
Abstract. A possibility to see the infinite future of the Universe
by an astronaut falling into a black hole is discussed and ruled
out.

1. Introduction

Black holes are considered to be quite usual objects in
modern astrophysics. There is convincing observational
evidence for their existence (see, for example, review [1]).
According to the common point of view, there is a black
hole at the galactic center, and black holes reside in quasars
and cause their bright emission due to the `eating' of
infalling stars and interstellar gas. In contrast to super-
massive black holes in galactic nuclei and quasars with a
mass of millions of times the Sun, there are less massive
black holes which are observed in binary systems due to
their interaction with the companion star. However, when
attempting a theoretical description of a black hole in the
context of General Relativity, some disagreements appear,
both in special and popular literature. Because of this, the
aim of our notes consists in examining some of these
discrepancies.

Here we shall follow Einstein's general relativity. In
alternative theories, for example, in the field theory of
gravitation [2], there can be no black holes at all.

There can be static, rotating, and charged black holes.
They are described by the Schwarzschild (1916) [3], Kerr [4],
Reissner ±NordstroÈ m [5] (charged nonrotating), and Kerr ±
Newman [6] (charged rotating) metrics, respectively. Yet the
common point of view is that the charge of a black hole can be

neglected if it was produced from the core collapse of a star
consisting of ordinary nucleons and electrons [7].

Consider the best studied case of a static black hole.
What would an astronaut falling into such a black hole see?
In all textbooks in which general relativity is considered (see,
for example, Ref. [8]), one can read that there are two frames
of reference. The first frame (call it A) is related to the Earth;
the second one (B) is related to the astronaut falling upon the
black hole. In the first frame of reference, the astronaut will
forever approach the surface of the black hole (the horizon
at the Schwarzschild radius of the black hole) but never
reach it. In the second frame, the astronaut will reach the
Schwarzschild radius in a finite time interval and cross the
black hole horizon, but any signal produced by him can
never reach an observer on the Earth. And here such a non-
naõÈ ve physicist as Yuval Ne'eman asks a naõÈ ve question:
``How can B be allowed his (or her) frame of reference, in the
equalitarian regime of covariance, if we can claim in all
finality that B will never cross the Schwarzschild radius, in
our spacetime reality?'' [9]. Similarly, the collapsing star will
never cross its Schwarzschild radius in frame A. Next,
Ne'eman asks how one can ``add to eternity A the extra
half-hour B spends inside the black hole.'' He calls the
emerging situation `surrealism' Ð the hypothesis for the
existence of different realities, one of which is not only
unavailable but also impossible for another. Let us attribute
this observation to the problem of the correct `philology' and
accept that the brave astronaut is capable of passing from
one reality to another.

The situation discussed byNe'eman is usually described in
terms of the complete and incomplete frames of reference. For
example, frame A is incomplete since one cannot describe
there events inside the black hole, while frame B in the
Kruskal ± Szekeres coordinates [10] is complete. This
answer, of course, was known to Ne'eman, but apparently
was not fully satisfactory to him. The time of the astronaut
inside a black hole is in no way related to our time on the
Earth, and, as was mentioned above, it can no way be `added'
to it. Furthermore, there is a purely mathematical problem
related to the singularity of the very transform of passage
from A to B at the Schwarzschild radius, which has been
discussed by theoreticians ever since the appearance of the
Schwarzschild black hole solution [11].
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Let us agree, however, with the commonly accepted
opinion with regard to the astronaut's crossing the Schwarzs-
child radius. Let us ask: What will he see when approaching a
black hole? In the popular literature [12] (see also Ref. [13]), a
very attractive picture for future tourists to the galactic
nucleus is suggested: the astronaut can see all the future of
the Universe. ``A spacecraft with astronauts approaching a
black hole will appear to the Earth's observer as braking its
motion but never crossing the black hole horizon. If the
situation is reversed and we analyze it from the point of view
of the astronaut lingering near the horizon, then the rate of
events in the external Universe is extremely accelerated:
virtually in one moment of his time the astronaut will see the
infinitely long development of events in the externalUniverse.
He will see how our Sun expands to become a red giant, how
the Earth evaporates from the hot solar rays when sliding
over upper layers of the dying Sun's atmosphere, how the
outer hydrogen envelop detaches from the Sun that ultimately
turns into a white dwarf Ð in short, the astronaut will see the
future of our Universe!'' The astronaut will observe all that
over a finite time interval in the frame of reference B. Is that
the case?

