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A scientific session of the Physical Sciences Division of the
Russian Academy of Sciences (RAS) was held in the
Conference Hall of the P N Lebedev Physical Institute, RAS
on November 26, 2008. The session was dedicated to the
100th anniversary of the birth of Sergei Mikhailovich Rytov.

The following reports were presented at the session:

(1) Gulyaev Yu V (V A Kotel'nikov Institute of Radio-
engineering and Electronics, RAS, Moscow) ““Sergei Mikhai-
lovich Rytov (Opening address)’;

(2) Barabanenkov Yu N (V A Kotel’'nikov Institute of
Radioengineering and  Electronics, RAS, Moscow)
“Asymptotic limit of the radiative transfer theory in pro-
blems of multiple wave scattering in randomly inhomoge-
neous media”’;

(3) Kaplan A E, Volkov S N (Johns Hopkins University,
Baltimore, USA) “Local fields in nanolattices of strongly
interacting atoms: nanostrata, giant resonances, ‘magic
numbers,” and optical bistability”’;

(4) Klyatskin VI (A M Obukhov Institute of Atmospheric
Physics, RAS, Moscow) “Modern methods for the statistical
description of dynamical stochastic systems”’;

(5) Dolin L S (Institute of Applied Physics, RAS, Nizhny
Novgorod) “Development of the radiative transfer theory as
applied to instrumental imaging in turbid media”.

An abridge version of the reports is given below.
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Sergei Mikhailovich Rytov
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Yu V Gulyaev

On July 3, 2008 we celebrated the 100th anniversary of the
birth of Professor Sergei Mikhailovich Rytov— one of the
outstanding Russian physicists in radiophysics and a Corre-
sponding Member of the USSR Academy of Sciences.
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Sergei Mikhailovich Rytov
(03.07.1908 —22.10.1996)

Sergei Mikhailovich obtained results of the paramount
importance, which were recognized the world over in each
field of physics where he worked — the theory of oscillations
and acoustics, wave propagation, electrodynamics and
optics, and, finally, statistical radiophysics. Some of these
results became cornerstones of new fields in theoretical
radiophysics. S M Rytov’s work on parametric systems, the
extension of the perturbation method, and its application to
oscillator frequency stabilization belongs to the most promi-
nent achievements of the Soviet school of the theory of
nonlinear oscillations. Among other things he developed the
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method of smooth oscillations (known in the literature as
Rytov’s method and widely used to study wave propagation
in randomly inhomogeneous media) which constitutes one of
the most essential results in the series of research programs
covering the diffraction of light by ultrasound waves. In
statistical radiophysics, S M Rytov’s work which he summar-
ized in a monograph, paved the way for a new domain in the
theory of thermal fluctuation noise and thermal fluctuation
fields that allows a unified consideration of thermal electro-
magnetic fields in the entire range of frequencies— from
quasistationary to optical.

It would be forgivable to end the story with this brief list:
brevity is acceptable when speaking about a great person. I
will nevertheless remind the reader of the main stages in the
biography of Sergei Mikhailovich, mostly for the sake of the
younger generations, who never had a chance of having
worked alongside him.

Sergei Mikhailovich Rytov was born on July 3, 1908 in
Khar’kov. In 1930, he graduated from the Physics and
Mathematics Department of Moscow State University
(MGU), and in 1933 entered a postgraduate course at MGU
under the guidance of Academician Leonid Isaakovich
Mandel’shtam. It must be mentioned that later he brilliantly
continued in his profession of a physicist and a teacher the
best traditions of the scientific school of L I Mandel’shtam,
whom he always considered his mentor. Sergei Mikhailovich
taught young scientists to follow these wonderful traditions,
one of which was infinite devotion to science and another, to
always demand the utmost of yourself.

In 1934, Sergei Mikhailovich began working as a
researcher of the Ist rank at the optics laboratory of the
Lebedev Physical Institute (FIAN in Russ. abbr.) and later,
from 1950 to 1958, he headed the theoretical sector of this
laboratory. In 1958, at the request of Academician Aleksandr
L’vovich Mints, Sergei Mikhailovich was transferred to the
theoretical division of the Institute of Radio Engineering of
the USSR Academy of Sciences (RTI in Russ. abbr.) where he
worked until his last days.

Sergei Mikhailovich devoted all his life to research. His
talent and passion for work led him to spectacular results and
he became a recognized authority in many areas of physics,
first and foremost radiophysics.

His study of the diffraction of light on ultrasound became
one of the foundations of acousto-optics, which later went
through vigorous expansion and had various practical
applications. The method of smooth oscillations he had
developed (known as Rytov’s method) proved to be a very
powerful tool for studying wave propagation in randomly
inhomogeneous media. Later Sergei Mikhailovich, his stu-
dents, and his followers successfully used this tool. The results
they obtained are partly summarized in widely known review
papers published in UFN (Phys. Usp.) (1970—1975) and in the
latest issues of his Introduction to Statistical Radiophysics;
they have also influenced monographs and reviews written by
other authors. Some of the fundamental results obtained by
Sergei Mikhailovich were used at RTI to begin important
research on the effects of the troposphere and ionosphere of
the Earth on the accuracy of long-range radar systems being
developed and on evaluating their potential in the conditions
of the real atmosphere.

Sergei Mikhailovich’s DSc thesis entitled ‘“Modulated
oscillations and waves’ enormously affected progress in the
theory of oscillations and brilliantly demonstrated the
fruitfulness of the oscillation-based approach to various

problems in physics. The thesis, published in the Proceedings
of the USSR FIAN in 1940, became a desktop must for many
researchers in oscillation theory. Sergei Mikhailovich con-
tinued working on the theory of oscillations and waves; he
received important results on the theory of Thomson type
self-induced oscillations, the theory of betatron and synchro-
tron oscillations, and the theory of parametric generators and
amplifiers (1948—1963). He was the first to analyze the
problem of resonance in parametric systems and he investi-
gated the phenomenon of ‘pulling’ in the hard mode of the
self-excitation of oscillations. His work on parametric
systems, the extension of the perturbation method, and the
application of this method to the problem of stabilization of
generator frequency belong to the most important achieve-
ments of the Soviet school of the theory of nonlinear
oscillations. His studies on the theory of oscillations were
successfully extended by his numerous students and fol-
lowers.

The theory of equilibrium thermal fluctuations of an
electromagnetic field, developed by Sergei Mikhailovich and
completed in collaboration with M L Levin, in which the
classical reciprocity theorem ‘unexpectedly’ proved to be very
efficient, led to a unified description of these fluctuations in
the entire frequency range — from the quasistationary to the
optical —and is widely used in a wide variety of fields of
physics. The results of the theory were later generalized to the
case of fields of any nature (1973).

Sergei Mikhailovich created the most general form of the
phenomenological theory of the molecular scattering of light,
which includes an analysis of Mandel’shtam—Brillouin spec-
tra and depolarized radiation, as well as scattering spectra due
to entropy fluctuations (1955—1970). This theory was
confirmed by numerous experiments and earned general
recognition.

It is also necessary to point out Sergei Mikhailovich’s
papers in which he for the first time gave a rigorous solution
to the problem of reflection of electromagnetic waves from a
layer with a negative dielectric constant, outlined the correct
electrodynamic approach to the problem of wave propaga-
tion in tubes and generalized transmission lines with losses,
considered a new type of phase diffraction structures, and
achieved complete clarity on the question of the relation
between the Poynting vector, the group velocity vector, and
energy density when electromagnetic waves propagate
through anisotropic media.

An inseparable part of Sergei Mikhailovich’s creative
activities was teaching; he loved doing it, teaching practi-
cally all his life and feeling the utmost responsibility to do
so. The fact that he put this type of activity first on the list
in his Biographical data is evidence of its significance in his
life; he wrote that he started teaching already in 1928, while
a 3rd-year student at MGU. Later he lectured in physics and
mathematics at MGU and Gorky State University.

From 1947 on, practically to the end of his life, Sergei
Mikhailovich Rytov held a part-time position at the Moscow
Institute of Physics and Technology' as professor at the
Chair of General Physics (until 1949) and then professor at
the Chair of Radiophysics. He headed this Chair from 1953
till 1978 (i.e., for 25 years).

Everyone who heard Sergei Mikhailovich lecture at least
once felt in awe of his art of lecturing, the honed form of

' MFTI in Russ. abbr., until 1951 —The Physics and Engineering
Department of MGU.
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delivery, and his clarity, profoundness, and at the same time
simplicity of presentation. Students loved their professor, and
attending his lectures was a pleasure; after sitting for his exam
they invariably left with a feeling of satisfaction regardless of
the mark awarded: he was always correctness itself and
impeccably fair.

I was one of those lucky students, attending his course
‘Theory of Oscillations’, and even got my ‘excellent’” mark
from him personally. Like other students, I jotted down the
synopsis of all the lectures of his course; in my later work in
the field of oscillation theory and microwave acoustics I
would hardly need any other source: Sergei Mikhailovich’s
course was that complete and that clear.

The pinnacle of Sergei Mikhailovich’s pedagogical crea-
tivity was his course of lectures on statistical radiophysics,
which he wrote and then brilliantly delivered for many years
at MFTI. Here for the first time he came up with the most
laconic and rich definition of radiophysics: “This is physics
for radio plus radio for physics,” which legitimized radio-
physics in the company of related subjects. On the basis of
these lectures, he wrote the first textbook in the world on
statistical radiophysics for higher education — An Introduc-
tion to Statistical Radiophysics (1966), which gained high
reputation both in this country and abroad.

Sergei Mikhailovich took active part in writing the physics
textbooks whose editor-in-chief was N D Papaleksi (1939 —
1948), and the Elementary Physics Textbook whose editor-in-
chief was G S Landsberg. Sergei Mikhailovich was editor-in-
chief of 15 books, three of them being translations into
Russian.

For a long time, from 1953, Sergei Mikhailovich had
served as permanent head of the All-Moscow Radiophysics
Seminar, which played an enormously important role in the
progress of radiophysics in this country. Scientists from many
scientific centers in the country took part regularly in the
work of the seminar, so that in reality this was an All-Union
seminar. The popularity and the high rating of the seminar
stemmed most of all from the decisive scientific reputation
enjoyed by Sergei Mikhailovich, from his ability to provide an
expert evaluation of a contribution and to lucidly formulate
its stronger and weaker points. The seminar was purely
scientific, devoid of any official functions or formalities. The
only ‘official document” was the agenda with presentation
titles and speakers’ names, which was sent out to participants
in advance by the secretary of the seminar. The meetings
followed democratic rules ably controlled by Sergei Mikhai-
lovich.

The seminar was the center of attraction not only for
radiophysicists but also for specialists in the most varied fields
of physics interested in methodology and the results of
radiophysics research. It would be difficult to name any
important new field in radiophysics that would not have
been represented at the seminar. It was here that many
research areas were given a nod of approval. The seminar
was a real scientific school for its young participants. This was
stimulated by a very special atmosphere of genuine devotion
to science, an attitude of goodwill, and the inoffensive
humour that Sergei Mikhailovich demonstrated during the
sessions. It is not surprising therefore that not only Rytov’s
immediate students and staff members but also many others
who benefited from contacts with Sergei Mikhailovich
regarded themselves as members of his school.

Sergei Mikhailovich worked at RTI— the institute cre-
ated for the purpose of solving defense-related problems of

national importance—for more than 35 years, beginning
from 1958. His work in the framework of RTI defense
projects targeted principally important physics aspects that
involved developing and designing ground-based high-aper-
ture radioinformation complexes. People tried not to bother
him with trifles. He initiated, and took active part in, a
number of new areas of research important for RTI primary
tasks.

We already mentioned that one of the areas in which
S M Rytov worked was to find out how nonuniformity of the
atmosphere affected the characteristics of long-range radars.
We can also mention such fields as the development and
design of low-noise parametric amplifiers, extension of
acousto-optical methods for processing radar signals, the
study of the ionosphere by means of rockets and artificial
Earth satellites in the interest of long-haul radiolocation, etc.

In situations of dispute, S M Rytov occasionally acted as a
highly respected arbiter. His opinion was invariably pro-
foundly reasoned and scientifically sound, which made it
possible to avoid mistaken or adventurist technical solutions,
however attractive they may have seemed at first glance. He
was often approached to obtain advice and consultation by
directors’ offices, by heads of departments, or by lower-rank
staff members. No one was refused. His reports on important
areas of research in science and technology at RTI seminars
for large audiences of RTI staff are well remembered. The
Laboratory of Theoretical Radiophysics that he headed was a
center of attraction for talented creative young generations,
first and foremost students and postgraduates of the base
Chair of Radiophysics at MFTI; many of them later came to
obtain CandSc and DSc degrees or became science managers
and leading specialists in this country.

Sergei Mikhailovich was generous with his knowledge and
his experience in the social activities of research institutions:
he was a member of the Learned Councils of MFTI and RTI
and of the editorial board of the journal Radiotekhnika i
Elektronika [Radioengineering and Electronics]; sat on the
Methodological Council on Physical and Mathematical
Sciences of the All-Union Society ‘Znanie’ (Knowledge), the
Interdepartmental Research and Development Council on
Sun—Earth issues 2, and the Bureau of the Learned Council of
the USSR Academy of Sciences for the complex problem the
Propagation of Radiowaves; chaired a section of the Learned
Council of the USSR Academy of Sciences on the issue of
Statistical Radiophysics, etc.

For his outstanding contributions to science and industry
S M Rytov was awarded the A S Popov Gold medal, the
L I Mandel’shtam Prize, and the State Prize, and received
many distinguished orders and medals.

Commemorating now the 100th anniversary of the birth
of Sergei Mikhailovich Rytov, we remember with gratitude
the enormous contribution he made to the inception and
progress of radiophysics and related fields of science, to the
formation of the school of radiophysics in this country, and to
nurturing and training of new generations of scientists. He
was uniquely devoted to science and had brilliant pedagogical
skills and enviable human qualities. S M Rytov’s name
occupies a well-deserved place in the gallery of classic
personalities of science in this country and abroad.

More detailed information on the life and scientific career
of Sergei Mikhailovich Rytov can be found in the editorial of

2Renamed in 1978 the Learned Council of the USSR Academy of Sciences
for the issue of Solar—Terrestrial Relations.
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the special issue of the journal Electromagnetic Waves and
Electronic Systems devoted to the 100th anniversary of the
birth of this brilliant scientist.
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Asymptotic limit of the radiative
transfer theory in problems of multiple
wave scattering in randomly
inhomogeneous media

Yu N Barabanenkov

1. Introduction

Wave propagation in disordered systems is considered one of
the most difficult subjects of theoretical physics. The
traditional approach involves the phenomenological radia-
tive transfer theory [1, 2], which originated more than a
century ago in the studies by Khvol’son (1890), Schuster
(1905), and Schwarzschield (1906) devoted to light scattering
in milk glasses and solar and foggy earth atmospheres; it is
based on the notions of linear kinetic theory involving an
elementary scattering act and radiation free path. In the
1950s, the development of the theory of partial coherence
for wave fields prompted active studies of the applicability
limits for the radiative transfer theory from the standpoint of
the statistical theory of multiple wave scattering in randomly
inhomogeneous media. Their results were regularly reported
and critically discussed at the All-Moscow Radiophysics
Seminar headed by S M Rytov from 1965 to 1985. Although
this research was purely theoretical, it resulted in the
prediction of weak light localization in randomly inhomoge-
neous media in 1973. Because this phenomenon lay at the
applicability boundary of the radiative transfer theory, it
could not be ignored.

As early as 1967, a derivation was proposed [3] (see also
[4]) of the phenomenological radiative transfer equation in a
discrete randomly inhomogeneous medium, with due regard
for the correlation of scatterers in all orders and mutual
irradiation of scatterers within the same effective inhomo-
geneity, i.e., a cluster of scatterers. A single scatterer was
characterized by its shape, dielectric permeability, and
conductivity; the method of Dyson and Bethe-Salpeter
equations, the Feynman diagram technique, and the concept
of the quantum mechanical scattering operator were used [5].
The transfer equation [3], with pair correlation of weak
scatterers satisfying the applicability conditions of the Born
approximation taken account, was used to investigate an
increase in the free path length of microwaves in snow layers
and conduction electrons in liquid metals [6], as well as the
opposite effect of a decrease in the free path of light [7] and
neutrons in a liquid [6] in the vicinity of a phase transition
critical point. The contribution from higher correlations of
weak scatterers to the light free path at critical opalescence
was considered in Ref. [8], while Ref. [9] dealt with the
influence of higher correlations due to large, optically dense
scatterers on the transmittance of a layer composed of such
particles.

