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Abstract. Different ways to calculate the spectral properties of
fluctuating electromagnetic fields produced by solids are re-
viewed, all of which essentially reduce to solving the Maxwell
equations for a specified geometry and boundary conditions and
then using the fluctuation—dissipation theorem. It is shown that
in the practical case of plane-layered solids, all correlation
characteristics of thermal fields can be expressed in terms of
the Fresnel coefficients. The experimental results on thermally
stimulated electromagnetic fields from solids are in qualitative
and quantitative agreement with model calculations and theore-
tical expectations. The dispersion interaction between solid
bodies in different thermodynamic states, the fluctuating fields
as a means of body-to-body energy transfer, and the shift,
broadening, and deexcitation of energy levels in a particle near
a solid surface are discussed using the theory of thermally
stimulated electromagnetic fields.
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1. Introduction

Electromagnetic fluctuations are part of one of the most
fundamental phenomena in nature, Brownian motion. In the
theoretical works of Einstein, Smoluchowski, and Langevin
[1-3], the fluctuational nature of this motion has been
revealed and its basic statistical features have been investi-
gated.

The history of studies of electromagnetic fluctuations, or
electrical noise, is well known [4-7]. In the early 20th century,
the relevant regularities were reliably established in two cases;
in the case where the characteristic wavelength of the problem
is much longer than its characteristic size, and in the opposite
case of geometric optics, where the wavelength is much less
than the characteristic scale of the problem. In the first case,
which corresponds to the quasistationary region of the
spectrum, the Nyquist formula was obtained, which
describes the spectral intensity of noise in an arbitrary
passive one-port with a given impedance; in the second case,
Planck’s and Kirchhoff’s formulas were obtained, which
describe the energy spectral density and the equilibrium
radiation intensity. One of Kirchhoff’s laws in fact allows
determining the spectral intensity of radiation of a body into a
less heated space, i.e., is associated with a thermodynamically
nonequilibrium situation. This is the classical Kirchhoff law,
according to which the intensity of emission of a flat element
of a body surface in a certain direction at a fixed frequency is
given by

I(0,0) = Ip(w)[1 — R(w,0)] (1)

where 0 is the angle between the normal to the surface and the
direction to the radiation detector, R(w,0) is the reflection
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coefficient, and Ip(w) is the equilibrium intensity of emission,
which is independent of the incidence angle and of the
material of the blackbody cavity.

Relation (1) allows finding the power transferred through
a unit area into a fixed solid angle, for example, determined by
the specific geometric features of the radiation detector in the
experiment,

Plo, AQ) = J: j: d0de Io()[1 — R(w, 0)] cosOsin6, (2)

where R(w,0) is the reflection coefficient of the body at a
given frequency of the field in the direction specified by the
angle 0. The solid angle cut out by the radiation detector,
whose axis makes an angle 0 with the normal to the surface, is
written as

dy 02
AQ:J J d0dg sino, 3)
¢ Jo

and the intensity of the blackbody radiation in the vacuum, as

c ho’ 1 1
Io(@) =2 V(@) = 4m3c? [§+exp (hw/kgT)— 1]’ (4)

where Up(w) is the spectral density of the blackbody
radiation, ¢ is the speed of light in the vacuum, kg is the
Boltzmann constant, and 7 is the temperature of the
equilibrium system.

The relative power of emission at a given frequency into a
given solid angle is given by

¢y 62
dfd¢ |1 — R(w,0)| cosBsinf
P(w, AQ) _ le Ll [ ] (5)
P()(w,A.Q) by (02 . ’
J J dfd¢ cosBsinf

¢ Jo

where Py(w, AQ) is the spectral power of blackbody emission
at the frequency w into the solid angle AQ.

We note that for the spectral composition of emission into
a given solid angle, the modern phenomenological theories of
thermal radiation give the same result as the classical Kirch-
hoff model of thermal radiation. In this sense, these theories
contain the Kirchhoff law, which describes the properties of
the field of propagating, or traveling, waves as the limit case,
supplementing the general theory of a fluctuating electro-
magnetic field by the description of the properties of its
quasistationary part. Moreover, theoretical methods have
been developed for calculating the space—time correlation
characteristics of thermal fields at any distances from bodies
with arbitrary geometric shapes.

The study of electrodynamic fluctuations is an important
part of modern fundamental and applied science, because it
is precisely the fluctuations of dynamic variables of the
system that determine a large class of the most important
physical phenomena. In particular, fluctuations ensure the
van der Waals interaction of bodies; the Casimir force,
which can be considered a special case of the van der Waals
interaction; the heat transfer between the bodies separated
by a vacuum gap; the capture of atoms, molecules, and
coherent material states by electromagnetic traps; and a
number of major physicochemical phenomena near the
surface of condensed media, such as the adsorption and
desorption of atoms and molecules. Electromagnetic fluctua-

tions lead to a change in the conditions and characteristics of
the spontaneous emission of atoms and molecules near the
surface, the shift of their levels, and the complete or partial
removal of degeneracy, which can substantially change the
dynamics of the phenomena. We emphasize that a study of
resonance states in the spectra of thermostimulated fields
allows finding the eigenmodes of the system, i.e., its volume
and surface polaritons, whose properties are determined by
the totality of the electrodynamic and geometric character-
istics of the system.

2. Statistical description

of the thermal electromagnetic field generated
by macroscopic bodies. Specific features

of the statistical model

of random electromagnetic fields

To date, the theory that has been developed in sufficient detail
is the correlation theory of the properties of thermal
electromagnetic fields induced by neutral macroscopic
bodies. The electroneutrality of a body implies that the
mean fluctuating local charge density vanishes,
<,oﬂu°‘(r7 t)> =0, and, as a consequence of charge conserva-
tion, the mean fluctuating current density vanishes as well,
(§™<(r, £)) = 0; here, r is the coordinate of a point inside the
body. The retarding vector and scalar potentials at a certain
point R of space outside the body are also equal to zero on
average: (A™'(R,7)) =0, (¢™(R,7)) = 0. In turn, the
vanishing of the mean retarded potentials indicates the
vanishing of the mean value of the electromagnetic field. We
note that other averaged characteristics, for example, those
that are quadratic in the field, can differ from zero. The
physical interpretation here is that the known square-law
characteristics of the thermal electromagnetic field determine
its energy, which has a nonzero finite value if the source of the
field — the macroscopic body—is heated to a certain
temperature and is a reservoir of energy that exists in
different forms, for example, in the form of the thermal
kinetic energy of the atomic nuclei in the body lattice and of
corresponding electrons, or in the form of the electromagnetic
energy of fields inside and outside the body, which are
generated by charges and currents and have a random,
fluctuation nature.

In experiments, averaged characteristics of fields are
typically recorded in the vacuum at a certain distance from a
heated body. In the theoretical model, it is assumed that the
source of a thermostimulated fluctuation electromagnetic
field is a set of independent emitters, which emit waves of
random amplitude, phase, and polarization, and that each
elementary radiating volume emits nonmonochromatic
waves. The resulting field changes in space and time in a
complex, random way.

The statistical model of fluctuating electromagnetic fields
is based on the fundamental theorem in probability theory,
the central limit theorem (see, e.g., Ref. [5]). This name unites
several theorems with different degrees of generality and
applicability, which allow solving the problem of the
distribution of the sum of independent random quantities.
In the most general form, this problem was analyzed by
A M Lyapunov, who proved that under some conditions
and an unlimited increase in the number of terms of a
normalized sum of unequally distributed independent ran-
dom quantities, the distribution of such a sum approaches the
normal distribution.
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Thus, it is reasonable to assume that the source of a
thermal field —a macroscopic body —can be conditionally
divided into independently radiating volume elements and
that all conditions of the central limit theorem are satisfied in
this case. Then the random electromagnetic fields belong to
the class of normal objects, for which all n-dimensional
probability distributions are Gaussian; for their comprehen-
sive statistical description, it suffices to know only the two-
dimensional density of the probability distribution. There-
fore, a special role in the description of statistical character-
istics of thermal fields is played by the correlation theory of
random stationary processes, which deals with only one-
dimensional and two-dimensional distributions.

The stationarity of a process implies that the mean value
of the random field is constant and, according to the above-
described physical model, must be assumed to be zero. The
correlation function of the components of the random
stationary field depends only on the difference in the time
moments and uniquely determines the spectral composition
of the field according to the Wiener—Khinchin theorem [5]. In
the literature, there exist different definitions of averaged
products of fields taken at different space—time points. In
particular, the concept of an analytic signal is frequently used,
and normal and antinormal correlation functions are intro-
duced, for example, in quantum statistical optics [8, 9]. A
Fourier decomposition is frequently used, assuming an
auxiliary nature of this way of writing and considering that
all integrals and derivatives of the fields are understood in the
sense of convergence with respect to probability or as root-
mean square values:

A([):J"O dow

I A(w) exp (—iwt),
where E and H are the electric and magnetic field strengths
and B and D are the magnetic and electric inductions.

The correlation functions can be conveniently written in a
symmetrized form; for example, for the electric field compo-
nents, as

A=EH,D,B, (6

—00

’})l-j(l‘7l'/;t— tl) = <E,‘(l‘, t) Ej(r/vt/) +E,'(l‘/7l/) E,'(l’, t)>’ (7)

N —

where the angular brackets denote ensemble averaging.

The Fourier transform of the correlation function,
according to the Wiener—Khinchin theorem, represents the
spectral density of fluctuations

+00
Vij(rvr,§w) :J

7;;(r,1’;7) exp (o) dr. (8)
The main task of the correlation theory of fluctuating
electromagnetic fields is the development of methods of
calculating correlation functions of fields or their spectral
characteristics for a given geometry of bodies with realistic
electrodynamic properties.

It is obvious that the dynamics of any electromagnetic
process, including one having a fluctuation nature, must be
described by the set of Maxwell equations. Therefore, as the
starting equations here, we take equations for the microscopic
fluctuating field strengths EM and HM in the vacuum:

—00

M
rotEM(r,t):—laHi(r’l)7 divHM(r,7) =0,
c ot (9)
M 1 0EM(r, 1) M
rotH (r,t):—T7 divE™(r,7) = 0.
c

The ensemble averaging of microscopic fields in fact implies
averaging over fluctuations, which results in zero mean values
of the fields: (EM) = (HM) = 0. Nevertheless, the statistical
information about the thermal field is not lost, because it can
be extracted from an analysis of the dynamics of correlation
functions. As was shown in [10, 11], the correlation functions
satisfy the usual wave equation in the vacuum, and their
Fourier transforms satisfy the Helmholtz equation. Using
Green’s theorems, it can easily be shown (see, e.g., Ref. [8])
that the spectral density then satisfies the integral equation

oG~

0
(o) = [ asas i) G (s vts.s'0),

(10)
where G is the Green’s function of a certain boundary
problem (in this case, it is chosen such that it vanishes on
the body surface S), s is the coordinate of a point on the
body surface, and n is the normal to the surface of the body.
Relation (10) shows that the spectral density of the field
outside the body can be found if its value on the surface of a
heated body is known. As frequently happens in physics, this
relation can also be read from the right to left. Namely, given
the spectral density of radiation in the space outside the
body, we can, in principle, find the correlation properties of
the thermal field on the body surface by solving integral
equation (10).

In the bulk of the body, i.e., in a medium, the equations for
microscopic fields are more complex than in the vacuum,
because it is necessary to consider the motion of charges of the
medium:

M
rot EM(r, 1) = _1M7

. M o
- o divH"(r,7) =0,

(11)

1 0EM(r,1) 4n .
—#4‘71]“(1‘#);

tHM(r, 1) =

ro (r, 1) . 3
divEM(r, 1) = 4mpM(r, 7).

The microscopic charge density and the current density,

under the assumption that the charges are pointlike, can be
written as

pM(r, 1) = Zeié(r —ri(1)),
M, = Zeivié(r —1,(1)),

(12)

where ¢;, v;, and r; are the charge, velocity, and coordinate of
the ith charge.

Ensemble averaging also leads to zero mean currents
(M) =0), zero charges ((pM)=0), and zero fields
((EM) = (HM) = 0). In practice, however, in fluctuation
electrodynamics, as in many other branches of the physics of
Brownian motion, it is frequently expedient to deal with
equations for dynamic variables in order to obtain the
correlation characteristics of the fields via standard methods
of solving electrodynamic problems. For this, Eqn (11) can be
averaged over elementary volumes, allowing the fields to
change in time as rapidly as possible:

1
E(r,1) = —LVdBpEWwp,m

TAV (13)

(here, p is the position vector of a certain point in the chosen
elementary volume AV, whose center is determined by the
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coordinate r). It is seen from Eqn (13) that averaging over
elementary volumes in fact implies a spatial smoothing of the
fields with the preservation of their coordinate dependence
[12, 13].

The averaged Maxwell equations in a medium with given
statistics of external or total currents along with the boundary
conditions on the body surface and linear matter equations
allow determining all statistical characteristics of thermo-
stimulated random fields.

We note that the macroscopic Maxwell equations in a
medium can be written in various forms. This is caused, first
and foremost, by the method of defining induced currents.
For example [13, 14], if we introduce the total induction
D(r,t) = E(r, ) + 4nP(r, 1), which takes all effects of motion
of charges and the magnetization currents into account, and if
we assume that the polarization

P(r, 1) = Ji jlr ey de’

includes the entire induced current without its division into
separate contributions, then the set of Maxwell equations in a
medium is written as

1 0B
rotE(r, 1) = —— OB(r, ") ,  divB(r, 1) =0,
c ot (14)
~ 10D(r,t)  4m,
I‘(_)I’.B(l'7 t) = E T + ? Jext(r7 t) y

divD(r,t) = 4mp, (r,1).

In this case, the set of equations involves the external currents
jext and charges p,,, related by the continuity equation. These
can be random external currents or auxiliary fictitious
currents, i.e., those currents that induce the fluctuation
currents j in the system. The total current, equal to the sum
of currents, is the source of the fluctuating field. Frequently,
the external (fixed) random currents are called Langevin
currents, by analogy with the description of mechanical
Brownian motion. Naturally, the mean value of external
currents vanishes, (j.) =0. The tensor of the spectral
density of external currents is determined by the fluctua-
tion—dissipation theorem.

If for some reasons it is expedient to divide the induced
currents into the current of free charge carriers, the current of
the polarization of bound charges, and the eddy current of
magnetizing, then different electric induction vector D(r, ) =
E(r,7) + 4nP(r,7) and magnetic field strength vector
H(r,7) = B(r,7) — 4nM(r, ) are introduced. The polariza-
tion of the medium P may involve the contribution of the
currents of free and bound carriers, or only the contribution
of the current of bound carriers, with the current of free
charge carriers isolated as a special contribution. Then the
vector of magnetization of the medium M determines eddy
currents. In this case, the set of Maxwell equations in the
medium is written as

1 0B(r, ¢
rotE(r, 1) = —— él;’ ) ,  divB(r,7) =0,
c
(15)
10D(r,7) 4n .
H(r,f) = - —22 4+ —
rot H(r, ) Y . Jext (1, 7)

divD(r,t) = 4mp, (r, 1)

The set of equations (15) also contains the external currents
jext- The name ‘external’ currents means that the dynamics of
processes in the problem in question does not affect any
characteristics of these currents, which can be caused by
nonelectromagnetic phenomena; in the general case, the
induced currents and charges are functionals of the field
strengths, which are in turn determined by the sum of the
induced and external currents and charges. The external and
induced currents and charges separately and also their sum
are related by the appropriate continuity equations.

In a realistic problem concerning the thermostimulated
emission of heated bodies, several spatial regions with
different electrodynamic properties are considered. There-
fore, it is necessary to solve the set of equations (14) or (15)
with suitable boundary conditions and linear matter equa-
tions. The boundary conditions and the matter equations
must be formulated in accordance with the specific features of
the problem and with the model of the medium (see, e.g.,
Refs [13, 15]).

To find correlation functions of the components of fields,
the correlation functions of currents in the system or Green’s
functions, specified by the fluctuation—dissipation theorem
(FDT), must be known. As is known [14, 16, 17], the FDT
relates spontaneous fluctuations of the parameters of a
system to its dissipative properties. In particular, the FDT
relates the spectral density of fluctuations of external currents
to the anti-Hermitian part of the dielectric constant tensor of
matter: &;(r,r’;w) = ¢/;(r,r’; ) +ig/i(r,r’; ). The spectral
density of fluctuations of external currents is defined as the
Fourier transform of the correlation function of the external
currents:

+00

O (rr';0) = [ de @ (r,r';7) exp (i07), (16)

J—00

and the correlation function can be written in the symme-
trized form

O (st —1")

1 - €X’ - ex / j €X / j X
=2 Sp{ ol (0 o) 4 ) )
(17)

where py = exp [(F— Hy)/kgT] is the equilibrium density
matrix, F is the free energy, and H; is the unperturbed
Hamiltonian of the system. The calculations lead to the
well-known formula

_iw0(w,T)

o (r o) = =

(&ij(r, " 0) — e (r,r’; w)),(18)

where ©(w, T') = (iw/2) coth (fiw/2ky T) is the mean energy
of an oscillator at a temperature 7. In the literature, this
quantity is frequently written in the form that explicitly
separates the mean occupation number per mode, or the
degeneracy factor 6 = (n(w)) = [exp (iw/ksT) —1]7"; in
this case, O (w, T) = iw(1/2 + (n(w))).

We note that the FDT can be expressed in terms of the
susceptibility of the system, which is unambiguously related
to the dielectric constant: y;;(w) = (&;;(w) — d;;)/(4n). In this
case, a dual treatment of the polarization of a spatially
bounded system in a field is possible, namely, P;(w) =
Zij(0)Ej(w) = Xl-(,-e)(co)Ej(e)(w); that is, the polarization can
be defined as a response to the external field E(© in which the
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body is placed, or as a response to the true field E in the
medium. In the general case, the connection between the
tensors y and () is determined by an integral equation. One
classical case, however, is well known, which is connected
with the polarization of a uniform and isotropic body of an
ellipsoidal form in a quasistatic uniform field [12]. In this
simplest case, y(© = 4ny/(1 + 4nyn®), where n® is the so-
called depolarizing factor (o = x, y, z).

