
Abstract. The important question of the relation between theory
and experiment in different physical problems is discussed. A
number of examples, both widely and little known, are used to
show that some physical theories, considered bymany as correct
because they corresponded to many experimental facts and to
the existing level of science, have been found to be false. One of
the important reasons for this is that it is very difficult to
distinguish between the causes and consequences of phenomena
observed in experiments. The best example is the study of
turbulent flows, where the causes and consequences are often
erroneously interchanged in relation to the properties and devel-
opment mechanisms of turbulence. At the same time, some
counterexamples are described where phenomena that are im-
possible from the standpoint of universally accepted theoretical
concepts turn out to be reality in special cases.

A prejudice which is preserved even now is the

belief that facts on their own, without unbiased

theoretical reasoning, can and should lead to

scientific progress.

A Einstein [1]

The most dangerous of errors is partly distorted

truth.

GK Lichtenberg [2]

1. Introduction

This review presents a selection of examples from various
branches of physics that illustratemyths in science. Themyths
can be divided into mythical theories and myths about people
made famous through their contributions to science (accord-
ing to Dal', the latter are unreal; they are legends [3]). As
regards personal myths, many of them are widely known:
Archimedes jumping out of the tub and crying `Eureka!'; an
apple falling onto Newton's head; the periodic table seen by
Mendeleev as a dream in his sleep; Leonardo da Vinci, who
knew everything beforehand; and so on. The annotation to
book [4] states that the authors ``uncover many intriguing
secrets demonstrating clearly how a scientific legend arises
and how intimately linked are the two seemingly contrasting
entities, science and mythology.'' In this review, we choose
several examples to illustrate the other aspect of myths in
scienceÐ the mythical theoriesÐcapable, for some time, of
explaining experiments, the foundation of physical research.
The Introduction presents some examples, both widely and
less known, that vividly demonstrate the mythology in
science. The fields from which these examples are taken do
not belong to the authors' expertise, and are therefore
sketched only briefly. In the main body of the review, we
collect examples that we consider deserving closer scrutiny.
Examples from relatively distant fields show that delusions
about the nature of physical phenomena can appear in any of
them.

The word combination `myth and reality' is contained in
the titles of Refs [5, 6]. In Ref. [5], some widely used

P S Landa, V A Gusev Physics Department,

Lomonosov Moscow State University,

Vorob'evy gory, 119991 Moscow, Russian Federation

Tel. (7-495) 939 29 43

E-mail: planda@mail.ru, vgusev@bk.ru

D I Trubetskov Nonlinear Processes Department,

Chernyshevskii Saratov State University,

ul. Astrakhanskaya 83, 410012 Saratov, Russian Federation

Tel. (7-8452) 51 45 40. Fax (7-8452) 52 38 64

E-mail: dtrubetskov@yahoo.com

Received 23 May 2008, revised 15 October 2008

Uspekhi Fizicheskikh Nauk 179 (3) 255 ± 277 (2009)

DOI: 10.3367/UFNr.0179.200903c.0255

Translated by S D Danilov; edited by AM Semikhatov

METHODOLOGICAL NOTES PACS numbers: 01.65.+g, 47.27. ± i, 84.40.Fe

Delusions versus reality in some physics problems:

theory and experiment

P S Landa, D I Trubetskov, V A Gusev

DOI: 10.3367/UFNe.0179.200903c.0255

Contents

1. Introduction 235
2. Theory of magnetron generation 238

2.1 Three riddles of the magnetron. The myth of the magnetron stationary regime

3. Ionization waves in gas discharge plasmas (strata) 243
4. Stochastic resonance 245
5. Turbulence in unbounded flows 247

5.1 Hydrodynamic and acoustic waves; 5.2 Basic properties of turbulent jets

6. Conclusion 254
References 254

Physics ±Uspekhi 52 (3) 235 ± 255 (2009) # 2009 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



statements pertaining to the explanation of the generation of
so-called `coherent structures' in turbulent flows are called
myths, in contrast to the author's own, allegedly true, views.
However, as is to become apparent in what follows, the latter
are frequently also myths. Such myths are not rare in works
on turbulent flows. In Section 5 of this review, we present false
views on some physical processes in turbulent jets and also
suggest a rigorous treatment of these processes that follows
from theoretical results.

