
Abstract. Some paradoxes are discussed concerning the inter-
pretation of the passage of particles and electromagnetic waves
(pulses) across potential barriers and through nonuniform med-
ia, in particular, those with frequency dispersion and therefore
dissipation. It is emphasized that a rigorous nonstationary
approach does not entail any supraluminal velocities for the
transfer of physical substances, although supraluminal veloci-
ties are indeed possible for several kinematically defined velo-
cities, e.g., for the group velocity.

The Hartman paradox [1, 2] consists in the fact that the
quantum particle tunneling velocity, defined in terms of the
time of phase delay (`phase tunneling time' tp), may exceed
the speed of light c. This paradox emerged long before the
publication of Hartman's paper (see review [2]). Similar to
the Hartman paradox is the Einstein±Podolsky±Rosen
paradox [3±5] and its related supraluminal `velocities of
information transfer.' Supraluminal velocities also emerge
in other papers of the past century and especially in recent
works concerned with the tunneling of electromagnetic
waves [2] and the propagation of pulses through different
dispersive media and structures [6±14], including active
structures, left-hand media, and photonic crystals (PCs)
[15]. Thus, different paradoxes occur. Meanwhile, as stated
by R Feynman, real paradoxes never occur in physics: ``The
paradox is only a conflict between reality and your feeling
what reality ought to be'' [16, p. 58]. Such a conflict often
occurs due to substitution of concepts or when certain
concepts are illegitimately applied to phenomena. Although
it is implied in review [2] that the occurrence of `supraluminal
velocities' and sources may not lead to a higher-than-c
energy or information transfer velocity, this circumstance is
not stressed and the corresponding explanations of the
paradox are not given.

Physical processes are subdivided into stationary (peri-
odic in time) and nonstationary (arbitrarily time dependent).

Single-frequency (harmonic in time) and multifrequency
processes are also among the stationary ones, as are static
(time-independent) processes. Naturally, there are no strictly
stationary processes in nature; however, the notions true only
for stationary processes are often applied to the nonsta-
tionary ones.

Specifically, we consider the tunneling of a quantum
particle across a potential barrier. The particle is assigned
certain values of energy E and momentum, i.e., the wave
function in the momentum representation describes a plane
wave to the left and to the right of the barrier and two
counterpropagating plane waves inside the barrier. Accord-
ing to quantum mechanics, the particle coordinate to the left
of the barrier is equiprobable throughout a semi-infinite
interval (the same applies to the domain to the right of the
barrier) and the phase of the wave function is defined up to
2pn, and it is therefore meaningless to speak of tp-based
`tunneling time' at all. It is always possible to choose the
barrier profile in such a way as to satisfy the equality tp � 0,
i.e., to have the infinite tunneling `velocity.' Only the
tunneling probability is meaningful. This signifies that it is
possible to acquire statistics on discovering particles to the
left and right of the barrier for a large number of experiments,
and that averaging over the ensemble for the same initial
states of the particles at the left for t � ÿ1 would yield the
transmission and reflection probabilities.

Similarly, it makes no sense to speak about the transmis-
sion velocity for a stationary electromagnetic wave (harmonic
signal) through a filter: it merely changes the amplitude and
shifts the phase. The phase shift implies that we obtain the
same value of the signal at a forward or backward distance on
the time scale equal to an (arbitrary) integer number of
periods, i.e., this process is inherently not a `signal.' A
periodic process is infinite in time, and its past is perfectly
defined, while its future is perfectly predictable. Furthermore,
for a periodic process, there is no current (instantaneous)
time. As soon as current time is introduced (and, accordingly,
the instantaneous spectrum), an aperiodic process is implied
(the future is not defined). In dynamics, the wave function of a
particle `incident on a barrier' is a wave packet whose
momenta are distributed over some (strictly speaking,
infinite) domain, and the coordinate is also `blurred,' i.e.,
defined with some probability density.

Quasiperiodic processes are considered quite frequently,
especially in the theory of pulse propagation [17±20]. A pulse
is a nonstationary wave, and various velocities may be
introduced for it. For a stationary electromagnetic wave, it
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is possible to introduce two velocities: the velocity of energy
transfer ve�o� and the phase velocity vp�o� � ko=k 2 (we do
not consider the pulse transfer velocity). An electromagnetic
wave is the energy wave carried by photons with the speed of
light c. The energy velocity ve in a medium is defined by the
combined action of absorption and reradiation (possibly
delayed) of photons by the particles of the medium in
different directions, i.e., ve depends on the material disper-
sion and the inhomogeneity properties of the medium. That
is why ve cannot exceed c in magnitude, whereas the phase
velocity vp is a kinematic velocity. No transferable material
substance corresponds to this velocity, which may exceed c
in modulus.