Because the susceptibility of a system can be introduced in
two ways, the FDT can also be written in two forms. It turns
out that apart from formula (18), which, together with the
relation ¢;; = d;; + 4my,, relates the true susceptibility of the
system y to the spectral density of fluctuations of external
currents, it is possible to find a similar relation of the
susceptibility y(¢) to the spectral density of fluctuations
@;i(r,r’;w) of the true current in the system, which is the
sum j = jo; + jinq Of the external and induced currents [14].
These relations are identical in form, but differ essentially in
meaning. It is obvious that the true susceptibility y char-
acterizes the properties of the medium itself, while y(® also
takes the geometrical features of the sample into account.
Therefore, as was noted in Ref. [14], a more ‘fundamental’
approach consists in the use of correlation functions of
external currents in the sample.

3. Theoretical methods for calculating
the properties of thermally stimulated
electrodynamic fields

3.1 Langevin approach. Rytov theory

As is known [1-3], there exist alternative approaches to the
description of Brownian motion. Langevin [3] proposed using
mechanical equations of motion for a Brownian particle in a
liquid. For this, an extra force is introduced into the equations
of motion, given by a random function of time f**(¢), which
reflects the molecular structure of the liquid:

du(?)
" de

= —myu(t) + (1), (19)

where m is the mass of the particle, v is the friction coefficient,
and u(7) is the instantaneous velocity of the particle.

The friction force —myu(¢) in Eqn (19) corresponds to the
continuum approximation, and the random force f°*'(¢) is
responsible for the fluctuational nature of the motion of a
particle. Because the mass of the particle is much greater than
the mass of a molecule in the liquid, it is reasonable to assume
that the particle motion is the result of an enormous number
of impacts by the molecules; therefore, the conditions of the
central limit theorem are satisfied. In addition, it is assumed
that there are no preferred directions of the random force in
the medium; therefore, its mean value is equal to zero and its
components do not correlate between themselves. Hence, the
process described by the f*'(¢) function can be considered to
be Gaussian, with zero mean:

D) =0, (f0 f0) = 208kt — ), (20)

where the random force strength D = ymkgT is found from
the condition of the statistical equilibrium between the
Brownian particles and the surrounding medium [18]. The
delta-correlated singularity in (20) in fact implies a zero
approximation in the small parameter Tcor/Trel, Where Teor is

the correlation time of molecular impacts and 7, = 7y ! is the
relaxation time, or the characteristic time scale of Brownian
motion. The Einstein formula D = ymkgT, which relates the
intensity of the Langevin source to the dissipative character-
istic of the medium y and the temperature 7, is the first known
fluctuation—dissipation relation. We note that the mathema-
tical features of the Langevin description of Brownian motion
and its connection with alternative approaches have been
investigated, e.g., in Refs [5, 19, 20].

By analogy with the Langevin approach to the description
of a mechanical problem, Rytov has developed a theory of
equilibrium electromagnetic fluctuations [4-7] based on the
set of macroscopic Maxwell equations (15). For the spectral
amplitudes, the dynamic part of the set of equations (15) takes
the form

4
rot H(r, ) = —ikoD(r, ) + — j<, (r, ») ,
¢ (21)

4
rot E(r, ) = ikoB(r, ) — — ™ (r, o),
C

where external magnetic currents are introduced for conve-
nience and symmetry in writing; the Fourier transforms of the
inductions and field strengths are connected by the linear
matter relations D(r,w) =¢(r,w)E(r,0) and B(r,w) =
u(r,w)H(r, ®); the electric permittivity and magnetic perme-
ability for isotropic and homogeneous media are ¢ = ¢’ + ig”
and = pu’ +ip”; and kg = w/c is the wave number in the
vacuum. Just as in the case of mechanical problem (20), the
fluctuational nature of the electromagnetic field is taken into
account by introducing external sources of fields j, (r, w) and
Jox (r, @) with assigned statistics into the right-hand sides of
Eqns (21). Just as in the mechanical problem, the expression
for the strength of sources of the fluctuating field follows from
the condition of the thermodynamic equilibrium of the system
and is determined by the fluctuation—dissipation theorem.

With chosen boundary conditions, matter equations, and
random sources, the set of equations (21) uniquely determines
spectral amplitudes of the field strengths and inductions. It is
obvious that the second moments of the fluctuating electro-
magnetic field are also determined by the second moments of
the external currents. Rytov [21] obtained the general form of
the FDT for continuous systems whose state is described by
random fields. He also showed that the correlation matrices
of the spectral amplitudes of fields and external currents are
uniquely determined by the linearized macroscopic Maxwell
equations.

Subsequently, the theory of thermal electromagnetic
fluctuations developed by Rytov and Levin [7] acquired a
completed elegant form. The authors obtained the funda-
mental generalized Kirchhoff law without any restrictions on
the relation between the wavelength of the fluctuating field
and the characteristic spatial scale of the problem, from which
the classical variant of the Kirchhoff law follows directly.
Based on the reciprocity theorem applied to the field of a
point dipole and the fluctuation field in question, it was
shown that the spatial correlation functions of the compo-
nents of fluctuation fields are expressed through the mixed
losses of fields from two point dipoles. For example, for the
components of the fluctuating electric field in spatial
directions specified by unit vectors I; and 1,, we obtain

_20(w,T)

<E11 (l‘])E;; (l‘2)> = Qee(r1, 11512, 1) (22)

T
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where Qe (r1,11;12,12) are the mixed losses of the fields of two
electric dipoles, one of which (d; = —1;/iw) is located at the
pointr; and is oriented alongl; and the other (d, = —1,/iw) is
located at the point r, and oriented along I,. Such dipoles
correspond to the unit electric point current j; =

16(r —r') = —iwdd(r — r’) at r = r’. These losses are written
as
Oce(r1, 11312, b)

iw

= r [ESES” * el pye2* *
__mjvd r[EPEF (e — ei) + HEHT (uyy = )]
(23)

where Efk = Eiek(r7 ;1) and ka :Hj‘*k(r7 ri; 1) are the
fields of the kth (k =1,2) point electric dipole and the
integration is performed over the volume of the body that
generates the thermal field. The formulas for the components
of the fluctuating magnetic field (H;, (r;)H; (r2)) and for the
mixed product (£, (r)Hj (rp)) are written similarly, but the
losses must then be calculated using the fields
E,-ml’2 = El.m1’2(r, r12;1i2) and Himl‘2 = Hlml’z(r,rl_yz;ll_yz) of
the magnetic point dipoles m; = —l; /io and m; = -1, /iw
corresponding to the unit magnetic current j' =
1o(r—r’) = —iomd(r —r’).

We note that the generalized Kirchhoff law expressed, in
particular, by formula (22) allows calculating the spectral
characteristics of the fluctuating field radiated by a heated
body of an arbitrary shape into cold space; i.e., it describes
a nonequilibrium situation, just as the classical Kirchhoff
law (1). An essential difference between them is that the
theory considered here allowed finding spectral character-
istics of thermal fields in the near zone, i.e., in the zone of
quasistationary random fields, which could not be done
using the classical law in principle, because it was obtained
in the approximation of geometrical optics.

In the case of the complete thermodynamic equilibrium,
when the temperatures of all the bodies are equal, the authors
of the theory showed, using the complex Lorentz lemma, that
the losses are determined simply by the fields of point sources,
or by the Green’s functions of the problem,

Oee(ry, 1312, 1) = —% Re (LE®(r))) = —% Re (LE®' (1)),
(24)

and generalized Kirchhoff law (22) acquires the simple form

O(w,T)

(B (r)E;(r)) = - Re (LE2(r)))

O(w,T)

= —T Re (leel (l‘g)) . (25)

Analogous formulas are obtained for correlation functions of
the magnetic strength components of the thermal field and for
mixed correlation functions.

We note that formula (24) can easily be obtained from
Poynting’s theorem, which implies that the dissipated power
in the entire space, created by the field of the regular current
jo =10(r —r’), is written as

1

o(r,l) = - Jd3r’ (jo(r,¥E(r")) = -3 Re (IE(r)) . (26)

Hence, both when the system is in complete thermodynamic
equilibrium with the surrounding space and when the system
is in incomplete equilibrium, when only the body under
consideration is heated, spectral characteristics of the
thermal fluctuation field are determined by the Green’s
functions of the corresponding regular problem. The theory
under consideration allows calculating correlation functions
of the thermostimulated field at any distance from the surface
of the thermal source and obtaining comprehensive informa-
tion about the spectral characteristics of both the traveling
and quasistationary waves of this fluctuating field.

3.2 The Green’s function method

In modern physics, a very important and fruitful approach is
based on the concept of Green’s functions [22-24]. In solid-
state theory, a Green’s function defined in terms of averaged
differently ordered field operators has been introduced. It
turned out that the Fourier transform of the Green’s function
determines the spectrum of quasiparticle excitations in a solid
body. It is natural that for describing electromagnetic
excitations in the framework of the already developed
general procedure, it made sense to develop an appropriate
theory by analogy. The role of field operators in the theory of
electromagnetic fluctuations [24] is played by the operators of
electromagnetic field potentials ¢ and A. The key concept of
the theory is the retarded Green’s function

iG}/}(l‘ul'z; t, 1)

_ { (Ai(x1,01)Ar(r2, ) — Ag(ra, ) Ai(r, 1)), 6> 16,
O, n<t.
(27)

In the case where the Green’s function depends only on
the difference t = t; — 1,, its Fourier transform is written as

o0

Gj';(rl,rz;w) = J dr exp (iwt) Gi}i (ri,ra;1). (28)

0

This theory is based on the general theory of the response of a
macroscopic system to external action and on the Kubo
theorem [18]. The general expression for the interaction
Hamiltonian of the electromagnetic field and the medium
has the form

1
c

- Jd%i(r, A1) + Jd%ﬁ(n Doy, (29)

where j and p are operators of the current density and of the
charge density of the medium, and the integration is taken
over the entire volume. For convenience, the gauge ¢ = 0 is
used in this theory, which does not affect the observed
values, i.e., the field strengths. In this gauge, it is possible
to write interaction operator (29) with the classical external
current as

V= —%Jd% jo(r, ) A(r, 7). (30)

It is known that for discrete dynamic variables x; that
characterize a change in some property of a system under the
effect of external actions f;, the operator of the interaction
energy has the form V= — >, fixi. The average values of
dynamic quantities (x;(¢)) are linear functionals of external
forces f,(¢) and their Fourier components are connected by a
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simple linear relation (x;(w)) = >, 1;;(») fi(w), where ¥, ,(»)
are the generalized susceptibilities. In the case of spatially
distributed quantities x; and f;, the operator of interaction is
written as

V== Jcﬁr/;(r, NXi(r, 1)

1

(31)

Comparing (30) and (31) and assuming that the external
forces f, are components of the external current j,, we see that
components of the vector potential A/c are to be chosen as the
dynamic quantities x,.

In the framework of the theory of linear response, we can
write

(xie, 1) = Jd3r’sz’;{ij(r7r’;zf D AELDY, (32)

whence the mean response for the Fourier components, as in
the discrete case, is expressed through the susceptibility of the
system:

(ulr) = 3 [@ 7' £ ). (33)

In turn, the susceptibility, according to Kubo, is expressed
through the mean values of the commutator of the operators
X4(r, 7) in the Heisenberg representation:

2T, L)
- ‘%i(r/vo) fci(rv Z)> .
(34)

= 7Joc dr exp (i) (X;(r, 1) %;(r’,0)
0

Comparing formula (34) with the definition of the retarded
Green’s function (27)—(28), we obtain

G},}(r, r’;o)

- —iJm dr exp (iot)(Ai(r, 1) A (r',0) — A(r',0)Ai(r, 1)),
0
(35)

which shows that the components of the tensor
—GR(r,r';w)/hc? should be regarded as generalized suscept-
ibilities. Therefore, taking (32) into account, we can write the
mean value of a component of the vector potential of the
fluctuating field as

(Ai(r,w)) = —% [d3r/G[l,§(r,r’;a)) Je(r' o). (36)

But the mean field determined by the vector potential satisfies
the set of equations (14) or (15). Writing the mean vector
potential without angular brackets in what follows, taking
into account that B(w) = rot A(w) and E(w) = i(w/c)A(w)
in the chosen gauge, and wusing the relations
Bi(w) = py(w)Hi(w) and Dj(w) = ex(w)Er(w), we can
obtain the equation for the retarded Green’s function. In the
notation in [24], this equation takes the form

2
_ )
ro‘[im(,u”ml rot,) — 3 i G,},E(r7 r';w) = —4nhidyd(r — '),

(37)

where rot; = ej; 0/0xy, (rotA); =roty A, and, as usual,
summation over repeated indices is understood. Just as in
Rytov’s theory, finding the Green’s function from a concrete
boundary value problem and using the FDT for the general-
ized susceptibilities —GR(r,r’;)/hic?, it is possible to find
the spectral density of correlations, for example, of the
symmetrized correlation function of components of the

vector potential
_i0(w,T)

1 2
(44, ==

G

ik

(r,r50) = G (12,113 0)] . (38)
Recalling the definition of the fields in terms of the vector
potential, we can immediately write the spectral densities of
the correlations of the field components (E;I)E]iz))w =
) 42 ) p2 1 2 1) 42
(/¢*)(4V 4, and (BB, =rot; rot (4" 4,7)

If the medium is magnetically inactive, then GX(ry,r; ) =

[ON

GR(ry,11;0), and Eqn (38) acquires the simpler form

_20(w,T)

1 2
(44, = =2

" ImGR(ry,1;0), (39)

i.e., it is expressed through the imaginary part of the
Green’s function. The apparent difference from the results
of Rytov’s theory [see (25)] is related to the different
definition of the Green’s functions and Fourier transforms
in [7, 24]. In particular, the Helmholtz equation for the
vector potential or for the Hertz vector that follows from
the set of equations (21) contains the dipole d =il/w (or
m = il/w) in the right-hand side, which corresponds to the
unit current in Rytov’s theory.

3.3 Agarwal theory

In the 1970s, Agarwal [25] proposed a theoretical method of
calculating properties of thermostimulated fields of solids.
This method, just as that considered in Section 3.2, is based on
the theory of linear response, the Kubo theorems, and,
naturally, the Maxwell equations. Agarwal used another
form of the interaction Hamiltonian:

V=— Jd3r (Po(r, 1) E(r, 1) + My(r, 1) H(r, 1)), (40)

where Py (r, 7) and My(r, ) are the external polarization and
magnetization, respectively, related to the external current in
(29) and (30) as

aP()(l', l)

jo(r, 1) :T—&—crotMo. (41)

Hamiltonian (40) follows from (29) if we take into account
that p,(r, r) = —div Py(r, 7) and use the formulas of the vector
analysis div (pPy) = ¢ div Py + Py grad ¢ and div [My x A] =
Arot My + My rotA.
It directly follows from (33) that the susceptibility is
determined by the first functional derivative
6<x,4(r7 a))>

T L=y (r,r ;). 42
Srw)  HnTe) )
With Hamiltonian (40) written as in (31) and the fields
therefore expressed through the field susceptibilities via
formulas like (33), it is possible to define four types of
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response functions:

1 o) = % ,

i (e 0) = % ’ (43)
2 w) = Si;l/g 02) ;

2 (e w) = %,

which, according to Kubo theorem (35), are related to the
appropriate symmetrized correlation functions like (7) and
their Fourier transforms (8). Using these Fourier transforms
and the definitions

([4(0), B(n]) *5<B() (0) — 4(0)B(1)) , (44)
({4(0), B(1)}) = 5 (B)A() + AO)B()) (43)
as well as the relation [18]
ij dr exp (ior) ([A(0), B(1)])
- %Ji dr exp (i) ({4(0), B(1)}), (46

we obtain the connection between the spectral density of the
symmetrized correlation function and the generalized sus-
ceptibility ., (@) = 144" (@) + iy " ().

For the spectral densities of the components of the fields
of their symmetrized correlation functions (45), we have

2i0(w, T
V,-‘?E(ra r'iw) = M Re X}.‘EE(r, r';m),
o (47)
210(w, T)
i ) == == Reygt(nro),
and for the mixed spectral densities, we obtain
20(w, T
i o) = _20T) Im 5 (r, 1" 0)
o (48)
20(w, T
y o) = T Tm (e 1 ).

To find susceptibilities (43), it is necessary to solve the
appropriate electrodynamic problems by expressing the
fields through the external polarization and magnetization.

The boundary value problem is to be solved for system
(15) with the external polarization and magnetization:

div (B +4nM,) =0,

10
rotE = —— — (B + 4nM,),
c Ot (49)

10 .

rotH:—a(D+4nP0), div (D + 4nP) = 0.
C

Writing the solution of the set of equations (49) in form (32),

for example, in terms of the Green’s function of a concrete

problem, and using definitions (43) and formulas (47) and

(48), we can find the spectral characteristics of fluctuating

electromagnetic fields in the problem under consideration, all
of whose properties are determined by its geometry and
electrodynamic characteristics.

To conclude this section, we note that the above-described
theoretical methods of finding spectral characteristics of the
thermal electromagnetic field are in fact identical, because
they are based on the solution of the set of macroscopic
Maxwell equations with given boundary and linear matter
conditions. In each approach, a long-wavelength part of the
emission is considered, with the wave vectors of the fields
satisfying the condition ka < 1, where «a is the interatomic
spacing in the medium. In this frequency range, all spectral
characteristics of fluctuating electromagnetic fields are
expressed in terms of phenomenological concepts, the
dielectric permittivity and magnetic susceptibility of the
medium &(w) and p(w). Therefore, the use of one theory or
another in practice is in many respects a matter of taste.

We note, however, that the theoretical approaches
described in Sections 3.2 and 3.3 allow finding character-
istics of random fields only under the conditions of complete
thermodynamic equilibrium in the system. To consider fields
under the conditions of partial equilibrium, when one part of
the system is heated and radiates into colder surroundings,
the contribution that corresponds to the blackbody radiation
scattered by this heated part of the system must be
subtracted from the obtained equilibrium solution (see,
e.g., [24, Section 77, Problem 3]). In fact, it is precisely in
this way that the classical Kirchhoff law (1) was obtained,
where the fraction of the intensity of blackbody radiation
reflected by the body was subtracted from the intensity of the
equilibrium radiation. Rytov’s theory gives a prescription for
finding the characteristics of a fluctuating electromagnetic
field already in the case where the heated body radiates into
the cold space. The characteristics of the equilibrium field are
found from the generalized Kirchhoff law as a particular,
simpler case. The solutions obtained in the framework of
different theoretical approaches are, of course, identical.

4. Spectral characteristics
of thermally stimulated fluctuating
electromagnetic fields of plane-layered bodies

4.1 Spectral characteristics of the fluctuating
electromagnetic field of a half-space

We first recall the problem, which is well known from any
classical course of mechanics, about the motion of an
oscillator under the action of an external force. It follows
from its solution that the displacement of the oscillator
experiences a sharp increase (resonance) at the eigenfre-
quency of the system. The amplitude and width of the
resonance are determined by dissipative processes in the
system.