Simultaneously with the derivation of the transfer equa-
tion [3], the applicability condition for the phenomenological

transfer theory was formulated as the single-group approx-
imation, i.e., the possibility to discard all repeated scattering
of radiation on the same inhomogeneity. Additionally, it is
required that inhomogeneities be in the far field of Fraunho-
fer diffraction with respect to each other. The first part of this
condition, later called the approximation of independent
scattering on effective inhomogeneities [10], disregards all
loops in multiple wave scattering with a diameter of the order
of or larger than the free path length of radiation.

The decisive role of the single-group approximation for
the transfer theory was convincingly demonstrated with the
model of multiple scattering of a nonstationary wave field in a
randomly inhomogeneous and randomly variable medium,
for which the concept of a finite ‘lifetime’ of an inhomogene-
ity can be introduced. From this model, thoroughly studied in
Refs [6, 11], the transfer theory follows as an asymptotically
exact Van Hove limit [12] under the condition that the ratio of
the inhomogeneity lifetime to the radiation free path time
tends to zero, but the ratio of the observation time to the free
path time remains fixed. The second condition of the Van
Hove limit prevents repeated scattering due to a selected
inhomogeneity from occurring on a large time or space scale
of radiation propagation. In repeated scattering, the effects of
multi-group or dependent scattering, i.e., the loops, would
have to be taken into account, and the phenomenological
radiative transfer theory would need modifications.

The most thoroughly studied effect of multi-group or
dependent scattering by effective inhomogeneities is mani-
fested through the coherent enhancement of backscattering.
It was first predicted as a wave correction to the solution of
the transfer equation for scattering directed exactly ‘back-
ward’ [13]. Reference [14] shows, based on the technique of
cyclic (maximally crossed) Feynman diagrams, that the wave
correction attains a relative value close to unity in a narrow
backscattering cone whose angular width is of the order of
the ratio of the wave length to the free path length of
radiation.

The predicted cone of enhanced backscattering was
experimentally observed by several groups [15-17]. It
strongly stimulated research on the weak localization
phenomenon in optics [18]. Coherent enhanced backscatter-
ing stems from coherent loops in which the field and its
complex conjugate go around a given set of inhomogeneities
in opposite ways. There also exist incoherent loops, in which
case a set of inhomogeneities is passed by the field and its
complex conjugate in the same order. The incoherent loops
lead to the backscattering effect for nonstationary radiation
in a modified transfer theory with time delay [19], where the
delay time is of the order of the radiation free path time.
Another variant of the transfer theory with time delay
emerges on considering the effect of trapping [20] under
multiple scattering of wave radiation, for example, a short
femtosecond laser pulse [21], in a randomly inhomogeneous
medium composed of resonant scatterers.

Taking account of loops in multiple wave scattering
implies lifting the part of the applicability condition of the
phenomenological transfer equation [3] that requires omit-
ting repeated scattering of radiation by the same inhomo-
geneity. No principal obstacles are seen in using this equation
to explore multiple light scattering by new artificial systems
such as statistical ensembles of nanosclusters [22], in which
each cluster represents a combination of a possibly large but
finite number of atoms (or molecules) and requires describing
light scattering with methods of quantum mechanics or
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electrodynamics. Admittedly, it may call for considering
effects from near fields in the form of evanescent waves in
some vicinity of effective inhomogeneities (nanoclusters), i.e.,
abandoning the condition that the inhomogeneities are
located in the far wave zone of Fraunhofer diffraction with
respect to each other.

Recently, considerable progress has been achieved in the
theoretical understanding of the role played by near fields in
multiple scattering of electromagnetic waves by inhomoge-
neous dielectric media. The progress was facilitated by using
the Sommerfeld-Weyl representation for angular spectral
amplitudes of local electromagnetic waves propagating
along and against the axis of the parameter of embedding
into a layer of a three-dimensional medium, and by exploring
the phenomenon of energy emission from an evanescent wave
scattered by a dielectric structure [23], with checks for the
extended unitarity of the 2 x 2 block S-matrix [24] and the
interpretation of the mentioned energy emission through the
interference of two evanescent waves decaying toward each
other [25]. As a result, an approach was formulated [26] to
establishing a modified theory of electromagnetic radiation
transfer in a randomly inhomogeneous medium with the
effects of near fields and interference of oppositely directed
wave beams taken into account.

Finally, perspectives of exploring the electrodynamic
properties of artificial materials exemplified by statistical
ensembles of particles with a given shape, dielectric perme-
ability and conductivity (see, e.g., Ref. [27]), and, possibly,
high spatial packing parameter, put forward the task of
radically modifying the phenomenological radiative transfer
theory while preserving some of its properties. Such a
modification hinges on the Ambartsumyan method of layer
summation [28], according to which the scattering medium is
split in virtual layers (slices) separated by small gaps, with a
subsequent derivation of transfer relations in terms of the
intensity between radiation fluxes in gaps and the fluxes
reflected from and transmitted through the entire medium.

The idea about the virtual layering of the medium into
slices and gaps is evidently applicable to any medium, in
particular, that consisting of the particles mentioned pre-
viously, for further derivation of transfer relations between
the radiation fluxes, and not only for wave intensities but also
for wave amplitudes, as in Refs [29, 30]. The transfer relations
obtained there imply a system of four differential Riccati
equations for the blocks of the S-matrix, written for a layer of
a medium in the form of Reid [31] and Redheffer [32], with
differentiation over the parameter of embedding into the
layer. Using the Reid method, a relation is established
between the solution of the system of nonlinear matrix
Riccati equations and that of the linear differential equation
for the transfer matrix. Paper [30] elaborates on the extended
relations of unitarity and invariance under time reversal for
the solution of the system of Riccati equations and of the
transfer matrix equation. The extended relations augment, by
near-field effects, the more habitual quantum mechanical
relations used in the widely known theory for the transmis-
sion coefficient and electron localization length in N con-
nected disordered chains developed by Dorokhov [33] and the
authors of Ref. [34] based on the Fokker—Planck equation for
the probability distribution function for transfer matrix
elements.

Noteworthy in the just mentioned system of matrix
Riccati equations is the fact that the governing role belongs
to the equation for the coefficient of wave reflection from a

layer of a three-dimensional randomly inhomogeneous
dielectric medium written for angular spectral amplitudes,
which is independent of the other equations. It was studied in
[35] and served as a starting point in Ref. [36], where the
functional Fokker—Planck equation for the functional of the
probability distribution of the reflection coefficient was
written.

The treatment of the Fokker—Planck equation in varia-
tional derivatives is exceptionally difficult. However, one can
change to ordinary derivatives by discretizing the space of the
wave vector transverse to the axis of the embedding para-
meter, in analogy with the method of the transfer matrix with
a finite number of propagation channels in the quantum
mechanical theory dealing with interference effects in metal
conductors [37].

In exploring multiple wave scattering by statistical
ensembles of particles characterized by a large packing
parameter, it seems reasonable to assume that the distribu-
tion of particles is periodic in the zeroth approximation, as in
the structure of the photon crystal in [38]. In this case, for
example, the matrix Riccati equation for the reflection
coefficient turns out to be naturally discretized over diffrac-
tion orders of the radiation reflected from and transmitted
through the structure layer. This equation was successfully
used in Ref. [39] for numerical computation via the Runge—
Kutta method of formation of gaps in the spectrum of
radiation transmission through an ordered system of dielec-
tric cylinders with arbitrary cross sections.

Some of the aforementioned questions of the asymptotic
limit of the radiative transfer theory are considered in detail in
what follows.

2. Single-group approximation
and the Van Hove limit

In the scalar case, the phenomenological transfer equation
written for the ray intensity /(R, s) at a point R in the direction
of a unit vector s takes the form

sVI(R,s) = —llI(R,s)—i-J ds'W(s,s") I(R,s). (1)

4n

The coefficients of extinction 1// and scattering W(s,s’) due
to an elementary volume are expressed by via Fourier
transformation through the mass operator M| and intensity
operator K; of the Dyson and Bethe—Salpeter equations in
the single-group approximation. They are symbolically
represented by the series

M X1 T
=) — |dl... (1 L (2
Kl Z ol J Jdng ( ) ,Vl) (Tl.“n Q T* )gr ( )

n=1 l..n

Here, natural numbers 1,...,n label spatial coordinates of
points, T, is the operator of scattering by a system of n
scatterers centered at these points, and g,(1,...,n) is the
correlation function of the scatterers. The group subtraction
operation gr removes small orders of scattering in the group
of scatterers and acts in the simplest case as
T5 =T, — Ty — T». The symbol ® denotes the tensor
product.

Originally, single-group approximation (2) was derived
using the Feynman diagram technique. However, it was
recognized later that it could be obtained on a purely analytic
level, based on the exact Bethe—Salpeter relation [20, 40] of the
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form
Lel-I1oL)(GoG")
—(Mel-1eM - (Gol-12G")K|GaG")

+I®(GY) - (G, 3)

where L is the differential operator of the wave equation in
free space, G is the Green’s function of the wave equation in a
randomly inhomogeneous medium, and the angular brackets
denote averaging over the statistical ensemble of scatterers.
The operators M and K formally have the same analytic
structure as the mass and intensity operators in single-group
approximation (2), except for the replacement of the T
operators of free space scattering with self-consistent ran-
dom operators of scattering in a randomly inhomogeneous
medium.

We assume that the random Green’s function G(r,r’)
satisfies the locality property and hence differs only slightly
from its ensemble mean and the Green’s function in free space
if the distance between the observation and source points r
andr’ is of the order of the scatterer radii and their correlation
radii. In that case, the random operators M and K practically
coincide, respectively, with the mass and intensity operators
in single-group approximation (2), while relation (3) trans-
forms into the Bethe—Salpeter equation in the form of a
kinetic equation [20].

The locality property of the random Green’s function
formulated above, in particular, implies omission of all loops
in multiple wave scattering with a diameter of the order of or
greater than the free path length of radiation. Can this
property be justified in an asymptotically exact way? Such
justification is known, for example, for the problem of the
propagation of a quantum mechanical stream of particles in
the field of a randomly varying potential V(r, ). Based on the
stochastic Liouville-von Neumann equation for the density
matrix p(7) of a particle stream under the assumption that the
probability distribution of random potential realizations is
Gaussian, the kinetic equation for the ensemble mean density
matrix p(R,k,#) in the Wigner variables was derived in
Refs [6, 20] in the form

0 hk _
(a‘i‘z VR> p(R, K, 1)

= J dk'W (k,k')[p(R, k', 1) — p(R,k, )] . (4)

Equation (4) is asymptotically exact in the Van Hove limit
10/t — 0, t/ty = const, where #,, estimates the relaxation
time ¢, of the kinetic equation from below and the lifetime 7
of the effective inhomogeneity is expressed in terms of the
cumulant of random potential fluctuations. Paper [11]
considers the passage from kinetic equation (4) to the limit
of stationary transfer equation (1) through the replacement of
the observation time with the absorption time in the second
condition of the Van Hove limit.

3. Coherent loops and weak localization

Coherent loops are linked to cyclic Feynman diagrams of the
intensity operator [14]. Cyclic diagrams are omitted when
transfer equation (1) is derived in the framework of single-
group approximation (2). Nevertheless, they are, in some
sense, equivalent to ‘ladder’ diagrams, which constitute the

main element of the transfer theory. This equivalence
property follows upon inversion of the upper or lower rows
of a cyclic diagram and using the reciprocity property of the
Green’s function and of the intensity operator in the single-
group approximation. The equivalence property of cyclic
diagrams enabled the author of Ref. [14] to conclude that
there exists a cone of enhanced backscattering with the width
00 ~ 1/l measured by the ratio of the wavelength 4 to the free
path length /.

It is worth noting that Ref. [14] was published in relation
to the discussion of the work by Gazaryan [41] which, based
on the exact solution to the Anderson strong localization
problem [42] in a one-dimensional randomly inhomogeneous
medium, demonstrated, following Ref. [43], an exponentially
fast decay of the layer transmittance for the mean intensity as
a function of the layer thickness, instead of a power-law decay
predicted by the transfer equation [1]. In other words, the
transfer equation provides a reduced value for the reflective
capability of the one-dimensional scattering layer. The goal of
Ref. [14] was to demonstrate the reduction of a similar type in
the framework of transfer theory for the reflective capability
of a three-dimensional scattering layer, although a reduction
in a weak sense.

4. Near fields and the tunnel component
of radiative transfer

Near fields arise during multiple wave scattering in a
randomly inhomogeneous medium as evanescent waves in
the vicinity of effective inhomogeneities and participate in a
specific way in radiation transfer together with propagating
waves. Only the latter are taken into account by the
phenomenological transfer theory. The principal role is here
played by a formula derived in Ref. [25] for the radiation
energy flux in an inhomogeneous dielectric medium. In the
scalar version, this formula has the form

P(z) = Jk Hpr(ki)[l’n(kbkhz) - Pzz(kiakhz)]

+L iH (k) [pra(k, ki;2) — pyy (Ko, kis2)], (5)

where P.(z) is the component of the Poynting vector along the
z axis of the parameter of embedding into the medium layer
0 < z < L, integrated in the plane perpendicular to this axis,
P (K1, K5 2) is the density matrix [25] of (slowly varying)
angular spectral amplitudes of local waves propagating in
forward (index 1) and backward (index 2) directions relative
to the z axis (m, m’ = 1, 2),k, and k| are the components of k
and k’ perpendicular to the z axis, HP"(k, ) and H® (k) are
the respective projectors on the propagating (k, < ko) and
evanescent (k; > ko) waves, for which the longitudinal wave
number 7, = [k¢ — k?]'/? takes a real or a purely imaginary
value, and kg is the wave number of free space; the compact
notation for integrals, ka = (275)_2 J dk., is used.
According to formula (5), the contribution of propagating
waves to the total energy flux along the z axis is determined by
intensities of angular spectral amplitudes of waves propagat-
ing in forward and backward directions, whereas the
contribution of evanescent waves to this energy flux is
expressed through the term corresponding to the interference
of two evanescent waves decaying toward each other. Turning
to a randomly inhomogeneous medium, we need to consider
the coherence matrix for angular spectral amplitudes of local
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waves for two values of the parameter of embedding into the
medium, p,,, (p,p’;z,z'), where the bar denotes ensemble
averaging and the short notation p and p’ is used instead of k |
and k. The Bethe-Salpeter equation for this coherence
matrix with the mass and intensity operators is derived in
single-group approximation (2).

In the simplest case of weak uncorrelated scatterers, we
arrive at the model of a medium with Gaussian fluctuations of
the potential, used in Ref. [26] to analyze effects of near fields
in the transfer theory. After some simplification, the Bethe—
Salpeter equation for the coherence matrix of angular spectral
amplitudes is reduced to four equations, two of which allow
computing ensemble-averaged intensities of angular spectral
amplitudes for the forward and backward directions, and the
other two, for complex-conjugate mutual coherences of
evanescent waves decaying toward each other. One of the
first two equations has the form

Pu(p.p,7,7) = oxp (=237,,2)| £ (p)]°
1

—&—Jh dzyexp | — 29y (Z—Zl)J —_—
: =2 G=20] | g

X [B(p_ plvyp - yp’)ﬁll(p,ﬂp/;zlvzl)
+ B(p - p/>yp + ?p’)pZZ(p,’pl;ZbZl)
+B(p—p"7, = 7,) (021, 21)

+Bp—p,7, +7,) pu(p' 05 21,21)] - (6)

Equation (6) is written in terms of the coherence matrix
of rapidly varying angular spectral amplitudes
ﬁmm’(pv p/; Z Zl) = &Xp (iém'})pz - iém’y;’z/) ﬁmm/ (P, pl; Zy Z/)
with &; =1 and ¢, = —1. The quantity 7,, represents the
imaginary part of the longitudinal wave number in a
deterministic medium with the effective complex wave
number k;; it is assumed that a propagating wave with the
angular spectral amplitude f(p) is incident on the left layer
boundary. The function B(k,,k.) is the three-dimensional
Fourier transform of the cumulant of random potential
fluctuations. Equation (6) describes multiple scattering of
ensemble-averaged intensities of angular spectral amplitudes
by effective inhomogeneities with a free path between them
that is typical of the transfer theory. In addition, this
equation, evidently, contains the contribution to mean
intensity of waves propagating forward brought about by
mutual coherences of evanescent waves as they are scattered
on effective inhomogeneities.

