
Abstract. The method of mirror images is used to calculate
transition radiation (TR) at the plane interface between a
vacuum and an ideally conducting medium. The total field is
considered (that is, the TR field plus the fields of the uniformly
moving charge and its mirror image) and its evolution in space
and time is traced, considering fields as functions of space
coordinates and time rather than represented by spectral com-
ponents. Conditions are analyzed under which the separation
and measurement of a TR field are possible.

1. Introduction

Transition radiation at a plane interface between two media
was first discussed by V L Ginzburg and I M Frank [1] in
1946. They calculated the electromagnetic radiation gener-
ated by a particle traversing an interface. This problem has
been studied in subsequent years in sufficient detail in a
number of papers (see monographs [2±4]; many papers were
also published later). The interest in transition radiation was
stimulated by its important applications. It is used in high-
energy physics for detecting charged particles, since the TR
burst not only signals that a charged particle has passed but
also allows the determination of its energy, the direction of its
motion, and some other characteristics. Transition radiation
can also be used to generate electromagnetic waves by high-
current electron beams, to generate radiation in free electron
lasers, and to control the beam of accelerated particles in
accelerators.

Most of the published papers deal with the frequency
spectrum and angular distribution of transition radiation.
However, a different question can be posed in problems
involving transition radiation: what is the behavior of an
electromagnetic field at a fixed point in space at a given
instant of time? This is a significant question because the

electromagnetic field includes not only the emitted waves but
also the bound fields (or fields accompanying moving
charges, i.e., `proper fields'). It is essential that two types of
components need to be taken into account in real experi-
ments: emitted and nonemitted fields (free and coupled
fields). Of course, problems of these two typesÐdetermina-
tion of the spectral properties of radiation, and determination
of its spatial and temporal characteristicsÐare interrelated.
In fact, the latter problem has received much less attention so
far than it deserves. This paper treats temporal and spatial
properties of the total field in the simplest version of the
problem covering transition radiation.

We consider the field arising when a charged particle is
incident upon an ideally conducting flat surface. We assume
that the charged particle moves in themediumwith a constant
velocity perpendicularly to the plane interface with an ideally
conducting medium and crosses this interface. The evolution
of the field in this problem demonstrates one of the examples
of the transition process. It is transitory not in the sense that
the particle crosses the interface but in the sense of the
standard definition of a transition process as a phenomenon
that accompanies the transition of a system from one
stationary state to another. The first stationary state (the
initial state) in the problem of a charge incident on an ideally
conducting plane comprises the field of a uniformly moving
charge. It is well known that a uniformly moving charge does
not emit radiation and hence its approach to the surface
produces no emission. After an impingement upon the
conducting surface, the charge vanishes for the observer, so
that the second stationary state (the final state) comprises the
space free of charge. The transition from the initial to the final
state is accompanied by emission of electromagnetic waves.
The field that existed in the initial state is transformed into
radiation and goes to infinity. The sections that follow trace
the evolution of the field.

2. Formulation of the problem

We introduce in space a Cartesian coordinate system xyz. Let
an ideally conducting surface lie in plane yz. We can also
assume that the half-space x5 0 is occupied with an ideally
conducting medium. Let us choose in half-space x4 0 an
observation point P at a distance rP from the origin at angle y
to the x-axis (Fig. 1). We can assume, without loss of
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generality, that the point P lies in the plane xy. The
coordinates of the observation point are xP � rP cos y and
yP � rP sin y. A point charged particlemoves with the velocity
v from the region x4 0 along the x-axis towards the
conducting plane. The charge of the particle we denote by q.
The particle impinges on the conducting surface x � 0 and
then vanishes from observation. The problem is to find the
electromagnetic field of a charge moving as described above.

The moving charge excites on the conducting surface
induced charges and currents, which become sources of the
electromagnetic field. These induced currents and charges can
be determined from boundary conditions on the ideally
conducting surface. An alternative method of satisfying the
boundary conditions consists in introducing additional
auxiliary charges which are known as electrical images of
the original charge q.