In our case, the dynamics of the system are determined by
the set of Maxwell equations in the vacuum and in a medium
like (14) or (15) with external random currents specified by the
fluctuation—dissipation theorem (the so-called Langevin
approach). We note that in this case, solutions must obey
some given boundary conditions. It follows from these
equations that the possible class of fields is excited by the
sum of the chosen external currents and induced currents
specific for this system. Instead of considering induced
currents, we can speak about an induced polarization, since
they are unambiguously connected with one another.
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In the simplest model of a medium represented as a set of
oscillators, the polarization is proportional to the displace-
ments of the oscillators from equilibrium positions. The
displacements of oscillators under the action of an external
driving force can be assumed, by analogy with classical
mechanics, to be resonantly excited at the eigenmodes of the
medium. The eigenmodes of the medium are bulk and surface
polaritons, because the medium is always bounded in a real
experiment.

Thus, based on this simplified picture, it can be assumed
that the fields or, more precisely, their energy characteris-
tics—the mean squares of the fields—must be excited
predominantly at frequencies close to eigenfrequencies of a
specific problem. This is completely confirmed by the exact
solutions of the various problems of fluctuation electrody-
namics.

4.1.1 Nonequilibrium problem. For an experimental study of
thermostimulated radiation, of great importance is the
problem of determining the statistical properties of the
thermal field generated by a heated sample whose tempera-
ture is considerably higher that of the surrounding objects. A
comparatively simple model of an optically thick sample here
can be a half-space. This problem has been examined in detail
by Levin and Rytov in [7]. Using the generalized Kirchhoff
law, they determined all the possible statistical characteristics
of the thermostimulated electromagnetic field generated by a
half-space whose optical properties are characterized by an
arbitrary complex dielectric function ¢(w) and a magnetic
permeability p(w).

We write the solutions obtained in [7] directly in terms of
the Fresnel coefficients of p and s polarized waves that fall ina
medium 7 at a certain angle 6 to the normal to the planar
boundary that separates the medium 7 from a medium j:

Wigj — Wjg; s Wil — Wil

P = S —
)
Y VWi

(50)

witj + wigi |

where w; = (kdei p; —p)'2, p = kon;sin0 is the tangential

component of the wave vector of the incident wave, kg = w/c
is the wave number in the vacuum, and n; = | /&; ii;.

We assume that the interface is formed between a
nonmagnetic half-space characterized by a dielectric con-
stant ¢; and the vacuum. The optical properties of this system
are completely determined by the Fresnel coefficients rP and
rs. In the notation used in [7], ¢; = iw; = (p2 — &1kZ)"/* and
q = (p* — k2)"*. It can be easily shown using (50) that

1 PP =2g ar/ei + (@ /9)(ai/e1)

(s1)
a1 /21 + 4
For traveling waves, we have ¢ = —¢q*, because p < ky.
Setting x = p/ky = sin 0, we relate the function
S _ kolqi/ef —q1/e1)
- 2
g+ q1/e1
introduced in [7] to the Fresnel coefficient rP:
i(1- \rp|2)
S =———"—""7+. 52
’ 2cos 0 (52)

In the case of quasi-stationary waves, we have ¢ = ¢* as a
result of the condition p > ky. Setting y = ¢/k¢, we write the

Fresnel coefficient in the form

2 2
lg1/e1]” + g

rP=RerP+ilmrP = 3
lg1/e1 + 4l

S, . (53)

Taking into account that the S, function is purely imaginary,
we find its connection with the Fresnel coefficient for quasi-
stationary waves:

ilm rP
e

Quite similarly, we obtain a relation between the S, function
in [7] and the Fresnel coefficient r*.

Substituting the above relations in the corresponding
formulas in [7] for the spectral densities, we obtain expres-
sions for spectral characteristics of the fluctuating field in
terms of the Fresnel coefficients.

For traveling waves, restricting the domain of the
integration over p to p < ko, we find

(ES)™ = (BF)”

S, = — (54)

= m;()‘“ Jon/2 do sin@(cos2 0 ! —2|rp|2 + ! _2|,~S|2> , (59)
(EP = mug, J:/z do sin 9(3in2 0 1_T,p|2> : (56)
(H.P = mug, J:/z do sin0<sin2 0 1_2|’|2) ; (57)
(HP)™ = (1™

= m;)‘“ Jon/2 do sin@(cos2 0 ! —2|r5|2 + ! _2rp|2> , (38)

(EcH)" = —(E,H)™

n/2 — 1pI2 P
Mg . [ N e
== Jo d6 sin 6 cos 0< > + > . (59)

where ug, = Ok /m*c is the spectral density of the equili-
brium radiation energy.

For the spectral densities of the electric and magnetic
energies and for their sum, it follows from (55)—(58) that

. 1
HLZELEIQEW

i=x,y,z

/2 2 Ls|2
_ ugo (" YA T 12 s I T
= L do sm@( 3 + 2 ,

1

i=x,p,z

n/2 1 — | sl2 1— ‘ p|2
U : r r
= df sin 6
1 L sin ( 2 2 ) !
Pr

_ . Pr Pr
u(/) - ue(/) + um(n

o [P (L= PP TP
77[0 d0s1n0< 2 + 3 .

With the relation between the intensity 7, and the energy
density u,, in the vacuum,

(60)

(61)

(62)

2n /2
Uy =c~! J d(pJ d0sin01,, (63)

0 0
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and with the relation between the equilibrium radiation
intensity Iy, and its energy density ug, in the vacuum
(o = cup,/4m), we immediately obtain from (62) that

%_h40—wﬂ+m—wm)

2

(64)

Taking the equality of both polarizations into account and
introducing the energy absorption coefficients RP = \rp|2,
RS = |r’)%, and R = (RP + R®)/2, the authors of [7] obtained
the classical Kirchhoff law

I, = I)n(1 — R) (65)

from (63). For the Poynting vector, it follows from (59) that

2n n/2
Pon = J dq)J d Iy, (1 — R) cos Bsin 6. (66)

0 0

The integration domain ky < p < oo corresponds to quasi-
stationary waves; using (54), we therefore have

(B = (IEH

= Tm;wJ dy exp (—2kohy)(»* ImrP 4 Im7®),
0

(67)

<mm&:mw[waM4wmw+wmw,<w
0

G&WB=WMJdmmP%MMﬁ+UMW,(@)
0

(IHPY™ = ()™

= nquJ dy exp (=2kohy) (> Imr® + ImrP). (70)

2 Jo

The cross spectral densities are purely imaginary quantities:

(EH;)™ = —(E,H)™
=i ”;LT”;J dyyexp (—2kohy) (Im7* —ImrP);  (71)
0

therefore, the Poynting vector corresponding to quasista-
tionary waves is equal to zero,

PEV —

C
wn H (<EXH;>EV - <EtH\*>EV + C.C.) =0.

(72)

For the spectral densities of the electric and magnetic energies
and their sum, it follows from (67)—(70) that

Uy = %J dy exp (—2kohy) [(2y? + 1) ImrP + Imr*] ,
0

(73)
Ev _ uO_w * _ P 2 s
umw - 4 dy exp( Zkoh)/) [Imr + (2y + l)Imr } N
0
(74)
" = gy + Uy,

_ ug(,)J dy exp (—2kohy) (> + 1)(ImrP +Imr®). (75)
0

Hence, the total spectral energy density is

2 1— P2 1— .52
uw:w£r+ufvz%“ a0 sino L= )J2’< )
0

n/

+ J dy exp (—2kohy) (»* + 1)(Im rP + Im r®) (76)

0

4.1.2 Equilibrium problem. In the case of complete thermo-
dynamic equilibrium, when the temperatures of the sample
and its surroundings are equal, finding the spectral densities
of thermostimulated fields requires solving the problem of the
field of a unit point source in a given geometry or, in other
words, finding the Green’s function of the corresponding
problem. This problem has been considered by many authors
and the solution is well known (see, e.g., Refs [7, 26-30]).

According to Rytov’s theory, to find the spectral density
of a component of the fluctuation field at a given point of
space, a unit point source is to be placed at that point and its
field at the same point is then to be found. We use a solution in
the form presented in [27,28], but change some notation for
convenience. The field of a unit point source located at a
distance 4 from the half-space is expressed at the source-point
as

2 ik}
E= 3 ikip + lz—ijdp wo H(887° + Py Po_rP) pexp (2iwoh)
(77)
H_31k0m+2TE dpw,  (88rP + Py, po_r®) mexp (2iwoh) ,
(78)

where dp = pdpde, wy = (k& — p?)"/?, p and m are the point
electric and magnetic dipoles, r® and rP are the Fresnel
reflection coefficients, ko = w/c is the wave number in the
vacuum, § =p x Z, p = p/|p|, Po. = ko ' (pZ F wop), and 2
and p are the unit vectors respectively directed along the
normal to the interface and along the interface; here, the well-
known rule for dyadic products must be used, for example,
ssp =s(Sp).

Substituting the real parts of (77) and (78) in Eqn (25), we
obtain expressions for the spectral density and for any
component of the fluctuating field.

We first consider the limit cases. The simplest case
r$ =rP =0 corresponds to a black body. By orienting the
point dipole along a selected axis, for example, along the
x axis, and assuming it to be equal to u, =1i/w, which
corresponds to a unit point source, we use (25) and (77) to
obtain the spectral density of the E, component of the
fluctuating electromagnetic field at the point located at any
distance from the half-space with the optical characteristics of
the black body,

<|Ex|2> = 2?11: Uow (79)
and analogous expressions for other components. This
implies an expression for the spectral density of the energy
of the thermostimulated electromagnetic field for complete
thermodynamic equilibrium in the closed cavity formed by
the half-space in question and the bodies with arbitrary
optical characteristics located at infinity,

1 1
to =gz D (EF) 45 D (IHIF) = wo.

i=x,y,z i=Xx,y,z

(80)
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As can be expected, we obtained the Planck formula for the
energy spectral density of equilibrium radiation ug, =
Ok} /m*c. 1t is interesting to compare Eqn (80) with the
expression for the energy spectral density in a nonequili-
brium case (76) when the bodies located at infinity have a zero
temperature. Substituting 5 =rP =0 in (76), we obtain
Uy = Uy /2, as it must be in the case of the unidirectional
radiation flux from a half-space with the optical character-
istics of a black body.

Another limit case is a half-space with ideal properties,
|&] — oo, where ¢ is the dielectric constant of the material of
the half-space. As can be seen from the general expressions for
Fresnel coefficients (50), the equalities »* = —1 and rP =1
correspond to this case. Expressions (77) and (78) take the
form

2
E=3 ikjp
lk(% 2n O R R R .
), dpde pwg ' [-8(SRr) + Bo (B 1)] exp (2iwoh) ,
(81)
2
H= 3 ikgm
ik02 T iTasa A .
+ 3 oo dpdepw, [s(s m) — Po, (Po_ m)] exp (2iwoh) ,
(2)

i.e., they are distinguished only by the sign of the integrand;
therefore, all calculations can be conducted, for example, for
the electric field and then, introducing obvious changes in the
results of these calculations, expressions for the components
of the magnetic field can be obtained.

We note that the above-introduced unit vectors § and p are
connected with the unit vectors of the Cartesian coordinate
system as § = €, cos ¢ — €, sin @, p = &, cos ¢+ €, sin . Sub-
stituting the last expressions in (81) and (82) and integrating
over the polar angle, we find the Cartesian components of the
electric field as

E = 2 1k8 thy — g Ly J:O dp pwy! <1 + 232) exp (2iwph),
° (83)
E, = % ik, — 11;2 “ J dppwy (1 + 2—5) exp (2iwoh) ,
' (84)
E. = % ik, + i, J:O dppwy ' exp (2iwoh) . (85)

We take into account at this stage that to obtain the spectral
density of the field components, it is necessary to take the real
part of the expressions obtained. The quasistationary part
(p > ko) immediately drops out from consideration because
the second terms in all expressions (83)—(85) are purely
imaginary in this case. Physically, this means that an ideal
body without absorption cannot be a source of thermostimu-
lated emission. The integration from zero to ky, which can
easily be performed, yields the following expressions for the
spectral densities:

<|E-\“2> = <|Ey|2>
_2n ; { 3 <sin (2koh)  cos (2koh) sin (2k0h)>}
T3 T2\ ko) (2koh)? 2koh )]’

(86)

o sin (2koh)  cos (2koh)
<|E‘ > Ow [1 +3< (2/{0/'1)3 (2/{0/1)2 ):| ’ (87)
2n sin (2koh)  cos (2koh)
() =5 qu[1-3( (Qkoh)®  (2koh)? )} (8
(IH. > (1H,[)
n { (sm 2k0h) cos (2koh)  sin (2k0h)>}
o 2koh)  (2koh) 2koh )]
(89)

We can introduce spherical Bessel functions j,(x)=
/7 /2x J,112(x) and rewrite Eqns (86)—~(89), as was done in
[7], where the same result was obtained in another way. It
follows that the sum of all field components yields the energy
spectral density of the equilibrium field u,, = u,. We note the
analogy between Eqns (86)—(89) and expressions for Friedel’s
oscillations of electron waves in a solid body near an interface
[31, 32]. However, in our case, the oscillating part is connected
with the interference of incident waves whose source is
located at infinity and waves that are reflected from the ideal
surface. We also note that when considering the equilibrium
problem with an ideal body from the standpoint of optical
properties, it is necessary to assume the existence of infinitely
remote bodies whose material has at least infinitely weak
absorption so as to allow equilibrium to be established in the
system.

Finally, we consider the general case of an equilibrium
problem with arbitrary Fresnel coefficients. Passing in (77)
and (78) to unit Cartesian vectors and using the method
suggested in [7], we obtain

2n
<‘Ex,y|2> = 3 Upw

Ok *©
+—0 Re J
e

2
dpp2wo) ! (rS - Z—g > exp (2iwph) , (90)
0

2 Ok o0
<|Ez|2> _r up, +—— Re J dpp<—2 ) exp (2iwph) ,
3 e 0 kg
(91)
2 Ok o0
<|H2|2> - - 0w +—— 0 Re J dpp<7 ) exXp 21W()h)
3 e 0 kg
(92)

2n
<|Hx,y|2> = 3 Upw

Ok o0 2
+—" Re J dpp(2wp) ™! (rp - n_g rs> exp (2iwoh) . (93)
¢ 0 kO
Summing (90)—(93), we find the energy spectral density at any
distance from the surface of a half-space with arbitrary
optical properties:

»?
— (r* +rP)exp (2iwgh) .
K

(94)

Ok °° _
Uy = Upw + =p Re Jo dp pw, !

As in the nonequilibrium case, we isolate the parts that
correspond to traveling and quasistationary waves. Using
the same substitutions p/ko =sin@ for traveling waves
(p < ko) and wy/ko = iy for quasistationary waves (p < ko),
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we obtain

U R.

/2
Uy = U +T e J dfsin Osin’ 0 (r* + rP)

0

x exp (2ikgh cos 0)

+”°7‘”J dy exp (—=2kohy) (»* + 1)(Im P 4+ Im r) . (95)
0

We note that the second term in the right-hand side of
Eqn (95), which, as in the case of an ideal half-space,
characterizes the interference of incident and reflected
radiation, tends to zero at large distances because of the
presence of a strongly oscillating factor in the integrand. The
interference term in the spectral density of field (76) of the
nonequilibrium problem is absent because there are no waves
that fall onto the surface of the half-space. The third term
describes the spectrum of the quasistationary field and also
tends to zero because of the presence of an exponential factor.
Comparing (76) and (95), we see that the spectra of quasi-
stationary waves in the equilibrium and nonequilibrium
problems are identical if, naturally, the temperatures of the
half-spaces in the equilibrium and nonequilibrium cases are
identical.

Formula (95) contains the basic result of Planck’s theory
of heat radiation, created at the beginning of the 20th century:
in the approximation of geometric optics, where the wave-
lengths of thermal radiation are much shorter than the
characteristic length of the problem (ko/i > 1), the spectral
density of the equilibrium radiation energy is described by the
Planck formula u, = up, = @koz /(w%c), irrespective of the
optical properties of the material of the bodies that form a
closed cavity.

4.1.3 Analytic approximations. In solving applied problems, it
is frequently convenient to use approximate expressions for
the spectral densities of the various components of the
thermostimulated field. This section is devoted to finding
various approximations for the quasistationary part of the
field.

We first note that the leading contribution to expressions
(67)—(70), (73)—(76), and (95) is determined by the exponential
factors in their integrands. Therefore, the range of the
integration variable y, which gives the leading contribution
to the integrals, is determined by the relation kohy ~ 1,
whence koh ~ y~!. Thus, we can consider two limit cases:
y—o00 (y>1)andy — 0 (y < 1). For this, it is necessary to
find the limit expressions for the Fresnel coefficients.

First, we consider the case where y — oo (y> 1),
assuming that p? > k¢ and p? > |e(w)|k¢ for any value of
¢(w). This is a quasistatic case, in which we can neglect the
delay effects as ¢ — oo. Because y — oo, we have koh < 1. We
consider the case where koh < |[\/e(w)|™'. Thus, we find
expressions for the spectral densities of the field components
at those distances from the body surface for which
h < (kol\/e(@)]) ™" < ky!. The Fresnel coefficients as func-
tions of the variable y = [(p/ko)* — 1]1/2 are written as

rS:iy— e(w)—y2—1

V@ T -
o (@) —Ve(w) — 2 — 1

ive(w) + e(w) —y2 —1

Expanding expressions (96) into power series in the small

parameter y ~!, we obtain
: 1
’s%‘p(wz1 72_"_0(}}—4)7
(97)
. -1 . 1
1P~ b(w) ] 4 S(CU E,((,U) - y—2 + 0(y—4) .
&(w) + (e(0) +1)

Because we are considering the case y > 1, we can keep only
the leading contribution in the integration variable y in
Eqns (67)—(70). Substituting (97) in these expressions, we
obtain the sought estimates of the spectral densities of all field
components:

E,C B _ El,- 2 ~ TUYy 8"(&)) ’
2\ MUy SN((A))
<|EZ| > ~ Z(koh)3 |€(w) T 1|2 )
2\ _ 2 zTWOw ¢’ (w) e (w)
() = L) 2koh< 8 +}g(w)+1\2>’ (99)
~ TUow
(L) ~ 5 o).