A similar statement can be read in the translator's notes to
book [14], `explaining' to the reader considerations of the
author, Stephen Hawking (!). The same picture for an
observer sitting on the surface of a collapsing star is
suggested in the popular book [14]: ``It appears to such an
observer that the time in the external space runs at a growing
rate and instantly reaches the very `end of all times'.''
Unfortunately, we must disappoint future astronauts and
popular book readers. The astronaut falling upon a black
hole is never seeing the infinite future of our Universe! To
clarify this, let us write out several formulas.

2. Free fall upon a Schwarzschild black hole

Consider free fall upon a static noncharged black hole in
Schwarzschild coordinates in which the metric has the form

ds 2�
�
1ÿ rg

r

�
c 2 dt 2 ÿ dr 2

1ÿ rg=r
ÿ r 2�d# 2� sin2 # dj 2� : �1�

Here, rg � 2Gm=c 2 is the gravitational radius of the black
hole, and c is the speed of light.

Radial geodesics in metric (1) satisfy the equations (see
Ref. [16])�

dr

c dt

�2

� rg
r
� e 2 ÿ 1 ;

dt

dt
� e

1ÿ rg=r
; �2�

where e � const. For timelike geodesics, t is the proper time
of a moving particle, and e is the specific energy: a particle
with the rest mass m0 possesses total energy em0c

2 in the
gravitational field (1).

If the particle's fall starts from rest at some distance
r0 > rg then clearly (see the first formula in Eqn (2) at
dr=dt � 0) e � �������������������

1ÿ rg=r0
p

and, hence (after dividing the
first equation by the square of the second one and extracting
the root)

dr

c dt
� ÿ

�
1ÿ rg

r

��
1ÿ 1ÿ rg=r

1ÿ rg=r0

�1=2
: �3�

Integrating (3) yields the following expression for the time
tÿ t0 of free fall from the point r0 (a particle at rest) at the

instant of time t0 to a point with coordinate r < r0:

tÿ t0

� rg
c

� �������������
x0ÿ 1

p �
�2� x0� arctan

��������������
x0ÿ x

x

r
�

�������������������
x�x0ÿ x�

p �
� 2 ln

� �����������������������
�x0 ÿ 1� x

x0

r
�

�������������
1ÿ x

x0

r �
ÿ ln jxÿ 1j

�
; �4�

where x0 � r0=rg, and x � r=rg. The free-fall time obviously
increases logarithmically in rÿ rg with no limit for x! 1, i.e.,
r! rg.

It might be possible to assume that, during this infinite
Schwarzschild time, the light rays from events that are
arbitrarily remote in space and time could catch up with the
freely falling astronaut. Let usmake sure, however, that this is
not the case. It should be noted, first of all, that the proper
time of the astronaut falling upon a black hole is finite.
Indeed, for the proper time tÿ t0 of motion from r0 to the
point with radial coordinate r we obtain from Eqn (2):

tÿ t0 � 1

c

� r0

r

dr���������������������������
e 2 ÿ 1� rg=r

p : �5�

If the free fall occurs from the state at rest, then one has

tÿ t0 � r0
c

�����
r0
rg

r  
arctan

�������������
r0
r
ÿ 1

r
�

���������������
r

r0
ÿ r 2

r 20

s !
: �6�

Notice that time interval (6) is exactly the same as the
appropriate free-fall time in Newton gravitational theory!

Now consider the radial motion of a light ray. From the
condition ds � 0, we get

dr

c dt
� �

�
1ÿ rg

r

�
; �7�

which implies the photon propagation time from r0 to r:

tÿ ts � r0 ÿ r

c
� rg

c
ln

���� r0 ÿ rg
rÿ rg

���� ; �8�

where ts is the time of the photon start. Thus, the photon
propagation time in the Schwarzschild coordinates increases
logarithmically in rÿ rg as r! rg.