Consider now two pointlike charges in free space, which
are moving towards each other along the x-axis with equal
velocities v. The first charge q travels from�1 in the negative
direction of the x-axis, and the second charge, ÿq, moves
from ÿ1 in the positive direction of the x-axis. We refer to
the charge ÿq as the image-charge. The law of motion of the
first charge will be defined by the equation x � ÿvt. The
position of the second charge will be defined by the equation
x � vt. The charges take up thus positions always at points
symmetrical relative to the plane x � 0. Obviously, at the
instant of time t � 0 these charges meet and cancel each other
out.

It is not difficult to demonstrate that with this arrange-
ment of charges the tangential components of the electric field
in the plane x � 0 vanish; in other words, those conditions
hold true which would hold on an ideally conducting plane
boundary. The magnetic fields in the plane x � 0 possess only
tangential components and add up (are doubled). Hence, the
ideally conducting plane x � 0 creates in the half-space x4 0
the same field as two charges: the charge q and the image-
charge ÿq moving symmetrically with respect to the former
charge.

We considered the case in which the charge velocities are
directed perpendicularly to the specular interface. This case

was first discussed for the problem of transition radiation by
VLGinzburg and IMFrank [1]. In fact, an evenmore general
statement holds true. If for any law describing the motion of
the original charge the image-charge moves along a symme-
trical curve (i.e., the trajectories of the original charge and the
electrical image of the charge are mirror-symmetrical), then
the same conditions hold on the symmetry plane as on a
boundary with an ideally conducting surface.

The incident charge and the image-charge move towards
each other and meet at the instant of time t � 0 at the point
x � 0 on the ideally conducting plane. We can assume that
each of the charges was moving up to the point x � 0 with
constant velocity and stopped there. The problem of field
determination is thereby reduced to the problem of radiation
emission of a uniformly moving charged particle in response
to instantaneous stopping. We consider this problem in
Section 3.

3. Field created
by an instantaneously stopped charge

The field set up in space by instantaneously stopping a charge
can be found in the sameway inwhich EPurcell calculated the
field arising from instantaneous starting [5] (see also Ref. [6]).
Let us recall how Purcell treated the field arising from
instantaneous starting of a charge.

Let a charged particle be at the origin of a Cartesian
coordinate system (Fig. 2a). Until the instant of time t � 0 the
particle is at rest, and at the instant t � 0 begins tomove in the
positive direction of the x-axis with the velocity v. We need to
find the field of the charged particle for this law of motion.

The assumption of an instantaneous start is to a certain
extent an idealization. In realistic conditions, a finite change
in velocity requires a finite time. However, if we consider
radiation of a sufficiently low frequency, the assumption of an
instantaneous velocity jump is justified.

Let us surround the starting point with a sphere of radius
r � ct. Inside this sphere, the solution of Maxwell's equa-
tions gives the field of a charge moving uniformly with the
velocity v:

Eq
x � q�1ÿ b 2� xÿ vt��1ÿ b 2��y 2 � z 2� � �xÿ vt�2�3=2 ; �1�

Eq
y � q�1ÿ b 2� y��1ÿ b 2��y 2 � z 2� � �xÿ vt�2�3=2 ; �2�

where b � v=c is the reduced velocity of the charge.
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Figure 1.Geometry of the problem.
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Figure 2. Spatial distribution of an electric field in the case of (a)

instantaneous starting, and (b) instantaneous stopping of the electric

charge.
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Outside of the sphere with radius r � ct, the field
coincides with the Coulomb field of the charge at rest at
the origin of coordinates. The sphere of radius r � ct passes,
as it expands, through the observation point P. Hence,
however large is the distance from the observer to the
starting point, the Coulomb field of the charge at rest at
the instant t � r=c is replaced with the field of a uniformly
moving charge residing at the point x � vt. This structure of
the field is imposed by the retardation effect which is caused
by the finite value of the speed of light. If the observer is very
far from the starting point, the field at the observation point
remains for a long time that of a charge at rest, even though
this charge has already been in uniform motion for quite
some time. In the case of stopping, the field of the charge
offers similar features: if the observer is located far from the
point where the charge stops, then the field at the observa-
tion point continues to be that of a moving charge for a long
time after the charge has stopped.