The spectral density of field energy (75) in this approximation
is written as

Uow ¢" () ¢ (w) ¢"(w)
Uy = 2 3 3 + 3 + Skah |
2(koh)’|e(w) + 1|7 koh|e(w) + 1| 0
(100)
Here, we used the integral
o " rd+n ,
[ "o can = S0 e, (101)

where 7 is a natural number and I'(1 4+ n) = n! is the gamma
function.

It follows from Eqns (98)—(99) that the ratio of the electric
part of energy u’ to the magnetic part uf is

w

E
U, 4

—_—

_ 102
ull " (koh)?|e(w) + 1] 102
in particular, this ratio is much greater than unity at the
frequency of the surface Coulomb polariton that satisfies the
dispersion equation Re ¢(w) = —1.

The next approximation refers to the case y > 1,
y <|v/¢e(w)|, which is realized under the condition
le(w)] > 1 for distances that satisfy the inequality
(kolv/e(@) )" < h < ky!'. Expanding Fresnel coefficients
(96) into power series first in the small parameter |8|_l and
then in the small parameter y ~!, we obtain

rd e —1 4 2iyy /e Hw),

whence

Imr® =2yRe/e~(w), ImrP=2y""Re/e~!(w).

(104)

If we introduce the depth of the field penetration into the
material as

5= (kolmm)q,

P42y e (w), (103)

(105)
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then for ‘good’ metals in the approximation of the normal
skin effect, where .9( ) = i4no /o, the depth of the skin layer is
0 = c[(2now) '] 2 and

Imr® = ykod, TImrP =y 'kys. (106)
Substituting (104) in (67)—(70), we obtain the following
expressions for the spectral densities of the components of

the thermal field in the approximation in question:

(E) = (|EP) ~ M“ e (), (107)
(|E-I*) ~ (WO) ¢ w), (108)
TTUY U 1 ®

< 4 koh))Re e (o), (109)
(L) = (|, ~ 3M“ (@) . (110)

and the total spectral density of energy (75) in this approx-
imation is written as

e (o). (111)

3 1
Up = Upw (—4 + —2> Re
8(koh)* " 2(koh)

In this approximation, the ratio of the electric part of energy
uf to the magnetic part u? is

ty

u

w (koh) ,

C()

(112)

:

which clearly indicates that in the range of distances from the
surface we consider here, the energy of the thermostimulated
field is accumulated in its magnetic part.

We finally obtain asymptotic formulas under the condi-
tion that y — 0 (y < 1), which corresponds to distances
h> ky' from the surface. Expanding Fresnel coefficients
(96) into power series in the small parameter y at an arbitrary
value of e(w), we find

~ —1 4 2iyy/ (e(w) — 1)71

(113)
~ 1+ 2iye(0)y/ (e(w) = 1)
whence
Imr® =2y Re/ (g(w) — 1)_1 g (114)

ImrP =2yRe {s(a)) (e(w) — 1) } :

In Eqns (67)-(70), we neglect terms involving y2, which are
small in comparison with terms of the order of unity, and
substitute (114) in these formulas, which gives the following
expressions for the spectral densities of the thermal field
components at large distances (i > k') from the surface:

(IE?) = (IE*) ~ (e() - 1),

MUYy

2(koh)?

TCqu

(115)

(IE-I") =

Re [b(w) (e(w) — 1)_1 } , (116)

TU)e

2\ e(w) — ,
(I >N2(k0h)2 (o) =1) (117)
(HF) = (1) = (7% Re s (o) ~1) '
(118)

It follows from Eqns (115)—(118) that the total spectral
density of the thermal field energy is

Up R MO—wZ{Re (e(w) — 1)71

2(koh)

+ Re [P((D) (e(w) — 1)71 }}

In this approximation, the ratio of the electric part of energy
uf to the magnetic part u!? is equal to unity, as it must be at
large distances from the surface.

(119)

4.1.4 Spectral density of states. As is known [33], the number
of proper field oscillations with wave numbers in an interval
Aky per unit element of a sufficiently large (koh > 1) volume
V ~ h? can be represented as

OA *Aw
o=

Ap = pkAkO Pow W ’ (120)

kg Ako

n2
where p = w?/(n*c3) = ki /(n*c) is the spectral density of
oscillators of a free field in the vacuum or the spectral density
of states of a free field (with two independent polarization
states).

The Planck law for the spectral density of the equilibrium
radiation energy in the vacuum can then be represented as the
mean energy of an oscillator @(w, T') at a temperature 7T
times the spectral density of states p2:

Ok
%

o (121)

0
qu = @pw =

There are various ways [34-37] to introduce the local density
of states to take the effect of interfaces between the media into
account in concrete problems.

Using (120) and (121), by analogy with the case of a free
field, we introduce a local density of the thermostimulated
electromagnetic field generated by a half-space, which in the
general case depends on spatial coordinates. For a non-
equilibrium field, it follows from Eqn (76) that

1 /2 ) , )
0

+ %J dy exp (=2kohy) (y> + 1)(Im P 4 Im rs)} . (122)
0

The spectral density of states of an equilibrium field follows
from a comparison of (95) with (121):

1 /2 .
Do = pg{l +3 ReJ d0 sin 0 sin” 0 (r* + rP)
0

x exp (2ikoh cos 0)

+%J dy exp (—2kohy) (y*+ 1)(Im rP? + Imrs)}. (123)
0
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The formulas for the corresponding spectral densities of
states also directly follow from the formulas for the
components of the fluctuating field obtained above.

First, we consider the local density of states of the quasi-
stationary part of the thermal field in (122) and (123), because
they are identical in the equilibrium and nonequilibrium
problems. As can be seen from these formulas, the local
density of states of a quasistationary field can be represented
as the sum pP + ps of states of p- and s-polarized waves,
where

0 roo
pfs“):%J dy exp (~2kohy) (v + 1) Im PO (124)
0

To illustrate the characteristic features of the density of
states of the thermostimulated field generated by a half-
space, we use two substantially different models of the
dielectric constant for the description of the optical proper-
ties of the material, namely, the Drude model and the
oscillatory model:

a)2 o — G, 2
o) =1——° (@) = 80 + 2 F)¥T0_
o(w +1v) w70 — W —iyo
(125)

where o), is the plasma frequency, v is the electron relaxation
frequency, & and &, are the respective dielectric constants at
low and high frequencies, wro is the frequency of the
transverse optical phonon, and y is the anharmonic decay
constant. For calculations, we take the value of parameters
corresponding to aluminum, which is a typical good metal
(wp ~1.2x10° em™!, v~ 10* ecm™!), and to zinc selenide
ZnSe (wro ~200 cm™!', y=0.02010, & =9.06, and
&0 = 5.8).

Figure 1 displays the variations of the density of states of
p- and s-polarized waves of the thermostimulated field as
functions of the frequency at various distances / (indicated in
the figure caption) from the surface of the aluminum half-
space, which were calculated using Eqn (124). A characteristic
feature is the existence of a strong resonance in the density of
p states (Fig. 1a) of the thermal field at small distances from
the surface. This resonance corresponds to a nonradiative
Coulomb plasmon, as can be seen from Eqn (97). From the
corresponding dispersion equation, it follows that the
frequency of this plasmon is wop = wp/\/i.

Of great interest is the dynamics of the spectrum
transformation with increasing distance. As follows from
Eqn (124), the largest contribution comes from two factors,
exponential and resonant, in the integrand for the Fresnel
coefficient. Because the most substantial contribution comes
from the parameters related by the condition 2kohy ~ 1, an
increase in /4 leads to a decrease in the range of wave numbers
that give the main contribution to the integral, which, in turn,
leads to a smoothening of the resonance at the frequency of
the Coulomb plasmon and to a shift of the maximum in the
density of states toward lower frequencies. As follows from
Eqn (97), there are no such resonances in the s states (see
Fig. 1b). In principle, in the s state, there can exist a resonance
related to the maximum in the imaginary part of the dielectric
constant; but in the Drude model, this maximum is related to
the pole at the zero frequency and does not manifest itself in
the frequency range shown in the figure. It is seen from Fig. 1a,
which displays the total density of states of the thermostimu-
lated field in the near-field zone, that the main contribution to
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Figure 1. Frequency dependence of the density of states of p- and
s-polarized waves of a thermostimulated field at various distances 4 from
the surface of an aluminum half-space: (a) density of p states; (b) density of
s states; and (c) total density of states; (/) h = 1077 cm, (2) h = 107 cm,
3) h=10""cm, (4) h=10"* cm, (5) h=1073 cm, (6) 1072 cm, and
(7)h=10" cm.

the density of states of the quasistationary part of the field
generated by a good conductor comes from the p-polarization
states of the field.

A substantially different spectrum of the thermal field is
characteristic of the zinc selenide ZnSe, as is seen from Fig. 2.
Just as in the case of aluminum, the density of states is
substantially modified as the distance /4 from the surface
increases. At small distances, the peak corresponding to a
Coulomb phonon—polariton is clearly pronounced. Unlike
Al, in the case of ZnSe in the s-polarization state, a peak
corresponding to the maximum of the imaginary part of the
dielectric constant is observed at the frequency of the
transverse phonon—polariton, but the height of this peak is
many orders of magnitude less than the density of p states. An
essential feature is also the formation of a dip in the density of
states at frequencies corresponding to the negative dielectric
constant.
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Figure 2. Frequency dependence of the density of states of p- and
s-polarized waves of a thermostimulated field at various distances 4 from
the surface of a ZnSe half-space. For the notation, see Fig. 1.

We now consider the spectral density of states for
traveling waves of the thermostimulated field. As follows
from Eqns (122) and (123), for the p-polarized and s-
polarized states, we have

1— o)

p4sip(?) /2 :
Po” = d0 sin0 (126)

0 2
for the nonequilibrium problem and

0 n/2
Ps ‘% {1 + Rej do sin 0 sin® (™) exp (2ikoh cos 0)
0

(127)

for the equilibrium problem. Figure 3 displays the normalized
density of states of p- and s-polarized traveling waves of
thermal fields produced by heated half-spaces of Al and ZnSe
corresponding to the equilibrium and nonequilibrium pro-
blems in accordance with Eqns (126) and (127). The straight
lines in all the graphs represent the density of states of
p-polarized (/) and s-polarized (2) traveling waves of thermal
fields produced by the heated half-spaces of Al and ZnSe in

Figure 3. Normalized densities of states of p-polarized (bold lines) and
s-polarized (thin lines) traveling waves of thermal fields generated by Al
and ZnSe half-spaces corresponding to the equilibrium and nonequili-
brium problems as functions of the distance /1 from the surface at the
respective frequencies 5300 and 530 cm~! for Al (a) and ZnSe (b) half-
spaces. Figure 3¢ displays the same dependence for ZnSe at the frequency
212 cm~!, which falls into the range of negative values of the dielectric
constant. Straight lines / (p states) and 2 (s states) correspond to the
nonequilibrium problem.

cold surroundings. In this case, a permanent spatially uni-
form flow of waves is generated.

Quite a different picture is observed in the case of the
equilibrium problem if an opposite flow of waves exists and,
as a result, a characteristic picture arises (see Fig. 3) of the
density of p-polarized states (solid curve) and s-polarized
states (thin curve) near the surface. In the equilibrium case,
the total density of states is modified at large distances into
the equilibrium one. Figures 3a and 3b show the densities of
states of traveling waves of thermal fields as functions of the
distance / from the surface at the respective frequencies 5300
and 530 cm~! for the Al and ZnSe half-spaces. Figure 3c
displays a similar dependence for ZnSe at the frequency
212 cm™!, which falls into the range of negative values of the
dielectric constant.

It is clearly seen that in this case, as in the case of Al, the
level of the flux of nonequilibrium radiation is very low,
because the ZnSe crystal reflects in this spectral range quite
well.
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Figure 4. The normalized spectral density of p states (bold lines) and s states
(thin lines) at the distance #=1x 107 cm (a), h=1 x 10~* cm (b),
h=1x10"%cm (c),and & = 1 x 10! c¢m (d) for an Al half-space in the
equilibrium problem.
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Figure 5. The normalized spectral density of p states (bold lines) and s states
(thin lines) at the distance h=1x 1077 cm (a), h=1 x 1073 cm (b),
h=1x10"2 cm (c), and h=1 cm (d) for a ZnSe half-space in the
equilibrium problem.

Thus, using the general theory of equilibrium thermal
fields, we verified that at large distances from the surface in a
closed volume formed by a material with any properties, an
equilibrium density of states exists. This result was already
obtained from simple thermodynamic considerations at the
beginning of the 20th century in the course of the develop-
ment of quantum theory.

Figures 4 and 5 display the transformation of the
spectrum of traveling waves in a given spectral range
depending on the distance / from the surface of Al and ZnSe
half-spaces. The normalized spectral densities of p-polarized
and s-polarized states are calculated via Eqn (127) for various

values of the distance % to the surface, which are indicated in
the figure captions.

It follows from Figs 4 and 5 that in the case of a
thermodynamic equilibrium at large distances from the
surface in a closed volume, a radiation spectrum that exactly
corresponds to the Planck law is formed, as it should be in
accordance with Eqn (127).

To conclude this section, we make one very important
remark.

As is known [44], the pole of the Fresnel coefficient rP
determines the dispersion equation for surface eigenmodes of
a boundary value problem. On the other hand, the same
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coefficient is involved as a factor in the integrand for the
spectral density and density of local states of the thermal field.
In the equilibrium case, they are determined by the Fourier
transform of the Green’s function of the corresponding
regular boundary value problem. Hence, the poles of the
Green’s function determine the spectrum of eigenstates of the
thermostimulated field, and we note the complete analogy
with the results of the modern theory of condensed media [24],
according to which the poles of the Fourier transform of the
Green’s function of a solid body determine the spectrum of
quasiparticle excitations. This indicates once again the
fruitfulness of the formalism of Green’s functions in modern
physics.

4.1.5 Spatial correlation of thermal fields. In some problems, it
is necessary to know not only the spectral characteristics of a
random field at a chosen point of space but also the spatial
correlation functions that characterize statistical relations
between fields at different points of space. We give some of
these explicitly expressed in terms of the Fresnel coefficients.
The corresponding problem for dipoles located at points
r; = (0,0,/) and r, = (L,0,h + H) has been solved in [7].
Using transformations (52) and (54), we obtain, for example,
from [7, Eqn (8.5)],

(Er)E} () = 75"

=[PP 1=
2
0
X |:(COS D + 3

1— 1P 1 —|rsP
- <00520 2|l " 2" | >J2(koLsin0)}

n/2
J d6 sin 6 exp (ikoH cos 0)
0

) Jo(koLsin 0)

U

T

J dy exp [—ko y(2h + H)]

0

X [0 o 1m ) Jo (ko Ly/T+ 57 )
— (2Im P — Tmr*) Jy (koLy/1 + 32 )} ,

(128)

. gy, ™2 . .
(Ey(r))E;(r2)) === d0 sin0exp (ikoH cos 0)
’ 0
_ |pp)? _ 1ps)?
X Kcos2 0 ! 2|r | + ! 2" | )Jo(koL sin 0)
— P2 — P
+ <00320 L= PP 1= >J2(k0Lsin0)}
2 2
zhes

5 L dy exp [—koy(2h + H)]

X [(yzlmrp +1Imr®) Jo(koL\/1+ p?)

+ (2 mr? — Tmr) S (ko Ly/T+ 7)) (129)
/2
(E-(r)EX(ry)) = nquJ d0 sin 0 exp (ikoH cos 0)
0

1= .
x sin” 0 —5 Jo(koL sin 0)

o0

+ TWO(»J dy exp [fko y(2h + H)}

0

x (¥ + 1) ImrP Jo(koL/1+ y2). (130)

In a similar way, we obtain spatial correlation functions for
the components of a magnetic field and the cross functions of
spatial correlation.

Just as in Section 4.1.3, we can find analytic
expressions for the spatial correlation functions. Restrict-
ing ourselves to only very small distances from the
surface, 2h+ H < (ko|\/e(®)|)™" < kg', we consider the
quasistatic approximation ¢ — oo, neglecting the contribu-
tion from traveling waves. Because of the condition y > 1, we
keep only the top powers of y in Eqns (128)—(130). From
Eqn (128) for comparatively small lateral distances koL =
ko(2h + H) < 1 between the chosen points, corresponding to
the quasistatic approximation, we obtain

Tyt (o) J%

(E(r1)E;(r2)) = (o) + 1|2 dy exp [—koy(2h + H)]

0

x 2 [Jo(koLy) — Ja(koLy)]

) 2[1-212/(2h + H)’]
le(w) + 1| [ko(2h + H)]*[1 + L2/ (2h + H)?]

o5 - (131)

Expression (131) transforms, of course, into the correspond-
ing expression in (98) if L = H = 0. Normalizing (131) to the
corresponding expression in (98), for the vertical

CSy1(H) = (Ec(r; ={0,0,h}) E}(r» = {0,0,h + H}))

and lateral

CSy(L) = (Ex(r1 ={0,0,h}) Ef(r» = {L,0,h}))

correlations separately, we obtain

N __1-rjaw
S (H) = (1 +H/2h) CSai(L) = (1+ L2/4h2)
(132)

From relation (130) in the same approximation, we have
(E=(r)E:(r2))

_ Tpue” () 21— L2/2(2h + H)]

- . (133)
|8(w) + 1’2 [ko(2h+ )}3[1 +L2/(2h Jr],_])2]5/2
Correspondingly,
_ ]2 2
CS..(H) = % . CSy(L) = IL—/8/152 .
(1 4+ H/2h) (]+L2/4h2)/
(134)

It follows from (132) and (134) that in the quasistatic
approximation, the spatial correlation length of the thermal
field is of the order of the distance from the surface.

To investigate the spatial correlation of the field compo-
nents at large lateral distances (koL > 1), we should use
expressions for Bessel functions at large values of the
argument, koLy > 1. The corresponding expressions for
spatial correlation functions can be obtained quite easily.
We also note that using the approximations of the Bessel
coefficients in (104) or (106), the characteristic scales of
spatial correlation of fields can be estimated in other cases
based on simpler analytic expressions.

In recent years, special attention has been given to the
investigations of spatial correlations of thermal fields at the
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frequencies of surface phonon—polaritons and plasmon—
polaritons. Here, we mention only Refs [7, 38—40]. We note
that the spatial correlation length at surface eigenfrequencies
can reach several tens of wavelengths, substantially exceeding
the correlation length of blackbody radiation, which is of the
order of the Wien wavelength in free space. The physical
reason for this is that the source of fields at the frequencies of
surface excitations is a collective coherent excitation of a
surface charge (induced polarization) or surface lattice
vibrations at the interface between the media. Such a
spatially correlated excitation on the surface occurs in spite
of the spatial delta-correlated coupling of Langevin current
sources in the bulk of the material, which are fictitious sources
according to the fluctuation—dissipation theorem. The spatial
coherence of the induced surface current is transferred to the
induced random thermostimulated field at the eigenfrequen-
cies of the problem.