It is noteworthy that there exist dispersive media (to be
more precise, dispersion laws) for which ve�o� � vp�o� in a
monochromatic wave. Examples are provided by metals at
low frequencies, distilled water, and sea water [21].

The energy wave velocity (the velocity of energy transfer)
ve may also be determined by the structure. In hollow
perfectly conducting waveguides, for instance, ve is defined
by the spatio-spectral group of twowaves (for theH10 wave of
a square waveguide), of several or an infinite number of waves
(for other waves and waveguides), which propagate with a
speed c at different angles to the side walls and experience
perfectly elastic reflections from them. In PCs and slow-wave
structures (SWSs), ve is determined by rereflections from the
layers or other periodic inclusions.

It is customary to introduce the group velocity vg � jvgj �
�qk 0z�o�=qo�ÿ1 proceeding from the one-dimensional disper-
sion law kz�o� � k 0z�o� ÿ ik 00z �o� (here, k 0z�o� is the phase
constant and k 00z �o� is the damping constant), unreservedly
assuming that ve � vg. Of course, there are papers contain-
ing indications that vg is meaningless in dissipative and
active media and structures. Mathematically, vg may
formally be introduced, but there are no grounds to do
this for a monochromatic wave because there is no spectral
group of waves. Here, a substitution of notions occurs,
which results in paradoxes [15, 22]. In particular, for several
media and structures, it is possible that vg > c [2, 9±12, 15,
21±24].

Stokes introduced the group velocity as the beating
propagation velocity of two monochromatic processes with
infinitely close frequencies. Naturally, this is a kinematic
velocity, which does not correspond to the transfer of any
physical substance. Meanwhile, in a wealth of papers, text-
books, and monographs, the group velocity is identified with
the energy transfer velocity without reservations.

This may bring up the question: What about the
Leontovich±Lighthill theorem [23, 25±29] stating that
ve � vg in conservative systems with a Hamiltonian that is
quadratic in generalized coordinates and momenta? There is
no doubt that the energy of a monochromatic wave is
transferred with a group velocity along the axes of hollow
waveguides and loss-free SWSs (but not along any direction),
in loss-free PCs without material dispersion, and in collision-
less plasmas along the direction of Hko�k�. However, there
are no perfectly conducting materials or loss-free materials in
nature, and in a transient case, this is not strictly fulfilled even
without dissipation [19]. Dispersion is always associated with
losses, as losses are associated with dispersion [30]. That is
why the notion of low losses is introduced, whereby it is
supposedly legitimate to use vg. But even in this case, it is
possible that vg > c in the opacity bands of waveguides, PCs,
and SWSs [15, 24], which acquire a low transmittance in the

low-loss case, as well as in regions with anomalous dispersion
in different media [15, 31, 32]. Furthermore, when losses tend
to zero, vg !1 in these bands. The same occurs in active
media [10±12, 22].

That is why the group velocity is introduced with several
reservations in the modern literature. It is assumed that it can
be used in transmission windows, where losses are negligible.
However, when considering oscillator models of media (both
classical and quantum) [32], it is easily seen that an infinite
oscillator frequency separation corresponds to perfect trans-
mission windows of final width. In this case, the dispersion
vanishes, i.e., vg � vp � ve. In dispersion theory, vg is
commonly introduced as the first approximation in using
asymptotic techniques for calculating the spectral intervals
that correspond to the pulse propagation [17±19]. Higher
approximations may also be considered by taking the
distortion of the pulse shape during propagation into
account.

This approach is asymptotic (i.e., not rigorous [18]). In
this case, once again, a substitution of notions commonly
occurs: the pulse propagation velocity is identified with vg.
Several velocities may be introduced for a pulse: the precursor
velocity, the velocity of the leading edge, the velocity of the
trailing edge, the travel velocity of the envelope peak, the
velocity of the pulse as a whole [20], the velocity of energy
transfer at each specific point of the pulse, the velocity of
signal transfer by the pulse, etc. It is meaningless to speak
about the pulse velocity without concretization [20, 33, 34],
for instance, about the velocity of a cloud, each part of which
moves with its own velocity. The velocity Ve of motion of a
pulse as a whole may also be defined in several ways, for
instance, spectrally.

