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Local fields in nanolattices
of strongly interacting atoms:
nanostrata, giant resonances,
`magic numbers,' and optical bistability

A E Kaplan, S N Volkov

S M Rytov took an interest in many things, including the
theory of layered media with a period much smaller than the
wavelength [Zh. Eksp. Teor. Fiz. 29 605 (1955)]. One of us,
A E K, who participated in Rytov's seminars for 20 years,
until 1979, was also involved with multiple and various
things, and was sometimes surprised to realize that his work
touches upon old areas of interests of Rytov. Of course, there
is little surprise here, because Rytov had an intuition for
unusual and fundamental things, and he often looked far
ahead. Our new results presented here echo, to an extent,
those old interests of Rytov.

In this report, following our recent brief publication [1],
we consider a number of new effects emerging in one- and
two-dimensional ordered systems of two-level atoms with a
sufficiently strong dipole interaction. We have shown that in
systems smaller than the wavelength of light, an excitation of
the atomic dipole moments may become substantially
inhomogeneous, forming strata and two-dimensional struc-
tures of a nanometer scale. Such behavior of the local field in a
dielectric system is significantly different from the results of
the Lorentz±Lorenz theory for local fields; it gives rise to
resonances defined by the size and geometry of the system and
is capable of inducing a giant local-field enhancement. We
demonstrated that the saturation nonlinearity in two-level
atoms may cause optical bistability, in particular, in the
simplest case where the system is comprised of two atoms
only. We also predicted `magic' system sizes and geometries
that, unlike the Lorentz model, do not result in a suppression
of the local field in the system when the laser frequency is
tuned to the resonance of the two-level atom.

A known fact of the electrodynamics of continuous media
is that the microscopic field acting on atoms or molecules
(known as the `local field') is generally different from the
macroscopic (average) field because of the dipole interaction
between the particles composing the medium. This difference
is a central point of the classical theory of local fields in
dielectrics advanced by Lorentz and Lorenz [2]. An impor-
tant, albeit implicit, assumption of that theory is that the local
field remains virtually unchanged from atom to atom over
distances much shorter than the wavelength of light l. The
theory is therefore essentially based on the so-called `mean-
field approximation.'
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Rapid advances in nanotechnology opened up possibili-
ties of fabricating artificial systems of strongly interacting
particles, for which the assumption of the local-field uni-
formity is no longer valid. It is natural to presume that
abandoning the mean-field approximation in the description
of the local fields may result in a discovery of many new and
interesting phenomena, just as passing from the macroscopic
Curie±Weiss theory to the Ising model significantly extended
the ability of the theory to describe magnetic materials [3]. Of
course, this does not mean that a complete analogy is to be
expected in the descriptions of local fields and magnetic
media. In our case, even more interesting discoveries can be
expected because the atomic electric dipoles induced by the
local fields are driven by an incident electromagnetic wave, in
contrast to the static magnetic dipoles in the Ising model.
Another crucial distinctive feature of our work is that the
systems under consideration are very small, less than the
wavelength in size, while the majority of studies in the theory
of magnetism focus on building a macroscopic, `thermo-
dynamic,' description of the medium.

In this report, based on the results initially presented in
our recent brief publication [1], we demonstrate that account-
ing for significant spatial variations of the local field from
atom to atom, on a scale much less than the wavelength,
opens the way for describing many new effects in ordered
systems of strongly interacting atoms, including giant local-
field resonances, `magic' system sizes and geometries, and
optical bistability and hysteresis. Of particular importance is
that our research brings forward a totally new paradigm in
the theory of light±matter interaction. Our calculations show
that various field-related and array-related factors may
disrupt a smooth variation of the local field from atom to
atom, giving rise to nearly periodic strata or more complex
patterns of induced dipole moments. They are most pro-
nounced in one- and two-dimensional dielectric systems
comprising atoms, molecules, quantum dots, clusters, or
other resonant particles. The resonant nature of the interac-
tion between the particles allows controlling the anisotropy
and strength of the interaction. If the light wave then
propagates normally to the one- or two-dimensional lattice,
we can also eliminate wave propagation aspects of the
problem.

In general, twomajor types of dipole strata emerge: short-
wave, with the period up to four interatomic distances, and
long-wave strata. The strata can be interpreted as standing
waves of local-field excitations, which we hereafter call
`locsitons.' The locsitons are electrostatic by nature and can
have a very low group velocity. They may be classified as
Frenkel excitons [4] because the electrons are bound to the
atoms and there is no charge transfer in the systems under
consideration.