Figure 2a plots the pattern of the lines of force inside and
outside the sphere with radius r � ct. We see that the inner
and outer lines of force do not joinÐ that is, they suffer
discontinuity on the surface of the sphere. However, such a
discontinuity is in contradiction with the physical conditions
of the problem. The lines of force can originate and terminate
only on charges. Hence, a discontinuity of the lines of force on
a spherical surface would mean that the surface of the sphere
is charged. However, we consider the charge q located at the
point x � vt, and no other charges can appear. This implies
that the lines of force must be continuousÐ that is, each line
of force inside the spheremust continue as a line outside of the
sphere. This transfer occurs through lines of force located on
the surface of the sphere of radius r � ct. The radiation
emitted in the problem in question is determined precisely
by these lines of force lying on the surface of the expanding
sphere.

Indeed, a sphere with radius r � ct expands at the speed of
light. The lines of force lying on the sphere are perpendicular
to the direction of propagation. The field described by the
lines of force lying on the sphere thus meets all the conditions
that must be met by the electromagnetic wave. It should be
noted that in the problemwe are discussing the field inside the
sphere contains no radiation but is the field of a uniformly
moving charge. There is no radiation field outside the sphere
eitherÐ this is the field of a charge at rest. The radiation field
is nonzero only on the sphere with radius r � ct.

The above structure of the radiation field is also implied
by the relation holding for the field of the moving charge
written in terms of the LieÂ nard±Wiechert potentials. The field
of the moving charge has the form [5]

E � q
1ÿ b 2

�Rÿ Rv=c�3
�
Rÿ v

c
R

�
� q

c 2�Rÿ Rv=c�3
�
R

��
Rÿ v

c
R

�
_v

��
; �3�

whereR is the distance between the observation point and the
moving charge, v is the velocity of the charge, and _v is its
acceleration. All quantities on the right-hand side of formula
(3) are taken at the instant of time t 0 � tÿ R=c. The term
containing _v determines the radiation field of the moving
charge. If we consider the instantaneous stopping of a charge
moving at a velocity v, then _v � ÿvd�t�. Therefore, the
radiation field in the case of instantaneous stopping of a
charge is proportional to the factor d�tÿ R=c�, i.e., it

constitutes a spherical wave whose field differs from zero
only on the spherical surface of radius R � ct.

There is a one-to-one correspondence in the problem at
hand between the lines of force inside and outside the sphere.
If we consider, to be specific, the problem of charge
instantaneous stopping, the line of force inside the sphere
that forms an angle y with the direction of motion continues
as the line of force outside the sphere at an angle y 0 to the same
direction, so that

tan y 0 � g tan y ; �4�
where g � �1ÿ �v=c�2�ÿ1=2 is the so-called Lorentz factor
(reduced energy of the particle). These two lines are joined
by a segment of a line of force lying on the sphere and
therefore are different parts of the same line of force.

The strength of the radiation field can be determined in
the following manner. We introduce a spherical system of
coordinates with the origin at the starting point of the charge
and the axis pointing along the vector of the charge's velocity.
Consider an area of the spherical surface, which is resided at
an angle to the velocity of the charge.Wewish to calculate the
electric field flux through this area. Obviously, this flux equals
the difference between the fluxes produced by the inner and
outer fields. It is easy to find the external field flux. Namely,
the flux of the external field across an area on the spherical
surface, corresponding to the solid angle dO, equals q dO. We
now calculate the flux of the internal field. For this purpose,
we set x � r cos y, y � r sin y in formulas (1) and (2). This
yields expressions for the fields Ex and Ey on the sphere:

Eq
x

��
r� ct
� q�1ÿ b 2�

t 2
c cos yÿ v��1ÿ b 2�c 2 sin2 y� �c cos yÿ v�2�3=2 ;

�5�

Eq
y

��
r� ct
� q�1ÿ b 2�

t 2
c sin y��1ÿ b 2�c 2 sin2 y� �c cos yÿ v�2�3=2 ;