Figure 1 plots the coordinate x (in units of the Schwarzs-
child radius) as a function of time t for amassive particle and a
photon (the thin and thick solid lines, respectively) starting
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Figure 1.The dependences x�t� and x�t� for a massive particle falling upon

a black hole and a photon (the thick solid curve).
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their motion at the point with r0 � 4rg. The dependence of the
coordinate on the proper time t of the massive particle is
shown by the dashed line.

Subtracting expression (8) from formula (4) gives the
answer to the following question: At which instant of time ts
should a light signal be sent from point r0 in the radial
direction to catch up with the freely falling `observer' at a
value of the Schwarzschild radius r < r0, who started their
motion with zero initial velocity from point r0 at some instant
of time t0 < ts? The answer follows as

ts ÿ t0 � rg
c

�
�2� x0�

�������������
x0 ÿ 1

p
arctan

��������������
x0 ÿ x

x

r
� ��������������

x0 ÿ x
p ÿ ��������������������

�x0 ÿ 1� x
p

ÿ ��������������
x0 ÿ x
p �

� 2 ln

� ������
x

x0

r
�

�����������������������
x0 ÿ x

�x0 ÿ 1� x0

r ��
: �9�

Proceeding in expression (9) to the limit x! 1, i.e.,
r! rg, we find how late the light can be emitted from the
starting point of the freely falling massive observer to be
detected before the observer crosses the horizon:

ts ÿ t0

� rg
c

h
�2� x0�

�������������
x0 ÿ 1

p
arctan

�������������
x0 ÿ 1

p
� 2 ln 2ÿ lnx0

i
:

�10�

Thus, the limit is finite and before crossing the black hole
horizon there is no possibility of seeing the infinite future
events occurring near the starting point of the free fall.

In Newtonian theory, the corresponding expression for
ts ÿ t0 takes the form

ts ÿ t0

� rg
c

�
x
3=2
0 arctan

��������������
x0 ÿ x

x

r
�

�������������������������
x0x�x0 ÿ x�

p
ÿ �x0 ÿ x�

�
:

�11�
At large values of x0=x � r0=r4 1, both formulas (9) and (11)
give the same result

ts ÿ t0 � p
2

r0
c

�����
r0
rg

r
: �12�

Let us consider another possible case of an astronaut
falling upon a black hole and seeing the future of the
Universe. Instead of freely falling upon the black hole, the
astronaut `lingers' in some close orbit and rotates about it
[17]. Here, the situation can be similar to the twins paradox: in
a short time interval, the astronaut will be able to observe
processes occurring over a rather long period of time in the
vicinity of the Earth. But this is not the infinite future of the
Universe! In addition, note that circular orbits with a radius
smaller than r � 3rg cease to be stable [18]. The velocity of
travel in the last marginally stable circular orbit equals c=2,
and hence the Lorentz time dilation here is insignificant.

Let us go back to the question of the infinite time the
astronaut needs to approach the black hole horizon from the
point of view of the Schwarzschild's observer on the Earth
and the astronaut's finite proper time before crossing the
horizon.Does thatmean the `relativity of history'? Could it be
that there is no unique history of the astronaut's motion
towards the black hole? If one understands history as a world

line, it is clear that it is unique and has a finite length. Another
`history' possesses infinite lengthÐ the world line of clocks of
the Schwarzschild's observer. So there is no relativity of
history!

Thus, we have considered the simplest case of a nonrotat-
ing, noncharged black hole and the motion of an observer up
to the horizon only. But, perhaps, when falling under the
horizon towards the singularity (which, as is well known,
cannot be observed from outside the horizon) all the future
history of the world can become available to the brave
astronaut who left this world forever? Or maybe one can see
the future in the case of charged or rotating black holes?

To explore these possibilities, amore complicated analysis
of the global structure of solutions describing black holes is
needed. The interested reader should familiarize himself with
books [7, 16, 19, 20] for more detail. Here we just want to
bring up some basic facts which are relevant to the problems
considered.