In the first approximation, the phenomenon under
consideration is linear in the external field, and locsitons can
be excited within a spectral band much broader than the
atomic linewidth. It essentially amounts to aRabi broadening
of a spectral line of a resonant atom, which arises because of
strong interatomic interactions. The dipole strata can be
controlled by adjusting the laser polarization and the
dimensionless interatomic coupling parameter Q (see
below), which depends, in turn, on the interatomic distance,
on the dipole moment and spectral linewidth of the resonant
transition in the atoms, and on the detuning of the laser
frequency from the atomic resonance. For jQj > Qcr � O�1�,
the smooth variation of the local field from atom to atom can

be broken by boundaries, impurities, defects in the lattice, etc.
Amost striking manifestation of the effect is the emergence of
large local-field resonances due to locsiton eigenmodes in
finite arrays and lattices. Another interesting and unexpected
phenomenon is an almost complete cancelation of the local-
field suppression if the laser frequency is tuned exactly to the
atomic resonance and the system is comprised of a certain
`magic' number of atoms. Moreover, in a system with a
saturation nonlinearity, different types of optical bistability
and hysteresis can emerge.

Our model is based on the dipole interaction between
atoms.We can neglect retardation effects because of the small
size of the system; therefore, similarly to the classical theory of
local fields [2], we rely on the fact that the near field of a dipole
is predominantly quasistatic and nonradiative in nature. The
frequency o of the incident laser radiation is close to the
resonant frequencyo0 of the atom, which we approximate by
a two-level system [5 ± 7] with a transition dipole moment da.
The local field acting on an atom at a point r can be
represented as a sum of the field Ein of the light wave incident
on the system and the quasistatic contributions from all other
dipoles (with their coordinates denoted as r 0) that are induced
by the local fields EL�r 0�:

EL�r� � Ein�r� ÿQ

4

Xr 0 6�r
lattice

l 3a

jr 0 ÿ rj3

� 3u�EL�r 0� u� ÿ EL�r 0�
1� jEL�r 0�j2=�E 2

sat�1� d 2�� ; �1�

where u is the unit vector along rÿ r 0, d � TDo � T�oÿ o0�
is the dimensionless detuning of the laser frequency from the
atomic resonance, and E 2

sat � �h 2e=�jdaj2tT � is the saturation
intensity of the two-level system. The dimensionless coupling
parameter

Q � 4jdaj2T
e�hl 3a �d� i� �2�

represents the strength of the dipole interaction between
neighboring atoms. The coupling parameter and the satura-
tion intensity depend on the transverse relaxation time
T � 2=G of the two-level atom, whose homogeneous spectral
linewidth is G, on its longitudinal relaxation time (excitation
life time) t, and on the background dielectric constant e. We
also assume that the interatomic distance la is large enough to
prevent any overlap between atomic orbitals of neighboring
atoms, la 4 jdaj=e. This assumption is, in fact, also present in
the standard Lorentz theory of local fields [5 ± 7], in which the
interaction between atoms and molecules is treated classi-
cally. Our approach radically departs from the standard
Lorentz theory in that we do not assume any averaging of
the local field over the neighboring sites of the crystalline
lattice, which would reveal itself in the assumption that
EL�r� � EL�r 0�, and we do not use an encapsulating sphere
around the observation point, outside which a continuous
medium is assumed.

Large transition dipole moments, for example, in alkali
vapors, CO2, narrow-band resonances in solids [9], quantum
dots, and clusters may significantly enhance the effects that
we discovered. In many of these cases, locsitons can emerge
with la as large as a few tens of nanometers. We note that
surface plasmons in metal±dielectric composites [10, 11]
usually require a more sophisticated theoretical description
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involving long-range dipole interactions, and hence that case
falls outside the scope of our report.

We first consider a simpler problem of finding the local
field in a one-dimensional array of atoms arranged along the z
axis with equal interatomic distances la (Fig. 1). A laser beam,
which is incident normally to the array, is polarized either
along the array (Ein k êz), thus inducing atomic dipole
moments that are parallel to the array axis, or perpendicular
to the array (Ein ? êz), accordingly aligning the dipoles
normally to the array and parallel to each other. In both
cases, we have EL k Ein, and hence the equations for the field
are reduced to scalar ones. Using the dimensionless variables
En � �EL�rn�=Ein�� p�, where � p� � k;? denotes the field
polarization, we can write Eqn (1) for each polarization as

En ÿ dR
2�d� i�

Xj6�n
chain

Ej=S
j jÿ nj3 � 1 ; �3�

where 14 n, j4N,

dR � ÿ4SF� p� jdaj
2T

e�hl 3a
; �4�

and the summation in Eqn (3) is performed over all atoms in
the one-dimensional array (chain), resulting in the appear-
ance of the factor S �P1j�1 jÿ3 � 1:202. The factor F� p� is
defined by the field polarization, Fk � 1 and F? � ÿ1=2. In
the nearest-neighbor approximation, similarly to the Ising
model for magnetic media, the summation over all atoms in
Eqn (3) may be replaced with a simpler sum, Enÿ1 � En�1 (one
can then set S � 1). In both cases [i.e., for the full summation
in Eqn (3) and in the nearest-neighbor approximation], the
results are qualitatively similar. In the case of a two-atom
system, discussed below, the two approaches naturally merge.