The equation for computing the ensemble-averaged
intensity of angular spectral amplitudes for waves propagat-
ing backward is similar to Eqn (6) and is not reproduced here.

We turn to the equation for mutual coherence of pairs of
evanescent waves decaying toward each other, of the form

z L
pra(p,p;2,2) = JO dz J d{y exp [iy1,(z — 21)]

. 1
x exp [iyf, (= — {1) j S S
[llp ] p’4|yp‘|yp’|

X B(p - P/>Zl - Cl) Zexp [7 iénﬂp’(z - Zl)]

m.n

X exXp [ién’ylj’ (Z - él)] .[A)mn(plvpl;zvz) ) (7)

where B(k,z) is the two-dimensional Fourier transform of
the cumulant of random potential fluctuations in the plane
perpendicular to the z axis.

Equation (7) differs principally from Eqn (6) by its
structure. Indeed, the inequality z; < z < {; holds in the
double integral in the right-hand side of Eqn (7), with
{1 — z1 = ro, where r is the spatial scale of effective inhomo-
geneities. This implies that the observation point z and two
scattering points z; and (; are confined to the same
inhomogeneity, whereas two elementary evanescent waves
appearing during scattering decay in the directions toward
each other with interference at the observation point. This
interference leads, as follows from a more detailed analysis of
Eqn (7), to the following tunnel component of the radiation
energy flux:

*2J Sp12(ps P; 2, 2)
p(ko<p<po)

= % J [f)n(l’ap;zaz) — Pa(psP; 2 Z)] . (8)
p(p<ko)

Solution (8) of the imaginary part of Eqn (7) is obtained in the
limit of small-scale fluctuations of the random potential,
when two evanescent waves, one incident on the inhomo-
geneity and the other scattered by it, decay only slightly on the
inhomogeneity scale, [p,[ro <1 and [y, |ro <1, with
ko < p < po and kg < p’ < pg, where py =~ 1/r¢ is some cut-
off parameter. The parameter of the tunnel component of the
energy flux is of the order of g = ry//, which represents the
ratio of the inhomogeneity scale to the free path length,
defined as 1// = (V2 )rg. The observation point z is assumed
to be located far enough from the layer boundaries with
respect to the scale of the effective inhomogeneity.

Equality (8) demonstrates the existence of a homogeneous
tunnel energy flux in a randomly inhomogeneous medium. It
is proportional to the energy flux of propagating waves, as is
common in the phenomenological transfer theory. In a
weakly scattering medium, the proportionality coefficient is
small compared to unity. However, in a medium with strong
scattering, for example, the one consisting of resonant
scatterers, the proportionality coefficient may increase in
absolute value.

5. Conclusions

Elucidation of the applicability bounds for the phenomen-
ological radiative transfer theory from the standpoint of the
statistical theory of multiple wave scattering has led to the
prediction and discovery of the phenomenon of weak light
localization in a randomly inhomogeneous medium. The
proposed modifications to the transfer theory have enabled
the treatment of phenomena such as the trapping of radiation
in a resonant medium and the tunnel transfer of radiation
energy by near fields of effective scattering inhomogeneities.
The ideas and methods of the transfer theory were fruitful in
studies dealing with the formation of forbidden zones in
spectra of radiation transmission through photon crystals
and can be used to explore multiple light scattering by
statistical ensembles of nanoclusters and conducting parti-
cles with a large packing parameter.

This work was supported in part by the Russian
Foundation for Basic Research grant 06-02-17451.
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Local fields in nanolattices

of strongly interacting atoms:
nanostrata, giant resonances,

‘magic numbers,’ and optical bistability

A E Kaplan, S N Volkov

S M Rytov took an interest in many things, including the
theory of layered media with a period much smaller than the
wavelength [Zh. Eksp. Teor. Fiz. 29 605 (1955)]. One of us,
A E K, who participated in Rytov’s seminars for 20 years,
until 1979, was also involved with multiple and various
things, and was sometimes surprised to realize that his work
touches upon old areas of interests of Rytov. Of course, there
is little surprise here, because Rytov had an intuition for
unusual and fundamental things, and he often looked far
ahead. Our new results presented here echo, to an extent,
those old interests of Rytov.

In this report, following our recent brief publication [1],
we consider a number of new effects emerging in one- and
two-dimensional ordered systems of two-level atoms with a
sufficiently strong dipole interaction. We have shown that in
systems smaller than the wavelength of light, an excitation of
the atomic dipole moments may become substantially
inhomogeneous, forming strata and two-dimensional struc-
tures of a nanometer scale. Such behavior of the local field in a
dielectric system is significantly different from the results of
the Lorentz—Lorenz theory for local fields; it gives rise to
resonances defined by the size and geometry of the system and
is capable of inducing a giant local-field enhancement. We
demonstrated that the saturation nonlinearity in two-level
atoms may cause optical bistability, in particular, in the
simplest case where the system is comprised of two atoms
only. We also predicted ‘magic’ system sizes and geometries
that, unlike the Lorentz model, do not result in a suppression
of the local field in the system when the laser frequency is
tuned to the resonance of the two-level atom.

A known fact of the electrodynamics of continuous media
is that the microscopic field acting on atoms or molecules
(known as the ‘local field’) is generally different from the
macroscopic (average) field because of the dipole interaction
between the particles composing the medium. This difference
is a central point of the classical theory of local fields in
dielectrics advanced by Lorentz and Lorenz [2]. An impor-
tant, albeit implicit, assumption of that theory is that the local
field remains virtually unchanged from atom to atom over
distances much shorter than the wavelength of light 1. The
theory is therefore essentially based on the so-called ‘mean-
field approximation.’
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Rapid advances in nanotechnology opened up possibili-
ties of fabricating artificial systems of strongly interacting
particles, for which the assumption of the local-field uni-
formity is no longer valid. It is natural to presume that
abandoning the mean-field approximation in the description
of the local fields may result in a discovery of many new and
interesting phenomena, just as passing from the macroscopic
Curie-Weiss theory to the Ising model significantly extended
the ability of the theory to describe magnetic materials [3]. Of
course, this does not mean that a complete analogy is to be
expected in the descriptions of local fields and magnetic
media. In our case, even more interesting discoveries can be
expected because the atomic electric dipoles induced by the
local fields are driven by an incident electromagnetic wave, in
contrast to the static magnetic dipoles in the Ising model.
Another crucial distinctive feature of our work is that the
systems under consideration are very small, less than the
wavelength in size, while the majority of studies in the theory
of magnetism focus on building a macroscopic, ‘thermo-
dynamic,” description of the medium.

In this report, based on the results initially presented in
our recent brief publication [1], we demonstrate that account-
ing for significant spatial variations of the local field from
atom to atom, on a scale much less than the wavelength,
opens the way for describing many new effects in ordered
systems of strongly interacting atoms, including giant local-
field resonances, ‘magic’ system sizes and geometries, and
optical bistability and hysteresis. Of particular importance is
that our research brings forward a totally new paradigm in
the theory of light-matter interaction. Our calculations show
that various field-related and array-related factors may
disrupt a smooth variation of the local field from atom to
atom, giving rise to nearly periodic strata or more complex
patterns of induced dipole moments. They are most pro-
nounced in one- and two-dimensional dielectric systems
comprising atoms, molecules, quantum dots, clusters, or
other resonant particles. The resonant nature of the interac-
tion between the particles allows controlling the anisotropy
and strength of the interaction. If the light wave then
propagates normally to the one- or two-dimensional lattice,
we can also eliminate wave propagation aspects of the
problem.

In general, two major types of dipole strata emerge: short-
wave, with the period up to four interatomic distances, and
long-wave strata. The strata can be interpreted as standing
waves of local-field excitations, which we hereafter call
‘locsitons.” The locsitons are electrostatic by nature and can
have a very low group velocity. They may be classified as
Frenkel excitons [4] because the electrons are bound to the
atoms and there is no charge transfer in the systems under
consideration.

In the first approximation, the phenomenon under
consideration is linear in the external field, and locsitons can
be excited within a spectral band much broader than the
atomic linewidth. It essentially amounts to a Rabi broadening
of a spectral line of a resonant atom, which arises because of
strong interatomic interactions. The dipole strata can be
controlled by adjusting the laser polarization and the
dimensionless interatomic coupling parameter Q (see
below), which depends, in turn, on the interatomic distance,
on the dipole moment and spectral linewidth of the resonant
transition in the atoms, and on the detuning of the laser
frequency from the atomic resonance. For |Q| > Q. = O(1),
the smooth variation of the local field from atom to atom can

be broken by boundaries, impurities, defects in the lattice, etc.
A most striking manifestation of the effect is the emergence of
large local-field resonances due to locsiton eigenmodes in
finite arrays and lattices. Another interesting and unexpected
phenomenon is an almost complete cancelation of the local-
field suppression if the laser frequency is tuned exactly to the
atomic resonance and the system is comprised of a certain
‘magic’ number of atoms. Moreover, in a system with a
saturation nonlinearity, different types of optical bistability
and hysteresis can emerge.

Our model is based on the dipole interaction between
atoms. We can neglect retardation effects because of the small
size of the system; therefore, similarly to the classical theory of
local fields [2], we rely on the fact that the near field of a dipole
is predominantly quasistatic and nonradiative in nature. The
frequency w of the incident laser radiation is close to the
resonant frequency wy of the atom, which we approximate by
a two-level system [5—7] with a transition dipole moment d,.
The local field acting on an atom at a point r can be
represented as a sum of the field E;, of the light wave incident
on the system and the quasistatic contributions from all other
dipoles (with their coordinates denoted as r’) that are induced
by the local fields Ep (r’):

Q r'#r 13
Tl

/
lattice |l' —-r

EL(I‘) = Ein(l') —

Su[EL (1) u] — Eq (1)
L+ [EL(e)/[E2,(1+6%)]

(1)

where u is the unit vector alongr —r’,d = TAw = T(w — wy)
is the dimensionless detuning of the laser frequency from the
atomic resonance, and E2 = h%e/(|dy|*xT) is the saturation
intensity of the two-level system. The dimensionless coupling
parameter

_ Ad, T
Q‘m@@+0 (2)

represents the strength of the dipole interaction between
neighboring atoms. The coupling parameter and the satura-
tion intensity depend on the transverse relaxation time
T = 2/T of the two-level atom, whose homogeneous spectral
linewidth is I, on its longitudinal relaxation time (excitation
life time) 7, and on the background dielectric constant ¢&. We
also assume that the interatomic distance /, is large enough to
prevent any overlap between atomic orbitals of neighboring
atoms, /, > |d,|/e. This assumption is, in fact, also present in
the standard Lorentz theory of local fields [S— 7], in which the
interaction between atoms and molecules is treated classi-
cally. Our approach radically departs from the standard
Lorentz theory in that we do not assume any averaging of
the local field over the neighboring sites of the crystalline
lattice, which would reveal itself in the assumption that
EL(r) = EL(r'), and we do not use an encapsulating sphere
around the observation point, outside which a continuous
medium is assumed.

Large transition dipole moments, for example, in alkali
vapors, CO», narrow-band resonances in solids [9], quantum
dots, and clusters may significantly enhance the effects that
we discovered. In many of these cases, locsitons can emerge
with /, as large as a few tens of nanometers. We note that
surface plasmons in metal-dielectric composites [10, 11]
usually require a more sophisticated theoretical description
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Figure 1. The geometry of the one-dimensional problem: the local field in
an array of resonant atoms.The light wave propagates normally to the
plane of the picture.

involving long-range dipole interactions, and hence that case
falls outside the scope of our report.

We first consider a simpler problem of finding the local
field in a one-dimensional array of atoms arranged along the z
axis with equal interatomic distances /, (Fig. 1). A laser beam,
which is incident normally to the array, is polarized either
along the array (Ei, || €.), thus inducing atomic dipole
moments that are parallel to the array axis, or perpendicular
to the array (Ei, L é.), accordingly aligning the dipoles
normally to the array and parallel to each other. In both
cases, we have Ep || E;,, and hence the equations for the field
are reduced to scalar ones. Using the dimensionless variables
E, = [EL(rn)/Ein](p), where (p) =]||,L denotes the field
polarization, we can write Eqn (1) for each polarization as

5 J#n )
£, — =R G5 _y, (3)
2(5 + 1) chain ‘] - I’l|
where 1 <n,j< N,
B T
Oor = —4SF(,) T (4)

and the summation in Eqn (3) is performed over all atoms in
the one-dimensional array (chain), resulting in the appear-
ance of the factor S = Z;’i]‘j*3 ~ 1.202. The factor F,) is
defined by the field polarization, Fj = 1 and F; = —1/2. In
the nearest-neighbor approximation, similarly to the Ising
model for magnetic media, the summation over all atoms in
Eqn (3) may be replaced with a simpler sum, &, + &, (one
can then set S = 1). In both cases [i.e., for the full summation
in Eqn (3) and in the nearest-neighbor approximation], the
results are qualitatively similar. In the case of a two-atom
system, discussed below, the two approaches naturally merge.

As N — o0, a solution of Eqn (3) can be found as a sum of
the uniform ‘Lorentz’ field

0+1

5:575R+i

(5)

and wave contributions of the form A€ o exp (+ign). The
wave number of each of these spatially oscillating solutions is
q =2mnl,/A, and the wavelength A, to be found later, is
usually much shorter than the wavelength of the incident
light. Here, we note an analogy to the phonon theory [4],
except that our case involves not mechanical vibrations of
atomic nuclei but excitations of bound electrons. The solution
of Eqn (3) is very anisotropic, with a pronounced dependence
on the polarization of the incident wave. The homogeneous
‘Lorentz’ component of the local field is significantly
suppressed at the exact resonance, i.e., if the laser frequency
is tuned to the frequency of the atomic transition, 6 = 0, and

the dipole interaction between atoms is strong, |0g| > 1:

1

s = ——
1+ 0x

<1. (6)

In this case, the field is essentially pushed out from the system.
|€| reaches its maximum at 6 = Og,

|gpeak|2 =1 +51% >1. (7)

The wave vectors g are found from the dispersion relation

1 ~cos(ng) o+i
S o ®

n3

(In the nearest-neighbor approximation, the entire left-hand
side of this equation may be replaced with cos ¢.)

Within our present model, we showed that spatially
oscillating solutions emerge if |dg| > 1 in the range of
frequency detunings 1> 0/0r > —3/4. (In the nearest-
neighbor approximation, this range widens: |5/dg| < 1.)
The dipole strata are especially pronounced for |or|> 1.
The strength of the dipole interaction between atoms may be
gauged by the Rabi frequency Qr = dr /7T, which essentially
defines the position of the Lorentz resonance with respect to
the atomic transition frequency. The Rabi frequency sets the
width of the energy-spectrum band where locsitons can exist,
such that for [or| > 1, this width is ~ 24|Qgr| > AI". Here, we
may draw some analogies with energy spectrum bands in
solids [4] and in photonic crystals [12]. In the limit
1—-0/0r <1 (i.e.,, on the band edge near the Lorentz
resonance, where 0 = Jr), ‘long-wave’ locsitons emerge, with

52
qw ~ 1 ——, (9a)
bR
27l
Apw = —2 . (9b)
qLw

It is worth noting that their wavelength A;w may be as large
as 2ml,0r, while remaining much shorter than the wavelength
of the incident light wave. A typical example of such strata is
presented in Fig. 2 (top curve). At the opposite edge of the
locsiton frequency band (in the nearest-neighbor approxima-
tion, it corresponds to 1+ d/dr < 1), short-wave locsitons
emerge with gsw < m and Asw/22 /[y, which is close to the
shortest spatial oscillation wavelength possible in a discrete
system.