�6�

where b � v=c.
The flux of the field E across an element dS of the surface

of the sphere equals En dS, i.e., �nxEx � nyEy� dS, where
n � �nx; ny� is a normal to the surface of the sphere. Taking
into account that nx � cos y, ny � sin y, we obtain from
formulas (5) and (6) an expression for the flux P in terms of
the surface element that corresponds to the element dO of the
solid angle:

dP � Ex cos y� Ey sin y � q�1ÿ b 2� 1

�1ÿ cos y�2 dO : �7�

Notice that relation (7) does not include the radius of the
sphere, i.e., the electric field flux is only determined by the
element dO of the solid angle. This is perfectly understandable
because the electric field strength decreases with increasing
radius r as rÿ2, while the area of the surface element
corresponding to the solid angle dO is proportional to r 2.
This implies, among other things, that the field of a uniformly
moving charge cannot be the radiation field. Indeed, it is
typical for the radiation field that the electromagnetic energy
flux into the solid angle dO is independent of the radius r.
However, the electromagnetic energy flux represents in fact a
bilinear combination of the electric and magnetic fields (the
Poynting vector P � 4pcE�H) and, consequently, in this
case the square of the field strength (not its first power) must
decrease with increasing r as rÿ2, and the radiation field itself

May 2009 Features of the transition radiation éeld 489



will decrease with distance as rÿ1. It is not difficult to show
that the electric field flux across the entire surface of the
sphere of radius r � ct enclosing the charge equals, by virtue
of Gauss's theorem, 4pq. This means that both internal and
external fields are depicted by the same number of lines of
force.

The difference between the inner and outer field fluxes
across a portion of the spherical surface gives us the increment
of the number of lines of force on a given portion of the
sphere. We denote the strength of the radiation field on the
sphere byE rad

y . As follows from the symmetry of the problem,
the radiation field depends only on y. Then, the condition of
conservation of the number of lines of force (or an equivalent
condition divE � 0) leads to the expression

dE rad
y

dy
� q

r

�
1ÿ b 2

�1ÿ b cos y�2 ÿ 1

�
sin y : �8�

Expression (8) can be regarded as a differential equation for
the tangential component E rad

y of electric field, which differs
from zero on the expanding sphere.We can, however, point to
certain characteristic features of the field E rad

y even before
solving equation (8). The lines of force of this field lie on the
surface of the sphere whose center resides at the point from
which the charge started. This sphere expands at the speed of
lightÐ that is, the charge is always inside the sphere. An
important feature of the field E rad

y is that as the sphere radius
increases, the strength of this field decreases in proportion to
rÿ1. Consequently, the field E rad

y possesses the property of a
radiation field. It propagates at the speed of light and is
perpendicular to the direction of propagation at every point.

In order to avoid misinterpretation, note that the field
strength of a uniformly moving charge described by expres-
sions (5) and (6) also has a tangential component on the
sphere; we shall not give this expression here. However, in
contrast to the radiation field E rad

y , the tangential component
of the field defined by Eqns (5) and (6) decreases as rÿ2.

The solution of differential equation (8), satisfying the
condition E rad

y � 0 for y � 0, is written in the form

E rad
y � q

r
d�rÿ ct� b sin y

1ÿ b cos y
; �9�

where the delta function of the argument rÿ ct takes into
account the fact that the fieldE rad

y is nonzero only on a sphere
of radius r � ct, which expands at the speed of light.

Hence, we see that the radiation field in the approxima-
tion of charge instantaneous starting is formed at themoment
of starting and afterwards the wave packet of the radiation
field propagates as described by law (8), which gives an
expression for the unique nonzero component of the electric
radiation field in the case of instantaneous starting of a
charge.

Consider now the radiation field that arises in the case of a
charge stopping instantaneously. Assume here that a charge q
was moving uniformly in the positive direction of the x-axis
with a velocity v and at the instant of time t � 0 stopped at a
point x � 0. In this case, the solution of Maxwell's equation
inside the sphere of radius r � ct with the center at the point
x � 0 gives the Coulomb field of the charge at rest at the
origin of coordinates. The field outside the sphere with radius
r � ct is the field of the uniformly moving charge whose
velocity is v (because the signal that the charge had stopped
has not yet reached points located outside the light sphere). It
is readily seen that the difference between the field fluxes

inside and outside the sphere is equal in absolute value to, but
has the opposite sign of, the quantity that we calculated for
the case of an instantaneous start of a charge. This implies
that the radiation field Ey in the case of charge stopping is of
equal magnitude and of opposite sign to the field (9) that we
had for instantaneous starting.