3. A fall under the horizon

Formula (1) becomes senseless when the infalling observer
crosses the horizon at r � rg, which is related to the
inadequacy of the coordinate system. However, there are
Kruskal ± Szekeres coordinates which allow one to write out
the Schwarzschild solution both outside and inside the black
hole horizon.

Let us introduce new coordinates u, v, such that

u �
�����������
xÿ 1
p

exp

�
x

2

�
cosh

ct

2rg
;

�13�
v �

�����������
xÿ 1
p

exp

�
x

2

�
sinh

ct

2rg
;

where x � r=rg > 1. Here, clearly, the inequalities u > jvj5 0
are valid. In these coordinates, the Schwarzschild metric (1)
takes the form

ds 2 � r 2g

�
4

x exp x
�dv 2 ÿ du 2� ÿ x 2�d# 2 � sin2 # dj 2�

�
:

�14�

Next, let us assume that the coordinates u, v are changing
from ÿ1 to �1, and x > 0 is a function of u, v given by the
following equation

u 2 ÿ v 2 � �xÿ 1� exp x : �15�

This is the Kruskal ± Szekeres coordinate system. In these
coordinates, the world lines can be conveniently depicted in
spacetime both inside and outside the black hole horizon
(Fig. 2).

Here, one considers an `eternal' black hole which actually
has two singularities (their equation is v 2 ÿ u 2 � 1; they are
shown by the upper and lower heavy hyperbolas in Fig. 2)
hidden from the external observer under the horizon. The
second (bottom) singularity is absent for black holes that
originated from stellar collapses.

Mapping (13) covers only one-fourth of the �u; v�-plane:
region I in Fig. 2. In region II, where v > juj and 0 < x < 1,
we define

r � rgx ; t � 2
rg
c
artanh

u

v
: �16�
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The inverse transformation takes the form

u �
�����������
1ÿ x
p

exp

�
x

2

�
sinh

ct

2rg
;

�17�
v �

�����������
1ÿ x
p

exp

�
x

2

�
cosh

ct

2rg
:

In region II, one has 0 < r < rg, t 2 �ÿ1;�1�, and the
Kruskal ± Szekeres metric (14) takes the form of the
Schwarzschild metric (1). However, now (inside the horizon)
the coordinate r becomes timelike, and t becomes spacelike!
Therefore, by denoting Z � r=c, l � ct, where Z 2 �0; rg=c�,
l 2 R, we write out the metric inside the horizon in the form

ds 2 � c 2 dZ 2

rg=�cZ� ÿ 1
ÿ
�
rg
cZ
ÿ 1

�
dl 2ÿ �cZ�2�d# 2� sin2 # dj 2� :

�18�
The spacetime described by metric (18) is quite unusual. The
space of this `universe', i.e., the surface Z � const, is
spherically symmetric but anisotropic. The direction along
the l-axis is preferential. Surfaces �Z � const, l � const�
represent S2 spheres. However, the coordinate l is not radial.
It takes all real values and metric (18) does not depend on it.
The topology of spatial cross sections Z � const is theR1� S2

topology. From outside the black hole it appears that the
space inside the black hole has a finite volume, but inside the
black hole it turns out that there is a world line of infinite
length (a cylinder of infinite length). It is exactly in connection
with this remarkable property that we must agree with
Ne'eman's note about `different realities'. The reality inside
the black hole cannot be imagined from the point of view of
the reality outside it, although it can be understood!

The radius of the sphere S2 (it is equal to cZ) decreases with
time and vanishes at Z � 0, which corresponds to the
Schwarzschild singularity. This singularity is not a space
point inside the black hole but represents the disruption of
time for all world lines inside it. The Schwarzschild singularity
is spacelike, and for any observer under the horizon it is
located in the future. It is impossible for an observer to `see'
the singularity inside the black hole before their own
catastrophic destruction. The opposite statement in Refs [12,
13] is erroneous.