AsN!1, a solution of Eqn (3) can be found as a sum of
the uniform `Lorentz' field

�E � d� i

dÿ dR � i
�5�

and wave contributions of the form DE / exp ��iqn�. The
wave number of each of these spatially oscillating solutions is
q � 2pla=L, and the wavelength L, to be found later, is
usually much shorter than the wavelength of the incident
light. Here, we note an analogy to the phonon theory [4],
except that our case involves not mechanical vibrations of
atomic nuclei but excitations of bound electrons. The solution
of Eqn (3) is very anisotropic, with a pronounced dependence
on the polarization of the incident wave. The homogeneous
`Lorentz' component of the local field is significantly
suppressed at the exact resonance, i.e., if the laser frequency
is tuned to the frequency of the atomic transition, d � 0, and

the dipole interaction between atoms is strong, jdRj4 1:

j �Eresj2 � 1

1� d 2
R

5 1 : �6�

In this case, the field is essentially pushed out from the system.
j �Ej reaches its maximum at d � dR,

j �Epeakj2 � 1� d 2
R 4 1 : �7�

The wave vectors q are found from the dispersion relation

1

S

X1
n�1

cos �nq�
n 3

� d� i

dR
: �8�

(In the nearest-neighbor approximation, the entire left-hand
side of this equation may be replaced with cos q.)

Within our present model, we showed that spatially
oscillating solutions emerge if jdRj > 1 in the range of
frequency detunings 1 > d=dR > ÿ3=4. (In the nearest-
neighbor approximation, this range widens: jd=dRj < 1.)
The dipole strata are especially pronounced for jdRj4 1.
The strength of the dipole interaction between atoms may be
gauged by the Rabi frequency OR � dR=T, which essentially
defines the position of the Lorentz resonance with respect to
the atomic transition frequency. The Rabi frequency sets the
width of the energy-spectrum band where locsitons can exist,
such that for jdRj4 1, this width is � 2�hjORj4 �hG. Here, we
may draw some analogies with energy spectrum bands in
solids [4] and in photonic crystals [12]. In the limit
1ÿ d=dR 5 1 (i.e., on the band edge near the Lorentz
resonance, where d � dR), `long-wave' locsitons emerge, with

qLW �
��������������
1ÿ d 2

d 2
R

s
; �9a�

LLW � 2pla
qLW

: �9b�

It is worth noting that their wavelength LLW may be as large
as 2pladR, while remaining much shorter than the wavelength
of the incident light wave. A typical example of such strata is
presented in Fig. 2 (top curve). At the opposite edge of the
locsiton frequency band (in the nearest-neighbor approxima-
tion, it corresponds to 1� d=dR 5 1), short-wave locsitons
emerge with qSW9 p and LSW=20la, which is close to the
shortest spatial oscillation wavelength possible in a discrete
system.

Because LSW=2 is generally not a multiple of la, the
distribution of dipole moments and the corresponding local
fields in the discrete array of atoms may be spatially
modulated with a longer wavelength, much like in the case
of two waves with close wave vectors. Such modulation is
clearly visible in the middle curve in Fig. 2, where LSW=2 is
quite close to la. The case of the exact resonance of the
incident wave with the atomic transition, for which d � 0,
may be used to divide the locsiton frequency band into the
regions with short-wave and long-wave locsitons. The
boundary case, with L � 4la, is represented by the lower
curve in Fig. 2.

To draw an analogy with phonons, we note that long-
wave locsitons are counterparts of acoustic phonons, and
short-wave locsitons correspond to optical phonons. Another
interesting analogy can be drawn with ferromagnetic or

E?

1 2 ... ...n Nÿ 1 N

Ek

la

Figure 1. The geometry of the one-dimensional problem: the local field in

an array of resonant atoms.The light wave propagates normally to the

plane of the picture.
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ferroelectric materials, which feature strong interaction
between static magnetic or electric dipoles. Within this
analogy, the locsitons with the longest wavelengths resemble
ferromagnets, while those with the shortest wavelengths
resemble antiferromagnets. A similar analogy may also be
noticed in the difference between bistability regimes in these
two extreme cases, which we consider below for the simplest,
two-atom, system.

We emphasize that this analogy between the locsitons and
ferromagnets or ferroelectrics is inevitably very limited. For
example, at d � 0, a hybrid configuration of a sort is formed
by the induced atomic dipoles in the array, " � # � " � � �,
which corresponds to the lower curve in Fig. 2. Such hybrid
configurations are only possible because of the dynamic
nature of the atomic dipoles in our optical problem, and are
unattainable with static dipoles. Thus, the dipole configura-
tion in an array of atoms can be smoothly transformed from a
`ferromagnetic-like' to an `antiferromagnetic-like' by tuning
the laser frequency from one locsiton band edge to the other,
while going through all the different hybrid configurations in
the process.

We have shown that a finite array of atoms should exhibit
size-related resonances, which are somewhat similar to
resonances in thin semimetal films [13], long organic
molecules [14], or a common violin string. The main
difference is that in our case, the number of resonances is
limited by the number of atoms N. The linear system of
equations (3) may be solved, for example, by using numerical
matrix solvers for N4 1, while for small N, the problem is
amenable to analytic methods. Some results for the local field
EL obtained using numerical methods are shown in Figs 2 ± 5.