Figure 2b depicts the electric field of a charged particle
that moved along the x-axis at a constant velocity v and
stopped abruptly at the point x � 0. If in the case of starting
outside a sphere of radius r � ct the field is that of a uniformly
moving charge, and the field inside the sphere is that of a
charge at rest at the point x � 0, then, in the case of a charge
stopping, these fields are permuted: the field inside the sphere
is that of a charge at rest, and the field outside the sphere is
that of a uniformly moving charge.

4. Transition radiation field

As we mentioned in Section 2, the transition radiation field in
the case of normal incidence of the charge on the ideally
conducting surface constitutes the sum of the radiation fields
produced by the charge and by its electrical image, the two
moving towards each other and meeting at a point on the
surface. It is not difficult to find from the analysis given above
the geometry of the transition radiation field, both for a
charge incident on a conducting surface and for a charge
escaping from it.

Figure 3a is a diagram of the transition radiation field
created when a charge is escaped normally to the ideally
conducting surface. The charge leaves the surface at the point
x � 0. The field inside the sphere of radius r � ct (t � 0 is the
moment of ejection) is equal to the sumof the fields created by
the charge and by its electrical image that fly away at a
velocity v in opposite directions; it is described by the
following expressions

Eq
x � q�1ÿ b 2�

(
rP cos yÿ vt��1ÿ b 2�r 2P sin2 y� �rP cos yÿ vt�2

�3=2
� rP cos y� vt��1ÿ b 2�r 2P sin2 y� �rP cos y� vt�2

�3=2
)
; �10�

Eq
y � q�1ÿ b 2�

(
rP sin y��1ÿ b 2�r 2P sin2 y� �rP cos yÿ vt�2

�3=2
� rP sin y��1ÿ b 2�r 2P sin2 y� �rP cos y� vt�2

�3=2
)
: �11�
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Figure 3. The spatial distribution of an electric field in the cases of

instantaneous (a) starting, and (b) stopping of two oppositely charged

particles. The particles start from (figure a) and stop at (figure b) the same

point.
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The transition radiation field resides on the surface of a
sphere of radius r � ct. It is readily seen that the transition
radiation field in this case consists of radiation fields
appeared in starting the charge and its electrical image. The
charge escapes to the region x > 0, while the image-charge is
to be found in the region x < 0. Let us consider the radiation
field in that half-space where the charge is moving. The
radiation field created in instantaneous starting of a given
charge and an image-charge is described by the expressions �

E rad
x � q

rP
d�rP ÿ ct�

�
b sin2 y

1ÿ b cos y
� b sin2 y
1� b cos y

�

� 2q

rP
d�rP ÿ ct� b sin2 y

1ÿ b 2 cos2 y
; �12�

E rad
y � q

rP
d�rP ÿ ct�

�
b sin y cos y
1ÿ b cos y

� b sin y cos y
1� b cos y

�

� 2q

rP
d�rP ÿ ct� b sin y cos y

1ÿ b 2 cos2 y
: �13�

Figure 3b depicts the pattern of the field arising when a
charged particle is incident on an ideally conducting surface.
The field inside a sphere with a center at the point of incidence
is absent. As the charge and its electrical image meet, the field
becomes zero in the entire space. Therefore, once the incident
charge reaches the ideally conducting medium, the field in the
space x > 0 drops to zero everywhere except on the spherical
envelope of radius r � ct, which expands away from the
transition point at the speed of light. The lines of force of
the transition radiation field lie on the surface of the sphere.
In the case in question, the transition radiation constitutes the
sum of radiation fields arising from the charge and its
electrical image stopping. We remind the reader that we
consider the field in that half-space in which the particle
moves. The radiation that gets into this half-space �x > 0� is
that emitted by the charge and propagating backward, and
that emitted by the image-charge and propagating forward
with respect to the direction of motion.