We note that recently, after a set of very important and
interesting discoveries in physics, the number of myths has
only increased. Some of them are linked to the fundamental
discovery of dynamical chaos and the view of turbulence as a
manifestation of such chaos. Some recentmyths are described
in Ref. [6].

It is a generally shared view that experiment lies at the
heart of physical research. Experiment on its own, however,
does not necessarily provide a true understanding of observed
phenomena. This is witnessed by a fair number of incorrect
concepts dominating over long time spans without contra-
dicting the experimental data known at that time. As
mentioned elsewhere, one rationale for the dominance of
false ideas is the frequent lack of the possibility to distinguish
in experiment between the cause and consequence of the
phenomenon being studied. We present several examples of
such false concepts, correcting them with a treatment that
follows from a theory that causes no doubts in our opinion.

Classical examples are furnished by theories that were
widespread in their time and long-lived, like the caloric, used
for the description of thermal phenomena, and the aether,
introduced for the description and explanation of electro-
magnetic phenomena. The caloric and aether were considered
as certain hypothetical material substances possessing special
properties. Achieving agreement with ever growing experi-
mental evidence required attributing unusual properties to
the caloric, such as weightlessness, the highest elasticity
among known substances, the capability of penetrating into
the smallest pores of material bodies and expanding them.
Improved in that way, the theory was in satisfactory
agreement with experiments on thermal phenomena known
then but failed to explain the transformation between
mechanical and thermal energies [7]. Namely, owing to
experiments by J P Mayer and Count Rumford exploring
this transformation, it was ultimately proven that thermal
phenomena are caused not by the caloric but by the chaotic
motion of atoms and molecules.

The situation with the aether theory evolved similarly.
The concept was introduced by J Maxwell based on the
analogy between electric current and the vortical flow of
fluids. The aether was viewed as an elastic medium character-
ized by a certain stress tensor. In that way, electromagnetic
waves were identified with elastic (i.e., acoustic) waves.
Maxwell was able to explain all magnetic and electric
phenomena known at that time with systems of wheels and
gears representing a chain of vortices in a hypothetical fluid,
with small gears transferring motion from one vortex to
another. The model of vortices was intuitively appealing to
most researchers, even without a mathematical apparatus.
Moreover, the model explained the rotation of the polariza-
tion plane by a magnetic field and gave the value of the speed
of perturbation propagation in this strange medium that was
exactly equal to the speed of light. Maxwell's stress tensor
allowed explaining many other phenomena involving light,
for instance, the radiation pressure of light.

The theory of electromagnetic phenomena based on the
aether reached its culmination in works by H Lorentz and
H PoincareÂ , who suggested an explanation (including the
knownLorentz transformation) for the unsuccessful attempts
to discover the motion of bodies relative to the aether.
However, ideas about the aether proper as a substance and
its properties were becoming rather controversial. The main
contradiction pertained to the fact that the transverse
character of electromagnetic waves required considering the
aether as a solid body. It was not clear then why this body
does not oppose the motion of other bodies through it. One
had to admit that the interaction between the aether and other
bodies exists in optical phenomena, whereas it is fully absent
in mechanical phenomena. In fact, the only remaining role of
the aether was that of carrying electromagnetic waves. These
difficulties, together with the establishment of new field
concepts in the electromagnetic theory, led Einstein to revisit
classical concepts of space and time and to reject the needless
substance (the aether).