Because Asw/2 is generally not a multiple of /,, the
distribution of dipole moments and the corresponding local
fields in the discrete array of atoms may be spatially
modulated with a longer wavelength, much like in the case
of two waves with close wave vectors. Such modulation is
clearly visible in the middle curve in Fig. 2, where Agw/2 is
quite close to /,. The case of the exact resonance of the
incident wave with the atomic transition, for which 6 =0,
may be used to divide the locsiton frequency band into the
regions with short-wave and long-wave locsitons. The
boundary case, with A = 4l,, is represented by the lower
curve in Fig. 2.

To draw an analogy with phonons, we note that long-
wave locsitons are counterparts of acoustic phonons, and
short-wave locsitons correspond to optical phonons. Another
interesting analogy can be drawn with ferromagnetic or
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Figure 2. Dipole stratain an array of N = 65 atoms: the distribution of the
absolute value of the local field at g = 200 at three different laser
frequency detunings 0; 7 is a sequential number of an atom in the array.

ferroelectric materials, which feature strong interaction
between static magnetic or electric dipoles. Within this
analogy, the locsitons with the longest wavelengths resemble
ferromagnets, while those with the shortest wavelengths
resemble antiferromagnets. A similar analogy may also be
noticed in the difference between bistability regimes in these
two extreme cases, which we consider below for the simplest,
two-atom, system.

We emphasize that this analogy between the locsitons and
ferromagnets or ferroelectrics is inevitably very limited. For
example, at 0 = 0, a hybrid configuration of a sort is formed
by the induced atomic dipoles in the array, o |oT -,
which corresponds to the lower curve in Fig. 2. Such hybrid
configurations are only possible because of the dynamic
nature of the atomic dipoles in our optical problem, and are
unattainable with static dipoles. Thus, the dipole configura-
tion in an array of atoms can be smoothly transformed from a
‘ferromagnetic-like’ to an ‘antiferromagnetic-like’ by tuning
the laser frequency from one locsiton band edge to the other,
while going through all the different hybrid configurations in
the process.

We have shown that a finite array of atoms should exhibit
size-related resonances, which are somewhat similar to
resonances in thin semimetal films [13], long organic
molecules [14], or a common violin string. The main
difference is that in our case, the number of resonances is
limited by the number of atoms N. The linear system of
equations (3) may be solved, for example, by using numerical
matrix solvers for N > 1, while for small N, the problem is
amenable to analytic methods. Some results for the local field
E obtained using numerical methods are shown in Figs 2—5.

We also used the following simple approximation to
achieve a better qualitative understanding of the numerical
results. The solution for an infinite array of atoms can be used
to approximate the solution for a finite array of N atoms as a
sum of the uniform ‘Lorentz’ solution £ at N = co and
spatially oscillating components AE  exp (Lign), where the
resonant locsiton wavenumber ¢ and the resonant amplitude

A& are found from appropriate boundary conditions for the
local field at the array ends. If the interaction between all
atoms is taken into account, boundary conditions can only be
approximated; however, we verified the precision of such an
approximation for locsitons with sufficiently long wave-
lengths by many numerical simulations.

In the nearest-neighbor approximation, the method
described above yields an exact solution of the problem. In
this solution, the half-wavelength A;/2 = (N + 1)/, of the
resonant locsiton with the longest wavelength is determined
from the condition that the nodes of the local-field eigenmode
lie beyond the end atoms of the array at the distances /,, i.e.,
Eo = En+1 = 0. The frequency resonances for the locsitons
are defined by the frequency detuning d; (0 < k < N):

Ox = OR COS gy , (10a)
where
nk
= . 1
=N (10b)

The corresponding locsiton wavelength is A, = A, /k. Due to
symmetry considerations, only resonances with an odd k may
be excited by an incident laser beam with a symmetric
transverse field profile, while resonances with an even k may
be excited by a beam with an antisymmetric profile. The solid
curve in Fig. 3 depicts resonances of the maximum local field

Emax = max |&,|
0<n< N

at the atoms in the array; the resonances are obtained in the
nearest-neighbor approximation for a uniform distribution of
the incident field along an array with N = 13 and dr = 200.
The lower envelope for this curve is Ejpy (0) & 2&, while the

c _gmux £
 — — - Lorentz theory
102 e eeeeeeees lower envelope
F — - - upper envelope
— 10 E
S N
) c
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[ i
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E 1 1 1 1
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Figure 3. Locsiton resonances appearing in the dependence of the

normalized maximum amplitude Eny,x of the local field on the laser
frequency detuning 6 in an array of N = 13 atoms with dr = 200 (solid
curve). For comparison, its upper and lower envelopes are shown, along
with the corresponding dependence obtained using the classical Lorentz
theory for unbounded media (the dashed curve).
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upper envelope, obtained in the nearest-neighbor approxima-
tion, is given by

- 1
€<n5+—>, ns <1,
Ewp & ns

2& n5>15

(11a)

where

N+1

2«/5,%-52'

As N increases, the resonances start merging and become
weaker as N approaches og. However, even for large N, the
lower envelope Ejoy is still twice the local field £ predicted by
the classical Lorentz theory [see Eqn (5)].

For N = 3k — 1, where k is a natural number, the local-
field amplitude Enax, which is obtained in the nearest-
neighbor approximation, goes below Ejoy at 6 = —Jr /2. For
this frequency detuning J, the absolute value of the locsiton
wave number is |¢| &~ 2n/3, and the spatial period of the
locsiton is A = 3/,. The long-wavelength modulations of the
spatial profiles of the dipole moments and the local field in the
array disappear in this case because A becomes an integer
multiple of /,. This results in an ‘antiresonance’ of a sort
appearing in the dependence of the local field £,x on J; in
other words, the locsiton in the array becomes suppressed.

Another important and unusual effect that we discovered
is the cancelation of the resonant local-field suppression in an
array consisting of a certain ‘magic’ number of atoms. At the
exact resonance of laser radiation with the atomic transition
(i.e., at 0 = 0) and for |0r| > 1, the local field obtained from
the Lorentz theory is ‘pushed out’ of the system [see Eqn (6)].
We call this effect the resonant local-field suppression; it is
also present in finite arrays of atoms for most N. We found,
however, that at a certain magic number N, this resonant
suppression vanishes, and the local field penetrates the system
even at 6 = 0. In the nearest-neighbor approximation, the
magic array sizes are N = kmy,e + 1, where k is a natural
number and ., = 4. The effect is most pronounced at
N =5, where the atomic dipoles arrange as T o | o T, with
the amplitudes of the dipoles and the local field reaching their
maxima (Emae & 1/3) at odd-numbered atoms, while almost
vanishing at even-numbered atoms. The ‘magic enhance-
ment’ of the local field (compared to the uniform, Lorentz
case) can be substantial: |€mag/<§res| ~ 0r /3. In this effect, one
of the resonant locsitons, whose frequency exactly matches
that of the atomic transition, virtually compensates the
resonant suppression of the local field in the system. The
effect is also present if interactions between all atoms in the
array are taken into account [see Eqn (3)], where mipy,g = 13.
While an interference of an evil spirit cannot be excluded
completely, we assume that the result stems from properties
of the equation for the wave vector ¢ of a locsiton in the array
of atoms; this equation follows from Eqn (8) at 6 = 0:

(11b)

ns =

(12)

The smallest positive root ¢; of Eqn (12) is such that ¢; /7 is
very close to a rational number, (¢; /n)/(6/13) = 1.00026. . .,
and hence the locsiton wavelength is A = 2n/q; =~ (13/3)l,,
and a multiple of A4/2 is therefore close to a multiple of /,.
Therefore, the resonant local-field suppression is canceled at

N = 14, with the relative amplitude of the field becoming
substantial, Enag ~ 2/15.

There is a semantic irony in that the local-field effects are
actually due to nonlocal interactions between atoms. If the
field of an incident wave is limited to a small spatial region,
the local field can extend beyond this region; locsitons can
propagate away from their origin. At the edges of the locsiton
frequency band, i.e., at \5R\ > |6] > 1, the group velocity of a
locsiton vy, =/, (Q2 Aw? )'/ % could be lower than the speed
of sound in a solid. This effect can be useful, for instance, in
designing nanometer-scale delay lines that could be used in
molecular computers or integrated nanodevices for optical
signal processing.

Aside from dipole strata, other even more interesting
structures emerge in two-dimensional lattices of resonant
atoms. For example, we consider a standing electromagnetic
wave acting on an equilateral triangular lattice of atoms, the
wave being polarized perpendicular to the lattice plane. The
interatomic distances are very small, of the order of a few
nanometers, and hence the external field can be regarded as
uniform on a scale of several tens or even several hundred of
atoms. We found that at certain conditions, concentric dipole
strata (Fig. 4) can emerge around a circular hole made by
removing several tens of atoms from the lattice; the amplitude
of the strata decreases fast as the distance to the hole
boundary increases. An even more interesting dipole config-
uration emerges if the laser radiation is incident normally to
the lattice and polarized in the lattice plane. For better
qualitative understanding of the local-field behavior in this
case, we use the ‘near-ring approximation,” which is a
modification of the nearest-neighbor approximation: we
consider interactions of each atom with its six immediate
neighbors only, while assuming that the positions of the six
atoms are evenly ‘spread’ over a circle with the diameter of
one interatomic distance /,. As in the one-dimensional case,
we introduce a polarization-independent dimensionless para-
meter dgr, which differs from dgr defined by Eqn (4) in that we

set SF(,) = —1 here:
s |dST
OrR = o (13)

150

X

100
150

Figure 4. Localization of a locsiton in a two-dimensional triangular lattice
of atoms around a hole with a diameter of 15 interatomic distances. The
distribution of the local field £ in the system is shown in the case where the
external field of the light wave is normal to the lattice plane, 6 = 100, and
Or = 69.
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Comparing Eqns (2) and (4), we see that Q = dg/(d +1).
After replacing the summation in Eqn (1) by an integration
over the ‘near ring’ described above, we find a simple isotropic
expression for the uniform Lorentz local field:

= Ein

EL T 0/40" (14)
It can be demonstrated that Eqn (14) remains valid not only in
the near-ring approximation but also in the context of more
precise calculations, which account for the structure of the
two-dimensional lattice of atoms and for the dependence of
the solution on the direction of the locsiton wave vector q
within the first Brillouin zone. As in the one-dimensional case,
we sought a solution of Eqn (1) as a superposition of the
Lorentz field E; and plane-wave locsitons with the coordinate
dependences exp (Fiqr/l,). Assuming that  makes an angle i/
with the polarization direction of the incident laser radiation,
we arrive at the following dispersion relation for two-
dimensional locsitons (which is a good approximation for
relatively long-wavelength locsitons):

142 Q[olg) — 32(g)cos ()] =0, (15)

where J, is a Bessel function of the first kind.

The near-ring approximation becomes insufficient for
short-wavelength locsitons; a more detailed study is required
in this case, which takes account of the symmetry of the
triangular lattice of atoms and the respective Brillouin zone
structure. We have shown that the solution in this more
general case depends on the orientation of the incident laser
polarization with respect to the lattice. We let ug denote the
unit vector pointing from a given atom to one of its nearest
neighbors (this corresponds to the 'K direction in the first
Brillouin zone). We consider four most interesting configura-
tions defined by different polarizations and orientations of
the locsiton wave vector:

a) q LEy, Ep|ug,
b) q L Ey, EnLug,
¢) q| En, Eip|[uk,
d) q|| En, Epn Lug.

The respective dispersion relations in these four cases are
found by us to be

a) coqu\/g:4(1 +07"),

q_1 =
b) 0032_8[51\/57+64Q }

1+ 1+l28(1—Q*1)},

The dipoles induced in a finite two-dimensional lattice form
distinctive patterns if locsiton resonances emerge at the same
Q in both dimensions. In the limit of long-wavelength
locsitons (¢ < 1), the dispersion relations in cases (a) and (b)
coincide with each other and with the result obtained in the
near-ring approximation [see Eqn (15)]. In these two cases,

Y =mn/2and Q ~ —4/3, while

32/3 1
In a similar manner, we obtain approximate solutions in cases
(c) and (d), for which yy = 0:

32/3 1
quq(%%qrzingmﬁ<z+é)' (17)

Combining cases (a) and (b) or cases (c) and (d), we can
achieve simultaneous resonances in both directions in the
lattice, if the lattice is approximately square in shape.
Resonances of the same order are attained this way for
locsitons with wave vectors pointing in two orthogonal
directions; a sufficient ‘squareness’ of the two-dimensional
triangular lattice can be achieved by choosing the lattice size
(i.e., the numbers of atoms in the two directions). Locsitons
with shorter wavelengths and wave vectors pointing in
different directions are also present, but they do not
significantly affect the emerging dipole pattern because of
their nonresonant nature.

The interference of locsitons in a two-dimensional lattice
of atoms can produce many different dipole excitation
patterns and strata. Some of them are reminiscent of
‘quantum carpets’ [15]. Figure 5 depicts vector patterns that
are formed by the atomic dipoles induced by the local field.
The atoms are arranged in a 48 x 56 equilateral triangular
lattice, which results in approximately equal sides of the
lattice patch. The field of the incident electromagnetic wave
is uniform and is polarized along the diagonal of the lattice
patch. The incident wave frequency is chosen such that the
third resonance (in the order of increasing wavenumbers,
counting only the resonances allowed by the symmetry of the
problem) is excited in each dimension; at least six distinct
vortices of the local field are visible. Figure 5 shows the
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Figure 5. Vortices in the distribution of the local field £ in a nearly square
patch of a two-dimensional triangular lattice of atoms at 6 = —1000 and
dr = 1316.5. To avoid overcrowding of the plot, only one of each nine
dipoles is shown. The incident light wave is polarized in the lattice plane
along the diagonal of the lattice patch, its field shown by the large arrow.
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imaginary parts of the complex field amplitudes, because they
are dominant for each of the resonant locsitons.

Finite two-dimensional lattices and other similar systems
of resonant atoms produce especially interesting examples of
the cancelation of the resonant local-field suppression. Unlike
in the one-dimensional arrays of atoms, the ‘restoration’ of
the local field in such systems at § = 0, compared to that in the
uniform, Lorentz case, can be more complete (up to 100%).
The two-dimensional ‘magic shapes’ of atoms have the same
‘cabbalistic’ streak as in the one-dimensional case. For
example, in the nearest-neighbor approximation, the effect
is most pronounced only in the system of N =13 atoms
arranged as an equilateral six-point star with an atom at the
center, for which the maximum restoration of the local field is
reached, Emax & 1.02. The directions and relative amplitudes
of the local field at the atoms in this system are shown in Fig. 6
for Ei, || uk. It can be seen from the picture that the local field
is concentrated on the outermost atoms and the one at the
center, while the local field at the inner hexagon of atoms is
almost completely suppressed. Any symmetry distortion in
this system of strongly interacting atoms (e.g., by attaching a
foreign atom or molecule to it) would break the balance of the
local fields in the system and bring back the resonant
suppression of the local field, which is canceled in the
symmetric ‘magic system.” This effect may be used, inter
alia, in designing nanometer-scale sensors for detecting
various biological molecules.

A sufficiently strong electromagnetic field applied to a
system of strongly interacting atoms can bring about non-
linear local-field effects, e.g., solitons. A detailed considera-
tion of many and varied interesting effects of this kind falls
out of the scope of this report. It is worth noting, however,
that some nonlinear effects, such as optical bistability and
hysteresis, are possible even in the steady-state regime
considered here, where the amplitude of the incident electro-
magnetic wave is constant. The optical bistability for the
uniform, Lorentz local field in an unbounded medium was
predicted in [16] and experimentally observed later in [17].
However, the possibility of bistability and multistability for
short-wavelength locsitons, whose local field is highly
nonuniform in space, has not been discussed in the litera-
ture. We found that this effect is possible even in the
ultimately simple system of two two-level atoms with a
saturation nonlinearity and a strong dipole interaction. This
system also provides the most dramatic example of a self-
induced local-field nonuniformity.