We also mention the investigation of the degree of
polarization of the near field of thermal sources in Ref. [41].

4.2 Spectral characteristics

of the fluctuating electromagnetic field

of a half-space covered

with a plane-parallel layered structure

The next important problem directly connected with experi-
mental investigations and practical applications is that of
finding spectral characteristics of the thermostimulated field
produced by a half-space covered with a film of a finite
thickness. The nonequilibrium problem, in which the heated
body radiates into cold surroundings, has been solved in [42]
using the generalized Kirchhoff law; the film was assumed to
have an arbitrary thickness /4 and its material and the
material of the substrate were characterized by arbitrary
complex dielectric constants and magnetic permeabilities. In
addition, the authors of Ref. [42] determined the spectral
properties of spatial derivatives of fields of all orders. The
solution obtained in the case where the sample is in contact
with the vacuum (¢ = u = 1) is written, using the notation
similar to that adopted in [7], as

2 1@ © * p2 —+
(|E:-I") =—| dppexp[—(q+q")h] = Sel; , (135)
e Jo kO
2 2 i@ [ "
(B = (IB[7) =5 | dppexp[—(a+q7)]
e Jo
- .
X\ ez Sl + Sty | (136)
0
where
B gf 1— rg;* exp (—2q; hr)
Sre = kol =5 D P
e 14ry exp (—2qfhr)
Car -y exp(—Zthf)>‘ @)’ (137)
er 1+ rf exp (—2qrhe) el
1 P —2qih
= ' +rf exp (~2g1h) (13
g 1 — rfriexp (—2grhr)

rf and rf are the respective Fresnel coefficients of the film—
substrate and film—vacuum interfaces, ¢ and ¢; are the
respective dielectric constants of the film and substrate, and
qr = (p? — skaZ)l/ 2. The functions Sy and [f; are obtained
from Eqns (137) and (138) using the replacement rP — r5.

Using permutations S, V Sp, and I V If; in Eqns (135) and
(136), we obtain formulas for spectral densities of the
magnetic field strength components ((|H.|*) and (|H, ,|*)).
For the spectral density of the thermal field energy
generated by the structure under consideration, we have

0 [~ .
Uy = EL dppexp [—(q+q*)h]

gl +p° P
s (L2 1) (Sulit + Sudih) (139)

kg

Here, as earlier, we consider nonmagnetic materials

(= =1).

We write the solutions obtained in terms of only the
Fresnel coefficients. For traveling waves (¢ = —¢*), introdu-
cing the notation p/ky = sin 0, we immediately obtain

k ; o —rd — (1= |l
OCIf/Ff > _ o fo i ( ‘ f0| ) . (140)

lg + g/ e 4icos 0
Substituting Eqn (140) and the complex conjugated equation
in (137) and taking into account that rp = —ror, we obtain

i(1—[r %)
Sl = -~ 2 141
felte 2cosl (141)
where rf, is the Fresnel coefficient of the vacuum—film—

substrate three-layer structure:

o rye + rh exp (—2qrhy)
0L 1 4 rhrh exp (—2q¢he)

(142)

For a quasistationary field (¢ =¢*), using the notation
v = q/ko, we obtain

koqf/gf _ (1 — |r0r|2) — (I’Of — I,gf) (143)
g+ qc/e” 4y
Substituting (143) in (137), we find
m P
Splf = ——lor (144)
y

Quite similarly, we can obtain relations for the s waves using
the replacements Sy, — Sp,. I — Iﬂt, and rly — 15y in
Eqns (141) and (144).

For the subsequent consideration, it is useful to change
notation, in particular, to use rlp23 instead of r(fﬂ for the three-
layer structure under consideration. Correspondingly, in the
problem of a four-layer structure, we have coefficients rf,y,,
ete.

Substitution of Eqns (141) and (144) in formulas for the
spectral components (135) and (136) allows writing these in
the form that is nominally identical to Eqns (55), (56), (67),
and (68):

(ET = (B

2 s 12
- Moo Jn/z do sinH(cos2 0 L= || + L= Irin| ) )
0 2 2

2

(145)
/2

2\ Pr 2, L= |2
<|E_.| > = nquJ do sin 0 sin” 0 % , (146)
0
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(EFY™ = (1B

o0
= m;()wJ dy exp (—2kohy) (y* Im rhy +1Imryy), (147)
0

(E-PYP = jo dy exp (~2kohy)(> + 1) Imrlyy. (148)

For the spectral densities of the magnetic field components,
expressions that are quite similar to (57), (58), (69), and (70)
are obtained, but with the Fresnel coefficients rfy; and rjy
corresponding to a three-layer structure. A similar replace-
ment should be made in the formulas for other spectral
characteristics. For example, the formula for the spectral
energy density of the thermal field generated by a coated half-
space is written as

Pr Ev
Uy =u, +u,

Uy Un/z 40 sin 6 (1= 1rBsP) ; (1= Irixl®)

0

2

+j dy exp (—2kohy) (4% + 1)(Im by + Tm )|, (149)
0

where

i+ b exp (“2g0h)
1+ r0°r3s " exp (=2g2ha)

P,s _
Iz =

(150)

here, in the new notation, /i, is the thickness of the film,
g =(p>— szkg)l/z, &, is the dielectric constant of the film
material, &; is the dielectric constant of the half-space
material, and ¢ =1 is the dielectric constant of the
vacuum. A similar procedure of replacing the Fresnel
coefficients of a two-layer film by the coefficients of a
three-layer one was used in [32] for solving a somewhat
different problem. However, we emphasize that we obtain an
exact result in our problem.

Analogous formulas can be derived based on the results in
Ref. [43] for spectral densities of the thermostimulated field
components and for the spectral energy density in the case of a
four-layer structure consisting of two films with different, in
the general case, thicknesses /1, and /3, whose material is
characterized by different dielectric constants & and &3,
applied onto a half-space with a dielectric constant &4. In
this case, all properties are described by Fresnel coefficients
1153, of the vacuum (1)-film (2)-film (3)-substrate (4) struc-
ture as follows:

s rls’ 4 135 exp (—2¢ahn)
BTy exp (<2q2h0)

(151)

where

rp~3 — r2pj5 + rféis eXp (72613/13) (152)
BT exp (205l

For a five-layer structure, the Fresnel coefficients r[5;,5 of the
vacuum (1)—film (2)—film (3)—film (4)-substrate (5) struc-
ture are written as

ps 53" 1oaas €Xp (—2¢2ha)
2345 = Ps.p.s , (153)
1+ 13371355 €xp (—2g2h)

where

Lo _ 23 risexp(=2g3h)
BB 4 bRl exp (=2q3h3)

(154)

P _ 3t 4 re exp (—2qahs) (155)
W e exp (—2qaha)

Thus, the main structural element in the formula for the
Fresnel coefficient of a multilayer system is the Fresnel
coefficient of a three-layer structure of form (150). Indeed,
any multilayer structure is one of the vacuum (1)-film (2)-
complex half-space (3) type, where the complex half-space is
the usual uniform half-space coated with a multilayer
structure that is in turn a kind of three-layer structure, etc.

It seems quite obvious that an n-layer structure with an
arbitrary number of layers is a new half-space whose optical
properties are characterized by a composite Fresnel coeffi-
cient of the general form

VPsS — rlp2’S +r§3’:mn EXp (_Zqzhz) (156)
P T R exp (“242h)
where
I”PsS = 72133,5 +r3ﬁi<snn exp(—ZQ3/13) (157)
B4 T 4 V%s"31)4,?,n exp (—2q3h3) ’
ps R R exp (2q4hs)

_ 158
345...n 1+ r%’éisrfs‘in exp (—2qahy) ' ( )

s _ To-3)-2) T -2y OXP (—24n-2/tn-2)
(n=3)(n=2)(n—1)n 1+ r&j3)(n72)’4£;52)(n71>n exp (—26],1,2/1,,,2) y
(159)

N

p,s o r(pf;—Z)(n—l) + r(]j;jl)iz €xp (_261"*1/1”*1)

rP = ,
(=)= ] 4 l‘(p,,‘fz)(nq)r&’j])n exp (—2¢u-1/-1)

1/2

(160)

g = (p* —gkd)’", ¢ is the dielectric constant of the jth
layer, and /; is its thickness. Therefore, all formulas for the
spectral densities of the thermal field generated by a plane-
parallel layered medium look quite similar, with the only
difference that they contain different composite Fresnel
coefficients rf3; . for example,

(ESYT = (I

/2 1= [P 2 1—1|rs 2
_ TW/;()w JO 40 sin6<c0526 ‘r1223mn| n |r;‘234..n| ) 7

(161)

/2 1 —1rP 2

(IE)™ = nquJ 46 sin 6 sin? 0 L 1Mal”
0

L (162)

(ESY™ = (1B

T o0 2 P s
) 0 dy exp (=2kohy) (y"Imrpy , +1Imriy ),

(163)

E o0
<|Ez|2> f= TC“OwJ dy eXp (72k0hy)(yz + 1) Im rFZS.“n ’
0 (164)
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and similarly for the spectral densities of the magnetic field
components.

The spectral density of the thermal field energy in the
general case is written as

_ . Pr Ev
Uy = U, +u,

. 2 2
_ % [J /2 do sin 6 (1 - |r1p23.“n| ) + (1 B |r1523,..n| )
2 1), 2

+ J dy eXp (72k0hy) (y2 + 1)(Imrr234.4/1+ Imr?23.“n):| .

0
(165)

We recall that the denominators of Fresnel coefficients (150),
(151), (153), and (156) determine the dispersion relations for
the eigenmodes of the relevant structures. For example, from
the condition of the vanishing [44] of the denominator of the
simple three-layer structure in Eqn (150), the following well-
known dispersion relation [45] is obtained:

riirh i exp (—2qah) = —1.

(166)
As is known [46, 47], in the case of p waves, Eqn (166)
describes both surface and waveguide excitations in a three-
layer structure. For example, in the frequency range where
q» = i&, neglecting dissipation, we can write the respective
dispersion relations for the p-polarized and s-polarized
waveguide modes:

€241

éhzzarctan%—i-arctan——&-ln, [=0,1,2... (167)
&3¢ ¢
ihg:arctanq—g—i-arctan%—i—ln, [=0,1,2.... (168)

It follows from Eqns (167) and (168) that there exists some
film thickness /; mi, that is critical for the excitation of these
modes. Indeed, assuming, for example, that / = 01in (167) and
that hymin is reached at Enay = (e2kE — p2,)'"%, where

Pmin = ko, we find
1 —&(w)
o) -1 ]

(169)

e an (2@
/’lme— w[g2(w) B l] 12 arcta (83(0))

For a four-layer structure, the dispersion equation follows
from Eqns (151) and (152):

p,s V%S + r&s eXp (_2q3h3)

r 34
2 14 e exp (—2q3hs)

exp (—2¢2h) = —1. (170)

The spectral density of states of the thermal electromag-
netic field is introduced just as in Section 4.1.4. For example,
for a three-layer structure, the density of the p and s states of
the quasistationary part of the spectrum is determined by
formulas (124), in which the appropriate Fresnel coefficient
(150) must be used:

0 poo

pPs = %J dy exp (—2kohy) (»* + 1)Imrfsy . (171)
0

To graphically illustrate the results obtained, we

numerically calculated the density of states for the vacuum
(1)-ZnSe film (2)—Al half-space (3) structure using Eqns (150)
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Figure 6. Spectral density of p states of the thermostimulated field of a
vacuum-ZnSe-film—Al-half-space structure as a function of frequency at
various distances / from the surface of the structure depending on the film
thicknesses /2: 1 x 107¢ cm (a), 3 x 10~* cm (b), and 1 x 10~3 cm (c). The
curves corresponding to the smallest distance from the surface
(h =1 x 107 cm) are uppermost in the graphs; the curves corresponding
to the largest distance from the surface 4 =1 x 10! cm are lowermost;
between these, curves corresponding to 4 =1 x 107> cm, 1 x 107* c¢m,
1 x 1073 cm, and 1 x 102 cm are located from top down in the order of
increasing distance.

and (171). Figure 6 displays the spectral density of p states
depending on the frequency of the thermostimulated field
generated by such a structure, at different distances / from the
surface at various thicknesses of the film, namely, at /i, =
1x10° cm, Ay =3%x10"* cm, and h =1x10"3 cm
(Figs 6a, 6b, and 6¢, respectively). The curves corresponding
to the smallest distance from the surface (4 = 1 x 1076 cm)
are uppermost in the graphs; the curves corresponding to
the largest distance from the surface are lowermost;
between these, curves corresponding to 4 =1 x 107> cm,
I x10~*cm, 1 x 1073 cm, and 1 x 10~2 cm are located from
top down in the order of increasing distance. Compared to the
spectrum of states for the half-space, the spectrum is much
more complex. Along with a strong resonance at small
distances, corresponding to the Coulomb polariton
(243 cm™!), resonances related to waveguide modes are
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observed. These resonances appear when the film thickness
exceeds some minimum thickness at a fixed frequency. As the
film thickness increases, the waveguide states fill the entire
spectral range; they are located both above the longitudinal
phonon—polariton frequency and below the transverse
phonon—polariton frequency, which determine the region of
negative values of the dielectric constant (200-250 cm™!).
This convincingly follows from Fig. 6. We note that at some
distances from the surface, the waveguide resonances become
equal to surface resonances in magnitude.

For convenience, we obtain approximate expressions for
the spectral density of the field or for the spectral density of
states. Here, we consider only the quasistatic approximation
at y » |\/é2,3| > 1, which corresponds, as we saw, to small
distances from the surface, koh < |\/m \71 < 1. In this case,
restricting ourselves to only the top powers of y in (171), we
obtain

(172)

0 poo
P %J dy exp (—2kohy) y* Imry
0

where the Fresnel coefficient in the approximation in question
has the form

P 82—1 &3 — & —2koh
123 Lerl 83+823XP( oh2y)
%‘2—1?;—?2 -
14- =z —2kohyy . 173
x{+82+183+82exp( ozy)} (173)

Hence, assuming that koghyy > 1, we have

&3 — & 482
e+ e (g4 1)

711023”8271
- 82-1—1

€Xp (—2/(0/’12)/) . (174)

Substituting (174) in (172), we integrate to obtain

0
Pwpill &1
Po ™58 ™Mot

&3 — & & 5
i <33 + & m) ko (h+ )] } . (175)

(koh)~>

It can be seen from Eqn (175), that along with a low-
frequency Coulomb resonance (~ 243 cm~!), whose fre-
quency is a root of the equation &(w) = —1, the density of
states involves a well-pronounced high-frequency Coulomb
resonance related to the film (2)-substrate (3) interface (at
~ 46,000 cm~'), which is determined by the equation
¢3(w) = —&(w). The frequency of this resonance is lower
than that of the Coulomb resonance of the vacuum (1)-
substrate (3) interface (~ 84,700 cm™'), which is a root of
the equation ¢3(w) = —1. In Fig. 6, the high-frequency region
is not shown. It follows from Eqn (175) that in the absence of
a foreign film, i.e., at & = &3, the second term in the right-
hand side of Eqn (175) vanishes.

We note that the approximate expressions for the Fresnel
coefficient rf;; of a three-layer structure can be obtained in
various approximations by expanding it into a power series in
y; this allows finding analytic expressions for the spectral
density or for the density of states of a quasistationary
thermal field for a wide range of distances to the surface,
film thicknesses, and electromagnetic properties of the
materials.
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Figure 7. Spectral density of s states of the thermostimulated field of a
vacuum-ZnSe-film-Al-half-space structure as a function of frequency at
various distances / from the surface of the structure depending on the film
thickness /,. The distances from the surface and the film thicknesses are
the same as in Fig. 6.

Figure 7 demonstrates the density of electromagnetic s
states of a thermostimulated field generated by an Al half-
space coated with a ZnSe film as a function of the frequency.
The calculations were performed for the same set of distances
from the surface and the same thicknesses of the ZnSe film as
in Fig. 6. The results of numerical calculations show how the
spectrum is transformed with increasing the film thickness.
For thicknesses much greater than the wavelength of the
range under investigation, the spectrum of the structure
transforms into the spectrum of the thermal field of the
ZnSe half-space.

When studying a structure of an Al film on a ZnSe half-
space with the same geometric parameters, we see that in the
chosen spectral range, all resonance features in the density of
states disappear because the metal efficiently shields the
substrate.

The most important conclusion that follows from the
analysis of the spectral density of states of a thermostimulated
field is the existence of clearly pronounced characteristic
resonances whose frequencies are unambiguously related to
the eigenmodes of the system under consideration.
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4.3 Results of the experimental study of resonance states
of the thermally stimulated electromagnetic field

of semiconductor films on metallic substrates

Optical methods of studying solids yield rich information on
the electronic (excitonic, plasmonic) and vibrational (pho-
nonic) excitations of both the volume and surface of crystal
layers. In the last three decades, a number of new results have
appeared, which have enriched the existing concepts on the
interaction of electromagnetic radiation with condensed
media. An important role in the experimental investigations
is played by the study of spectra of the thermostimulated
radiation of solids [48—60]. In these works, the experimental
methods concerning the registration of the thermal radiation
of samples were also described.

The investigation of the optical properties of solids is
based on measurements of the spectral intensity of light
emitted from a sample. When measuring radiation spectra, a
sample is placed in a thermostat instead of a standard source
of infrared (IR) radiation such that the radiation angle can
easily be varied by rotating the thermostat without readjust-
ing the spectrometer. In this case, no rotating or moving
mirrors are necessary to measure the angular dependence of
radiation, i.e., it is much simpler to investigate polaritons by
detecting thermal radiation than by using reflection spectra.
The procedure of calibrating devices and the details of
measurements have been described in sufficient detail in
Refs [54, 55]. Figure 8 displays spectra of thermostimulated
p-polarized radiation of ZnSe films of various thicknesses on
an aluminum mirror and schematically shows the density of
single-phonon states (for optical phonons) of a ZnSe single
crystal. In addition to the experimental spectra, Fig. 8 also
depicts calculated spectra that were obtained without any
fitting parameter. The radiation spectra were calculated via
the Kirchhoff law using Fresnel coefficient (150) for a three-
layer structure and assuming that the energy reflection
coefficient is R = |r1p23|2. In this case, to assign the dielectric
functions for Al and ZnSe film, the Drude formula and
oscillatory model (125) with the corresponding parameters
were used.