We also used the following simple approximation to
achieve a better qualitative understanding of the numerical
results. The solution for an infinite array of atoms can be used
to approximate the solution for a finite array ofN atoms as a
sum of the uniform `Lorentz' solution �E at N � 1 and
spatially oscillating components DE / exp ��iqn�, where the
resonant locsiton wavenumber q and the resonant amplitude

DE are found from appropriate boundary conditions for the
local field at the array ends. If the interaction between all
atoms is taken into account, boundary conditions can only be
approximated; however, we verified the precision of such an
approximation for locsitons with sufficiently long wave-
lengths by many numerical simulations.

In the nearest-neighbor approximation, the method
described above yields an exact solution of the problem. In
this solution, the half-wavelength L1=2 � �N� 1� la of the
resonant locsiton with the longest wavelength is determined
from the condition that the nodes of the local-field eigenmode
lie beyond the end atoms of the array at the distances la, i.e.,
E0 � EN�1 � 0. The frequency resonances for the locsitons
are defined by the frequency detuning dk (0 < k4N):

dk � dR cos qk ; �10a�

where

qk � pk
N� 1

: �10b�

The corresponding locsiton wavelength is Lk � L1=k. Due to
symmetry considerations, only resonances with an odd kmay
be excited by an incident laser beam with a symmetric
transverse field profile, while resonances with an even k may
be excited by a beam with an antisymmetric profile. The solid
curve in Fig. 3 depicts resonances of the maximum local field

Emax � max
0<n4N

jEnj

at the atoms in the array; the resonances are obtained in the
nearest-neighbor approximation for a uniform distribution of
the incident field along an array with N � 13 and dR � 200.
The lower envelope for this curve is Elow�d� � 2 �E, while the

102

jEj
�
jE

L
=
E
in
j

101

100

10ÿ1

10ÿ2

10ÿ3

0 10 20 30 40 50 60
n

d � 191.4

d � ÿ191.4

d � 0

Figure 2.Dipole strata in an array ofN � 65 atoms: the distribution of the

absolute value of the local field at dR � 200 at three different laser

frequency detunings d; n is a sequential number of an atom in the array.

ÿ200 ÿ100 0 100 200 d

N � 13

Emax

Lorentz theory
lower envelope
upper envelope

102

jE m
a
x
j�
jE

L
=
E
in
j ma

x

101

100

10ÿ1

10ÿ2

Figure 3. Locsiton resonances appearing in the dependence of the

normalized maximum amplitude Emax of the local field on the laser

frequency detuning d in an array of N � 13 atoms with dR � 200 (solid

curve). For comparison, its upper and lower envelopes are shown, along

with the corresponding dependence obtained using the classical Lorentz

theory for unbounded media (the dashed curve).
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upper envelope, obtained in the nearest-neighbor approxima-
tion, is given by

Eup �
�E
�
nd � 1

nd

�
; nd 4 1 ,

2 �E; nd > 1 ,

8><>: �11a�

where

nd � N� 1

2
����������������
d 2
R ÿ d 2

q : �11b�

As N increases, the resonances start merging and become
weaker as N approaches dR. However, even for large N, the
lower envelope Elow is still twice the local field �E predicted by
the classical Lorentz theory [see Eqn (5)].

For N � 3kÿ 1, where k is a natural number, the local-
field amplitude Emax, which is obtained in the nearest-
neighbor approximation, goes below Elow at d � ÿdR=2. For
this frequency detuning d, the absolute value of the locsiton
wave number is jqj � 2p=3, and the spatial period of the
locsiton is L � 3la. The long-wavelength modulations of the
spatial profiles of the dipolemoments and the local field in the
array disappear in this case because L becomes an integer
multiple of la. This results in an `antiresonance' of a sort
appearing in the dependence of the local field Emax on d; in
other words, the locsiton in the array becomes suppressed.

Another important and unusual effect that we discovered
is the cancelation of the resonant local-field suppression in an
array consisting of a certain `magic' number of atoms. At the
exact resonance of laser radiation with the atomic transition
(i.e., at d � 0) and for jdRj4 1, the local field obtained from
the Lorentz theory is `pushed out' of the system [see Eqn (6)].
We call this effect the resonant local-field suppression; it is
also present in finite arrays of atoms for most N. We found,
however, that at a certain magic number N, this resonant
suppression vanishes, and the local field penetrates the system
even at d � 0. In the nearest-neighbor approximation, the
magic array sizes are N � kmmag � 1, where k is a natural
number and mmag � 4. The effect is most pronounced at
N � 5, where the atomic dipoles arrange as " � # � ", with
the amplitudes of the dipoles and the local field reaching their
maxima (Emag � 1=3) at odd-numbered atoms, while almost
vanishing at even-numbered atoms. The `magic enhance-
ment' of the local field (compared to the uniform, Lorentz
case) can be substantial: jEmag= �Eresj � dR=3. In this effect, one
of the resonant locsitons, whose frequency exactly matches
that of the atomic transition, virtually compensates the
resonant suppression of the local field in the system. The
effect is also present if interactions between all atoms in the
array are taken into account [see Eqn (3)], where mmag � 13.
While an interference of an evil spirit cannot be excluded
completely, we assume that the result stems from properties
of the equation for the wave vector q of a locsiton in the array
of atoms; this equation follows from Eqn (8) at d � 0:X1

n�1

cos �nq�
n 3

� 0 : �12�

The smallest positive root q1 of Eqn (12) is such that q1=p is
very close to a rational number, �q1=p�=�6=13� � 1:00026 . . .,
and hence the locsiton wavelength is L � 2p=q1 � �13=3�la,
and a multiple of L=2 is therefore close to a multiple of la.
Therefore, the resonant local-field suppression is canceled at