We describe the two-atom system using Eqns (3) and (4)
with S = 1. Depending on the orientation of the local and
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Figure 6. (a) The geometry of a ‘magic system’ of 13 resonant atoms; (b) the
local field distribution in the system.

external fields Ey || Ei, either perpendicular or parallel to the
line connecting the two atoms, Eqn (4) respectively includes
either F, or F;. We introduce dimensionless amplitudes of the
local field at each atom, Y; = E;/Ey, where j = 1,2, and the
dimensionless field of the incident wave, X = Ej,/Esy, by
normalizing the amplitudes of these fields to the saturation
field Eg, of the two-level system. With this new notation, the
system of equations for the local fields takes the form

Or2(0 —1) Y-

Y1:X+7R2(2 1) 227 (183‘)
1+0° 4|7,
Or2(0 —1) Y

Yo=X %7 (18b)
1+6°+ 1|

where dr» = 0r/2 > 0. Equations (18) give rise to two types
of solutions, or two different modes, for the local field in the
system. A solution of the first type is similar to the uniform
Lorentz solution for an infinite array of atoms, in which the
local fields at the two atoms oscillate in phase. In this case,
system of equations (18) leads to a cubic equation for |}_’|2,
which is readily solved or analyzed with the help of a plot,
Fig. 7. For |0r2| > 1, the onset of bistability and hysteresis for
Y occurs at the detuning & = dr, of the laser frequency from
the frequency of the two-level transition, with dg» — 6 > /3.
In this case, the threshold field of the incident wave
Xaw ~ [(2/V3)?/6ra]"/? < 1, i.e., it may be significantly
below the saturation field E, of the two-level system.

In the case of antiphase oscillations of local fields, a
multistable solution of the second type is in fact the limit
case of a short-wave locsiton that emerges at the opposite
edge of the locsiton band at 0 &~ —dg». In the limit | X | < Jra,
in addition to the uniform, Lorentz local field ¥ ~ X /2, we
found a nonuniform solution

Y1,2: }7:|:S7 (198_)
100 N /E ‘/ /‘/,f‘— =<.d
= Lin/ Lsat* .
0.1 — — / _/',
0.5 /7 $ $

IEl/Esat

Y| =

Figure 7. Optical bistability and hysteresis in a system of two resonant
atoms with the saturation nonlinearity. The dependences of the normal-
ized local-field amplitude | Y| on the frequency detuning & are shown for
Orz = 100 and different normalized field amplitudes X of the incident
wave.
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where
s:%(\/l_:F—R—iM), (19b)
o= \/dra(dra +0) — 272 £ V2R, (19)
R=1/ —5Y—12‘2. (19d)

The choice of the signs in Eqns (19b) and (19¢) is independent
of the choice of the sign in Eqn (19a). In Eqn (19a), one of the
possible choices for the + sign corresponds to Y; and the
other corresponds to Y,, which enables two different
solutions, depending on the signs chosen. A similar property
leads to the split-fork bistability for counterpropagating
waves in a ring resonator [18]. The necessary conditions for
the second-type multistable solution for the local field are
Sra + 6 > /3 and X2 > 40g,. Three branches of the solution
are seen in Fig. 8 near the bistability threshold: two stable
branches given by Eqns (19) and one unstable ‘Lorentz’
solutionY. For Jra + 90 > 2, there exist five different
branches of the solution, but only two of them are stable.
The antiphase oscillations of the dipole moments of the two
atoms, which are represented by the term =+s in Eqn (19a),
could be likened to a pair of spins one of which is aligned and
the other counter-aligned with the applied magnetic field.
Returning to the above-mentioned similarities between
the local-field behavior in a system of atoms and the behavior
of spins in magnetic materials, we emphasize that our
research is focused on the effects that are characteristic of
fairly small systems of atoms, while studies of magnetic
phenomena are typically aimed at finding averaged, ‘thermo-
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Figure 8. Optical bistability in the system of two resonant atoms with a
saturation nonlinearity at g, = 100 and Jr, + 6 = 10. The thicker solid
line represents the average uniform (‘Lorentz’) solution. The curves show
the dependences of the ‘nonuniform components’ of our solution on the
normalized field amplitude X of the incident wave. The solid and dashed
curves respectively correspond to the stable and unstable regimes; the real
parts of the solutions are shown with the curves marked with black dots,
the imaginary parts are shown with the unmarked curves.

dynamic’ properties of sufficiently large systems. It is possible
that our approach, which allowed us to predict giant
resonances, magic numbers and shapes of atoms, etc., may
allow exposing similar effects in nanometer-scale magnetic
systems. The internal structure of locsitons and dipole strata
emerges at the nanometer scale, with many interesting effects
involving drastic changes of the local field even between
neighboring atoms, i.e., at distances of the order of a few
nanometers or less. Optical methods are ill-suited for
resolving such small systems, and therefore the X-ray or
electron-energy-loss spectroscopies, as well as an observa-
tion of the size-related optical resonances predicted by us,
may become more promising methods for detecting locsitons
experimentally.

We note that locsitons and dipole nanostrata may open up
fresh opportunities in designing elements for molecular
computers and other nanodevices [19]. The significant
advantage of locsitons over electrons in semiconductors and
metals is that no electric current or charge transfer is required
for locsitons to emerge. This advantage might aid in reducing
the sizes of computer logic elements, since current semicon-
ductor technology suffers from heat-related problems on a
scale below 10 nm.

Locsitons might be put into service in both passive
elements (e.g., for data transmission or in delay lines) and
active elements (switches or logic elements). Locsiton-based
nanodevices could thus supplement the list of alternative
nanotechnologies, including plasmonics [20, 21], which is
substantially based on surface plasmons [10, 11], and
spintronics [22]. Another application of locsitons could be in
nanosensors for biological molecules and other particles and
impurities. Such a nanosensor may be built out of resonant
receptor molecules, which can selectively bind target mole-
cules or particles; otherwise, receptor molecules may be
attached to particles with an optical resonance. By arranging
the molecules in a magic shape, the nanosensor may be
designed such that the locsiton in the system is not
suppressed even at the exact resonance of the laser radiation
with the constituent molecules; at the same time, the locsiton
is to be suppressed whenever a target biological molecule
attaches to the nanosensor.

Even more exciting opportunities open up in arrays and
lattices of atoms with an inverse population of the resonant
quantum transition; this inverse population may be created
by an appropriate (e.g., optical) pumping. Such systems may
open up the way to controlling locsitons, amplifying them,
and even generating coherent locsitons with a ‘locsiton laser’
of a sort (a ‘locster’).

In conclusion, we demonstrated that dipole nanostrata
and short-wave excitations of a local field (locsitons) can be
brought about in arrays and lattices of strongly interacting
atoms, including a two-atom system, by the action of laser
radiation with a frequency close to that of the atomic
resonance. Locsitonic effects include giant size-related reso-
nances of the local field, the cancelation of the resonant local-
field suppression in the system at certain magic shapes and
numbers of atoms, and also optical bistability and hysteresis.

The authors are grateful to the US Air Force Office of
Scientific Research (AFOSR) for funding this research.
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Modern methods for the statistical
description of dynamical stochastic systems

V I Klyatskin

1. Introduction

S M Rytov gave much attention to the development of
functional methods of stochastic system analysis at All-
Moscow Radiophysics Seminars he led. He dubbed them
radiomathematics. 1 participated in these seminars from the
end of the 1960s. S M Rytov frequently asked, me in
particular, a question: “What are you studying?”’ I tradi-
tionally answered that solutions of stochastic equations
(ordinary and partial differential, or integral) are func-
tionals from random coefficients of these equations and
that I am studying the dependence of the statistical
characteristics of these solutions on various models and the
statistical parameters of these coefficients. For about 30
years I considered this answer to be exhaustive, and only
during the last 10— 15 year did I realize all the topicality of
the question “What are you studying?”’ and the total
inadequacy of my usual answer. This is related to the fact
that in recent years the attention of both theorists and
experimenters has focused on the question of the links of
dynamics pertaining to averaged characteristics of problem
solution to the solution behavior in specific realizations. This
is especially relevant to geophysical problems related to the
atmosphere and ocean in which, by and large, the respective
averaging ensemble is absent and experimenters as a rule
deal with individual realizations. In this case, the results of
statistical analysis frequently not only have nothing in

common with the behavior of solutions in specific realiza-
tions but often simply contradict them. It is namely this that
I would like to demonstrate in this report.

Three approaches are currently utilized in the analysis of a
stochastic dynamical system.

The first approach is based on analyzing the Lyapunov
stability of solutions to deterministic linear ordinary differ-
ential equations

d
@ x(1) = A(t) x(1)

and traditionally attracts the attention of many researchers.
One analyzes here the upper bound of the problem solution

which is termed its characteristic exponent. When this
approach is applied to stochastic dynamical systems, it is
common that, to interpret and simplify the obtained results at
the final stage, statistical analysis is invoked and statistical
averages such, for example, as

(Ax(ry) = lim_ ! (In[x(1)]),

t—+oo |

are computed.

The drawbacks of this approach to stochastic dynamical
systems are as follows:

(1) Such simplifying features of random parameters as
stationarity in time, homogeneity, and isotropy in space are
exploited only at the stage of final analysis.

(2) When passing to continual generalizations of ordinary
differential equations (for example, in mechanics or the
electrodynamics of continuous media), i.e., to partial differ-
ential equations (to fields), the analysis of Lyapunov stability
is only possible through the series expansions of solutions in
complete sets of orthogonal functions. If such a technique is
applied to stochastic problems, a question emerges as to
whether the operations of series expansion and statistical
averaging are permutable. In particular, when statistical
characteristics of random processes and fields are approxi-
mated by singular (generalized) functions (as, for example, in
the approximation that fluctuations of system parameters are
delta-correlated), these operations are not, as a rule, permu-
table.

The second approach is also traditional and relies on the
analysis of moment and correlation functions of solutions to
stochastic problems.

The drawback of this second approach is that commonly
used methods of statistical averaging smooth the qualitative
features of separate realizations and it is not uncommon for
the obtained statistical characteristics to have nothing in
common with the behavior of separate realizations.

In certain circumstances there exist, however, physical
processes and phenomena occurring with the probability
of one (i.e., happening in almost all realizations). They
are called coherent (see monographs [1—4] and work [5]
where this question is thoroughly discussed). To describe
such phenomena, the third approach is applied. It is rooted
in the method of statistical topography which studies,
instead of moment functions, the statistical characteristics
of some functionals describing precisely these coherent
phenomena.

Below, we will illustrate these approaches as applied to
simple physical problems.
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2. Examples of dynamical systems

2.1 Diffusion of a passive inertialess admixture

in a random velocity field

As the first example let us consider the relative diffusion of
inertia-less particles in a random hydrodynamical flow with
the velocity field u(r,7) in the framework of the simplest
kinematic equation for each particle:

% (1) =u(r(r),1), r(0)=ro.

Numerical modeling of this problem indicates that the
dynamics of the system of particles are essentially dependent
on whether the velocity field is solenoidal or divergent. Thus,
Fig. la presents in a schematic way a fragment of the
evolution exhibited by a system of particles (a two-dimen-
sional case) for a particular realization of a solenoidal velocity
field u(r) stationary in time. Nondimensional time here is
related to statistical parameters of the field u(r). Initially, the
particles were uniformly spread over the circle. In this case,
they continue to fill the area confined by the deformed
contour in a fairly uniform way. Only a strong contour
irregularity of a fractal character develops.

For the potential velocity field u(r), however, particles
uniformly spread over a square at the initial instant of time
form cluster areas as they evolve with time. Figure 1b presents
a fragment of such an evolution, obtained through numerical
simulation. We emphasize once again that formation of
clusters in this case is a purely kinematic effect. Apparently,
after averaging over an ensemble of realizations of the
random velocity field this feature of the dynamics of particles
will disappear.

Consider the joint dynamics of two particles. In this case,
the probability density for the distance between the particles
(provided the initial distance between them is small) is log-
normal and moment functions of the distance (for example, in
the two-dimensional case) grow with time exponentially:

(1"(1)) = Iy eXp{é [Z(DS —DP)n+ 3Dpn2} } ’

where D% and DP pertain to the solenoidal and potential
components of the spectral function of field u(r, 7).

There also exists a deterministic function called the curve
of typical realization (CTR), which describes the main
tendency of temporal behavior exhibited by the random
process /(7). For the problem considered here, this function,
similarly, turns out to be an exponential function of time:

1*(t) = loexp{%(Ds — DP) z} ,

and it is related to the Lyapunov exponent.

The CTR is essentially dependent on the sign of the
difference D® — DP. In particular, for a solenoidal velocity
field (DP =0) we have an exponentially growing typical
realization. In the other limit, for a potential velocity field
(D* = 0), the typical realization is an exponentially decaying
curve, i.e., particles would tend to coalesce. Consequently,
clusters should form, i.e., zones of particle centering located in
regions largely devoid of particles, which agrees with the
results of numerical simulations. Thus, the inequality
D*® < DP should hold for particle clustering in this problem.

The exponential growth of moments arises from over-
shoots of the process /() relative to the curve of typical
realization /*(¢) both toward large and small values of /. It is a
purely statistical effect caused by averaging over the entire
ensemble of realizations.

Thus, we arrive at an apparent contradiction between the
character of behavior exhibited by statistical characteristics
of the process /(z) and its behavior in concrete realizations.
Let us formulate two clarifying remarks.

Remark 1. The curve of typical realization (CTR)

The statistical characteristics of a random process z(7) are
described by the probability density P(f;z) = (5(z(1) — 2))
and integral distribution function

F(t;z) = Prob(z(1) < z) = (0(z(1) — z))
= JZ dz' P(;2'),

where d(z) is the Dirac delta function, and 6(z) is the

Heaviside function equal to 1 for z > 0, and to 0 for z < 0.
The curve of typical realization for the random process

z(¢) is referred to as a deterministic curve z*(z) which is the
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Figure 1. Results of modeling diffusion of a system of particles in solenoidal (a) and potential (b) random velocity fields.
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Figure 2. On the definition of the curve of typical realization for a random
process.

median of the integral distribution function and is defined as a
solution of the algebraic equation

y 1
F(t;z%(1) = 5
The motivation behind it is the property of a median that for
any time interval (¢, #2) the random process z(7) evolves as if
it twists around the curve z*(¢) in such a way that the mean
time during which the inequality z(¢) > z*(¢) holds, coincides
with the mean time during which the opposite inequality,
z(1) < z*(¢), is observed (Fig. 2), namely

1
(Tapsz0) = (Tetnez) = 5 (2 = 11).

The curve of typical realization, although obtained with
the help of contemporaneous probability density, is defined,
nevertheless, for any time ¢ € (0, c0).

For a Gaussian random process z(), the CTR coincides
with the mean value of the process, namely z* (1) = (z(1)).

Remark 2. Log-normal random process
Define the log-normal random process by means of a
stochastic equation

Sa) = [t 67),  yOm) =1,

where z(¢) is the Gaussian process with parameters (z()) = 0
and (z(1)z(t')) = 2D5(¢ — t'). Its contemporaneous prob-
ability density is described by the Fokker—Planck equation

0 0 0 0
(a—cxa—yy> P(z,y,a)—D@y @yP(t,y,fx),

P(0;3,0) = d(y = 1).

The characteristic feature of the solution to this equation is
the emergence of a long flattened rail for Dt > 1 implying the
increased role of large overshoots of process y(¢; o) in forming
contemporaneous statistics. As a consequence of this, its
moment functions

(y"(t;)) = exp {n(n —%)Dz} ,

<Wlt;a)>:e’(p {”(”*%)Df}, n=1,2,...

grow exponentially with time for n > a/D.

For a log-normal process one finds (In y(¢)) = —az and,
consequently, the parameter —o = (1/¢)(In y(¢)) is the Lya-
punov characteristic exponent, while the CTR of the process
y(t; o) turns out to be a curve exponentially decaying with
time:

y*(0) = exp ({In (1)) = exp(~a) .

Consider now a continual generalization to the problem
of the diffusion of an inertialess passive admixture. In this
case, the admixture density field p(r,¢) is described by the
continuity equation

(%4—% u(r, l)) pr, ) =0, p(r,0)=

The total admixture mass is preserved as the admixture
evolves with time, namely

M=M= J drp(r, 1) = J dr p,(r) = const.

