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1. Introduction

Wave propagation in disordered systems is considered one of
the most difficult subjects of theoretical physics. The
traditional approach involves the phenomenological radia-
tive transfer theory [1, 2], which originated more than a
century ago in the studies by Khvol'son (1890), Schuster
(1905), and Schwarzschield (1906) devoted to light scattering
in milk glasses and solar and foggy earth atmospheres; it is
based on the notions of linear kinetic theory involving an
elementary scattering act and radiation free path. In the
1950s, the development of the theory of partial coherence
for wave fields prompted active studies of the applicability
limits for the radiative transfer theory from the standpoint of
the statistical theory of multiple wave scattering in randomly
inhomogeneous media. Their results were regularly reported
and critically discussed at the All-Moscow Radiophysics
Seminar headed by S M Rytov from 1965 to 1985. Although
this research was purely theoretical, it resulted in the
prediction of weak light localization in randomly inhomoge-
neous media in 1973. Because this phenomenon lay at the
applicability boundary of the radiative transfer theory, it
could not be ignored.

As early as 1967, a derivation was proposed [3] (see also
[4]) of the phenomenological radiative transfer equation in a
discrete randomly inhomogeneous medium, with due regard
for the correlation of scatterers in all orders and mutual
irradiation of scatterers within the same effective inhomo-
geneity, i.e., a cluster of scatterers. A single scatterer was
characterized by its shape, dielectric permeability, and
conductivity; the method of Dyson and Bethe±Salpeter
equations, the Feynman diagram technique, and the concept
of the quantum mechanical scattering operator were used [5].
The transfer equation [3], with pair correlation of weak
scatterers satisfying the applicability conditions of the Born
approximation taken account, was used to investigate an
increase in the free path length of microwaves in snow layers
and conduction electrons in liquid metals [6], as well as the
opposite effect of a decrease in the free path of light [7] and
neutrons in a liquid [6] in the vicinity of a phase transition
critical point. The contribution from higher correlations of
weak scatterers to the light free path at critical opalescence
was considered in Ref. [8], while Ref. [9] dealt with the
influence of higher correlations due to large, optically dense
scatterers on the transmittance of a layer composed of such
particles.

Simultaneously with the derivation of the transfer equa-
tion [3], the applicability condition for the phenomenological

transfer theory was formulated as the single-group approx-
imation, i.e., the possibility to discard all repeated scattering
of radiation on the same inhomogeneity. Additionally, it is
required that inhomogeneities be in the far field of Fraunho-
fer diffraction with respect to each other. The first part of this
condition, later called the approximation of independent
scattering on effective inhomogeneities [10], disregards all
loops in multiple wave scattering with a diameter of the order
of or larger than the free path length of radiation.

The decisive role of the single-group approximation for
the transfer theory was convincingly demonstrated with the
model of multiple scattering of a nonstationary wave field in a
randomly inhomogeneous and randomly variable medium,
for which the concept of a finite `lifetime' of an inhomogene-
ity can be introduced. From this model, thoroughly studied in
Refs [6, 11], the transfer theory follows as an asymptotically
exact VanHove limit [12] under the condition that the ratio of
the inhomogeneity lifetime to the radiation free path time
tends to zero, but the ratio of the observation time to the free
path time remains fixed. The second condition of the Van
Hove limit prevents repeated scattering due to a selected
inhomogeneity from occurring on a large time or space scale
of radiation propagation. In repeated scattering, the effects of
multi-group or dependent scattering, i.e., the loops, would
have to be taken into account, and the phenomenological
radiative transfer theory would need modifications.

The most thoroughly studied effect of multi-group or
dependent scattering by effective inhomogeneities is mani-
fested through the coherent enhancement of backscattering.
It was first predicted as a wave correction to the solution of
the transfer equation for scattering directed exactly `back-
ward' [13]. Reference [14] shows, based on the technique of
cyclic (maximally crossed) Feynman diagrams, that the wave
correction attains a relative value close to unity in a narrow
backscattering cone whose angular width is of the order of
the ratio of the wave length to the free path length of
radiation.