The experimental data shown in Fig. 8 yield several
interesting results.

First, p-polarized light radiation is observed in thin films
not only at the transverse optical phonon frequency but also
at the frequency of the longitudinal optical phonon, which is
forbidden by the selection rules for bulk crystals [50-55].
Second, in a bulk crystal, the absorption and emission of light
occur not at the frequencies of single-phonon states of the
crystal belonging to the range wto < w < wrp but in the
range wex > W > wro and o < wrto, where no single-phonon
states exist [54, 55]. Third, the radiation in the ranges
Wex > 0 > oo and @ < wto proves to be close to unity,
i.e., close to that of the ideal black body.

The investigation of nonradiative states or quasistation-
ary thermal fields that are inseparably linked with the field
source (to the right of the light line in the graph of the
frequency dependence on the wave number) has some
specific features. The useful signal is typically detected in
experiments in the far radiation range. This concerns
experiments with a prism of a frustrated total internal
reflection over the sample, with a diffraction grating on the
sample surface, with a near-field optical microscope, etc.
Therefore, the information comes from traveling waves (in
the far-field zone), which are the product of the decay of a
quasistationary state. In fact, a transformation of fields

Figure 8. (a) Density of optical phonons in ZnSe. (b) Spectra of p-polarized
thermostimulated radiation of ZnSe films of various thicknesses  on an
Al substrate (normalized to the blackbody radiation spectrum): d = 1 pm
(I),d=2pm(2),d =3 um(3),d = 5 um(4),d = 56 um (5),and d = 5mm
(6). Points correspond to experimental data; solid curves, to the results of
calculations without any fitting parameter.

occurs in the experiment. In this sense, the methods of optical
measurements resemble the experimental methods of atomic
physics or the physics of cosmic rays, where the information
on a particle is obtained from decay products or from the
results of the destruction of a medium produced by the
particle under study.

We emphasize that spectral investigations of thermo-
stimulated fields allow studying resonances in a system
under conditions of an indestructible experiment. The
positions of the resonances in the radiation spectrum, their
widths, and their dependence on the parameters that are
controlled during the experiment, such as the temperature,
the composition and conditions of the sample preparation,
the radiation angle detection, and the magnitude of external
fields, all this information is a basis for the explanation of
the structure of matter and the laws of interaction of fields of
various natures.

A detailed analysis of vibrational eigenmodes of thin films
on metallic substrates [50, 52—-55] shows that the probabilities
of absorption of a p-polarized field with a p-polarized
vibration of the surface mode of the first (w, ~ wro) and
second (w; =~ wrp) types are respectively proportional to
kodsin® ¢ and (kod)’. A direct calculation of the thermo-
stimulated radiation intensity of a ZnSe film on Al at a given
solid angle in a fixed direction using the Kirchhoff formula
and the Fresnel coefficient for a three-layer structure gives
qualitatively the same result (see Fig. 9). We recall that for
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Figure 9. Normalized spectrum of p-polarized thermostimulated radiation
of a ZnSe film 0.4 pm thick on an aluminum mirror in the spectral range
150-300 cm™! as a function of the angle from the normal to the sample: 15°
(1), 30° (2), 45° (3), 60° (4), and 75° (5).
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Figure 10. Peak emissivity of ZnSe films on Al for the emission bands
V2 & vo = 250cm~! (a) and v; = vro = 200 cm™~! (b) as a function of the
emission angle at different film thicknesses d: 0.3 (1), 0.5 (2), 1 (3), 1.6 (4),
and 2 pm (5). Various symbols correspond to experimental values; solid
curves, to calculation results.

ZnSe, the longitudinal and transverse optical phonon
frequencies are wro ~ 250 cm~! and wro ~ 200 cm~!.
Figure 10 displays the peak dependences of radiation of a
ZnSe film on Al depending on the angle between the normal
to the sample surface and the direction of observation at
various film thicknesses. Figure 10a shows the dependence for
the mode w; ~250 cm~! and Fig. 10b, for the mode
w1 ~ 200 cm~!. Figure 11 demonstrates the corresponding
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Figure 11. Peak emissivity of ZnSe films on Al as a function of the film
thickness for the emission bands v, ~vo =250 cm~! (a) and
Vi & v1o = 200 cm~! (b) at various emission angles: ¢ = 15° (1), ¢ = 30°
(2), ¢ = 45°(3), and @ = 60° (4). The symbols correspond to experimental
values; solid curves, to calculation results.

dependences on the film thickness at fixed radiation angles.
Very good agreement with the calculation results is observed.

We emphasize that the absorption peak observed at a
frequency close to that of the longitudinal phonon is related
to the transverse eigenstate of a thin film. The longitudinal
optical phonons (modes), as follows from the analysis in
Refs [53-55], do not interact with the transverse electromag-
netic field at all.

It follows from the data obtained that the radiation peak
at the frequency w; =~ wyo belongs to the radiative surface
polariton localized at the film—vacuum interface. However, it
is impossible to determine from this series of experiments to
which type of vibrations (a bulk phonon or the surface
phonon of a film—metal interface) the radiation peak at the
frequency w; =~ wto belongs.

As follows from theoretical calculations, the unambig-
uous assignment of the emission band at the frequency w, to
transverse vibrational states of the film bulk or to the second
surface polariton is possible only based on their different
responses to the action of the electron subsystem of the
metallic substrate.

Figure 12 presents spectra of the thermostimulated
radiation of vacuum—ZnSe film—metal structures with thick
metallic layers (aluminum, chromium, titanium), which differ
in the magnitude of Imev(w). On all these metallic sub-
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Figure 12. Spectra of p-polarized emissivity of ZnSe films 0.6 pm thick on
metallic substrates of aluminum (7), chromium (2), and titanium (3). The
dots correspond to experimental values; solid curves, to calculation
results.
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Figure 13. Spectra of p-polarized emissivity of a vacuum—ZnSe-film—
Si-film—Al structure at various thicknesses d of the Si film: 0 um (/),
1 um (2), and 3 um (3). The ZnSe film thickness is 0.6 um. Points are
experimental data; solid curves, calculation results. The experimental
points for spectra / and 2 are shifted by 0.06 and those for spectrum 3,
by 0.13 (correction for background radiation).

strates, ZnSe films were deposited simultaneously by thermal
evaporation in the vacuum.

It follows from Fig. 12 that the low-frequency w; band of
the p-polarized radiation is broadened with decreasing the
conductivity of the metallic substrate and is shifted into the
lower-frequency part of the spectrum. All this in totality
means that the w; band in the p-polarized thermostimulated
radiation of vacuum—ZnSe-film—metal structures is related to
the radiative surface (interfacial) polariton of the film—metal
interface rather than to transverse vibrational states of the
film bulk [50-55]. Figure 12 also shows calculated spectra of
the radiation of these sandwiches. Because the frequencies of
plasmons and the frequencies of electron collisions in them
are not known for chromium and titanium, we used the
Hagen—Rubens relation Ry(w) ~1—+/2w/ng, where
0 = g(w) is the conductivity of the substrate.

The best agreement between the experimental and
calculated spectra was reached at oa; = 8000 QO 'em™!
(Ra1 = 0.94), ¢, =500 Q' em™! (R¢; = 0.76), and oy =
250 Q7! em™! (Rti = 0.67). As can be seen from Fig. 12, the
experimental results agree well with the theoretical ones.
Their small (insignificant) difference in the frequency range
@ > 260 cm™! for ZnSe films on Cr and Ti seems to be related
to the fact that the conductivity of these substrates at high
frequencies is only poorly described by the Hagen—Rubens
equation.

Thus, the investigations performed show that light
absorption in thin films of wideband semiconductors on
metallic substrates is determined not by vibrational states of
the bulk of the film but by radiative surface states (polaritons
of the film—vacuum and film—substrate interfaces) [54, 53].
The dipole moments of transverse optical phonons seem to
undergo strong metallic quenching, because the total dipole
moment of a transverse phonon, which is parallel to the film
surface, along with its image in the metal, is close to zero in
thin films. The image forces of dipole moments in metal,
which are responsible for the transverse vibrational states in
the film bulk, can be weakened by separating the film from the
metal or, to be more exact, by creating a dielectric interlayer
between the metal and the film. For example, Fig. 13 displays

the spectra of the thermostimulated radiation of a vacuum—
ZnSe-film-Si-film—Al structure [51].

Silicon has no dipole-active states in the IR range of the
spectrum; therefore, its radiative capacity is very small and
unselective. As can be seen from Fig. 13, the spectra
calculated via the formula 4 = E=1— |rD,,[* with rP.,
given by (151) (where ¢; is the dielectric constant of the
vacuum, & is the dielectric constant of the ZnSe film of
thickness /1, &3 is the dielectric constant of the silicon film of
thickness /3, and &4 is the dielectric constant of the aluminum
substrate) agree with the experimental spectra quite well.
There is a rapid increase in the radiation intensity and in the
half-width of the low-frequency band with increasing the
interlayer thickness and a small shift of this band into the
lower-frequency range. The intensity, half-width, and fre-
quency of the maximum of the high-frequency band remain
unchanged. As follows from Fig. 13 and from a theoretical
analysis in [50-55], the metallic quenching of the absorption
ability is characteristic of only states with dipole moments
parallel to the sandwich plane, whereas states with dipole
moments perpendicular to the film plane do not interact with
the conduction electrons of the metallic substrate. At the
frequency w; ~ wto and a small thickness of the silicon
interlayer, we seem to be dealing with both an interfacial
polariton and strongly weakened transverse vibrational states
of ZnSe bulk states. These states, strictly speaking, are not
transverse optical phonons of the film bulk, as was assumed
earlier, because the half-width I' of the absorption bands for
these states substantially depends on both the interlayer
thickness and on the film thickness and at a large thickness
of the interlayer, is several times greater than the half-width of
the imaginary part of the dielectric constant y of bulk ZnSe.
Such a difference is related to the radiative channel of the
decay of these states, whose probability y, in thin films is
additive with the probability of the anharmonic decay v, i.e.,
I' =~y +v,. Similar results were previously observed in the
investigation of the spectra of reflection—absorption (RA)
and thermal radiation of LiF films [56] and RA spectra of CdS
films [60]. In these spectra, a large increase in the intensity of
absorption bands is also observed at the w; frequency; their
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Figure 14. Spectra of emissivity (absorption) of an Si-prism—gap—ZnSe-
film (1 pm)—aluminum-substrate structure with the gap equal to 12 pm
(¢ =18°) (a) and 3 pm (¢ = 30°) (b).
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Figure 15. Dispersion of TM surface polaritons at ¢ > ko of a ZnSe film
on a metallic substrate: vs; (/) and vs_ (2) branches for a ZnSe film on Al;
vsy (3) and vs_ (4) branches for a ZnSe film on Cr; vs_ branch (5) for a
ZnSe film on a thin (< 0.1 pm) aluminum mirror. Solid curves are
calculation results; symbols, experimental data [49, 55].

half-width increases upon the replacement of metallic sub-
strates by insulating ones.

The investigations performed showed that in thin films of
wideband semiconductors on metallic substrates, light is
absorbed and radiated by only radiative surface polaritons
of the film—vacuum and film-substrate interfaces. Vibra-
tional states of the film bulk (longitudinal and transverse
optical phonons) do not absorb and do not radiate p-
polarized light. Transverse optical phonons of the film can
manifest themselves in the absorption and thermal radiation
spectra if the film is separated from the metallic substrate by
an insulating interlayer.

The experimental spectra of thermostimulated radiation
of surface polaritons (nonradiative quasistationary modes) of
ZnSe films on various metallic substrates have been obtained
using a silicon semicylinder mounted at a certain distance
over the sandwich investigated [48, 49, 52-55]. Figure 14
depicts the experimental and calculated spectra of the p-
polarized radiation of surface polaritons of a 1 um ZnSe film
on an aluminum substrate at two radiation angles and various
gaps between the film and the semicylinder, which were
specified by special frames made of mylar films. The
radiation angle determines the vector of surface polaritons
q| = kons; sin ¢, where ng; is the refraction index of the prism
material and kq is the wave vector of light in the vacuum. At
¢ > ¢, and ¢q > ko, we can reconstruct (by varying the
radiation angle) the dispersion law of quasistationary
(nonradiative) modes from the thermostimulated radiation
spectra in the regime of inverted frustrated total internal
reflection (FTIR).

Figure 14 shows thermostimulated radiation spectra of a
silicon-semicylinder—gap—film—substrate structure at the
radiation angle 20°, which is greater than the critical angle
@, = 17°. The magnitude of the gap, which was 12 pm, was
selected such that the disturbance of the quasistationary
surface phonon by the silicon prism was minimum and did
not lead to a shift of the emission band. The exponentially
decreasing field of the surface polariton extends into the
vacuum to a distance of the order of q“l; therefore, the
thickness of the gap should be no less than qn‘l in order that

the disturbance not be too large. Figure 14b corresponds to
the case where the radiation is directed at the angle 30° and
the gap is about 3 pm. The thicknesses of the ZnSe and Al
films were about 1 um; in this case, the thickness of the
aluminum mirror was much greater than the thickness of the
skin layer in the frequency range of interest. Numerical
calculation of the emissivity spectra of a structure with a
silicon prism was performed based on the Kirchhoff formula
with the use of the Fresnel coefficient rf);, for a four-layer
structure (151). The calculated spectra of the system radiation
normalized to the radiation of the ideal blackbody model
measured under identical conditions agree with the experi-
mental data qualitatively well.

We emphasize that the high-frequency peak in the
radiation spectra (see Fig. 14) corresponds to the frequency
of a weakly disturbed quasistationary polariton at a surface
Coulomb phonon (~ 243 cm™!), which corresponds to the
equation & (w) = —1.

Figure 15 displays dispersion relations (reconstructed
from experimental data [48, 49, 52-55]) of surface TM
(curves 1 and 3) and interfacial (2, 4, and 5) quasistationary
polaritons of a silicon-semicylinder—gap—ZnSe-film—sub-
strate structure.

To demonstrate the degree of the disturbance of the
nonradiative field of surface phonon—polaritons by the
prism, Fig. 16 shows the spectral radiative capacity of a
ZnSe film (1 um) on an Al mirror in the regime of inverted
FTIR at various gaps between the film and the prism
(radiation angle ¢ = 20° £ 2°).

The resonances in curve 5 in Fig. 16 result from the
interaction between the first and second transverse modes of
a thin film with the field of a surface polariton of the metallic
surface. In other words, the appearance of such ‘radiative
tails’ is related to the disturbance of the initially nonradiative
plasmon—polariton of the metal-vacuum interface by the
thin film. It is seen from Fig. 16 that the disturbance of the
nonradiative polaritons of the entire vacuum—film—metal
structure by the prism increases with decreasing the distance
between the prism and the structure. Therefore, to obtain the
dispersion curves of surface phonon—polaritons (see Fig. 15),
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Figure 16. Emissivity of a ZnSe film (1 pm) on an Al mirror in the spectral
range of p-polarized ‘nonradiative’ surface polaritons in the regime of
inverted FTIR at various gaps between the film and the prism (emission
angle ¢ = 20° £ 2°): 20 pm (/), 12 pm (2), 6 pm (3), 0 um (4) (mechanical
contact), and (5) emission of the film without an FTIR prism.

the prism should be placed as far from the surface as
possible.

Thus, experimental investigations of the spectral compo-
sition of thermostimulated radiation of solids allow studying
the eigenstates of the sources of a thermal field in much
detail. In particular, in the structures of the FTIR-prism—
gap—metal and semiconductor-film—metal types, the initially
nonradiative surface plasmon of the metal transforms into a
set of radiative states whose electromagnetic field is
determined by all dipole-active excitations of each material
of the structure and, in addition, depends on the real
geometry of the experiment. The resonances observed in
the spectra are very sensitive to specific features of the
geometry and to the electrodynamic properties of the
materials involved. One of the most important conse-
quences of the experimental and theoretical investigations
of optical properties of crystals [48—60] is that in crystals of
finite dimensions, the absorption of light is a multistage
process; a photon does not generate a phonon directly (in
one step); the photon first transforms into an intermediate
state (radiative polariton), and then this polariton interacts
with the entire set of dipole-active states of the sample. As a
result of this interaction, the polariton transforms into a
phonon or into a multiphonon excitation, an exciton, a free
electron (hole), or a plasmon of the metallic substrate. The
absorption of light in this case is determined by the
probabilities of the radiative and anharmonic decay of the
polariton. The polariton of a multilayer thin-film structure is
a mixed state of various dipole-active excitations of each of
the materials of the structure.

Correspondingly, thermostimulated radiation of crystals
of finite dimensions also arises as a result of a multistage
transformation of mechanical fluctuations into dipole-active
states of the structure, which generate their own radiative
polariton states that are characterized by a finite probability
of radiative decay, which in turn generates a traveling
radiation field of the sample. It is natural that along with the
intrinsic thermal radiation of the sample, nonradiative
eigenstates — thermostimulated surface polaritons— arise
as a result of fluctuations.

We also note that if the film has a thickness greater than
a certain threshold value, resonances appear in the spectrum
of the thermostimulated electromagnetic field, which are
related to interference modes, and in the spectra of the

radiation part of the field, and waveguide modes appear in
the spectra of the nonradiative part of the field. In
experiments, the conditions for the appearance of inter-
ference modes and possible consequences for various
physical phenomena have been investigated in much detail
[54, 55, 58]. In particular, the absorption, thermostimulated
radiation, and luminescence at the frequencies of interfer-
ence modes, a sharp increase in the light absorption at the
frequencies of local vibrations of impurities of the crystal
lattice of the film when they coincide with the frequency of
the interference mode, an increase in the intensity of the
spectra of spontaneous Raman light scattering (RLS) when
the frequency of the incident and (or) scattered light
coincides with the frequency of the interference mode —all
these phenomena, which are clearly observed in the spectra
of films, indicate that the interference modes are real states
of the electromagnetic field in thin-film structures. The
interference modes are uniformly broadened and the half-
widths of their bands in the spectra of absorption, thermo-
stimulated radiation, and luminescence are mainly deter-
mined by their radiation lifetimes. This radiation lifetime
under certain conditions is extremely small compared to the
lifetimes of the majority of known oscillators; it can be as
small as a few tens of femtoseconds [59]. The investigation of
resonances in spectra corresponding to nonradiative wave-
guide modes has not yet been performed.