To describe the local behavior of admixture field realiza-
tions in space in a random velocity field u(r, ), one needs the
probability distribution for the admixture density. Based on
stochastic equation (1), we derive an equation for the
probability density of the admixture density (concentration)
field:

0 ot
(57D0A> P(l',[;p) :Dp 6’7/) P(Ll;p),

where the diffusion coefficient in the p-space, D, = DP, is
only related to the potential component of field u(r, 7). The
solution to this equation takes the form

0
P(r,1;p) = Dyt 2

| 2
In® [pexp (21)/po(r)]

X €Xp 4Dt

(2)

If the initial admixture density is everywhere uniform,
po(r) = poy = const, the probability distribution of density is
independent of r and can be described by the equation

0 2,
5, Pp) =Dy 52" P(t;p). 3)

From equation (3) it follows, in particular, that the
probability distribution is log-normal and moment functions
of the density field, beginning from the second one, exponen-
tially grow with time t = D,

(p"(r,1)) = p{exp [n(n—1)7].

From the viewpoint of single-point characteristics of
density field p(r, ), the problem in this case is statistically
equivalent to a random process p(f), whose probability
density obeys Fokker-Planck equation (3), whereas the
CTR exponentially decays with time at any fixed point in
space:

p*(t) = poexp(—1).
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This gives evidence of the presence of a clustering behavior for
fluctuations of medium density in arbitrary divergent flows.

The probability distribution (2) also enables learning
about some characteristic features of the spatio-temporal
structure of the density field realizations.

Remark 3. Statistical topography of a random density field
To be more illustrative, we limit ourselves here to the case of
two dimensions as well. In statistical topography, important
knowledge of the spatial behavior of realizations is provided
by the analysis of isolines defined as

p(r,t) = p = const.

In particular, the mean values of such functionals of the
density field as the total area where p(r, 1) > p:

Stt.p) = [ aro(o(e) — p) = [ar |~ oot 7).

o

and the total mass of the admixture comprised within this
area:

M(t,p) = | drp(e,1) 0(p(e,0) = p)

- J dr Jm dppo(p(r,1) ~ 7).

p

are defined by a single-point probability density and are
expressed as

(S(t,p)) = J

P

o}

a5 [dr Ple.c:7).

(Mtt.0)) = |~ 457 [ar Ple. 7).

14
Hence, it is seen, in particular, that for ¢ > 1 the mean area of
the regions, where the density is in excess of a given level p,
decays with time according to the law

exp (—%) Jdr po(r),

while the mean mass of the admixture inside them, namely

1
(St ~

tends monotonically to the total mass. This once again
confirms the conclusion drawn earlier that admixture
particles tend to coalesce with time in clusters — the compact
regions of augmented density surrounded by rarefied regions.

It should be noted that for a spatially homogeneous field
p(r, 1) these expressions can be simplified, yielding for specific
quantities per unit area the following expressions

(stt)) = | dp (). (i) = | a7 P

P 0
linked with the solution to equation (3).
2.2 Waves in a randomly inhomogeneous medium

As the second example, let us consider the problem of wave
propagation in random media.

We begin with a one-dimensional problem which corre-
sponds to waves in layered media.

Let a layer of a chaotically inhomogeneous medium
occupy the space Ly < x < L, and a plane wave uy(x) =
exp [ — ik(x — L)] be incident on it from the region x > L.
Due to the presence of inhomogeneities, there appears a wave
reflected from the layer with the reflection coefficient
Ry =u(L)—1, and a wave leaving the layer with the
transmission coefficient 7; = u(Ly). Inside the layer, the

wave field satisfies the boundary value problem:
2

)+ K2+ ()] () =0,
i du(x)

(L) + k  dx

L “ kK dx

x=Ly
where the function &(x), which we regard as a random one,
describes the inhomogeneities of the medium.

Under the assumption that the statistical characteristics of
function ¢(x) are known, the statistical problem amounts to
searching for the statistical characteristics of the wave field
intensity /(x) = |u(x)|* inside the inhomogeneous medium
and at its boundaries.

A statistical analysis of the solution to this problem
indicates that for a sufficiently thick layer, namely,
D(L — Ly) > 1 [where the quantity D is related to statistical
characteristics of ¢(x)], |Tr| — 0 with probability one and,
consequently, |Ry| — 1,1i.e., the half-space (L) — —o0) of the
randomly inhomogeneous medium totally reflects the inci-
dent wave. Thus, a dynamical localization of the wave field in
this layer occurs.

However, the mean value of wave field intensity is
constant in the half-space of the random medium, while
higher moments normalized to their values at the layer
boundary are described by the expression

(I"(L = x)) = exp [Dn(n — 1)(L — x)],

i.e., the intensity of the wave field has a log-normal
probability distribution, and moment functions grow expo-
nentially along the direction deep into the medium.

In this case, the CTR for the wave intensity in the medium
is described by an exponentially decaying function

I*(x) =2exp [ — D(L — x)]

and coincides with the Lyapunov exponent; the quantity
loe = 1/D, dubbed the localization length, sets the spatial
scale for the decay of the wave field intensity in separate
realizations.

Thus, it becomes apparent that the statistics form through
large overshoots relative to the typical realization curve.
Figure 3 shows two realizations of wave field intensity in a
sufficiently thick layer, obtained through numerical simula-
tions. It apparently illustrates the tendency of fast exponential
decay (with large overshoots toward both ever larger intensity
and zero).

Consider now wave propagation in a randomly inhomo-
geneous three-dimensional medium based on the scalar
parabolic equation

Gl i ik
o U(x,R) = % ArU(x,R) —}—3 &(x,R) U(x,R),

U(0,R) = Uy(R). (4)
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Figure 3. Numerical simulation of dynamic localization for two realiza-
tions of medium inhomogeneity.

Here, x is the coordinate in the direction of wave propagation,
R are the coordinates in the transverse plane, and ¢(x, R) is the
deviation of permittivity from unity.

On introducing the amplitude and phase of the wave field
as

U(x,R) = A(x,R) exp {iS(x,R) },

the transfer equation can be written for the intensity of the
wave field I(x, R) = |U(x, R)| in the form

0 1
o I(x,R) + I Vr{Vr S(x,R)I(x,R)} =0,

I(0,R) = I)(R) . (5)

Hence, it follows that in the general case of an arbitrary
incident beam the wave power in the plane x = const is
preserved:

Eo = .[I(x, R)dR = JIO(R) dR.

Equation (5) shares its form with Eqn (1). It therefore can
be treated as the transfer equation for a conservative
admixture in a potential velocity field. As a consequence,
realizations of the intensity field have a cluster character,
whereas this clustering manifests itself through caustic
structures. By way of example, Fig. 4 displays photos of a
cross section of a laser beam propagating in a turbulent
medium in a laboratory setup, for various fluctuations of
permittivity. The appearance of the caustic structure of the
wave field is vividly seen.

Let us introduce the amplitude and phase of the wave field
and the complex phase of the wave:

U(x,R) = A(x,R) exp (iS(x,R)) = exp (¢(x,R)),

Figure 4. Cross section of a laser beam propagating in a turbulent medium
in laboratory conditions (a) in the region of strong focusing, and (b) in the
region of strong (saturated) fluctuations.

where
o(x,R) = y(x,R) +1iS(x,R).

7(x,R) =In A(x,R) is the wave amplitude level, and
S(x,R) is the wave phase fluctuations relative to the phase
kx of the incident wave. Proceeding from parabolic equation
(4), one can obtain, for the complex phase, a nonlinear
equation of the so-called Rytov method of smooth perturba-
tions (MSP):

o .
a ¢(X, R) = Zlik Ar ¢(X, R)

+i [Ve ¢(x,R)]” +i g e(x,R).

For the case of a plane incident wave, which will only be
considered further, it can be assumed that Uy(R) = 1 without
loss of generality and, consequently, that ¢(0,R) = 0. In this
case, the random field ¢ (x, R) is statistically homogeneous in
the plane R and all its single-point statistical characteristics
are independent of the parameter R.

Remark 4. The Rytov smooth perturbation method

The method of smooth perturbations was proposed by
S M Rytov when analyzing the problem of light diffraction
by ultrasonic waves in 1938. A M Obukhov applied this
method in 1953 to treat the diffraction effects accompanying
wave propagation in random media in the framework of
perturbation theory. Earlier, analogous studies were carried
out in the approximation of geometrical optics (acoustics).
This technique has not lost its relevance even now providing
the basic mathematical apparatus for various technical
applications.

In the first order of the MSP, the statistical properties of
amplitude fluctuations are characterized by the variance of
amplitude level, i.e., by the parameter a2 (x) = (x3(x,R)), in
which case (y(x,R)) = —0(x). Regarding the variance of
wave intensity, which is called the scintillation index, it is
written down in the first approximation as

Bo(x) = (I*(x,R)) — 1
= (exp [470(x, R)]) — 1 ~ 45 (x) .

In this case, the intensity of the wave field is a log-normal
random field and all statistical moments of the wave field
intensity grow with an increase in the parameter f,(x), i.e.,
with the distance travelled by the wave. Now, a statistically
equivalent random process /(x) can be considered, for which
the CTR of wave field intensity decays exponentially with
distance:

I =exn (-3 h).
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at any fixed point R in space. This is indicative of the
emergence of a cluster (caustic) structure in the intensity
field. The formation of statistics (for instance, of moment
functions (I"(x,R))) proceeds through large overshoots of
the process /(x) with respect to this curve.

The description of intensity fluctuations, obtained in the
first order of the MSP, is valid for f,(x) < 1. As the
parameter f3,(x) increases further, this approximation
becomes violated and the nonlinear character of the equation
for the complex phase of the wave field has to be taken into
account. This range of fluctuations, called the region of strong
focusing, is very difficult for analytical research. For even
larger values of parameter f,(x), the statistical characteristics
of intensity reach saturation, in which case f(x) — 1 as
fo(x) — oo. This region of the parameter f§;(x) variations is
called the region of strong intensity fluctuations.

In this region, the statistical characteristics of the wave
field cease to depend on the distance and one has

(I'(x,R)) =n!,  P(x,I)=exp(-1).

In this case, the mean specific area of regions within which
I(x,R) > I and the mean specific power concentrated in these
regions are constant and do not describe the behavior of the
wave field intensity in separate realizations. Likewise, passage
to a statistically equivalent random process is not informative
in this case since its curve of typical realization assumes a
constant value. An understanding of the wave field structure
in specific realizations can only be gained in this case from the
analysis of such quantities as the specific mean length of
contours and mean specific number of wave field intensity
contours. These quantities continue to grow with the
parameter f(x), implying that the splitting of contours
takes place (see Fig. 4).

3. Conclusions

In closing, I would like to reiterate once more the main point
of this talk. The approach to analysis of stochastic dynamical
problems rooted in the ideas of stochastic topography, which
enables, given the one-point statistical characteristics of
processes and fields, determining quantitative and qualita-
tive characteristics of behavior of their particular realizations
for all times (in the entire space), has emerged as a result of
discussions with experimenters who largely deal with separate
realizations. For a comprehensive description of stochastic
dynamical systems, it is insufficient to formulate a basic
equations with respective boundary and initial conditions. It
is necessary first and foremost to understand which coherent
phenomena (occurring with the probability of unity, i.e., in
almost all realizations of their solutions) are contained in
these systems, and proceed with a statistical analysis in a
related way.

The work was carried out with support from the Russian
Foundation for Basic Research (projects Nos 07-05-006a and
07-05-92210-NtsNIL.a).
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Development of the radiative transfer
theory as applied to instrumental imaging
in turbid media

L S Dolin

1. Introduction

This talk presents the basic elements of instrumental imaging
theory in media with strongly anisotropic scattering and a
technique devised to compute images of diffusively reflecting
objects, accounting for the effects of light absorption and
multiple scattering. It discusses peculiarities of different
variants of the radiative transfer equation in the small-angle
approximation, used in the imaging theory and optical
coherence ‘tomography’ (OCT) of turbid media. A new
method of computing the temporal moments of a pulsed
light beam transmitted through a layer of a turbid medium is
described. The results of theoretical and experimental studies
of shadow noises in OCT images of turbid media with
fluctuating optical parameters are outlined.

By scattering light a turbid medium limits the visibility
range of objects located within it and becomes visible itself.
Therefore, the development of the methods and theory of
instrumental imaging in turbid media was directed toward
solving two interconnected tasks—the removal of the
adverse influence of the medium on the visibility of objects,
and the remote sensing of inherent optical properties of the
medium itself.

The Koshmider equation [1] expresses the fundamental
result of the imaging theory by relating the image contrast of a
black object (observed in the sky background near the
horizon) to the light attenuation coefficient in the atmo-
sphere. The relationships for estimating the contrast of the
image and visibility range of underwater objects under
natural illumination were obtained in a now classical work
by Duntley [2]. In this case, it was assumed that the angular
size of the observed object is small, so that its apparent
radiance is attenuated by the medium according to Buger’s
law. The need in a more universal imaging theory emerged in
connection with the development of laser methods of under-
water vision.

Pioneering works in this area were performed under the
supervision of A V Gaponov-Grekhov in the Radiophysical
Research Institute (NIRFI in Russ. abbr.) (Gor’ky) in the
1960s. They have led to the design of the first prototype of a
laser-pulse system of underwater imaging with the help of
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which the feasibility of an essential increase in the visibility
range of underwater objects was demonstrated in sea
conditions. It relied on laser target illumination and pulse
gating of a useful signal. It was at that time that the main
results laying the foundation for the modern theory of laser
location and instrumental imaging in turbid media were
obtained: based on the radiative transfer equation (RTE) in
the small-angle approximation, an analytical model was
proposed for blurring and attenuation of a laser beam in its
passing through a medium with strongly anisotropic scatter-
ing [3, 4]; formulas were derived for gauging the character-
istics of underwater object images taking into account the
effects of light absorption and multiple scattering in water
[5—-10], and a universal technique was suggested for estimat-
ing the potential range of underwater imaging systems of
different types, including laser-based ones [11—14].

The plausibility of applying the phenomenological radia-
tive transfer theory to the analysis of coherent light beam
propagation in a turbid medium was a subject of certain
concern. It was partly removed owing to Refs [15—17], which
derived the equation for the coherence function of a wave
beam in a medium with strongly anisotropic scattering and
showed that the Fourier transform of the coherence function
satisfies the RTE in the small-angle approximation and,
consequently, that it is a wave analogue to the light field
radiance (these results were reported at SM Rytov’s seminar
in 1966, through the initiative of M A Miller who was in
charge of theoretical research in hydrooptics at NIRFI and
offered everyday help with his advice and criticism to
researchers involved in this work). The justification of RTE
in a more general formulation was a subject of intensive
research, with results reported in a set of reviews and
monographs [18 —20].

Later on, different variants of RTE solutions in the small-
angle approximation were used for developing the theory of
laser location and imaging of underwater objects through a
rough sea surface and lidar methods of determining the
optical characteristics of natural scattering media, and also
in problems concerning the optical tomography of biological
tissues.

2. How to build a model image
on the basis of the radiative transfer equation

When solving the problems of imaging theory in turbid media
one can assume, without loss of generality, that the observing
system (Fig. 1) comprises the illuminating source S and
optical receiver R, whereas the image is formed by detecting
the power of the incoming signal Pr as a function of
coordinates ry of the point at which the axes of the directivity
patterns of the source ng and the receiver ng intersect the
surface of the object Sop. To determine the signal Pg, the
radiative transfer equation [21] is applied:

10
(Za+nm+m)nnm0:oLJUmxomwdw+Q,
1)

where I(r, n, 7) is the intensity of radiation (radiance) at a point
in space r in the direction of unit vector n at the instant of time
t, c and o = g + k are the speed of light and attenuation
coefficient in the medium, respectively, ¢ and x are the
scattering and absorption coefficients, x(y) is the scattering
phase function normalized as 2=n J“(;E x(y)sinydy =1,

S =
ob R(l'())

Figure 1. Schematics of observations.

y = arccos(nn’) is the scattering angle, dn’ is the solid angle
element around the directionn’, and Q are the volume sources
of radiation.