Figure 3 presents field patterns after the charge escaped
from the space x < 0 (Fig. 3a) and after its `annihilation' with
the electrical image on the x � 0 interface (Fig. 3b). The
instants of time corresponding to `fly-in' (`annihilation') and
`fly-out' were denoted here as t � 0. Until this instant (if what
we mean is the incidence of the charge on the boundary with
an ideal conductor), the half-space x > 0 contains the fields of
the uniformly moving charge and its electrical image. Until
the instant t � 0, the field in the half-space x > 0 is absent if
we consider the charge escaping, while in the case of a charge
incident on the x � 0 interface the field becomes similar to the
field of a dipole whose moment tends linearly to zero.

When deriving formulas (12) and (13) it was assumed that
the surface onwhich a charge is incident is ideally conducting.
In reality, metal surfaces can be regarded as ideally conduct-
ing only in the range of optical and radio frequencies. At
shorter wavelengths (e.g., in the range of soft X-rays), the
reflection coefficient gets smaller and tends to zero with
increasing frequency. This circumstance can be taken into
account approximately in the following way. We rewrite the

expression for the delta function d�rP ÿ ct� as

d�rP ÿ ct� � 1

c
d
�
tÿ rP

c

�
: �14�

Expanding the delta function into the Fourier integral we
obtain

d
�
tÿ rP

c

�
� 1

2p

�1
ÿ1

exp

�
io
�
tÿ rP

c

��
do : �15�

The integral on the right-hand side of formula (15) is taken
over all frequencies from ÿ1 to 1. In reality, though, we
need to take into account only those frequencies for which
the boundary can be regarded as ideally conducting. Assume
now that the plane boundary can be treated as ideally
conducting at frequencies up to oo. We choose the
frequency oo in such a way that lower-frequency waves
undergo specular reflection, while waves with higher fre-
quencies pass across the interface without reflection.
Obviously, there is no such abrupt boundary in real systems
and the frequency oo can be estimated only within an order
of magnitude. The above arguments imply that in expansion
(15) we need to take into account frequencies in the interval
joj5oo. Then, the integral on the right-hand side of
formula (15) takes the form

doo

�
tÿ rP

c

�
� 1

2p

� oo

ÿoo

exp

�
io
�
tÿ rP

c

��
do

� 1

p
sinoo�tÿ rP=c�

tÿ rP=c
: �16�

Replacing d�rÿ ct� in formulas (12) and (13) by the expres-
sion �1=c�doo

�tÿ rP=c�, we find

Ex � q

cprP

sinoo�tÿ rP=c�
tÿ rP=c

b sin2 y

1ÿ b 2 cos2 y
; �17�

Ey � q

cprP

sinoo�tÿ rP=c�
tÿ rP=c

b sin y cos y

1ÿ b 2 cos2 y
: �18�

Let us choose in the half-space x > 0 an observation point
P with coordinates xP and yP in such a way that the radius
vector connecting this point to the origin of coordinates is at
an angle y to the x-axis (Fig. 1a). We will assume that the
observation point P lies sufficiently close to the interface and
to the line of motion of the charge. Here we use `sufficiently
close' in the sense that the field of the uniformly moving
charge and the transition radiation field at the observation
point are of comparable magnitudes.

Furthermore, let us consider how the field at P changes
with time. If we consider the field generated by the particle
that is escaped from a metallic surface, then the observation
point is first reached by the radiation field and then by the
eigenfields of the escaped charge and its electrical image.
Figure 4a shows electric field strength as a function of time,
E�t�, at different distances from the observation point to the
charge's trajectory. The curves were plotted for an electron at
an energy g � 10, which escaped at right angles to the surface
of themetal. The distance from the planarmetal surface to the
measurement plane was chosen to be xP � 5 cm, and the
observation angle took the values y � 1=2g, 1=g, and 3=2g
(solid, dashed, and dotted curves, respectively).

* Compared to the Russian original of this paper, the following two

formulas have been changed by the author in English proofreading.

(Editor's note.)
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The initial jump in the electric field strength, described by
the delta function in expression (9), corresponds to the instant
of arrival of the transition radiation field at the point of
observation. At subsequent instants of time, the evolution is
determined by the fields of the charges moving awayÐ the
given charge and image-charge. The figure shows that if the
angle at which observation is conducted is increased, it results
in changing not only the amplitude of the field but also in
changing the shape of the pulse of the eigenfields of the
charges. As the observation angle increases, the asymmetry of
the pulse shape grows. As follows from the figure, the
eigenfields of particles will, at the observation point P
located at an angle y � 1=g to the direction of motion of the
particle, form only one-half of the bell-shaped pulse gener-
ated by a single particle flying past the observation point in
free space. It is clear that increasing the observation angle y
results in a steep drop in the amplitude and length of the pulse
of a particle's eigenfield.