In the Kruskal ± Szekeres coordinates, radial geodesics
along which the light propagates are represented by straight
lines inclined by 45� to the coordinate axes. So, the radial light
cone in the Kruskal ± Szekeres coordinates has the same form
as in special relativity. This property allows one to easily
establish the causal link between events using graphical
representation in the Kruskal ± Szekeres coordinates [19].
Let us take advantage of this property to answer the question
of which light signals catch up with the infalling observer
under the event horizon. The world line of the observer who
started the free fall from point r0 at the instant of time t0 is
shown by the line BHF in Fig. 2. The point F corresponds to
the world line disruption at the singularity. The causal past of
the event F is shown in gray. In the Kruskal ± Szekeres
coordinates, the surfaces of constant radius r are shown by
hyperbolas with asymptotes u � �v, and surfaces of constant
time t are represented by straight lines passing through the
origin of the coordinates. Therefore, as indicated in Fig. 2,
until the tragic ruin of the free-falling observer at the
singularity at the instant F, light rays emitted from the point
B of a free-fall origin no later than the time ts corresponding
to the line OS can catch up with the observer. Therefore,
during the free fall inside the black hole up to the singularity
the observer cannot see the infinite future!

It should be noted, however, that in a rotating black hole
described by the Kerr metric or in a charged black hole (the
Reissner ±NordstroÈ m metric and Kerr ±Newman metric), a
phenomenon formally shows up that could be described as
the possibility of an observer seeing all the future of the
Universe external to the black hole. In addition to the event
horizon, as in the Schwarzschild metric, here a new horizon,
the Cauchy horizon, appears. The Cauchy horizon inside a
black hole is the boundary for prediction of the evolution of
physical fields from initial data in the external Universe. The
future of an astronaut crossing such a horizon is unpredict-
able from their past. In the Kerr metric, the Cauchy horizon
represents a null (lightlike) surface. The astronaut can
approach this horizon after crossing the first one (the event
horizon). So, as shown in several textbooks (see, for example,
Ref. [16, æ 38]), at the instant of crossing the Cauchy horizon
surface, ``...the person will witness, in a êash, a panorama of
the entire history of the external world in inénitely blue
shifted rays.'' Nevertheless, as stated in Ref. [7, æ 12.2], the
inénite violet shift means such a large energy concentration
that ``would lead to the reconstruction of the spacetime and to
the emergence of the true singularity of the spacetime.''

Does that mean that inside such a black hole it is
impossible to see the infinite future of the external Universe?
So far, there is no definite answer to this question. To analyze
this problem, it is insufficient to consider the Kerr solution
only. An analysis of the evolution of the singularity under the
action of radiation falling into the black hole is in order. For
example, in papers [21, 22] and in the new English edition of
V P Frolov and I DNovikov's book [7], it is shown that if one
takes into account gravitational perturbations to the Reiss-
ner ±NordstroÈ m or Kerr metric, the Cauchy horizon surface
becomes singular Ð a new singularity emerges, which is
different from both the spacelike and timelike singularities
in respective Schwarzschild andKerrmetrics. This singularity
belongs to the class of `weak' singularities [23]. It was argued
in paper [22] that ``the tidal deformation associated with the
singularity is so small that it cannot damage the object, and, in
some conditions, it cannot even be detected before the
curvature becomes infinite. This reopens the question
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Figure 2. Free fall upon a black hole in the Kruskal±Szekeres coordinates.
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whether a journey through the Cauchy horizon of black holes
is possible.'' However, if one takes into account the inverse
effect of external fields, for example, the massless scalar field
in some model problems [24, 25], the null singularity can,
under certain conditions, evolve into a strong spacelike
singularity. The case is also possible where two singularities,
the null and strong spacelike ones, exist simultaneously.

Even if this singularity remains the null one, the question
of whether the astronaut can cross it lacks clear answer.When
a strong spacelike singularity is present, the astronaut will be
destroyed by tidal forces. All these results were obtained for
several model problems that allow simple mathematical
solutions. What the astronaut sees inside a real rotating
black hole, which cannot be described by the Kerr metric
any more, is unclear.

The authors thank S V Krasnikov for the fruitful
discussions. This work was partially supported by the
Russian Federation Ministry of Education and Science,
grant RNP.2.1.1.6826.
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