N � 14, with the relative amplitude of the field becoming
substantial, Emag � 2=15.

There is a semantic irony in that the local-field effects are
actually due to nonlocal interactions between atoms. If the
field of an incident wave is limited to a small spatial region,
the local field can extend beyond this region; locsitons can
propagate away from their origin. At the edges of the locsiton
frequency band, i.e., at jdRj > jdj4 1, the group velocity of a
locsiton vgr � la�O2

R ÿ Do2�1=2 could be lower than the speed
of sound in a solid. This effect can be useful, for instance, in
designing nanometer-scale delay lines that could be used in
molecular computers or integrated nanodevices for optical
signal processing.

Aside from dipole strata, other even more interesting
structures emerge in two-dimensional lattices of resonant
atoms. For example, we consider a standing electromagnetic
wave acting on an equilateral triangular lattice of atoms, the
wave being polarized perpendicular to the lattice plane. The
interatomic distances are very small, of the order of a few
nanometers, and hence the external field can be regarded as
uniform on a scale of several tens or even several hundred of
atoms. We found that at certain conditions, concentric dipole
strata (Fig. 4) can emerge around a circular hole made by
removing several tens of atoms from the lattice; the amplitude
of the strata decreases fast as the distance to the hole
boundary increases. An even more interesting dipole config-
uration emerges if the laser radiation is incident normally to
the lattice and polarized in the lattice plane. For better
qualitative understanding of the local-field behavior in this
case, we use the `near-ring approximation,' which is a
modification of the nearest-neighbor approximation: we
consider interactions of each atom with its six immediate
neighbors only, while assuming that the positions of the six
atoms are evenly `spread' over a circle with the diameter of
one interatomic distance la. As in the one-dimensional case,
we introduce a polarization-independent dimensionless para-
meter ~dR, which differs from dR defined by Eqn (4) in that we
set SF� p� � ÿ1 here:

~dR � jdaj
2T

e�hl 3a
: �13�
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Figure 4. Localization of a locsiton in a two-dimensional triangular lattice

of atoms around a hole with a diameter of 15 interatomic distances. The

distribution of the local field E in the system is shown in the case where the

external field of the light wave is normal to the lattice plane, d � 100, and
~dR � 69.
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Comparing Eqns (2) and (4), we see that Q � ~dR=�d� i�.
After replacing the summation in Eqn (1) by an integration
over the `near ring' described above, we find a simple isotropic
expression for the uniform Lorentz local field:

�EL � Ein

1� �3=4�Q : �14�

It can be demonstrated that Eqn (14) remains valid not only in
the near-ring approximation but also in the context of more
precise calculations, which account for the structure of the
two-dimensional lattice of atoms and for the dependence of
the solution on the direction of the locsiton wave vector q
within the first Brillouin zone. As in the one-dimensional case,
we sought a solution of Eqn (1) as a superposition of the
Lorentz field �EL and plane-wave locsitonswith the coordinate
dependences exp ��iqr=la�. Assuming that qmakes an anglec
with the polarization direction of the incident laser radiation,
we arrive at the following dispersion relation for two-
dimensional locsitons (which is a good approximation for
relatively long-wavelength locsitons):

1� 3

4
Q
�
J0�q� ÿ 3J2�q� cos �2c�

� � 0 ; �15�

where Jn is a Bessel function of the first kind.
The near-ring approximation becomes insufficient for

short-wavelength locsitons; a more detailed study is required
in this case, which takes account of the symmetry of the
triangular lattice of atoms and the respective Brillouin zone
structure. We have shown that the solution in this more
general case depends on the orientation of the incident laser
polarization with respect to the lattice. We let uK denote the
unit vector pointing from a given atom to one of its nearest
neighbors (this corresponds to the GK direction in the first
Brillouin zone). We consider four most interesting configura-
tions defined by different polarizations and orientations of
the locsiton wave vector:

a� q ? Ein ; Ein k uK ;
b� q ? Ein ; Ein ? uK ;

c� q k Ein ; Ein k uK ;
d� q k Ein ; Ein ? uK :

The respective dispersion relations in these four cases are
found by us to be

a� cos
q
���
3
p

2
� 4�1�Qÿ1� ;

b� cos
q

2
� 1

8

h
5�

��������������������������
57� 64Qÿ1

p i
;

c� cos
q

2
� 1

16

h
1�

�������������������������������������
1� 128�1ÿQÿ1�

q i
;

d� cos
q
���
3
p

2
� 2

5
�1ÿ 2Qÿ1� :