If we consider the field that the particle generates when
it is incident on the ideally conducting surface (Fig. 1a,
charge q), the first to be registered is the eigenfield of the
particle, and then the radiation field. Figure 4b plots the
electric field strength E as a function of time. The maximum
pulse amplitude corresponds to the instant of time t0: the
time of flight of the charge across a point xP located at the
shortest distance from the observation point P. As the

charge moves on, it reaches the conducting surface and
generates a pulse of transition radiation. This pulse arrives
at the observation point at the instant t � t0 � Dt, where
Dt � xP=v� �x 2

P � y 2
P�1=2=c is the delay time. The delay time

is summed over the time of motion of the particle from point
xP to the conducting surface, xP=v, and the time of
propagation of the pulse of transition radiation from point
x � 0 to the observation point, �x 2

P � y 2
P�1=2=c.

It should be noted that in this case the field in the space
x > 0 consists, after the particle has reached the conducting
surface, only of the transition radiation field. The transition
radiation field itself is in fact a spherical wave of the form (12)
and (13); note also that these relations are valid for any value
of rP. The spherical wave of transition radiation is formed
precisely at the instant ot time the particle impinges on the
surface.

The total field in the problem at hand is the sum of three
components: the field of a uniformly moving charge, the field
of its electrical image, and the transition radiation field. These
fields depend differently on the coordinates. The eigenfield of
the charge and the field of its electrical image decrease with
distance as 1=r 2. The transition radiation field decreases as
1=r. Hence, if r exceeds a certain threshold level, the transition
radiation field becomes stronger than the eigenfield of the
charge.

Let us evaluate the distance from the interface at which
the transition radiation field becomes equal to the eigenfield.
We compare the components Ey of the electric field. The
transition radiation field is given by formula (18), and the
eigenfield of the charge by formula (11). We set these fields
equal to calculate the distance to the transition point where
these fields become equal. We will consider the fields at a
distance r � ct from the transition point, so that the radius
vector to the observation point is oriented at an angle y to the
direction of motion of the charge. Under these conditions, the
eigenfield at the observation point takes the form

Eq
y �

q�1ÿ b 2�
c 2t 2

sin y

�1ÿ b cos y�3 ; �19�

and the transition radiation field is written out as

E tr
y �

2q

loct
b sin y cos y

1ÿ b 2 cos2 y
: �20�

Here, lo � 2pc=oo is the wavelength corresponding to the
maximum frequencyoo at which specular reflection still takes
place. By setting the fields equal to each other, we obtain the
expression

1ÿ b 2

ct

1

�1ÿ b cos y�2 �
2b
lo

cos y
1� b cos y

; �21�

from which one can determine the distance r � ct from the
transition point. Equality (21) yields the expression for r:

r � lo
1ÿ b 2

2b cos y
1� b cos y

�1ÿ b cos y�2 : �22�

Formula (22) demonstrates that as the angle y increases, the
distance r at which the eigenfield and the transition radiation
field equal each other diminishes. If the measurement is
conducted at an angle y � 1=g at which the transition
radiation has the maximum amplitude, then at large values
of gwe can assume that 1ÿ b cos y ' 1=g 2. Formula (22) then

E

163 166 169 172
t, 10ÿ12 s

a

E

t, 10ÿ10 s
0 2 4

b

Figure 4. Electric field strength as a function of time after a charge

(a) escapes from a conducting plane, and (b) hits the conducting plane;

g � 10, and xP � 5 cm. The solid line in figure (a) plots E�t� for the

observation angle y � 1=2g, the dashed curve for y � 1=g, and the dotted

curve for y � 3=2g.
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yields the following relation

r ' log 2 : �23�

The quantity on the right-hand side of Eqn (23) represents the
path on which radiation forms at the frequencyoo, i.e., at the
maximum frequency in the spectrum of the transition
radiation. Rough estimates for metals show that the
frequency oo is of order 10

16. The corresponding wavelength
is lo ' 2� 10ÿ5 cm.

We assumed in our arguments that the recording instru-
ment has constant sensitivity in the entire spectral range of
transition radiation. In other words, we supposed that the
recording instrument can measure field strength changes over
sufficiently short intervals of time (in this case, over intervals
on the order of Dt ' 1=oo). If, however, the instrument
possesses sufficient sensitivity only in a limited spectral
interval, it is necessary to compare the spectral character-
istics of fields in the same limited frequency range.