5. Some applications of the theory
of fluctuating electromagnetic fields

5.1 Dispersion interaction between bodies.

Lifshitz problem

In the mid-1950s, E M Lifshitz published a series of papers
[61-63] devoted to the theory of molecular forces of attraction
between condensed media that fill two half-spaces with plane-
parallel boundaries. In these works, he developed a theory of
dispersion interaction forces via a fluctuating electromagnetic
field between macroscopic bodies in complete thermody-
namic equilibrium. The interaction force per unit area of the
surface was calculated as the mean normal-to-the-surface
component of the Maxwell stress tensor. The solution
obtained is valid at any temperature and any complex
dielectric constant characterizing the electrodynamic proper-
ties of the interacting bodies.

Lifshitz’s work led to a continuous flow of investigations
that have not stopped to date, in which the method suggested
was perfected and modernized; new alternative methods have
also been proposed, leading to the same result. A vast
literature (including numerous Russian-language works)
devoted to this problem exists. The main results concerning
the theory of van der Waals forces and the related theory of
Casimir forces [70] can be found in many reviews and
monographs, e.g., [64-69]. Here, we only consider general
relations and the simplest asymptotic regimes.

5.1.1 Dispersion interaction between bodies in the complete
thermodynamic equilibrium. The spectral density of the
Maxwell stress tensor contains all the spectral densities of
the components of the thermostimulated field in a vacuum
plane-parallel layer between two half-spaces. Therefore, the
problem can be completely solved in terms of the fluctuating
electrodynamics based on the Rytov theory, as was done in
[61-63].
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We first write, in terms of the Fresnel coefficients, the
expression in [62] for the interaction force per unit surface
that acts between two half-spaces separated by a planar
vacuum layer of thickness /:

= || ardo o, (176)
o Jo
where
O(w,T) rorey exp (—2¢l)
Fw ’ =——>5—1
(p.1) Qo [pq(l —rireexp (—2ql)

ro17oo €xp (—241) )] (177)

1 —rgrgyexp (—2¢1)

q=[p>— (w/c)] "2 and ri:® are Fresnel coefficients (50) of
the interfaces between the vacuum layer and half-spaces,
i=1,2.

The general expression for the interaction force is
sufficiently complicated, but, under some simplifications, it
has been used to obtain the leading asymptotic terms [61-64].
For example, small distances between the bodies correspond
to the case where /<Ay and [ <[y, where Ay is the
characteristic wavelength in the absorption spectra of the
bodies and It = cli/kgT ~ 10~* cm at room temperature. For
nonmagnetic materials, we then have

o (e1(i€) — 1) (ea(i) — 1)
F(Z)Ngnzp ) 7J0 de (e1(i8) + 1) (e2(i8) + 1)

The opposite relation / > 4y corresponds to the case of large
distances. An especially simple expression for the interaction
force is obtained for ideal metals when the second condition,
| < I, 1s satisfied; in this case, we have

L (178)

n’he

(l)~24014‘ (179)
This is the Casimir force [70], which was earlier derived from
quite different considerations, namely, by summing the
eigenmodes of the field in a plane-parallel layer between
ideally reflecting walls. It is interesting to note that the
Casimir force serves here as a particular case of the
interaction force in the framework of the problem of
fluctuating electrodynamics.

A third particular case occurs when the effect of
temperature on the interaction between the bodies is taken
into account; this case corresponds to the conditions / > 4
and / > /7 and yields

kBT (810 — 1)(820 — 1)
81‘[[3 (810 + 1)(820 + 1) ’

F(l) ~ (180)

where €19 and & are the electrostatic values of the dielectric
constants. Hence, at large distances, just as at small ones, the
dependence is inversely proportional to the cube of the
distance between the bodies.

We now derive asymptotic formulas (178)—(180) from
Eqns (176) and (178). Formula (178) is a typical example of
a result obtained in the quasistatic approximation (¢ — 00).
Therefore, Fresnel coefficients (50) should be taken in the
form ry, ~ (¢ — 1)/(ei+ 1) and r; = 0, i = 1,2. In addition,
using that fiw/kgT = 2nlr/A, we write (176), in the approx-

imation where A < [7, as

h 1
EJ deIm r, 1}"02 n+

X J:dpp\/pz — kg exp [fZN/pZ — kg l(n+ 1)} , (181)

where we use the formula for an infinite geometrical series

F(l) =

o0

-1
[1 - V(];lr(% exp(—qu)} = Z( 01’”02) CXp( qul’l) .
n=0

(182)

Changing the variable as y? = p?/k¢ — 1 and integrating
over y, we obtain

F(l) = WJ deI

whence, after the use of the Cauchy theorem at n =0, we
obtain formula (178).

Classical Casimir law (179) is obtained from (176) under
the condition & , — co. In this case, under the condition
A < [, we have

ko
FJ dw Re J dpp\/k¢ — p?

0

< S [2/ki —p )]

We note that in (176), the part of the integral over p in the
range from k( to oo drops out because we should take the
imaginary part of a purely real (in this approximation)
expression in (177).

Changing the variable as x2=1—p?/k¢,
account that

+1
m”oz)n

n+1)° (159
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(184)

taking into
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where u,, = 2ko/(n + 1), and changing the order of integration
and summation, we obtain from (184) that
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F(i) =

(186)

The integration in (186) can be sufficiently easily performed
using the stationary phase method [71], namely, using the
Erdelyi lemma. For example, for the first integral in (186), we
have

sin u,

r OO 1 o0
3 - - 2 .
Jo dko kg =35 1) Im Jo dko kg exp [i2kol(n + 1)]

n

1
N —— . 187
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As a result, we obtain
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240 /4
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(188)



452 E A Vinogradov, I A Dorofeyev

Physics— Uspekhi 52 (5)

Finally, formula (180) is obtained from general expression
(176) for the force in the classical approximation. Namely, the
mean energy of a field oscillator is equal to O(w) ~ kgT,
because iy < kg T. In other words, we consider the spectrum
region where 1> /7 under the condition |¢| ™' <7< ..
General expression (176) then becomes

K1)

kgT Cdw [
2 ImJO UJ dp pq(rgyrgs + ro17,) exp (=241 ) .

w/c
(189)

In deriving (189), we neglected the exponential terms in the
denominator of (177), which corresponds to taking only the
first term in (182) into account, because |¢|/ > 1. In addition,
we ignored the part of the integral over p in the interval from
zero to ky, since, in view of the same condition, the integrand
contains a strongly oscillating function.

Using the new variable y = ¢/k¢, we see that the leading
contribution to the integral comes from the values y > 1,
because ko/ < 1 and 2koly ~ 1. In this approximation, the
Fresnel coefficients, as we already established, are indepen-
dentof y: 1P = (¢ — 1) /(¢ + 1), r® = 0. Introducing one more
variable, z = 2koly, and taking the integral, we can rewrite
Eqn (189) as

F(I) ~ (190)

kgT JDC dw
4n2[3

0

It can be clearly seen from (190) that the leading contribution
to the integral comes from the domain of low frequencies. We
now use the Cauchy theorem, according to which the integral
over a closed path of the integrand in (190) in the domain of
its analytic behavior in the right-hand quadrant of the
complex-frequency plane is zero. The first integration here is
performed along the real frequency axis; the second integra-
tion is carried out along the circle of a large radius R
counterclockwise in the angular range from 0 to wn/2; the
third integration is along the imaginary axis, on which the
integrand is purely real; and the fourth integration is
performed along the circle of a small radius p around the
point @ = 0 clockwise in the angular range fromt/2t0 0. As a
result, we obtain

“dw T
m | " () o) = =5 OB (19

Substituting (191) in (190), we obtain (180).

We note that the representation of the interaction force
in form (176)—(177) is suitable because it allows analyzing
the spectral features of the force density. Such an analysis
was performed in Refs [72, 73], whence it follows that a
substantial contribution to the interaction comes from the
electromagnetic eigenmodes of the cavity, which is due to
the vanishing of the denominators in Eqn (177), e.g.,
1 —rfirdyexp(=2q1) = 0.

In the case of interaction of identical materials, the
equation r? = texp (¢/) determines two modes correspond-
ing to symmetric and antisymmetric solutions of this
equation. It was shown in Ref. [74] that the appearance of
symmetric and antisymmetric modes corresponds to the
removal of degeneracy upon the hybridization of surface
states of isolated surfaces when they are located sufficiently
close to one another. Upon splitting, the antisymmetric mode

has a higher frequency than the symmetric one. In our case,
the antisymmetric mode corresponds to repulsion and the
symmetric one, to attraction, according to the results in
Ref. [73].

To conclude this section, we note that the authors of
Refs [61-64] used the general expressions for the interaction
force between two half-spaces to consider the interaction of
sufficiently rarefied materials for which the dielectric constant
only weakly differs from unity and for which, thus, the
additivity principle can be used; they obtained formulas for
the dispersion interaction between a molecule (microparticle)
and a half-space, as well as between two molecules.

5.1.2 Dispersion interaction between bodies in an incomplete
thermodynamic equilibrium. The number of works that have
investigated the dispersion interaction between bodies under
conditions of incomplete thermodynamic equilibrium is
much less than the number of works where the same
processes are studied under conditions of complete thermo-
dynamic equilibrium. The dispersion interaction between
half-spaces placed in thermostats with different tempera-
tures and separated by a plane-parallel vacuum layer was
first considered in Refs [75, 76]. In these works, an
expression was obtained for the spectral density of the
force acting between two half-spaces with different tem-
peratures for any thickness of the gap and any temperature
difference. The material of the half-spaces can be character-
ized by arbitrary complex dielectric constants and magnetic
susceptibilities. Various forms of writing the spectral density
of the force have been given. For example, if bodies 1 and 2
are in thermostats with the respective temperatures 77 and
T», the spectral density of the force acting on a unit surface
can be represented as [76, Eqn (9)]

- O(w, Ty) + Ow, T) > A A
(7) 10 mL pra\ 5t 5
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and B0y = q112)/¢- with q12) = [p* — &) M1(2>(w/0)2]1/2-
Following the general procedure adopted in this review,
we rewrite (192) using the Fresnel coefficients. For this, we
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directly verify that
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In addition, for the field of traveling waves (p < w/c), we
have ¢/q* = —1; therefore, it follows from (193) that
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and analogous expressions follow for the p waves.
For a quasistationary field (p < w/c), we have ¢/¢* = 1;
hence, it follows from (193) that

() |

=2qexp(—2ql)

(195)

.S s .S s
Rery Imrf, — Imr§, Rerg,

196)
: 3 (
!1 — T CXP(—ZW)’

and analogous expressions for the p waves.

Substituting (195) and (196) in (192) and keeping only
terms that depend on the distance between the bodies, we
rewrite the spectral density of the force that acts on the unit
area of the surface as

Fw(17 Tl) Fw([7 T2)
2 2

where F,,(/, T1) and F,(/, T,) are the spectral force densities
corresponding to equilibrium case (176) at the respective
temperatures 77 and 7. The third term in the right-hand
side of (197), which takes the temperature difference between
the bodies into account, can be represented in the form
AF, (I, Ty, T>) = AFP" (1, T\, T>) + AFEY (I, T\, T»), first sug-
gested in Ref. [77], where
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We note [75, 76] that the additional terms in formulas
(192) or (198) and (199) disappear in the absence of a
temperature difference or in the case of the interaction of
bodies with identical properties. Therefore, in considering the
Casimir forces between ideal materials, taking the tempera-
ture difference into account yields nothing new. The effect of
the temperature difference is also absent if A<y
(hw > kgT). The difference in temperatures manifests itself
at large distances under the opposite condition, i.e., if A > 7,
when O(T)) — O(T,) ~ kgT) — kgT>. Then the leading con-
tribution to the integral comes from the region where y > 1
because of the conditions ky/ < 1 and 2kyly ~ 1. Using the

same change of the integration variable in (199) as we made in
deriving Eqn (190), we find an additional term, which takes
the temperature difference into account in the expression for
spectral force density (197) and in the expression for the total
force per unit area of the surface:

T, — kgT-:
AF(l, Ty, T) %—%

) ,[OC %U (Im ) () Re gy (@) — Rergy () Imrfy () -
0 (200)

In contrast to the equilibrium case, the integrand in (200) is
not analytic; therefore, we cannot perform integration on the
complex plane and should use numerical methods. However,
it is evident that when simple approximations for the Fresnel
coefficients are known, analytic calculations can be advanced
still farther.

We note that the authors of Refs [77-70] studied the
problem of a dispersion interaction between an atom and a
half-space placed in thermostats with different temperatures.

5.2 Energy transfer via a thermally stimulated field
between two bodies located in thermostats

at different temperatures

The key role of the quasistationary field in the heat transfer
between bodies separated by a small gap appears to have been
recognized for the first time by Rytov et al. [4-7]. They
considered the case of heat transfer through a vacuum
plane-parallel gap between an absorbing half-space and an
almost ideal mirror located in thermostats with different
temperatures. Subsequently, many authors investigated the
problem of energy exchange between two half-spaces sepa-
rated by a planar gap (see, e.g., Refs [80-84]). One of the most
essential effects that were revealed was the phenomenon of a
sharp increase in the energy transfer in the case of a small gap
dbetween the bodies. The gap is considered small if it is of the
order of a typical wavelength of the radiative fluctuation
spectrum of the interacting bodies, e.g., of the order of the
Wien wavelength Aw. In other words, it was found that the
leading contribution to the energy transfer process comes
from the fluctuating near-field zone, similarly to how this
takes place in the theory of dispersion interactions.

In the last two decades, special probe microscopes for the
investigation of surface properties of solids have appeared in
experimental physics. Therefore, problems directly related to
the geometry of the probes have been considered [85-89]. It
has been shown that the rate of energy transfer is determined
by the temperature difference between the bodies, by the
distance between them, and by some resonance factors. For
example, in the case of a probing body of spherical shape and
a planar surface, such resonances correspond to quasistatic
Frohlich and Coulomb modes.

Along with theoretical investigations of heat transfer
between various objects, some experimental studies have
been performed. In the case of a plane-parallel geometry, an
anomalous increase in the heat flux was revealed [90] at small
distances between two parallel chromium films applied onto
glass substrates. A strong enhancement of heat transfer
between the probing body and a planar sample has been
found by many authors [91-94].

In this section, following [95], we consider the process of
heat transfer between two bodies of an arbitrary shape placed
in thermostats with different temperatures. For this, we take
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the system of two bodies, P (probe) and S (sample), of an
arbitrary shape, separated by a vacuum gap of some small
width d. The bodies are characterized by complex electric and
magnetic susceptibilities (ep and pp, and &g and ug, respec-
tively). They are in thermodynamic equilibrium with their
thermostats with the respective temperatures 7p and Ts. In
terms of the Langevin approach [6, 7], the random stationary
currents with specified statistics, which arise in such bodies,
generate thermostimulated fluctuating electromagnetic fields
inside and outside each body. The bodies generate and absorb
these fields. The entire system is out of thermodynamic
equilibrium; therefore, there exists a certain stationary heat
release rate inside the body with the lower temperature.

We define the heat power released, e.g., in the probing
body, as the difference AWp = W, — W_, where W, is the
power absorbed by the probe and W_ is the loss of power
inside the sample, thereby assuming that the probe is the only
factor responsible for the losses in the sample.

To determine the heat power absorbed by the probe, we
consider the total differential of the internal or free energy [12]
of the probe in external fluctuating electromagnetic fields Ey,
and Hy:

dUp:TpdSp—},ldE()—de(), (201)
de = 7Sp dTp —n dE() — de() s

where Sp is the entropy of the probe and p and m are the
electric and magnetic dipoles induced in the probing body by
an external (relative to the probe) thermostimulated fluctua-
tion electromagnetic field of the sample. The use of the first or
the second formula depends on the specific features of the
experiment. The power absorbed in the probe can be found by
averaging the time derivative of the corresponding energy:

E H
Sp = const: W+:<%>:_{<u %> +<m %> }7
S s

(202)

(320 (a28) )
S s

(203)

where the subscript ‘s’ denotes symmetrization and the
angular brackets denote ensemble averaging.

We note that terms of the form p? dE can be formally
added to Eqns (201), where pP is the intrinsic fluctuation
moment and E is the fluctuating field (induced by the moment
p*P) that is reflected from the sample. However, the reflected
field E carries virtually no information about the thermo-
dynamic state of the sample, unlike its intrinsic fluctuation
field Ey. Therefore, taking such terms into account in this
problem, we go beyond the precision that is used in deriving
the sought formula (based on the energy balance). Roughly
speaking, when ignoring this term, we neglect the temperature
dependence of the Fresnel coefficients.

There is no need to consider other possible combinations
of p*? dEj and p dE because the random quantities referring
to different thermostats do not correlate and the correspond-
ing products vanish after averaging.

In this section, we use the formal definition of the Fourier
transformation of all random functions of time in the
following form:

dw

All) = LO 2 Al) exp (~ion),

A= B, m, E(),H() . (204)

In what follows, in the formulas obtained, we consider only
the electric part, because the magnetic part is obtained
similarly. Representing the quantities p(¢) and Eq(¢) in form
(204) and substituting them in (202) or (203), we obtain

wo=| % DY )~ i) (£ () B (@) . (205)

where we use an equality that is valid for stationary processes:

(n (@) Eg(0")) = ou(w){Eq(w) Egi(w)) 2md(w + o),

(206)

in which o (@) is the polarizability tensor of the probing body
having the property oy (—w) = a;; (o) for purely real frequen-
cies.

The power of losses in the sample can be found using the
Poynting theorem:

1
W_ = __<J dl‘/ [jext(rlat) E(l‘,r’;[)
2 Vp

R )t z>]> , (207)

where Vp is the volume of the probe,
jext = (Op*P/01) 6(r —x’), pP is the intrinsic spontaneously
fluctuating dipole moment of the probe at the point r’, the
induced field is related to the response of the sample:
Ei(w;r,r’) = By (o;r,r’) we(w;r’), and By (w;r,r’) is the
corresponding linear response tensor.

Representing p*P(7) and E(7) in form (204) and substitut-
ing them in (207), we obtain

W J do Zﬁ;k Bkl )<H P(w) T (@) . (208)

Substituting (205) and (208) in the expression for the power of
heat released in the probe, AWp = W, — W_, and using the
FDT, we obtain the sought formula

* do
A= | 52 [s(0,T9) - O1(w.Ti)]
X Z2ocah Mw), Ts>Tp, (209)

where the superscript ‘ah’ corresponds to the anti-Hermitian
part and Og p(w) = (fiw/2) coth [hw/(2kgTs p)].