The predicted cone of enhanced backscattering was
experimentally observed by several groups [15 ± 17]. It
strongly stimulated research on the weak localization
phenomenon in optics [18]. Coherent enhanced backscatter-
ing stems from coherent loops in which the field and its
complex conjugate go around a given set of inhomogeneities
in opposite ways. There also exist incoherent loops, in which
case a set of inhomogeneities is passed by the field and its
complex conjugate in the same order. The incoherent loops
lead to the backscattering effect for nonstationary radiation
in a modified transfer theory with time delay [19], where the
delay time is of the order of the radiation free path time.
Another variant of the transfer theory with time delay
emerges on considering the effect of trapping [20] under
multiple scattering of wave radiation, for example, a short
femtosecond laser pulse [21], in a randomly inhomogeneous
medium composed of resonant scatterers.

Taking account of loops in multiple wave scattering
implies lifting the part of the applicability condition of the
phenomenological transfer equation [3] that requires omit-
ting repeated scattering of radiation by the same inhomo-
geneity. No principal obstacles are seen in using this equation
to explore multiple light scattering by new artificial systems
such as statistical ensembles of nanosclusters [22], in which
each cluster represents a combination of a possibly large but
finite number of atoms (or molecules) and requires describing
light scattering with methods of quantum mechanics or
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electrodynamics. Admittedly, it may call for considering
effects from near fields in the form of evanescent waves in
some vicinity of effective inhomogeneities (nanoclusters), i.e.,
abandoning the condition that the inhomogeneities are
located in the far wave zone of Fraunhofer diffraction with
respect to each other.

Recently, considerable progress has been achieved in the
theoretical understanding of the role played by near fields in
multiple scattering of electromagnetic waves by inhomoge-
neous dielectric media. The progress was facilitated by using
the Sommerfeld±Weyl representation for angular spectral
amplitudes of local electromagnetic waves propagating
along and against the axis of the parameter of embedding
into a layer of a three-dimensional medium, and by exploring
the phenomenon of energy emission from an evanescent wave
scattered by a dielectric structure [23], with checks for the
extended unitarity of the 2� 2 block S-matrix [24] and the
interpretation of the mentioned energy emission through the
interference of two evanescent waves decaying toward each
other [25]. As a result, an approach was formulated [26] to
establishing a modified theory of electromagnetic radiation
transfer in a randomly inhomogeneous medium with the
effects of near fields and interference of oppositely directed
wave beams taken into account.

Finally, perspectives of exploring the electrodynamic
properties of artificial materials exemplified by statistical
ensembles of particles with a given shape, dielectric perme-
ability and conductivity (see, e.g., Ref. [27]), and, possibly,
high spatial packing parameter, put forward the task of
radically modifying the phenomenological radiative transfer
theory while preserving some of its properties. Such a
modification hinges on the Ambartsumyan method of layer
summation [28], according to which the scattering medium is
split in virtual layers (slices) separated by small gaps, with a
subsequent derivation of transfer relations in terms of the
intensity between radiation fluxes in gaps and the fluxes
reflected from and transmitted through the entire medium.

The idea about the virtual layering of the medium into
slices and gaps is evidently applicable to any medium, in
particular, that consisting of the particles mentioned pre-
viously, for further derivation of transfer relations between
the radiation fluxes, and not only for wave intensities but also
for wave amplitudes, as in Refs [29, 30]. The transfer relations
obtained there imply a system of four differential Riccati
equations for the blocks of the S-matrix, written for a layer of
a medium in the form of Reid [31] and Redheffer [32], with
differentiation over the parameter of embedding into the
layer. Using the Reid method, a relation is established
between the solution of the system of nonlinear matrix
Riccati equations and that of the linear differential equation
for the transfer matrix. Paper [30] elaborates on the extended
relations of unitarity and invariance under time reversal for
the solution of the system of Riccati equations and of the
transfer matrix equation. The extended relations augment, by
near-field effects, the more habitual quantum mechanical
relations used in the widely known theory for the transmis-
sion coefficient and electron localization length in N con-
nected disordered chains developed byDorokhov [33] and the
authors of Ref. [34] based on the Fokker±Planck equation for
the probability distribution function for transfer matrix
elements.