In reality, electromagnetic fields are usually measured in a
limited spectral interval. Therefore, instead of dealing with
field strengths as functions of time, we switch to Fourier
transforms. Components of Fourier transforms of the
transition radiation fields, E rad

x �o� and E rad
y �o�, are written

in the form

E rad
x �o� �

q

pcrP

b sin2 y

1ÿ b 2 cos2 y
exp

�
i
o
c
rP

�
; �24�

E rad
y �o� �

q

pcrP

b sin y cos y

1ÿ b 2 cos2 y
exp

�
i
o
c
rP

�
: �25�

As we expect for radiation fields, the transition radiation
fields vary in inverse proportion to radius rP.

Let us now consider the Fourier components of the
eigenfield of the charge. From expression (10) it follows that
the component Ex changes sign at the instant of time at which
the charge is at the point x � xP, y � 0. The integral of this
component over time is zero. The pulse of the field Ex at
t � xP=v is nearly sinusoidal at a frequencyo � gv=yP, so that
its spectrum consists of a narrow band of frequencies in the
vicinity of the value o � gv=yP. The component Ey of the
charge eigenfield is a bell-shaped pulse with an amplitude
Ey � qg=y 2

P and the characteristic width t � yP=gv. The
spectrum of the pulse contains all frequencies up to
o � gv=yP.

The eigenfield of the charge differs essentially from the
radiation field. The radiation field is expanded over waves
which propagate in all possible directions. In contrast to this,
the field of a uniformly moving charge contains waves whose
direction of propagation coincides with that of the charge
velocity. The expansion of the eigenfield into the Fourier
integral gives the following expression for the components
Eq
x �o� and Eq

y �o�:

Eq
x �o� � ÿi

qo
pv 2g 2

K0

�
or sin y

gv

�
exp

�
i
o
v
xP

�
; �26�

Eq
y �o� �

qo
pv 2g 2

K1

�
or sin y

gv

�
exp

�
i
o
v
xP

�
; �27�

where K0 and K1 are the modified Bessel functions of
imaginary argument (Mcdonald's functions), and r �
�y 2

P � z 2P�1=2 is the distance from the observation point P to
the line of motion of the charge (i.e., from the x-axis).

The waves of the eigenfield propagate along the x-axis.
The field strength rapidly decreases away from the trajectory
of the charge motion (i.e., with increasing r). Formulas (26)
and (27) describe the field of a single uniformly moving
charge in free space. The reader will recall that the total field
in the problem of transition radiation is the sum of the fields
produced by the incident charge and that of the image-
charge.

When comparing transition radiation fields [formulas (24)
and (25)] with the eigenfields of charges in motion [formulas
(26) and (27)], it should be remembered that the Fourier
components of the fields differ both in amplitude and in
phase. This fact should be taken into account.

Notice that the distance from the transition point over
which the wave zone of the transition radiation is formed was
evaluated in Ref. [7]. Verzilov [7] assumed that a finite-sized
emitting zone is formed around the transition point in the
plane of the interface. In this case, one can determine the
distance rP from the transition point over which the transition
radiation field has the form of an expanding spherical wave,
i.e., is a function of rP, namely, exp �ikrP�=rP.

5. Conclusion

The above analysis implies that transition radiation is formed
as a spherical wave expanding right from the transition point.
In this sense, transition radiation exists as a spherical wave at
any distance, no matter how small, from the transition point.
The wave zone arises where the transition radiation field
becomes stronger than the total accompanying field of the
charge and its electrical image. One needs to remember,
though, that this conclusion holds true in the case of an
ideally conducting plane boundary.
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