One more example showing how long-lived myths in
science are is the history of answering the question of why
the sky is blue. Leonard Euler was the first to try to answer it.
He understood that air is composed of molecules but
presumed that these have their own color. Euler argued that
the molecules strongly absorb blue rays (while, e.g., red rays
are absorbed weakly), and hence the sky shines in blue light.
Euler wrote about this in letter 32, ``Of the azure color of the
heavens'' in Letters of Leonard Euler on Different Subjects in
Natural PhilosophyAddressed to aGermanPrincess: ``...the air
is loaded with a great quantity of small particles, which are
not perfectly transparent, but which, being illuminated by the
rays of the sun, receive from them a motion of vibration,
which produces new rays proper to these particles; or else they
are opaque, and become visible to us from being illumined.
Now the color of these particles is blue... .'' In reality, the
molecules composing the air are transparent in visible light
and absorb only in ultraviolet. Thus, Euler's explanation is in
error, but it persisted for almost a hundred years. This is truly
one of the most long-lived myths.

Only in 1871 did John William Rayleigh quantitatively
show that the blue appearance of the sky comes not from the
absorption of sunlight followed by emission of its certain
part, but from light scattering. The scattering phenomenon in
optically turbid media was first explored by John Tyndall in
1869 and is called the Tyndall effect. He was the first to
observe that white light becomes bluish upon scattering and
argued that the blue color of the sky is caused by scattering on
dust particles abundant in the Earth's atmosphere.

The Rayleigh solution is based on dimensional analysis.
The problem is formulated as follows. Let a particle with a
linear size l scatter sunlight with a wavelength l and
amplitude A. The amplitude of the scattered wave decreases
with the distance to the particle. Let this amplitude be S at the
distance r from the particle. The dependence of S on the rest
of the parameters is what is sought. Next, it is taken into
account that all variables have the same dimension of
length L. Then, according to dimensional considerations,
the amplitude S is expressed as a product of other variables
raised to some powers: S � CAal br gld, where C is a
dimensionless constant and a, b, g, and d are unknown
exponents. Hence follows a rather unusual equation for
dimensions, �L� � �L�a�L� b�L�g�L�d, or a� b� g� d � 1. To
proceed further, the dimensional analysis has to be comple-
mented with physical considerations. First, we recall that the
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amplitude of scattered light is inversely proportional to the
distance from the particle, i.e., g � ÿ1. Second, the amplitude
of scattered light is proportional to that of incident light, and
hence a � 1. It then follows that d � 1ÿ b and S �
C�A=r�l bl1ÿb, or S � C�Al=r��l=l� b. Further, Rayleigh
argues that judging by the dynamics of the process, the ratio
of amplitudes of incident and scattered light varies in
proportion to the volume of the scattering particle. There-
fore, S=A � l b � l 3 and b � 3. The final result is S �
CAl 3=�rl2�. The intensity of scattered light is proportional
to its amplitude S squared, i.e., I � lÿ4 � o 4, where o is the
frequency. The last formula received support from quantita-
tive measurements of scattered light.

After Rayleigh's work, it became apparent that in clear
skies, blue light is scatteredmore strongly than red light, while
the maximum intensity of scattered light falls into the blue
part of the spectrum.At sunset and sunrise, the direct sun rays
pass through a thicker layer of air than when the sun is at the
zenith. The thicker atmospheric layer scatters short-wave rays
more strongly, reducing their intensity in direct light. Thus,
predominantly long-wave radiationÐred raysÐ penetrates
to the Earth's surface, such that we see a red sun at sunset and
sunrise. In Euler's theory, the scattering was absent, and
hence rose skies were not mentioned, nor was the color of the
sky at sunrise and sunset explained.

Initially, Rayleigh, following Tyndall, assumed that the
scattering of light in the atmosphere originates from liquid
droplets, dust, or solid particles whose size is small compared
to the wavelength of the light. This is apparently not the case.
In reality, the amount of dust or extraneous particles is
reduced with the altitude above the Earth's surface; but then
the intensity of scattering from these parts of the atmosphere
should also be reduced, which, as is well known, does not
happen. Later, Rayleigh recognized that scattering is caused
not by particles but by air molecules. Such scattering took the
name of Rayleigh, or molecular scattering.