Noteworthy in the just mentioned system of matrix
Riccati equations is the fact that the governing role belongs
to the equation for the coefficient of wave reflection from a

layer of a three-dimensional randomly inhomogeneous
dielectric medium written for angular spectral amplitudes,
which is independent of the other equations. It was studied in
[35] and served as a starting point in Ref. [36], where the
functional Fokker±Planck equation for the functional of the
probability distribution of the reflection coefficient was
written.

The treatment of the Fokker±Planck equation in varia-
tional derivatives is exceptionally difficult. However, one can
change to ordinary derivatives by discretizing the space of the
wave vector transverse to the axis of the embedding para-
meter, in analogy with the method of the transfer matrix with
a finite number of propagation channels in the quantum
mechanical theory dealing with interference effects in metal
conductors [37].

In exploring multiple wave scattering by statistical
ensembles of particles characterized by a large packing
parameter, it seems reasonable to assume that the distribu-
tion of particles is periodic in the zeroth approximation, as in
the structure of the photon crystal in [38]. In this case, for
example, the matrix Riccati equation for the reflection
coefficient turns out to be naturally discretized over diffrac-
tion orders of the radiation reflected from and transmitted
through the structure layer. This equation was successfully
used in Ref. [39] for numerical computation via the Runge±
Kutta method of formation of gaps in the spectrum of
radiation transmission through an ordered system of dielec-
tric cylinders with arbitrary cross sections.

Some of the aforementioned questions of the asymptotic
limit of the radiative transfer theory are considered in detail in
what follows.

2. Single-group approximation
and the Van Hove limit

In the scalar case, the phenomenological transfer equation
written for the ray intensity I�R; s� at a pointR in the direction
of a unit vector s takes the form

sHI�R; s� � ÿ 1

l
I�R; s� �

�
4p

ds 0W�s; s 0� I�R; s 0� : �1�

The coefficients of extinction 1=l and scattering W�s; s 0� due
to an elementary volume are expressed by via Fourier
transformation through the mass operator M1 and intensity
operator K1 of the Dyson and Bethe±Salpeter equations in
the single-group approximation. They are symbolically
represented by the series

M1

K1
�
X1
n�1

1

n!

�
d1 . . .

�
dngn�1; . . . ; n� T gr

1...n

�T1...n 
 T �1...n� gr
: �2�

Here, natural numbers 1; . . . ; n label spatial coordinates of
points, T1... n is the operator of scattering by a system of n
scatterers centered at these points, and gn�1; . . . ; n� is the
correlation function of the scatterers. The group subtraction
operation gr removes small orders of scattering in the group
of scatterers and acts in the simplest case as
T gr
12 � T12 ÿ T1 ÿ T2. The symbol 
 denotes the tensor

product.
Originally, single-group approximation (2) was derived

using the Feynman diagram technique. However, it was
recognized later that it could be obtained on a purely analytic
level, based on the exact Bethe±Salpeter relation [20, 40] of the
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form

�L
 Iÿ I
 L�hG
 G �i
�
D�

M
 Iÿ I
M � ÿ �G
 Iÿ I
 G ��K�G
 G �
E

� I
 hG �i ÿ hGi 
 I ; �3�
where L is the differential operator of the wave equation in
free space,G is the Green's function of the wave equation in a
randomly inhomogeneous medium, and the angular brackets
denote averaging over the statistical ensemble of scatterers.
The operators M and K formally have the same analytic
structure as the mass and intensity operators in single-group
approximation (2), except for the replacement of the T
operators of free space scattering with self-consistent ran-
dom operators of scattering in a randomly inhomogeneous
medium.

We assume that the random Green's function G�r; r 0�
satisfies the locality property and hence differs only slightly
from its ensemble mean and theGreen's function in free space
if the distance between the observation and source points r
and r 0 is of the order of the scatterer radii and their correlation
radii. In that case, the random operatorsM and K practically
coincide, respectively, with the mass and intensity operators
in single-group approximation (2), while relation (3) trans-
forms into the Bethe±Salpeter equation in the form of a
kinetic equation [20].