Let S�o� be the spectral energy density of a pulse, i.e., let
the energy E�t� have the form

E�t� � 1

2p

�1
ÿ1

S�o� exp �iot� do : �1�

Pulse energy (1) is a function of time, which decreases in
dissipative media and increases in active ones, and
S�o� � S ��ÿo� may be defined in terms of the field
intensities (the pulse shape) and the parameters of the
medium. The energy flux in the range do is ve�o�jS�o�j do,
where ve�o� is the spectral energy transfer velocity at a
frequency o. Therefore,

Ve�t� � 1

2pE�t�
�1
ÿ1

ve�o�
��S�o��� do

� 1

pE�t�
�1
0

ve�o�
��S�o��� do : �2�

The energy density in `supraluminal pulses' in active media
increases with time, and invariably Ve < c in this case. We
emphasize that the energy velocity ve�r; t� defined by Umov is
also a function of the coordinates of a point in space, and
therefore expression (2) defines the global velocity.

Let a plane pulse propagate along the z coordinate.
Relation (2) is applicable to diffraction from the inhomogene-
ities of the medium. In this case, for plane monochromatic
waves, there is an analogy to quantummechanics: the passage
of a particle with an energy E across a barrier or a well with a
potential U�z� corresponds to diffraction by a dielectric layer
with the permittivity e�z� � 1ÿU�z�=E. In the diffraction of
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the pulse, a part of the pulse is reflected and travels with a
negative velocity; in this case, there may be two or more
maxima in the time dependence, depending on the function
U�z�. When a particle passes across a barrier, it makes sense
to speak only about the rate of probability density transfer or
of the velocity of probability density peaks; in this case, it is
well to bear in mind that the SchroÈ dinger equation is a first-
order equation in time, i.e., is not relativistically invariant.

Proceeding from the dispersion law kz�o�, it is possible to
introduce an infinite number of quantities like vg with the
dimension of speed. One may consider the velocity of signal
transfer by a pulse, the velocity of motion of the leading edge,
and the velocity of energy motion in the pulse, which are
commonly identified but do not coincide in general. In
particular, the velocity of signal transmission is defined by
detection and depends on the sensitivity of the detector, its
response time [2, 18], and the velocity of the leading edge,
while the velocity of energy motion is different in different
parts of the pulse: it is highest in the precursor and lowest in
the tail [34], while in the middle part, it is not equal to the
velocities at the edges. The velocities of wave fronts may also
be defined in different ways, for instance, as the velocities of
the peaks of envelope derivatives. The envelope itself should
be defined in terms of the analytical signal [18]; however, this
approach is usually hard to realize, and therefore methods of
averaging, like the moving average, are typically used.

It is quite frequently stated that a pulse moves as a whole
with a velocity vg when the spectral width Do of the signal is
small in comparison with the carrier frequency o0 (a
quasiharmonic process). However, in reality, the spectrum
of a pulse is always infinite (albeit with a low energy at very
high and sometimes low frequencies), and spreading inevita-
bly occurs at long distances. That is why in this case, too, vg is
nomore than the first approximation to the velocity of a wave
front in the absence of dissipation, which is inevitably present.
There is no way of satisfying the condition Do5o0

rigorously (it can be satisfied only approximately, when the
energy of the frequencies joÿ o0j > Do is neglected).
However, in passing to the limit Do! 0, we obtain a
monochromatic wave, in which the velocity of energy motion
is in no way related to vg [21] and there is no spectral wave
group! It is noteworthy that in waveguides, there is a spatio-
spectral group of waves that travel (and transfer energy) with
a velocity c at an angle to the axis.

Therefore, the equality vg � ve � c 2=vp is a consequence
of geometric (kinematic) relations. In a collisionless plasma,
charged particles oscillate with the phase shift ÿp=2 relative
to the field of a plane wave and reradiate energy in both
directions, i.e., there are forward and backward energy fluxes
with the velocity c. This is clearly seen from the one-
dimensional integral equation (IE) for the electric field Ex�z�
with the one-dimensional scalar Green's function (GF)
G�zÿ z 0� � ÿi exp �ÿik0jzÿ z 0j�=�2k0� and the polarization
current Jpx � ÿie0o2

pEx�z�=o in the integrand. For o > op,
the forward flux prevails over the backward one, and the total
flux moves with the velocity vg. For o � op, both fluxes
cancel, the energy does not propagate (when the plasma
structure is infinite in size), and the field ceases to depend on
z and acquires an oscillatory character. Specifically, we have
the IE

Ex�z� �
io2

p

2co

� L

ÿL
exp

ÿÿik0jzÿ z 0j�Ex�z 0� dz 0 : �3�

In this case, with infinitely low losses k0 � o=cÿ id, d! 0,
and infinite layer thickness L!1, the condition
Ex�z� � const implies that o � op. For all z, the particles
oscillate in phase and radiate waves equally in both directions
with the velocity c, and the resultant flux is zero. A wave with
the phase velocity vp � c=�o2 ÿ o2

p�1=2 satisfies Eqn (3).
When o < op, Eqn (3) has a damped solution Ex�z� �
E0 exp �ÿ�o2

p ÿ o2�1=2z=c�, and the fluxes are again compen-
sated in this case. The situation is different in a collisional
plasma, in which there is always an energy flux. The group
delay time can no longer be used in the tunneling across a
plasma layer.