In 1907, Leonid Isaakovich Mandelshtam showed that
Rayleigh scattering cannot be explained by scattering on
chaotically moving molecules if they are large in number in
a volume small compared to the cube of the wavelength and
distributed in space uniformly. Scatteredwaves thenmutually
annihilate and only direct rays remain. In 1907, Marian
Smoluchowski demonstrated that molecular scattering owes
its existence to thermal fluctuations of the refractive index.
Finally, in 1910, Einstein formulated the theory of scattering
in gases and liquids based on the ideas of Smoluchowski.
Interestingly, theRayleigh formula remained true all the time;
only its physical interpretation changed.

We briefly consider two more examples, which are much
more recent than those considered above. One such highly
interesting example pertains to explaining the randomness of
the process of generation and collapse of gas bubbles (termed
cavitation). It is known that this process has a random
character. Continuous spectra of sound emission were
observed in experiments with acoustic cavitation [8, 9], with
subharmonics showing up against the continuous back-
ground. Because a large number of bubbles form and
collapse at cavitation, it seemed natural to explain the
randomness by this large number. This was the accepted
view for many years, although the presence of subharmonics
remained unexplained. Only considerably later, in special
experiments designed by Lauterborn [10], which dealt with a
single bubble in a liquid, was it observed that spectra are the
same as in the case of many bubbles. It was thus shown that

the origin of randomness is not the number of bubbles but the
so-called dynamic chaotization related to instability (see, e.g.,
Ref. [11]).

The second quite interesting example is suggested by the
treatment of the phenomenon of turbulence. Beginning from
works by Reynolds [12], it was assumed that turbulence in
liquids and gases can be fully described by the Navier±Stokes
equation [13, 14]. From the standpoint of the physics of
oscillations, this implied that turbulence was considered a
self-oscillating process. This was explicitly mentioned by
G S Gorelik, who, according to the memoirs of S M Rytov
[15], argued in one conversation that ``turbulence with its
`self-excitation' threshold, a characteristic hysteresis respec-
tively accompanying its generation and decay upon increas-
ing and reducing the speed of background flow, with a
governing role of nonlinearity in its developed (stationary)
state, presents a self-oscillatory process. Its specific feature is
that it occurs in a continuous system, i.e., a system with an
extremely large number of the degrees of freedom.'' In
essence, L D Landau shared the same viewpoint. According
to him, turbulence is generated as follows. First, the
equilibrium corresponding to a laminar flow becomes
unstable and oscillations at a particular frequency are
excited. For the amplitude of these oscillations, Landau,
relying on physical ideas, wrote a phenomenological equa-
tion that coincides with the reduced Van der Pol equation for
the amplitude of self-oscillations [16]. 1 ``With the Reynolds
number increased further,'' Landau wrote, ``newer and newer
periods appear in sequence. As regards the emergingmotions,
they involve smaller and smaller scales.'' As a result,
according to the Landau hypothesis, oscillations at multiple
incommensurate frequencies are established, i.e., a quasi-
periodic motion sets in. It is now known that an attractor in
the form of multi-dimensional torus corresponds to such
oscillations in the phase space. If the number of excited
frequencies is large, such motion greatly resembles a chaotic
one, and hence well-developed turbulence can be considered a
random process. Although the Landau theory is phenomen-
ological and does not directly follow from the equations of
fluid dynamics, it caused no doubt for a long time and was
supported by almost all researchers of turbulence.