Scattering phase functions of natural turbid media exhibit
well-expressed anisotropy. They therefore can be described
with sufficient accuracy by the expression
*() = (1= 2p0) 1 (3) + 52, 2)

T
where p, =21 f;[/z x(y) sinydy is the backscattering probabil-
ity, pp < 1, x1(y) is the narrow part of the scattering phase
function satisfying the conditions 2n J(f x1(y)sinydy = 1,and
x1(y) < pp/(2n) for y > n/2. The power of a received signal
Pr(ro, 7) is expressed through the radiance of light Ir (—n, 7)
incident on the receiver aperture as

PR(I‘(), l) = 2R J]R(fn, l) DR(ﬂ) dll7

where Xy is the area of the detector entrance pupil, and
Dy (9) is its directivity pattern: Dg(0) = 1, ¥ = arccos(nng).
The light field from source S is expanded as a sum of
‘directed’ 7; and diffusive I, components. The first of them
plays the major role in illuminating the object, while the
second one corresponds to a signal reflected by the medium
(backscattering noise, ‘haze’). The field 7; is identified with
that emitted by the source S in an ‘auxiliary’ medium with a
narrow scattering phase function x; (y), scattering coefficient
g1 = 0 — 20, and absorption coefficient x| =a—0; =
K + 20y, where o, = ppo is the backscattering coefficient of
the real medium. Computation of the diffusive field compo-
nent in the approximation of single light scattering over large
angles reduces to finding the field of distributed radiation
sources

o
=221 1d
Q 2n .Ln L

in the auxiliary medium. In this case, the total power of the
received signal is presented in the form

Pr = Py, + Py, (3)
2RE2
Pob - RUR JJ R(l',)
T Sob
X “ ES@ (YED(x 1 —1¢")de'| dr’, (4)
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2 o

x “ EX(r, ') EQ (r,t — ') d’ | dr, (5)
—00

where P,y is the signal power from the object; Py, is the power
of the volume backscattering signal;, Qg =
211{ /2 DR(19) sinydv is the effectlve sohd receiving angle;

EG )= fin-o(nN) 7y dn and Ej ) (p L I dn are the
irradlance of the object surface at pomt r’ and spatial
1rrad1at10n of the med1um at point r at the instant of time ¢,

and EM(r', ) and E0 )( t) are, respectively, the irradiance of
the object and medium due to an auxiliary d-pulse source of
light with a unit energy and the directivity pattern of the
detector. The integration in formula (4) is performed over the
object’s surface S,p,, whereas that in formula (5) is carried out
over the illuminated volume ¥V of the medium. For a
stationary illumination (when functions with superscript (s)
are time independent), the time convolution drops out from
formulas (4) and (5), and the functions with superscript (r) in
the integrands become irradiances of the object and medium
from the auxiliary continuous light source with unit power.
Formulas (3)—(5) allow the received signal to be expressed
through the reflection coefficient of the observed object,
backscattering coefficient of the turbid medium, and irradia-
tion fields created by the real and auxiliary radiation sources
in a turbid medium that scatters light only ‘forward’.

For the given positions of the source, the detector, and the
object of observation, the functions E" and E, &0 i
Eqns (4) and (5) depend not only on variablesr, r dnd t, but
also on the coordinates of object point ry, toward which point
the directivity patterns of the source and detector. If the field
of view of the observing system is sufficiently small and the
distance z,p to the object is large compared to the ‘source—
detector’ base, then, for stationary object illumination, the
dependence of the signal P, on 1y is given by the formulas

Pt

Pob (Yo, Zob) = ?S “ R(r") Aop(ro — ', zop) dr’, (6)
Sob

Aop(r1,2) = ZRQREY (r1,2) E™(ry,2), (7)

where Pg is the power of the illuminating source, and £ is
the distribution of irradiance in the plane z = const due to
real and auxiliary illuminating beams with unit power, when
the beam axes are oriented toward a point r; =0 in this
plane.

The functions E®T could be termed the effective
directivity patterns of the source and receiver. In order to
retrieve the image, at least one of them should be narrow.
In the standard television system, an image is formed
owing to the directivity pattern E (r , and in a system with
a running light beam, owing to £ Accordmg to Eqn (6),
a turbid medium transforms the image as a linear filter of
two-dimensional signals. The function A,,(r,z), dubbed
the point spread function (PSF), characterizes the structure
of the image of a pointwise object and serves as an
analogue of the pulse characteristic for filters of electric
signals. To find this function, it suffices to know the
directivity patterns of the source and detector and the
distribution of irradiance e(r,,z) in a cross section of an
infinitely narrow light beam transmitted through a medium
layer of thickness z. The normalized spatial spectrum of

this distribution,

.[0 JokIL)ILdIL

fo (ru,z

T (k,z) =

)
VJ_er_

is called the modulation transfer function of the turbid
medium layer.

For a pulse illumination of the object, the energy of a
useful signal at the image element can be estimated from
Eqns (6) and (7): Wop(ro) = [ Pop(ro, £) dz. This knowledge is
what is needed to estimate the image quality. When comput-
ing Wy, it is necessary to make the substitutions in Eqn (6):
Py, — Wo, and Ps — Ws, where Wy is the energy of the
sounding pulse.

If a turbid medium is sounded with light pulses of
duration At, a signal backscattered at an instant ¢ returns
from the depth z, = ¢t/2 from a layer with a thickness of
cAt/2. As follows from Eqn (5), if the optical axes of the
source and detector are directed toward the point ry in the
plane z = z,, the power of the detected signal is expressed in
the form

cW.
Py(ro,z) :T;JJ ob(ri,z) Ap(ro —r,z,)dry, (8)
Ap(ry,z) = SRQrED (r ., 2) EV (1, 2) (9)

through the medlum backscattering coefficient o, and
distributions E )(r 1,z) of spatial irradiance in the cross
section of real and auxiliary light beams at a distance z from
the source. Formulas (8) and (9) are applicable provided the
pulse length cAt is small relative to the photon mean free path
1 /o and the scale Az of longitudinal inhomogeneity ay,. They
indicate that the pulse imaging system is equally applicable to
observing objects in a turbid medium and spatial variations of
the backscattering Coefﬁment of the medium proper. The
distributions Eés‘r and E®Y differ only slightly in an
auxiliary medium with a narrow scattering indicatrix. Thus,
computing images of the object or medium, one can set
Ap(ry,z) = Aop(ry, z) and use one and the same PSF.

Formulas (8) and (9) underlie the theory of laser sounding
of the ocean and atmosphere and algorithms for the remote
assessment of their optical characteristics. These formulas can
also be adapted to describe images of a scattering medium,
obtained using the method of optical coherence tomography
[22]. In OCT setups, a continuous light is used with
femtosecond coherence times and the interferometric
method is exploited to determine the depth from which the
backscattered signal comes. Optical signals are emitted and
received by the end of a single-mode optical fiber. This creates
conditions for the backscattering amplification effect to
manifest itself [23], which is missing from the transfer
equation. In order to address it, the development of a wave
model of OCT-imaging [24] was needed, relying on the hybrid
method of evaluating field fluctuations in a medium with
coarse and fine inhomogeneities of permittivity [25]. It was
shown [24] that the OCT system with a heterodyne detector
can be brought into correspondence with an equivalent
system of pulse location with direct signal detecting, while
the specifics of the single-position sounding method can be
taken into account by setting

Ab(ri,z) = ZRQR L2E2(1‘L,Z) —

Elfs(ri7 Z)J
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in Eqn (8), where E is the total irradiance of the medium at
point r ,z, and E; is the medium irradiance through
nonscattered (direct) light from the source.

Thus, the theory of stationary light beam propagationin a
medium with a narrow scattering indicatrix can serve as a
basis for computing images formed by active vision systems,
both continuous and pulsed. In order to analyze the
performance of passive observing facilities, one also needs a
model of a natural light field.

3. Analytical models of light fields
for problems of imaging theory

The theory describing the propagation of a narrow light beam
in media with strongly anisotropic scattering relies on the
radiative transfer equation in the small-angle approximation
[12]. Assuming that the beam propagates in the direction of
the z-axis, this equation can be cast in the form

) 0
|:(,‘71 a-l—nz &-FHJ_VJ_ +0‘] I(ri,z,n,10)

:” Iey.zn), 0 x (g —nl[)dn . (10)

where r; and n; are the components of r and n in the plane
z = const, and n. = (1 —n?)"/2.

A rigorous analytical solution of Eqn (10) can only be
obtained in the approximation n, =~ 1, which ignores the
effects of photon multipath propagation (distortion of the
light signal as it travels through the medium, the formation of
stationary angular radiance distribution in a continuous
beam at large optical distances from its source). Originally,
this equation was exploited in the theory of multiple
scattering of fast charged particles in matter [26—29]; with
its assistance, an expression for the angular distribution of
particles in an infinitely broad beam was found [26, 27] and
the functions of the type [[ _I(x,y,z,n.,n,)dydn,, which
characterize the structure of a thin beam, were analyzed [28].
The solution to Eqn (10) at n, = 1 and an arbitrary boundary
condition for the radiance at the source aperture,
I(r;,0,n;) = Ip(r.,n.), was obtained in Ref. [3] and later
generalized for stratified turbid media in Ref. [30]. According
to this solution, the distribution of irradiance
E(ry,z) = [[_Idn, over the cross section of a light beam
exiting the layer of a turbid medium with a narrow scattering
phase function x;(y) and optical parameters o(z), o1(z), and
k1(z) = o — oy is expressed in a spectral form as

E(r,,z) = JJ F(k,z) T(k,z) exp (—t. +ikr; )dk  (11)

through the functions

1

F_WJLCJLC Io(ry,my)exp [—ik(r +zny )] dr dny,

z

T— exp { - Jo o1z — =) [1 - xs(kz")] dz’} ,

(12)

- :[ a()dz . xs(p) :2nj (1) Jo(p7) 7y,
0 0

the first of which (F) determines the beam structure at a
distance z from the source in an absolutely transparent
medium, while the second (7') represents the modulation

transfer function of the turbid medium layer through which
the beam was traveling.

Equation (10) served as a ‘bridge’ connecting for the first
time the theory of radiative transfer with that of wave
propagation in randomly inhomogeneous media. This link
was made explicit when considering the propagation of a
wave beam u = V(r,,z)exp (iwt — ikz) through a medium
with the large-scale fluctuations of permittivity &=
(¢)[1 + d¢(r,, z)]. Based on the equation

[AL — 2ik ° + kzés] V=0
Oz

for the field correlation function

r<rl,z,m>=<v(rl+%,z) V*(u—%,Z>>, (13)

an equation of the form [16, 17]

{VL Vo, —ik % —ik? [b(0) — b(p,)] } r=o0,

b(p,) = %C Joo

—0C

(Be(ri +py,z+&)de(ry,z))de,

was derived. It was also shown that the Fourier transform of
the correlation function:

L

1 .
I(ri,z,my) = ;—2” I'(ri,z, p)exp(iknip ) dp,

2n
I =— 14
4 k ? ( )
satisfies Eqn (10) with the coefficient n, = 1, describing the
radiation field in a medium with optical characteristics

2n o©
xi(n) = 725(0) L b(p,)Jolknip,)p, dp,,

g] = kb(()) ;

The implication was that the mathematical apparatus of the
radiative transfer theory can be employed to analyze the
influence of a randomly inhomogeneous medium on the
correlation and energy characteristics of a wave beam with
due regard for its diffractive broadening, provided that its
radiance is defined not in the energy terms (as the radiation
flux per unit area and per unit solid angle), but through
relationship (14).

The influence of a photon spread in ranges on the
characteristics of nonstationary light fields was explored
with the help of an equation of the Fokker—Planck type [12]:

10 0 d
E&ﬁ-n:&—i—nLvl—ﬁ—m _ZZUIAM I(rl,z,nl,t) =0
(15)

with the coefficient n, =1 —nf/2. Equation (15) follows
from Eqn (10) under the condition that the scattering phase
function be narrow compared to the width of angular
radiance distribution, and contain only the integral indica-
trix parameter d» = 27 [ x| (y)sinydy. On the basis of

K1 =0.
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Eqn (15), a theory of multiple scattering for sinusoidally
modulated light beams was developed [31]. It was shown that
the sinusoidal component of the radiation field behaves
similarly to a wave with specific dispersive properties. This
equation was exploited as well for the analysis of the spatio—
temporal structure of a pulsed light beam [32] and the
construction of simple analytical models of stationary
radiation fields formed by sources of various types in
strongly absorbing media with narrow scattering phase
functions [33].

The radiation field of a &-pulsed source Q(r,n,t) =
O(r,n)(¢) in a turbid medium with an absorption coeffi-
cient x| is expressed in the form

1 (- . .
Jl<r7n, Ky +1 9) exp (iwt) dw
¢

I=—
2n

through the solution I(r,n, k1) of the transfer equation with a
stationary source Q(r,n). Hence, the integral parameters of
the pulsed signal —its mean propagation time 7 and typical
duration At— can be found by differentiating I(r, n, x;) with
respect to the parameter k:

Jud: 1 dinf

"TTra T e dn (16)
> Ju—iy1de 1 &’InT
S Jrde 2 dk} (17)

Owing to relationships (16) and (17), the models of stationary
radiation fields presented above turn out to be very useful also
for the theory of pulsed signal propagation in turbid media.

The spatial structure of a narrow light beam is described
by Eqn (15) with a large error. For this reason, Eqn (10) with
the coefficient n. = 1 — nf/2, which is devoid of this draw-
back, holds some interest for a certain set of applications.
Based on this equation, a theory was developed for plane
pulsed wave propagation in a turbulent medium [34]. An
approximate solution to this equation was also obtained for a
monodirected d-pulsed source [35]. The analysis of this
solution has, in particular, shown that the time moment (17)
is determined from Eqn (15) with a noticeable error and
depends not only on the scattering phase function dispersion
d», but also on the parameter

T

g= % J p*xi(y) siny dy,
2 JO

which characterizes its form.

The absence of an exact analytical solution to Eqn (10)
with the coefficient n. =1 —n?/2 does not exclude the
possibility of finding the integral characteristics of its exact
solution. If one passes on in Eqn (10) to dimensionless
variables [34] s = ¢t and { = ¢t — z, then for the moments of
longitudinal radiance distribution in the pulse volume, viz.

Mm(rlanJS):J Cn11(rL7C7nL7S)dC7 m:()ala"'a
0

(18)
follow the equations [36]
0
a—i—nLVl—i-oc M, (r,ng,s)
[ ! ! / m. .,
=0 JJ Mm(rL,nhs)xlﬂnL —nL|) dn| +§ niMpy_1,
(19)

which yield the exact analytical solution because they are
identical to the stationary equation (10) with the coefficient
n, = 1. The moment M| is found directly by replacing z — s,
I — My, and Iy — M, (ri,n.,0), while computation of the
higher moments requires solving the RTE with volume
sources. Notice that temporal moments of the radiation field
can easily be expressed through the spatial ones (M),
provided the shape of the light pulse varies only slightly as it
displaces over the proper length.

4. Fluctuating light fields and images

Random distortions of images occur when objects are
observed through a turbulent atmosphere, rough water
surface, or turbid medium, the optical parameters of which
vary randomly in space (when the Earth is observed from
space, the role of such a medium can be played by fragmented
cloudiness). In order to analyze the influence of turbulence on
images, the wave theory is routinely used; in the other cases
mentioned above, the methods and apparatus of the radiative
transfer theory are employed.

The theory of instrumental imaging through the rough
water surface [37, 38] is similar to that of underwater imaging
in the sense that in both cases the signals from the object and
the medium are determined from relationships (4) and (5).
The influence of the surface on the image is taken into account
by substituting fields £&) found with regard for light
refraction at the air—water interface into these relationships.
The fields E&" are expressed through the radiance of light
incident on the water surface and Green’s function of the
transfer equation in the small-angle approximation. This
yields the general expression for a random realization of an
image, which is further used to analyze its statistical
characteristics. One need not solve the transfer equation all
over again.