The locality property of the random Green's function
formulated above, in particular, implies omission of all loops
in multiple wave scattering with a diameter of the order of or
greater than the free path length of radiation. Can this
property be justified in an asymptotically exact way? Such
justification is known, for example, for the problem of the
propagation of a quantum mechanical stream of particles in
the field of a randomly varying potentialV�r; t�. Based on the
stochastic Liouville±von Neumann equation for the density
matrix r�t� of a particle stream under the assumption that the
probability distribution of random potential realizations is
Gaussian, the kinetic equation for the ensemble mean density
matrix �r�R; k; t� in the Wigner variables was derived in
Refs [6, 20] in the form�

q
qt
� �hk

m
HR

�
�r�R; k; t�

�
�
dk 0W �k; k 0���r�R; k 0; t� ÿ �r�R; k; t�� : �4�

Equation (4) is asymptotically exact in the Van Hove limit
t0=tM ! 0, t=tM � const, where tM estimates the relaxation
time tr of the kinetic equation from below and the lifetime t0
of the effective inhomogeneity is expressed in terms of the
cumulant of random potential fluctuations. Paper [11]
considers the passage from kinetic equation (4) to the limit
of stationary transfer equation (1) through the replacement of
the observation time with the absorption time in the second
condition of the Van Hove limit.

3. Coherent loops and weak localization

Coherent loops are linked to cyclic Feynman diagrams of the
intensity operator [14]. Cyclic diagrams are omitted when
transfer equation (1) is derived in the framework of single-
group approximation (2). Nevertheless, they are, in some
sense, equivalent to `ladder' diagrams, which constitute the

main element of the transfer theory. This equivalence
property follows upon inversion of the upper or lower rows
of a cyclic diagram and using the reciprocity property of the
Green's function and of the intensity operator in the single-
group approximation. The equivalence property of cyclic
diagrams enabled the author of Ref. [14] to conclude that
there exists a cone of enhanced backscattering with the width
dy � l=lmeasured by the ratio of the wavelength l to the free
path length l.

It is worth noting that Ref. [14] was published in relation
to the discussion of the work by Gazaryan [41] which, based
on the exact solution to the Anderson strong localization
problem [42] in a one-dimensional randomly inhomogeneous
medium, demonstrated, following Ref. [43], an exponentially
fast decay of the layer transmittance for the mean intensity as
a function of the layer thickness, instead of a power-law decay
predicted by the transfer equation [1]. In other words, the
transfer equation provides a reduced value for the reflective
capability of the one-dimensional scattering layer. The goal of
Ref. [14] was to demonstrate the reduction of a similar type in
the framework of transfer theory for the reflective capability
of a three-dimensional scattering layer, although a reduction
in a weak sense.

4. Near fields and the tunnel component
of radiative transfer

Near fields arise during multiple wave scattering in a
randomly inhomogeneous medium as evanescent waves in
the vicinity of effective inhomogeneities and participate in a
specific way in radiation transfer together with propagating
waves. Only the latter are taken into account by the
phenomenological transfer theory. The principal role is here
played by a formula derived in Ref. [25] for the radiation
energy flux in an inhomogeneous dielectric medium. In the
scalar version, this formula has the form

Pz�z� �
�
k?

Hpr�k?�
�
r11�k?; k?; z� ÿ r22�k?; k?; z��

�
�
k?

iH ev�k?�
�
r12�k?; k?; z� ÿ r21�k?; k?; z��; �5�

wherePz�z� is the component of the Poynting vector along the
z axis of the parameter of embedding into the medium layer
0 < z < L, integrated in the plane perpendicular to this axis,
rmm 0 �k?; k 0?; z� is the density matrix [25] of (slowly varying)
angular spectral amplitudes of local waves propagating in
forward (index 1) and backward (index 2) directions relative
to the z axis (m,m 0 � 1, 2), k? and k 0? are the components of k
and k 0 perpendicular to the z axis, H pr�k?� and H ev�k?� are
the respective projectors on the propagating (k? < k0) and
evanescent (k? > k0) waves, for which the longitudinal wave
number gk � �k 2

0 ÿ k 2
?�1=2 takes a real or a purely imaginary

value, and k0 is the wave number of free space; the compact
notation for integrals,

�
k?
� �2p�ÿ2 � dk?, is used.

