and visibility range of underwater objects under
natural illumination were obtained in a now classical work
by Duntley [2]. In this case, it was assumed that the angular
size of the observed object is small, so that its apparent
radiance is attenuated by the medium according to Buger’s
law. The need in a more universal imaging theory emerged in
connection with the development of laser methods of under-
water vision.

Pioneering works in this area were performed under the
supervision of A V Gaponov-Grekhov in the Radiophysical
Research Institute (NIRFI in Russ. abbr.) (Gor’ky) in the
1960s. They have led to the design of the first prototype of a
laser-pulse system of underwater imaging with the help of
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