The theory of imaging in turbid media with fluctuating
optical characteristics calls for qualitatively new solutions to
the RTE. Such solutions are also necessary for problems of
the optical diagnostics of similar media. The research on light
propagation in turbid media with randomly inhomogeneous
optical characteristics was initially prompted by problems of
Earth’s radiative balance [39]. In that case, relatively simple
models of scattering objects were employed (a homogeneous
layer of turbid medium with a fluctuating optical thickness or
a smoothly inhomogeneous layer). Later on, the focus shifted
toward statistical models of radiative transfer in media with
three-dimensional concentration inhomogeneities of absorb-
ing and scattering substances [40—43]. Along with models of
the statistically mean radiation field, the models of its
fluctuations were developed, too. In particular, equations
have been obtained for computing the mean radiance and the
function of the spatial radiance correlation for a light beam
leaving a layer of a turbid medium with a narrow scattering
phase function and randomly inhomogeneous coefficients of
absorption and scattering [41]. These equations have allowed
one to quantitatively describe the bleaching effect of the
medium, caused by fluctuations in its parameters, and also
the processes of random modulation of radiance distribution
in a narrow light beam upon its multiple passing through
absorbing inhomogeneities and the ‘smoothing’ of occurring
radiance fluctuations because of multiple ‘forward’ scatter-
ing. It was shown that relative radiance fluctuations can grow
without limits as the thickness of the scattering layer increases
and that a stationary regime of fluctuations (their saturation)
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can settle down depending on the medium parameters [41, 44,
45].

These equations served as a basis for developing a
statistical model of OCT — imaging of a layered turbid
medium with three-dimensional inhomogeneities of absorp-
tion and backscattering coefficients k = &(z) 4+ k(r,,z) and
ob=0(z) +6(r,z), (k=(x), &=/ op)), respectively.
Expressions for spatial correlation function Bp (p,z1,z2) of
relative fluctuations of tomographic signal power P(r_,z),
coming from two separate locations within a medium with
coordinates r; + p/2, z; and r; + p/2, z5, were found and it
was shown that fluctuations of medium parameters lead to
the appearance of spatial noise with specific properties
(‘shadow’ noise) [46, 47] in the medium image. This noise
arises as a result of inhomogeneous shading of each medium
layer by clusters of the absorbing or scattering substance
located in the upper layers. Notice that fluctuations of « are
manifested only through the shadow noise, while those of ay
show up through the shadow noise and images of inhomo-
geneities gy, proper. Figures 2 and 3 give examples of function
Bp(p, 21, z2) computed for those cases when only one of these
parameters fluctuates. The computations used the formulas

44,(p,zm)
Br(pz1,22) = { [1 T 5 (zm) — 24,(0, 2)
N Bs(p, z, &) }
[5(21) - 2A0(0,21)] [5’(22) — 2A0(0722)]

X exp H (44, (p. ") + 164, (p,2")] dz’} } ~ 1, (20)

0

oo

AK(paZ) = Brc(puzaé) déy
A,(p,2) :[ Bo(p,z£)d¢ 1)

Bk(p,z,f):<f<(r+g,z+§)f<<r—g,z—§>>,(22)
ottt

1<l (24)

which are applicable under the condition that the width of
the PSF be small compared to the typical horizontal size of
inhomogeneities. As follows from the figures, fluctuations of
the absorption coefficient lead to the appearance of noise,
the correlation function of which is everywhere positive and
has the shape of a wave crest. When the backscattering
coefficient is fluctuating, the correlation function can change
its sign since the image of each inhomogeneity and its
shadow form the combined signal with sign-changing
intensity variations.

These theoretical conclusions got qualitative support
from experiments with a model turbid medium containing
absorbing inhomogeneities and the results of correlation
processing of biotissue tomograms. Figure 4 presents a
comparison between the theoretical and experimental depen-
dences of dispersion in relative fluctuations of tomographic
signal power dp(z) = Bp(0,z,z) on the depth z it originated
from. In processing the tomograms, the following functions

0.03
\ It
\ "o’o’w’u.f“.. \\\\\\\
'r'l»'o s i
i
il \\\\\\\\"{{&g@\\\“\g
0 w‘\:‘\\}&\&\\\}\\“&\‘\\;‘“‘ i )
—-0.2 ' ““t‘ S >
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Figure 2. The function of spatial correlation Bp of relative fluctuations of
tomographic signal power in a medium with a fluctuating absorption
coefficient as a function of variables dp and Gz, for Gz; =0.2. The
dispersion of fluctuations of absorption index is d = 0.562, and the
correlation radius p,, = 0.05/3.

0.10

Bp
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—0.2

Figure 3. The same as in Fig. 2 but for a medium with a fluctuating
backscattering coefficient for d, = 0.12562 and p, = 0.05/3.

were determined in addition to the dependence dp(z):

Bp(0,21,2)
dp(Z]) dp(Zz) ’

_ 1 (7
BP(p’é):%J\() BP<p7Z+§7Z_§> dz.

They correspond to the coefficient of longitudinal correlation
of relative signal fluctuations and their correlation function
averaged over the thickness zy of the medium layer under
study. The data presented in Fig. 5 illustrate the possibility of
fitting the theoretical predictions to experimental results by
exhausting medium parameters appearing in formulas used
and, in this way, the feasibility of determining them by the
OCT method.

R(Z],Zg) =

5. Conclusions

In this report we presented the problems of imaging theory,
which effectively use the small-angle approximation of
radiative transfer theory. The list could be further contin-
ued. However, it should be borne in mind that the accuracy of
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Figure 4. Tomogram of a model turbid medium (a) and results of its analysis (b). The solid line plots the mean power of the OCT signal as a function of
depth, squares correspond to the dispersion of relative fluctuations of the measured signal, and the dashed curve presents the theoretical dependence of

the dispersion of fluctuations on the depth.
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Figure 5. Correlation characteristics of the tomogram presented in Fig. 4: (a, b) the coefficient of longitudinal correlation R(0, z, z;) of image noise, and
(c, d) the depth-averaged function of spatial noise correlation Bp(p, ). Panels (a) and (c) present the results of tomogram processing, and (b) and (d)

display the theoretical results.

this approximation is strongly sensitive to the angular width
of the scattering indicatrix and absorption ability of the
medium. In seawater, for which the albedo of single
scattering (A) is commonly below 0.9, this approximation
performs reliably for optical thicknesses reaching up to
7 ~ 15. For biological tissues, where A ~ 0.99, the diffusive
and directional components of irradiance in a narrow light
beam become equal already at T ~ 5. This calls for hybrid
models of the light field [12, 48], which allow for the effects of
multiple light scattering over large angles.

The work was carried out with the support of the Russian
Foundation for Basic Research (project No. 07-02-01179)
and the grant ‘Leading Scientific Schools of Russia’ NSh-
6043.20006.2.

References
1.  Koshmider H Beitrage Phys. Atm. 12 (3) 171 (1925)
2. Duntley S Q J. Opt. Soc. Am. 53 214 (1963)
3. Dolin L S Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7 380 (1964)
4. Bravo-Zhivotovskii D M, Dolin L S, Luchinin A G, Savel’ev V A

Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 5 160 (1969)

Levin I M Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 5 62 (1969)

Bravo-Zhivotovskii D M, Dolin L S, Luchinin A G, Savel’ev V A

Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 5 672 (1969)

7.  Bravo-Zhivotovskii D M et al. Izv. Akad. Nauk SSSR, Fiz. Atm.
Okeana 7 1143 (1971)

8.  Ermakov BV, Il'inskii Yu A Izv. Vyssh. Uchebn. Zaved. Radiofiz. 12
694 (1969) [Radiophys. Quantum Electron. 12 554 (1969)]

9. Dolin LS, Savel’ev V A Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 7
505 (1971)

SN



526

Conferences and symposia

Physics— Uspekhi 52 (5)

10.
1.

20.

21.

22.
23.

24.
25.
26.
217.
28.
29.
30.
31.
32.
33.

34.
35.

36.
37.

38.

39.

40.

41.

42.
43.

44,

45.

Mertens L E, Replogle F S (Jr.) J. Opt. Soc. Am. 67 1105 (1977)
Monin A S (Ed.) Optika Okeana (Oceanic Optics) (Moscow: Nauka,
1983)

Zege E P, Ivanov A P, Katsev I L Perenos Izobrazheniya v
Rasseivayushchei Srede (Image Transfer Through a Scattering
Medium) (Minsk: Nauka i Tekhnika, 1985) [Translated into
English (Berlin: Springer-Verlag, 1991)]

Dolin L S, Levin I M Spravochnik po Teorii Podvodnogo Videniya
(The Theory of Underwater Vision. Handbook) (Leningrad: Gi-
drometeoizdat, 1991)

Dolin L S, Levin I M "Optics underwater", in Encyclopedia of

Applied Physics Vol. 12 (Ed. G L Trigg) (New York: VCH Publ.,
1995)

Dolin L S Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7 559 (1964)

Dolin L S, Thesis for Candidate of Sciences (Phys.-Math.) (Gor’ky:
NIRFI, 1966)

Dolin L S Izv. Vyssh. Uchebn. Zaved. Radiofiz. 11 840 (1968)
[Radiophys. Quantum Electron. 11 486 (1968)]

Rytov S M, Kravtsov Yu A, Tatarskii V I Vvedenie v Statistiches-
kuyu Radiofiziku Pt. 2 Sluchainye Polya (Principles of Statistical
Radiophysics) (Moscow: Nauka, 1978) [Translated into English
(Berlin: Springer-Verlag, 1989)]

Barabanenkov Yu N Usp. Fiz. Nauk 117 49 (1975) [Sov. Phys. Usp.
18 673 (1975)]

Apresyan L A, Kravtsov Yu A Teoriya Perenosa Izlucheniya
(Radiation Transfer Theory) (Moscow: Nauka, 1983)

Sobolev V V Perenos Luchistoi Energii v Atmosferakh Zvezd i Planet
(A Treatise on Radiative Transfer) (Moscow: Gostekhteorizdat,
1956) [Translated into English (Princeton, NJ: Van Nostrand,
1963)]

Huang D et al. Science 254 1178 (1991)

Kravtsov Yu A, Saichev A I Usp. Fiz. Nauk 137 501 (1982) [Sov.
Phys. Usp. 25 494 (1982)]

Dolin L S Izv. Vyssh. Uchebn. Zaved. Radiofiz. 41 1258 (1998)
[Radiophys. Quantum Electron. 41 850 (1998)]

Vinogradov A G, Kravtsov Yu A Izv. Vyssh. Uchebn. Zaved.
Radiofiz. 16 1055 (1973) [Radiophys. Quantum Electron. 16 811
(1973)]

Kompaneets A S Zh. Eksp. Teor. Fiz. 15235 (1945)

Moliere V G Z. Naturforsch. A 378 (1948)

Kompaneets A S Zh. Eksp. Teor. Fiz. 17 1059 (1947)

Scott W T, Snyder H S Phys. Rev. 78 223 (1950)

Dolin L S, Savel’ev V A Izv. Vyssh. Uchebn. Zaved. Radiofiz. 221310
(1979) [Radiophys. Quantum Electron. 22 911 (1979)]

Luchinin A G Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14 1925 (1971)
[Radiophys. Quantum Electron. 14 1507 (1971)]

Remizovich V S, Rogozkin D B, Ryazanov M I Izv. Akad. Nauk
SSSR, Fiz. Atm. Okeana 19 1053 (1983)

Dolin L S Dokl. Akad. Nauk SSSR 260 1344 (1981) [Sov. Phys. Dokl.
26 976 (1981)]

Furutsu K J. Math. Phys. 20 617 (1979)

Dolin L S Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 16 55 (1980)
[Izv. Acad. Sci. USSR, Atm. Oceanic Phys. 16 34 (1980)]

Dolin L S, Preprint No. 587 (Nizhny Novgorod: IPF RAN, 2001)
Luchinin A G Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 15 770
(1979)

Veber V L Izv. Vyssh. Uchebn. Zaved. Radiofiz. 22 989 (1979)
[Radiophys. Quantum Electron. 22 684 (1979)]

Mullamaa Yu-A R et al. Stokhasticheskaya Struktura Polei Ob-
lachnosti i Radiatsii (Stochastic Structure of Cloudiness and Radia-
tion Fields) (Tartu: Izd. AN ESSR, 1972)

Borovoi A G Dokl. Akad. Nauk SSSR 276 1374 (1984) [Sov. Phys.
Dokl. 29 490 (1984)]

Dolin L S Dokl. Akad. Nauk SSSR 277 77 (1984) [Sov. Phys. Dokl.
29 544 (1984)]

Fukshansky L J. Quant. Spectrosc. Radiat. Transfer 38 389 (1987)
Kliorin N Ietal. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 32 1072 (1989)
[Radiophys. Quantum Electron. 32 793 (1989)]

Dolin L S Izv. Vyssh. Uchebn. Zaved. Radiofiz. 49 799 (2006)
[Radiophys. Quantum Electron. 49 719 (2006)]

Dolin L S, Shchegol’kov Yu B, Shchegol’kov D Yu Izv. Vyssh.
Uchebn. Zaved. Radiofiz. 51 247 (2008) [Radiophys. Quantum
Electron. 51 222 (2008)]

46.

47.

48.

Dolin L S, Sergeeva E A, Turchin I V Kvantovaya Elektron. 38 543
(2008) [Quantum Electron. 38 543 (2008)]

Dolin L S, Turchin I V, Preprint No. 750 (Nizhny Novgorod: IPF
RAN, 2007)

Gelikonov G V, Dolin L S, Sergeeva E A, Turchin I V Izv. Vyssh.
Uchebn. Zaved. Radiofiz. 46 628 (2003) [Radiophys. Quantum
Electron. 46 565 (2003)]



	匀攀爀最攀椀 䴀椀欀栀愀椀氀漀瘀椀挀栀 刀礀琀漀瘀
	䄀猀礀洀瀀琀漀琀椀挀 氀椀洀椀琀 漀昀 琀栀攀 爀愀搀椀愀琀椀瘀攀 琀爀愀渀猀昀攀爀 琀栀攀漀爀礀 椀渀 瀀爀漀戀氀攀洀猀 漀昀 洀甀氀琀椀瀀氀攀 眀愀瘀攀
	1. Introduction
	2. Single-group approximation and the Van Hove limit
	3. Coherent loops and weak localization
	4. Near fields and the tunnel component of radiative transfer
	5. Conclusions
	 References

	䰀漀挀愀氀 昀椀攀氀搀猀 椀渀 渀愀渀漀氀愀琀琀椀挀攀猀 漀昀 猀琀爀漀渀最氀礀 椀渀琀攀爀愀挀琀椀渀最 愀琀漀洀猀㨀 渀愀渀漀猀琀爀愀琀愀Ⰰ 最椀愀渀琀 爀攀猀漀渀愀渀挀攀猀Ⰰ ✀洀愀最椀挀 渀甀洀戀攀爀猀⠀䄀 䔀 䬀愀瀀氀愀渀Ⰰ 匀 一 嘀漀氀欀漀瘀⤀
	刀攀昀攀爀攀渀挀攀

	䴀漀搀攀爀渀 洀攀琀栀漀搀猀 昀漀爀 琀栀攀 猀琀愀琀椀猀琀椀挀愀氀 搀攀猀挀爀椀瀀琀椀漀渀 漀昀 搀礀渀愀洀椀挀愀氀 猀琀漀挀栀愀猀琀椀挀 猀礀猀琀攀洀猀 ⠀嘀 䤀 䬀氀礀愀琀猀欀椀渀⤀
	1. Introduction
	2. Examples of dynamical systems
	2.1 Diffusion of a passive inertialess admixture in a random velocity field
	2.2 Waves in a randomly inhomogeneous medium

	3. Conclusions
	 References

	䐀攀瘀攀氀漀瀀洀攀渀琀 漀昀 琀栀攀 爀愀搀椀愀琀椀瘀攀 琀爀愀渀猀昀攀爀 琀栀攀漀爀礀 愀猀 愀瀀瀀氀椀攀搀 琀漀 椀渀猀琀爀甀洀攀渀琀愀氀 椀洀愀最椀渀最 椀渀 琀甀爀戀椀搀 洀攀搀椀愀 ⠀䰀 匀 䐀漀氀椀渀⤀
	1. Introduction
	2. How to build a model image on the basis of the radiative transfer equation
	3. Analytical models of light fields for problems of imaging theory
	4. Fluctuating light fields and images
	5. Conclusions
	 References