The dipoles induced in a finite two-dimensional lattice form
distinctive patterns if locsiton resonances emerge at the same
Q in both dimensions. In the limit of long-wavelength
locsitons (q5 1), the dispersion relations in cases (a) and (b)
coincide with each other and with the result obtained in the
near-ring approximation [see Eqn (15)]. In these two cases,

c � p=2 and Q � ÿ4=3, while

q 2
a � q 2

b � q 2
ring � ÿ

32

3

�
3

4
� 1

Q

�
: �16�

In a similar manner, we obtain approximate solutions in cases
(c) and (d), for which c � 0:

q3c � q 2
d � q 2

ring �
32

15

�
3

4
� 1

Q

�
: �17�

Combining cases (a) and (b) or cases (c) and (d), we can
achieve simultaneous resonances in both directions in the
lattice, if the lattice is approximately square in shape.
Resonances of the same order are attained this way for
locsitons with wave vectors pointing in two orthogonal
directions; a sufficient `squareness' of the two-dimensional
triangular lattice can be achieved by choosing the lattice size
(i.e., the numbers of atoms in the two directions). Locsitons
with shorter wavelengths and wave vectors pointing in
different directions are also present, but they do not
significantly affect the emerging dipole pattern because of
their nonresonant nature.

The interference of locsitons in a two-dimensional lattice
of atoms can produce many different dipole excitation
patterns and strata. Some of them are reminiscent of
`quantum carpets' [15]. Figure 5 depicts vector patterns that
are formed by the atomic dipoles induced by the local field.
The atoms are arranged in a 48� 56 equilateral triangular
lattice, which results in approximately equal sides of the
lattice patch. The field of the incident electromagnetic wave
is uniform and is polarized along the diagonal of the lattice
patch. The incident wave frequency is chosen such that the
third resonance (in the order of increasing wavenumbers,
counting only the resonances allowed by the symmetry of the
problem) is excited in each dimension; at least six distinct
vortices of the local field are visible. Figure 5 shows the
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Figure 5. Vortices in the distribution of the local field E in a nearly square

patch of a two-dimensional triangular lattice of atoms at d � ÿ1000 and
~dR � 1316:5. To avoid overcrowding of the plot, only one of each nine

dipoles is shown. The incident light wave is polarized in the lattice plane

along the diagonal of the lattice patch, its field shown by the large arrow.
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imaginary parts of the complex field amplitudes, because they
are dominant for each of the resonant locsitons.

Finite two-dimensional lattices and other similar systems
of resonant atoms produce especially interesting examples of
the cancelation of the resonant local-field suppression.Unlike
in the one-dimensional arrays of atoms, the `restoration' of
the local field in such systems at d � 0, compared to that in the
uniform, Lorentz case, can be more complete (up to 100%).
The two-dimensional `magic shapes' of atoms have the same
`cabbalistic' streak as in the one-dimensional case. For
example, in the nearest-neighbor approximation, the effect
is most pronounced only in the system of N � 13 atoms
arranged as an equilateral six-point star with an atom at the
center, for which the maximum restoration of the local field is
reached, Emax � 1:02. The directions and relative amplitudes
of the local field at the atoms in this system are shown in Fig. 6
forEin k uK. It can be seen from the picture that the local field
is concentrated on the outermost atoms and the one at the
center, while the local field at the inner hexagon of atoms is
almost completely suppressed. Any symmetry distortion in
this system of strongly interacting atoms (e.g., by attaching a
foreign atom ormolecule to it) would break the balance of the
local fields in the system and bring back the resonant
suppression of the local field, which is canceled in the
symmetric `magic system.' This effect may be used, inter
alia, in designing nanometer-scale sensors for detecting
various biological molecules.

A sufficiently strong electromagnetic field applied to a
system of strongly interacting atoms can bring about non-
linear local-field effects, e.g., solitons. A detailed considera-
tion of many and varied interesting effects of this kind falls
out of the scope of this report. It is worth noting, however,
that some nonlinear effects, such as optical bistability and
hysteresis, are possible even in the steady-state regime
considered here, where the amplitude of the incident electro-
magnetic wave is constant. The optical bistability for the
uniform, Lorentz local field in an unbounded medium was
predicted in [16] and experimentally observed later in [17].
However, the possibility of bistability and multistability for
short-wavelength locsitons, whose local field is highly
nonuniform in space, has not been discussed in the litera-
ture. We found that this effect is possible even in the
ultimately simple system of two two-level atoms with a
saturation nonlinearity and a strong dipole interaction. This
system also provides the most dramatic example of a self-
induced local-field nonuniformity.