According to formula (5), the contribution of propagating
waves to the total energy flux along the z axis is determined by
intensities of angular spectral amplitudes of waves propagat-
ing in forward and backward directions, whereas the
contribution of evanescent waves to this energy flux is
expressed through the term corresponding to the interference
of two evanescent waves decaying toward each other. Turning
to a randomly inhomogeneous medium, we need to consider
the coherence matrix for angular spectral amplitudes of local
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waves for two values of the parameter of embedding into the
medium, rmm 0 �p; p 0; z; z 0�, where the bar denotes ensemble
averaging and the short notation p and p 0 is used instead of k?
and k 0?. The Bethe±Salpeter equation for this coherence
matrix with the mass and intensity operators is derived in
single-group approximation (2).

In the simplest case of weak uncorrelated scatterers, we
arrive at themodel of amediumwithGaussian fluctuations of
the potential, used in Ref. [26] to analyze effects of near fields
in the transfer theory. After some simplification, the Bethe±
Salpeter equation for the coherencematrix of angular spectral
amplitudes is reduced to four equations, two of which allow
computing ensemble-averaged intensities of angular spectral
amplitudes for the forward and backward directions, and the
other two, for complex-conjugate mutual coherences of
evanescent waves decaying toward each other. One of the
first two equations has the form

r̂11�p; p; z; z� � exp �ÿ2=g1pz�
�� f �p���2

�
� z

0

dz1 exp
�ÿ 2=g1p�zÿ z1�

� �
p 0

1

4jgpjjgp 0 j

� �B�pÿ p 0; gp ÿ gp 0 � r̂11� p 0; p 0; z1; z1�

� B�pÿ p 0; gp � gp 0 � r̂22� p 0; p 0; z1; z1�

� B�pÿ p 0; gp ÿ gp 0 � r̂12� p 0; p 0; z1; z1�

� B�pÿ p 0; gp � gp 0 � r̂21� p 0; p 0; z1; z1�
�
: �6�

Equation (6) is written in terms of the coherence matrix
of rapidly varying angular spectral amplitudes
r̂mm 0 �p; p 0; z; z 0� � exp �ixmgpzÿ ixm 0g �p 0z

0� �rmm 0 �p; p 0; z; z 0�
with x1 � 1 and x2 � ÿ1. The quantity =g1p represents the
imaginary part of the longitudinal wave number in a
deterministic medium with the effective complex wave
number k1; it is assumed that a propagating wave with the
angular spectral amplitude f �p� is incident on the left layer
boundary. The function B�k?; kz� is the three-dimensional
Fourier transform of the cumulant of random potential
fluctuations. Equation (6) describes multiple scattering of
ensemble-averaged intensities of angular spectral amplitudes
by effective inhomogeneities with a free path between them
that is typical of the transfer theory. In addition, this
equation, evidently, contains the contribution to mean
intensity of waves propagating forward brought about by
mutual coherences of evanescent waves as they are scattered
on effective inhomogeneities.

The equation for computing the ensemble-averaged
intensity of angular spectral amplitudes for waves propagat-
ing backward is similar to Eqn (6) and is not reproduced here.

We turn to the equation for mutual coherence of pairs of
evanescent waves decaying toward each other, of the form

r̂12�p; p; z; z� �
� z

0

dz1

� L

z

dz1 exp
�
ig1p�zÿ z1�

�
� exp

�
ig �1p�zÿ z1�

� �
p 0

1

4jgpjjgp 0 j
� B�pÿ p 0; z1 ÿ z1�

X
m;n

exp
�ÿ ixmgp 0 �zÿ z1�

�
� exp

�
ixng

�
p 0 �zÿ z1�

�
r̂mn�p 0; p 0; z; z� ; �7�

where B�k?; z� is the two-dimensional Fourier transform of
the cumulant of random potential fluctuations in the plane
perpendicular to the z axis.

Equation (7) differs principally from Eqn (6) by its
structure. Indeed, the inequality z1 < z < z1 holds in the
double integral in the right-hand side of Eqn (7), with
z1 ÿ z1 � r0, where r0 is the spatial scale of effective inhomo-
geneities. This implies that the observation point z and two
scattering points z1 and z1 are confined to the same
inhomogeneity, whereas two elementary evanescent waves
appearing during scattering decay in the directions toward
each other with interference at the observation point. This
interference leads, as follows from a more detailed analysis of
Eqn (7), to the following tunnel component of the radiation
energy flux:

ÿ2
�
p�k0<p<p0�

=r̂12�p; p; z; z�

� g

1ÿ g

�
p�p<k0�

�
r̂11�p; p; z; z� ÿ r̂22�p; p; z; z�� : �8�

Solution (8) of the imaginary part of Eqn (7) is obtained in the
limit of small-scale fluctuations of the random potential,
when two evanescent waves, one incident on the inhomo-
geneity and the other scattered by it, decay only slightly on the
inhomogeneity scale, jgpjr0 5 1 and jgp 0 jr0 5 1, with
k0 < p < p0 and k0 < p 0 < p0, where p0 � 1=r0 is some cut-
off parameter. The parameter of the tunnel component of the
energy flux is of the order of g � r0=l, which represents the
ratio of the inhomogeneity scale to the free path length,
defined as 1=l � hV 2 ir 30 . The observation point z is assumed
to be located far enough from the layer boundaries with
respect to the scale of the effective inhomogeneity.

Equality (8) demonstrates the existence of a homogeneous
tunnel energy flux in a randomly inhomogeneous medium. It
is proportional to the energy flux of propagating waves, as is
common in the phenomenological transfer theory. In a
weakly scattering medium, the proportionality coefficient is
small compared to unity. However, in a medium with strong
scattering, for example, the one consisting of resonant
scatterers, the proportionality coefficient may increase in
absolute value.

5. Conclusions

Elucidation of the applicability bounds for the phenomen-
ological radiative transfer theory from the standpoint of the
statistical theory of multiple wave scattering has led to the
prediction and discovery of the phenomenon of weak light
localization in a randomly inhomogeneous medium. The
proposed modifications to the transfer theory have enabled
the treatment of phenomena such as the trapping of radiation
in a resonant medium and the tunnel transfer of radiation
energy by near fields of effective scattering inhomogeneities.
The ideas and methods of the transfer theory were fruitful in
studies dealing with the formation of forbidden zones in
spectra of radiation transmission through photon crystals
and can be used to explore multiple light scattering by
statistical ensembles of nanoclusters and conducting parti-
cles with a large packing parameter.

This work was supported in part by the Russian
Foundation for Basic Research grant 06-02-17451.
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Local fields in nanolattices
of strongly interacting atoms:
nanostrata, giant resonances,
`magic numbers,' and optical bistability

A E Kaplan, S N Volkov

S M Rytov took an interest in many things, including the
theory of layered media with a period much smaller than the
wavelength [Zh. Eksp. Teor. Fiz. 29 605 (1955)]. One of us,
A E K, who participated in Rytov's seminars for 20 years,
until 1979, was also involved with multiple and various
things, and was sometimes surprised to realize that his work
touches upon old areas of interests of Rytov. Of course, there
is little surprise here, because Rytov had an intuition for
unusual and fundamental things, and he often looked far
ahead. Our new results presented here echo, to an extent,
those old interests of Rytov.

In this report, following our recent brief publication [1],
we consider a number of new effects emerging in one- and
two-dimensional ordered systems of two-level atoms with a
sufficiently strong dipole interaction. We have shown that in
systems smaller than the wavelength of light, an excitation of
the atomic dipole moments may become substantially
inhomogeneous, forming strata and two-dimensional struc-
tures of a nanometer scale. Such behavior of the local field in a
dielectric system is significantly different from the results of
the Lorentz±Lorenz theory for local fields; it gives rise to
resonances defined by the size and geometry of the system and
is capable of inducing a giant local-field enhancement. We
demonstrated that the saturation nonlinearity in two-level
atoms may cause optical bistability, in particular, in the
simplest case where the system is comprised of two atoms
only. We also predicted `magic' system sizes and geometries
that, unlike the Lorentz model, do not result in a suppression
of the local field in the system when the laser frequency is
tuned to the resonance of the two-level atom.

A known fact of the electrodynamics of continuous media
is that the microscopic field acting on atoms or molecules
(known as the `local field') is generally different from the
macroscopic (average) field because of the dipole interaction
between the particles composing the medium. This difference
is a central point of the classical theory of local fields in
dielectrics advanced by Lorentz and Lorenz [2]. An impor-
tant, albeit implicit, assumption of that theory is that the local
field remains virtually unchanged from atom to atom over
distances much shorter than the wavelength of light l. The
theory is therefore essentially based on the so-called `mean-
field approximation.'
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