Another substitution of notions is encountered quite
often: the energy velocity is defined in terms of the Poynting
vector and the energy density (which is entirely correct); but
for the energy density, the formula introduced by Brillouin is
used, which involves differentiation of the permittivity with
respect to time [30] and fits ve to vg. It is pertinent to note that
this result (like the introduction of vg) was obtained in the first
approximation and on the basis of asymptotic expansions (in
the sense of Ref. [18]), which are not necessarily convergent.

A rigorous analysis invites derivation of higher-order
corrections and investigation of the convergence of the series
obtained. In transmission windows (where there is no
dispersion), vg � vp � ve and Brillouin's result is trivial. The
introduction of ve�t� therefore calls for a rigorous determina-
tion of the energy density per unit volume. It is a function of
time and is defined by the free energy of the field and matter
[21, 29, 33]. Therefore, it is necessary to consider the entire
prehistory of the field±matter interaction and to take both the
accumulated field energy and the accumulated energy of
matter particles into account [21, 32]. This cannot be done
for purely monochromatic processes: they should be approxi-
mated by quasimonochromatic processes, for instance, with
amplitudes smoothly increasing up to a specified magnitude.
For a monochromatic process, ve may be rigorously intro-
duced by a limiting process starting from a quasimonochro-
matic process [21] with the inclusion of its prehistory.
Interestingly, for an electromagnetic field in empty space,
which is void of moving particles, the dependence of energy
on the prehistory is naturally neglected [35]. Ordinarily, the
field energy is transferred (when there are no matter fluxes).
That is why in the transmission window of a collisionless
plasma, the inclusion of the particle oscillation energy yields
ve � vg < c [32], while the inclusion of only the field part of
the energy leads to the incorrect result ve � vp > c.

It follows from the aforesaid that the group delay time tg
cannot be used as the tunneling time in stationary processes
either. For low-loss quasimonochromatic processes, it may be
used approximately [18] and with great caution. Naturally,
wave packets are to be considered in the case of tunneling. To
such a packet, there corresponds a particle with an uncer-
tainty in momentum and coordinate, while the packet
velocity is the probability transfer rate. This also brings up
the question: What is meant by the tunneling velocity? It may
be defined as the probability transfer rate from the velocity of
the peak of the squared wave function (of the peak of the
squared envelope). In the electrodynamics of continuous
media (and of active media, in particular), the velocity of the
envelope peak, which may be much higher than c [6], is a
kinematic characteristic unrelated to energy transfer. The
envelope itself defined in terms of an analytical signal may
have a supraluminal precursor [18]. This does not violate the
causality principle because the envelope is not a signal and is
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not bound to obey this principle [18]. In this case, a
discontinuity travels with the speed of light, while the real
Sommerfeld±Brillouin precursor propagates at a velocity
slightly lower than c.

So, what is the way to solve the problems involving the
tunneling of electromagnetic waves (pulses) through nonuni-
form structures? The answer is simple: these problems pertain
to nonstationary electrodynamics and should be solved by its
methods, i.e., on the basis of the solution of transientMaxwell
equations with the inclusion of matter dispersion (temporal
and spatial). This approach is also pursued, in particular, in
the works of the author of Ref. [2] (see, e.g., Refs [36, 37]).
There are several numerical approaches, for example, finite-
difference, finite-element, and variational.More suited to this
purpose are the methods of spatio-temporal IEs and integro-
differential equations based on the spatio-temporal tensor
GFs [33, 34, 38]. These functions satisfy the causality
condition, with the consequence that the solution of the
equations also satisfies it.

This signifies that supraluminal velocities cannot occur
for real quantities (the velocity of field energy andmomentum
transfer, the velocity of motion of the field front, etc.) defined
in terms of these fields. The highest possible velocity of
discontinuity motion is c. In a stationary case, it makes
sense to speak about the energy (and momentum) transfer
rate across some small nonclosed surface, but not about the
tunneling velocity. As regards the transient quantum
`supraluminal' tunneling, i.e., the tunneling of wave packets,
there are special features [39] arising from nonlocality. In
particular, it is meaningless to formulate the problem in terms
of the time of particle residence inside the barrier [39], i.e., also
on its transit velocity. In this case, the situation is similar to
the possible `mathematical' supraluminal envelope of a pulse,
whose energy (and hence the signal and all perturbations) is
transferred with subluminal velocities, while the envelope
may have a nonzero value ahead of the discontinuity [18].

In the introduction of different velocities, it should
therefore be clearly defined what precisely is implied by this.
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