We describe the two-atom system using Eqns (3) and (4)
with S � 1. Depending on the orientation of the local and

external fields EL k Ein either perpendicular or parallel to the
line connecting the two atoms, Eqn (4) respectively includes
either F? orFk.We introduce dimensionless amplitudes of the
local field at each atom, Yj � Ej=Esat, where j � 1; 2, and the
dimensionless field of the incident wave, X � Ein=Esat, by
normalizing the amplitudes of these fields to the saturation
field Esat of the two-level system. With this new notation, the
system of equations for the local fields takes the form

Y1 � X� dR2�dÿ i�Y2

1� d 2 � jY2j2
; �18a�

Y2 � X� dR2�dÿ i�Y1

1� d 2 � jY1j2
; �18b�

where dR2 � dR=2 > 0. Equations (18) give rise to two types
of solutions, or two different modes, for the local field in the
system. A solution of the first type is similar to the uniform
Lorentz solution for an infinite array of atoms, in which the
local fields at the two atoms oscillate in phase. In this case,
system of equations (18) leads to a cubic equation for j �Y j2,
which is readily solved or analyzed with the help of a plot,
Fig. 7. For jdR2j4 1, the onset of bistability and hysteresis for
�Y occurs at the detuning d � dR2 of the laser frequency from
the frequency of the two-level transition, with dR2 ÿ d >

���
3
p

.
In this case, the threshold field of the incident wave
Xthr � ��2=

���
3
p �3=dR2�1=2 5 1, i.e., it may be significantly

below the saturation field Esat of the two-level system.
In the case of antiphase oscillations of local fields, a

multistable solution of the second type is in fact the limit
case of a short-wave locsiton that emerges at the opposite
edge of the locsiton band at d � ÿdR2. In the limit jX j5 dR2,
in addition to the uniform, Lorentz local field �Y � X=2, we
found a nonuniform solution

Y1;2 � �Y� s ; �19a�
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b

Figure 6. (a) The geometry of a `magic system' of 13 resonant atoms; (b) the

local field distribution in the system.
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Figure 7. Optical bistability and hysteresis in a system of two resonant

atoms with the saturation nonlinearity. The dependences of the normal-

ized local-field amplitude j �Yj on the frequency detuning d are shown for

dR2 � 100 and different normalized field amplitudes X of the incident

wave.
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where

s � s���
2
p

� ������������
1� R

p
ÿ i

������������
1� R
p �

; �19b�

s �
��������������������������������������������������������
dR2�dR2 � d� ÿ 2 �Y 2 � �Y 2R

q
; �19c�

R �
����������������
1ÿ d 2

R2

�Y 4

s
: �19d�

The choice of the signs in Eqns (19b) and (19c) is independent
of the choice of the sign in Eqn (19a). In Eqn (19a), one of the
possible choices for the � sign corresponds to Y1 and the
other corresponds to Y2, which enables two different
solutions, depending on the signs chosen. A similar property
leads to the split-fork bistability for counterpropagating
waves in a ring resonator [18]. The necessary conditions for
the second-type multistable solution for the local field are
dR2 � d >

���
3
p

and X 2 > 4dR2. Three branches of the solution
are seen in Fig. 8 near the bistability threshold: two stable
branches given by Eqns (19) and one unstable `Lorentz'
solution �Y. For dR2 � d > 2, there exist five different
branches of the solution, but only two of them are stable.
The antiphase oscillations of the dipole moments of the two
atoms, which are represented by the term �s in Eqn (19a),
could be likened to a pair of spins one of which is aligned and
the other counter-aligned with the applied magnetic field.

Returning to the above-mentioned similarities between
the local-field behavior in a system of atoms and the behavior
of spins in magnetic materials, we emphasize that our
research is focused on the effects that are characteristic of
fairly small systems of atoms, while studies of magnetic
phenomena are typically aimed at finding averaged, `thermo-

dynamic' properties of sufficiently large systems. It is possible
that our approach, which allowed us to predict giant
resonances, magic numbers and shapes of atoms, etc., may
allow exposing similar effects in nanometer-scale magnetic
systems. The internal structure of locsitons and dipole strata
emerges at the nanometer scale, with many interesting effects
involving drastic changes of the local field even between
neighboring atoms, i.e., at distances of the order of a few
nanometers or less. Optical methods are ill-suited for
resolving such small systems, and therefore the X-ray or
electron-energy-loss spectroscopies, as well as an observa-
tion of the size-related optical resonances predicted by us,
may become more promising methods for detecting locsitons
experimentally.

We note that locsitons and dipole nanostratamay open up
fresh opportunities in designing elements for molecular
computers and other nanodevices [19]. The significant
advantage of locsitons over electrons in semiconductors and
metals is that no electric current or charge transfer is required
for locsitons to emerge. This advantage might aid in reducing
the sizes of computer logic elements, since current semicon-
ductor technology suffers from heat-related problems on a
scale below 10 nm.