The FDT here was used for symmetrized quantities of the
form

(1P =

i0(w)
S (210)

— o

(D) 1y (@) ()],
) ="

O(w)

(Eoi(w) Egr( [ Bi(w) = Bu(@)] . (211)

Formula (209) determines the spectral density of the released
power

AWp(0) = ) Bit' ().

[O6s(w, Ts) — @p(w, Tp)] Zza;h(w
" (212)

We note that the formulas obtained are valid for interacting
objects of arbitrary shapes, whose optical properties can be
characterized by nonlocal susceptibilities.
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As an example, we consider, in terms of a local approx-
imation, the problem for an ellipsoidal probe made of an
isotropic material and placed close to a half-space. In this
case, as is known [12], the polarizability in the quasistatic case
is equal to

Vp gp(w) — 1

aii(w)zﬂl+(8p((ﬂ)71)ni’ I=x,),z

o (w) =

where n; is the depolarizing factor. In the same approxima-
tion, the linear response tensor is written as (see, e.g., Ref. [96])

B--(w) = 2B (w) = 2[},\’}’( ) = 4411’3 % :

In this example, the anti-Hermitian parts of the suscept-
ibilities are merely equal to their imaginary parts and in the
particular case of a sphere (n; = 1/3), the substitution of the
local expressions in (209) yields

o d_w 6Ll3 [@s(w, Ts) —
oo 2T d3
&p (@) &g (w)

|ep () +2‘2’ss(w) + 1!2

@p(w, Tp)]

awe = |

(213)

where «a is the radius of the sphere and d is the distance
between the center of the sphere and the planar surface. This
formula was first obtained in [87]. It can be clearly seen that
the spectral density of the power released is determined by the
temperature difference, by a given dependence on the
distance, and by the poles of the denominators, which give
resonance frequencies corresponding to Frohlich modes
(ep(w) = —2) and Coulomb modes (gs(w) = —1).

Along with the dipole approximation in the description of
the power of heat release, we can also use a multipole
description, based on the general expression for the interac-
tion energy

—JdrPE, (214)

where integration is performed over the volume of the probe,
P is the specific polarization of the probe material, and E is an
external field. It follows from this expression that
V= —wkEi — QiViE; — QijkV;ViEi — QijiiViViVIE; — ...,
(215)
where y; is the induced dipole, Q;; is the induced quadrupole,
etc. (see, e.g., Refs [67, 97]). In Eqn (215), any multipole is
denoted by Q, but the order of the multipole is uniquely
determined by the subscripts. The induced multipoles are
expressed through an infinite set of polarizabilities as
() = V(@) B+ ol 7 ()i +
0i(@) = a5 (@) B + ol 77 (0)ViEr + ..

ey

(216)

where the polarizability oc(l l>(w) characterizes the dipole
linear response of the system to the applied field, the
polarizability oc(ll‘2> (w) is the dipole linear response of the
system to the first spatial derivative of the field, o; 2/ k )( ) is the
quadrupole linear response of the system to the field, and so
on, for any multipole.

We emphasize that in the case of isotropic spherically
symmetrical objects in a coordinate system with the origin at
the symmetry center, only the diagonal terms o(*?) are
nonzero.

The total differential of the free energy can be written, by
analogy with the total differential in the dipole case (201), as

dFP = —SPdTP—,uldE Q,jdE,

"
Ql/kd jA, Q,‘_,‘k/dE — .y,

‘Tkli (217)

where the prime denotes differentiation of the ith component
of the field with respect to x;, dEj; =d(V;E;), dEj}, =
d(V;ViE;), and summation over repeated indices is under-
stood.

We determine the heat-release power AWE(,I) =
WU) W for an order-/ multipole. As an example, we
cons1der the case for a quadrupole /= 2. In this case, it
follows from (217) that dFp™ = —SpdTp — Q;;d(V,E;o) and
the expression for the absorbed power is

v () = (e *E)

After a Fourier transformation [Eqn (204)] of the functions
Q;;(t) and V,E,-ogt) and substitution of the induced quadru-
pole Qij(w) = 0,37 (@)ViEpo(w) from (216) in (218), we
obtain

(218)

2.2) L2
W — JOC do wz % (@) — o (@)
’ o 2m 2i

« (2Ele) 3Eolol).

Ox 0x;

(219)

To calculate the electromagnetic losses in the sample, we use
the same expression (207) from the Poynting theorem, with

j<ext — _ anglp(t) 65(1‘ — rl)
’ o o

where Q77 (r, 1) = Q;F(7) 5(r —r’). Substituting the external
current in (207), we obtain losses in the quadrupole approx-
imation:

we = <6Qaz( o a(x; l)>s'

(220)

Just as in the dipole case, the linear response of the sample in
the quadrupole approximation is expressed by a relation
E; = B; 1Qui» whence 0E;/0x; = (0f; 11/0x))Qui € Bij Q-
Making Fourier transformation (204) for the functions
0Q,7 (1)/0t and DE;(r, 1) /0x; and substituting the expression
for the spatial derivative of the field in (220), we obtain the
following formula for the power of electromagnetic losses in
the sample:

do
2 _
w> J 2

oy By i) 2—1 Braij(@) (07 (@) 0 (@) -

ijkl
(221)

The use of the FDT [by differentiating (211)] to the spectrum
of fluctuations of spatial derivatives of the sample field in
(210) and of the quadrupole moment in (221) yields the
sought expression for the power of heat release in the probe
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in the quadrupole approximation:

AW — LO ‘;E” [05(, Ts) — Op (0, Tp)]
X Zz o;; kl [ﬁij,kl(w)]ah (222)

ijkl

Itis obvious that a corresponding expression can be obtained
for any multipole interaction.

5.3 Shift and broadening of levels of a particle
in a thermally stimulated fluctuating field of a solid body.
Relaxation of the excited state
of a particle near a planar surface
If an atom or a molecule is placed in an electromagnetic field,
its level can shift by a certain magnitude; in addition, the
lifetime of excited states can change and the degeneracy can
be lifted partly or completely. When a particle is located near
the surface of a sample, its characteristics depend on the
distance between the particle and the surface and also on the
electrodynamic properties of the sample, because any body is
a source of a thermostimulated electromagnetic field. As an
example, we mention the shift 3E,(r) of some level a or the
lifetime of the excited state T = ! (r), where y,(r) = >, 7:(r)
is the decay rate of the state @, which is the sum of decay
probabilities per unit time via various relaxation channels.
The decay rate can be found in terms of classical
electrodynamics by assuming that the particle located at a
point ry near the sample is the source of a polarization
P(r, 1) = pexp (—iwt) 6(r — ry), which is associated with the
current density

itr, 1) = 2700

= —ilopd(r — 1) exp (—iwt) .

= j(r,w) exp (—iw?)
(223)

According to the Maxwell equations, this current generates
the field E(r,¢) = E(r,w)exp (—iw?) in the entire system
under consideration. Then, as is known [12, 32], the mean
power of losses in the particle—sample system is equal to

Im (p* E(ry)) ,

W= —% Re <J *(r, w)E(r,w)dr) :%
(224)

where the integration is carried out over the volume occupied
by the sources.

Given the power of losses, the decay rate is determined as
y = W/hw. In view of (224), the power of losses is a function
of the coordinate of the source, and hence the decay rate
depends on the mutual arrangement of the particle and the
sample. According to (224), it is necessary to find the field of
the dipole E(ry, ®) at the point of its location.

Substituting the value of the field at the dipole (77) in
(224), we obtain

-4 oo 21
WIﬁH—i—ﬂRJ J
3 0 0

dpd *(a@)ye 1S
- M[u (38)

pr
wo

+ 1 (B Py )1 rP] exp (2iwoh) . (225)
Taking into account that §=¢,cosp —eé.sing and

p = €, cos ¢ + &, sin ¢ and using the rule of multiplication of
a dyad by a vector, we obtain the power of losses in the form

given in Ref. [32]:

4
W:%W +Lk" RGJ dpp
2 0o Wo

e+ B s v ) exp i) (226

where ¢, = p. is the dipole-moment component perpendicu-
lar to the sample surface and d is the component parallel to
the sample surface, with |yH| = | |* + |y)| .

The first term in Eqn (226) determines the dipole radiation
power into free space; the interpretation of the second term
depends on the model of the dielectric constant and can
determine the losses for the excitation of electron—hole pairs
in the sample, the excitation of surface plasmon-polaritons or
phonon—polaritons, the excitation of quasi-stationary non-
radiative waves, etc. All these processes, as well as the
simplified expressions for the power of losses and the decay
rate, have been described in Ref. [32] in sufficient detail. From
(226), the expression for the normalized decay rate immedi-
ately follows:

() 1 mep

=1 R -/

Yo +2h ) 0o Wo
X {|HL|2P P4 "u“‘ (kgrs — wir p)} exp (2iwoh), (227)

where y, = ©’|n \2/3c3h is the rate of spontaneous decays in
the vacuum; we should take a doubled dipole moment in this
expression in order to obtain the correct quantum mechanical
expression for the Einstein coefficient.

The rate of decay of a state into other states of a particle in
a random stationary field can be found in the linear
approximation of the perturbation theory [9]. If, as usual,
the Hamiltonian of the interaction of a particle and the field
of the sample in the dipole approximation is V(¢) = —pE(?),
then we can find the probability of transition per unit time or
the rate of transition from the state ¢ into a certain set of states
n allowed by selection rules in the perturbation theory,

Yo=Y Top(@na) (228)

n

where p) is the matrix element of the ath component of the
dipole moment operator with respect to the eigenfunctions of
the unperturbed Hamiltonian and J,s(w) is the spectral
density of states, which is the Fourier transform of the
correlation tensor of the stationary field (E,(t")Ep(t")).
Hence, the rate of decay of a particle state is proportional to
the spectral density of states of the thermostimulated field of
the sample at the corresponding transition frequency.

The most consistent theory of the above processes was
developed by the authors of Refs [98, 99] on the basis of the
theory of linear response. We here give the main results
following from Ref. [99]. We consider the expression for the
level shift [99b, Eqn (2.13)]:

:__leuan na
0
XJ dw

from which the authors of [99b] obtained the final expression
for the level shift in the low-temperature limit, i.e., at 7 = 0.

Im Gp(ro, 1o; @)
[1—exp(—ho/ksT)|(w+ wpg)

(229)
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We obtain an analytic expression for the shift of the
energy level at an arbitrary temperature, which is very
important for the consideration of vibrational and rotational
transitions. For this, we use the Sokhotsky identity and write
(229) in the form

1 an ha
E, = _Ezn:““ It

JOO Im Gocﬁ(r(]a To; (U)
X dw -
oo [1—exp(—ho/ksT)] (0 + ®u, + in)
: n ,  na hwnn
—1 E ,u; Mg Im Goc/i(rOJOSwan) {1 — &Xp <7 kBT)} ’
(230)

where it is understood that # — 0.
In formula (230), we transform the integral as follows:

Jw da) Im Giﬁ(l‘o,l‘o;(l))

e [1—exp (—hw/kgT)](w + wuq + in)
7 lrc do Gap(x0,T0; @) — G 5(r0, To; @)
T20 ) [1—exp (—hw/kT)](® + Wy + in)

{JOC do Gp(ro, ¥o; )
i) [l —exp(—tiw/ksT)](® + wpq + in)

1
2
3 JOC do Gp(xo, 105 ) }
[1 —exp (hw/ksT)| (W + in — )

= h -, (231)

where we change the variable as w = —w in the second
integral and use the property of the Green’s function
G,5(—w) = Gyp(w) on the real frequency axis, which is valid
for nonmagnetic materials.

We note that the integrands in (231) have an infinite
number of simple poles on the imaginary frequency axis at the
Matsubara frequencies &, = 2mmkgT/h, m=0,1,2,..., as
well as poles at the points ® = —w,,, — iy and © = w,, + iy in
the complex frequency plane (Fig. 17).

To perform the integration in (231), we take into account
that the Green’s function is analytic in the upper part of the
complex plane; therefore, we consider auxiliary contour
integrals. For the integral J;, the contour C; includes the
path from —oo to oo, with the point @ = 0 bypassed clockwise
from above along a small semicircle; this path is closed by a
large semicircle in the upper part of the complex plane; the
point v = —w,, — i is outside this contour. For the integral
J>, the contour C; also includes the path from —oo to co; the

.
W= —Wpqg — i’7

Figure 17. Integration contours C; and C, on the complex frequency plane
for the integrals J; and J, in (231). The poles at the points i&,, are
conventionally shown on the imaginary axis.

point w =0 is bypassed clockwise above along a small
semicircle; this path is also closed by a large semicircle in the
upper part of the complex plane, but the point w = w,, + iy is
inside the contour. The integrals along such contours are
equal to the infinite sum of residues (times 27i) at the simple
polesié,, (m=1,2,...)inside the integration contour for the
first integral; for the second integral, we should add the
residue at the point w = w,, + iy. By dividing these contour
integrals into integrals along separate paths and calculating
semiresidues taken with the opposite signs at the point w = 0
for the first and second integrals, we find the values of J; and
J> in (231). As a result, substituting the values of the integrals
in (230), we obtain, after the limit transition # — 0,

2k T - G,p(ro,10;1E
= 5 ana:ui 'uﬁ[/Z 7/}(0 0 m)

2
m=0' w%a—i_é’:m
-1
fz,u‘"’,u"a Re Gup(ro, Y05 0an) | 1 — exp 77’160“,,

— " TP ’ kgT ’
(232)

where the prime at the lower limit in the second sum (m = 0)
implies that this term should be taken with half the weight.
As T — 0, the Matsubara frequencies &,, = 2nkgTm/h
become ‘concentrated’ and the summation in (232) can be
replaced by integration in accordance with the usual rule:

> - [peac.

m

where p: = (0¢/om)~" = h/2nky T; as a result, we obtain low-
temperature formula (2.22) derived in [99]:

an , na ¥z G l‘o,l‘o;ié
:—*ana#oc Hg JO dCM

w2, + &7
- Z ‘u:n’u;}m Re Goz/i(r07 Io; wmz) 0((1){”1) 5
n

na

(233)

where 6(x) is the Heaviside function.

Changing the order of summation in (232) and using the
expression for the dipole—dipole polarizability of the particle,
which is invariant under time inversion,

o 2x Ona 1"
ogs(il) == E —_— (234)
off 2
h n w%!l + é

we obtain the formula

6Ea = _kBT Z Gxﬁ(rOarO;iém) o‘:ﬁ(iém)

m=0'

ho -
_ En:'u;m'u/’;a Re Ga/;(l‘(), Io; wa,,) |:1 — exp (—ﬁ)] ,

(235)

which is valid at any temperatures. At 7=0, Eqn (233)
becomes

n

8E, = —%L A& G (1o, ro3 i) o (i6)

- Z Némﬂga Re Gaﬁ(r07 r; wna) Q(wan) .

n

(236)
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As was shown in Refs [99], the Green’s function
Gy = Go?/), + G;};, which enters all the formulas, is a sum of
the Green’s function for free space

Gflf(r,ro) = FMO/{(r7 ro) + 410,30(r — 19)
and the Green’s function
G (r,x0) = F5(r, 1)

that determines the effect of the sample. To take this effect
into account, we should use Gf/f(r, ro) in all the formulas
containing the Green’s functions. It is obvious that having
found the level shift, we can determine the shift of the
transition frequency under the effect of the sample, e.g.,
between the states a and b, as dw,, = (3E, — OEp) /T

We also give the formula obtained in [99] for the rate of
transition of a particle from a state a into a certain set of states
{n} at any temperature:

Ya = 2h71 Z‘u;n'uga Im G;}g(rml‘o; wna)

x |1 —exp|— hdna h
P\ "kt )|
It can be easily shown that (237) follows from (228) by using
the relation [99]

(237)

-1
sz/f(ral";(l)) = 27{1 — exp <—%)} Im G;}(r,r’;a))_

We note that the authors of [99] used the interaction
Hamiltonian in the form V' = —pD, where D(r,¢) =
E(r, 1)+ 4mpu (1) O(r — rp) is the transverse displacement field;
this Hamiltonian differs from the more usual interaction
Hamiltonian V" = —pE. However, as was shown in [99-
102], the total Hamiltonians that include parts describing the
interaction are connected by a certain unitary transforma-
tion. As a consequence of this identity, the corrections
calculated in the perturbation theory are equal:
SE(V') =3E(V").

To conclude this section, we note that the above-
considered problems can also be solved using various other
methods. We only tried to illustrate the efficiency of the
application of the theory of thermostimulated fields induced
in solids. We also note that in recent years, works have
appeared in which such problems were considered under
more complex conditions, e.g., problems of spontaneous
emission of a particle near nanoobjects (see, in particular,
Ref. [103]).

6. Conclusions

Thermostimulated electromagnetic fluctuations, just like
Brownian motion, are a natural physical phenomenon that
requires no special preparation. Its role in nature can hardly
be overestimated. The problems of fluctuation electrody-
namics are directly related to problems such as the van der
Waals interaction of bodies, heat transfer between bodies
separated by a vacuum gap, the capture of atoms, molecules,
and coherent material states by electromagnetic traps, and a
number of important physicochemical phenomena near the
surface of condensed media, such as adsorption and
desorption of atoms and molecules.

Theoretical methods for calculating the properties of
fluctuating electromagnetic fields in fact amount to solving a
mathematical physics problem based on the set of Maxwell
equations in a chosen geometry with given boundary
conditions and to the application of the fluctuation—dissipa-
tion theorem. Modern theories have allowed unambiguously
separating the thermal field of a heated body into two parts, a
propagating field, which can exist without a source that
generates it, and a near quasistationary field, which is
completely related to the heated body itself. In foreign
literature, the near quasistationary field is called the evanes-
cent field. An analysis shows that the statistical properties of
these two parts of the single thermal field differ substantially.
In particular, the characteristic length of the spatial correla-
tion of traveling waves is of the order of the Wien wavelength,
whereas in the case of the near field, this scale can be of the
order of the distance to the body surface. We note that in the
important case of thermostimulated radiation of plane-
layered media, all correlation properties of fields can be
expressed through physically clear electrodynamic character-
istics, namely, through the Fresnel coefficients of the
interfaces.

The theoretical methods of solving the problem of
thermostimulated fields allow investigating both the case of
a complete thermodynamic equilibrium and the practically
very important case where the temperature of the body differs
from the temperature of the surroundings. We note that the
spectral characteristics of thermostimulated fields necessarily
contain resonance features related to the intrinsic states of the
body surface, the so-called surface polaritons. This allows
studying the electrodynamic properties of the surface and its
states.
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