Locsitons might be put into service in both passive
elements (e.g., for data transmission or in delay lines) and
active elements (switches or logic elements). Locsiton-based
nanodevices could thus supplement the list of alternative
nanotechnologies, including plasmonics [20, 21], which is
substantially based on surface plasmons [10, 11], and
spintronics [22]. Another application of locsitons could be in
nanosensors for biological molecules and other particles and
impurities. Such a nanosensor may be built out of resonant
receptor molecules, which can selectively bind target mole-
cules or particles; otherwise, receptor molecules may be
attached to particles with an optical resonance. By arranging
the molecules in a magic shape, the nanosensor may be
designed such that the locsiton in the system is not
suppressed even at the exact resonance of the laser radiation
with the constituent molecules; at the same time, the locsiton
is to be suppressed whenever a target biological molecule
attaches to the nanosensor.

Even more exciting opportunities open up in arrays and
lattices of atoms with an inverse population of the resonant
quantum transition; this inverse population may be created
by an appropriate (e.g., optical) pumping. Such systems may
open up the way to controlling locsitons, amplifying them,
and even generating coherent locsitons with a `locsiton laser'
of a sort (a `locster').

In conclusion, we demonstrated that dipole nanostrata
and short-wave excitations of a local field (locsitons) can be
brought about in arrays and lattices of strongly interacting
atoms, including a two-atom system, by the action of laser
radiation with a frequency close to that of the atomic
resonance. Locsitonic effects include giant size-related reso-
nances of the local field, the cancelation of the resonant local-
field suppression in the system at certain magic shapes and
numbers of atoms, and also optical bistability and hysteresis.

The authors are grateful to the US Air Force Office of
Scientific Research (AFOSR) for funding this research.
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Modern methods for the statistical
description of dynamical stochastic systems

V I Klyatskin

1. Introduction

S M Rytov gave much attention to the development of
functional methods of stochastic system analysis at All-
Moscow Radiophysics Seminars he led. He dubbed them
radiomathematics. I participated in these seminars from the
end of the 1960s. S M Rytov frequently asked, me in
particular, a question: ``What are you studying?'' I tradi-
tionally answered that solutions of stochastic equations
(ordinary and partial differential, or integral) are func-
tionals from random coefficients of these equations and
that I am studying the dependence of the statistical
characteristics of these solutions on various models and the
statistical parameters of these coefficients. For about 30
years I considered this answer to be exhaustive, and only
during the last 10 ± 15 year did I realize all the topicality of
the question ``What are you studying?'' and the total
inadequacy of my usual answer. This is related to the fact
that in recent years the attention of both theorists and
experimenters has focused on the question of the links of
dynamics pertaining to averaged characteristics of problem
solution to the solution behavior in specific realizations. This
is especially relevant to geophysical problems related to the
atmosphere and ocean in which, by and large, the respective
averaging ensemble is absent and experimenters as a rule
deal with individual realizations. In this case, the results of
statistical analysis frequently not only have nothing in

common with the behavior of solutions in specific realiza-
tions but often simply contradict them. It is namely this that
I would like to demonstrate in this report.

Three approaches are currently utilized in the analysis of a
stochastic dynamical system.

The first approach is based on analyzing the Lyapunov
stability of solutions to deterministic linear ordinary differ-
ential equations

d

dt
x�t� � A�t� x�t�

and traditionally attracts the attention of many researchers.
One analyzes here the upper bound of the problem solution

lx�t � � lim
t!�1

1

t
ln
��x�t��� ;

which is termed its characteristic exponent. When this
approach is applied to stochastic dynamical systems, it is
common that, to interpret and simplify the obtained results at
the final stage, statistical analysis is invoked and statistical
averages such, for example, as


lx�t �
� � lim

t!�1
1

t



ln jx�t�j� ;

are computed.
The drawbacks of this approach to stochastic dynamical

systems are as follows:
(1) Such simplifying features of random parameters as

stationarity in time, homogeneity, and isotropy in space are
exploited only at the stage of final analysis.

(2) When passing to continual generalizations of ordinary
differential equations (for example, in mechanics or the
electrodynamics of continuous media), i.e., to partial differ-
ential equations (to fields), the analysis of Lyapunov stability
is only possible through the series expansions of solutions in
complete sets of orthogonal functions. If such a technique is
applied to stochastic problems, a question emerges as to
whether the operations of series expansion and statistical
averaging are permutable. In particular, when statistical
characteristics of random processes and fields are approxi-
mated by singular (generalized) functions (as, for example, in
the approximation that fluctuations of system parameters are
delta-correlated), these operations are not, as a rule, permu-
table.

The second approach is also traditional and relies on the
analysis of moment and correlation functions of solutions to
stochastic problems.

The drawback of this second approach is that commonly
used methods of statistical averaging smooth the qualitative
features of separate realizations and it is not uncommon for
the obtained statistical characteristics to have nothing in
common with the behavior of separate realizations.

In certain circumstances there exist, however, physical
processes and phenomena occurring with the probability
of one (i.e., happening in almost all realizations). They
are called coherent (see monographs [1 ± 4] and work [5]
where this question is thoroughly discussed). To describe
such phenomena, the third approach is applied. It is rooted
in the method of statistical topography which studies,
instead of moment functions, the statistical characteristics
of some functionals describing precisely these coherent
phenomena.

Below, we will illustrate these approaches as applied to
simple physical problems.
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