Landau's theory was further developed in the works of
Stuart [17, 18], who proposed an approach to compute the
coefficients appearing in the Landau equation based on an
approximate solution of the Navier±Stokes equations.
However, the approximate solution taken by Stuart in the
form of a traveling wave with a fixed wave number 2

A�Et� exp �i�otÿ kx�� is incorrect from the physical stand-
point in unbounded flows. Indeed, this solution describes a
spatially periodic wave with the amplitude slowly varying in
time. Strictly speaking, such a solution holds only for a
periodic flow with the period L � 2pn=k, where n is an
integer, i.e., for a flow with feedback. The solution assumed
by Stuart, as well as the Landau theory, does not take the
convective character of the instability of laminar flows into
account and hence cannot be applied to unbounded flows. 3

In the 1970s, prompted by the discovery of dynamic
chaos, the view of the generation of turbulence as an abrupt
development of a strange attractor in the phase space of some

1 Landau neither used the term `self-oscillations' nor cited the works of

Van der Pol.
2 Landau assumed the same wave form.
3 See, e.g., Refs [19, 20] for the instability types in wave systems.
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dynamic variables [21, 22] began to spread. The authors of
Refs [21, 22] considered a finite-dimensional phase space and
meant dynamical chaos by turbulence. Apparently, similarly
to the works by Stuart and Landau, these works cannot be
applied to unbounded flows. Unfortunately, such a view of
turbulence became popular (see, e.g., Refs [13, 14, 23±27]).
We note that dynamical chaos is a general feature of
dynamical systems with the dimension exceeding two (see
Ref. [23]), whereas turbulence in the strict sense of this word
(i.e., the turbulence in hydrodynamic systems) presents a
particular example of random waves. To avoid confusion,
the notions of turbulence and dynamical chaos should be
distinguished.

In Sections 2±5, we consider other examples of long-lived
myths in science in more detail.

We note that the opposite situation is also encountered
when phenomena that are impossible according to commonly
accepted views are discovered in experiments or numerical
simulations. One of the reasons might be that mathematical
theorems proving the nonexistence of certain phenomena
involve the remark `in the generic case,' while an actual
physical problem might deal not with generic but with a
particular case for which the conditions of the theorem are
not satisfied. For example, there exists a mathematical
theorem stating that quasiperiodic oscillations with the
number of incommensurate frequencies equal to or exceed-
ing three are unstable. In mathematical language, this
theorem is formulated as the statement that a `three-
dimensional torus is unstable': it either breaks down or
develops a resonance. In physical terms, the development of
a resonance pertains to the phenomenon of synchronization.
For example, if we consider three oscillators with incommen-
surate frequencies that are coupled only very weakly, the
oscillations at all three frequencies can persist in this system.
Meanwhile, this theorem laid the basis for the critique of the
Landau theory. Based on the material above, it seems
plausible to assume that the Landau theory can in principle
work in a circular tube, where the conditions of spatial
periodicity for each mode are trivially maintained.

Another, no less important reason is that in physical
systems, on changing a certain parameter toward a pre-
scribed value, the limit is frequently absent, i.e., the limit
value depends onwhich side the limit is approached from. It is
now well known that just this can explain the existence of
chaotic solutions in dynamical systems when the source of
perturbations tends to zero, together with the uncertainty in
the initial conditions. 4 This also explains the absence of wave
breaking in solutions of Burgers' equation when the viscosity
tends to zero.

A very interesting example of the reality of `impossible'
systems is furnished by quasicrystals, discovered in 1984 [28].
Reference [28] experimentally proved the existence of a metal
alloy (of aluminum and manganese) with unusual properties.
The alloy is formed via rapid cooling after melting (at the rate
106 K sÿ1). Exploring this alloy by electron diffraction, it was
discovered that it exhibits all the properties of a crystal
showing a diffraction pattern composed of bright and
regularly located spots. This pattern, however, can be
obtained only in the presence of a fivefold (or icosahedral)
symmetry, strictly forbidden for a crystal on geometrical
grounds because pentagons cannot tile the space. The name
`quasicrystal' was attributed to such alloys later (seeRef. [29]).

Experiments by Shechtman and colleagues and many other
groups proved that there exist ideally homogeneous sub-
stances in which the fivefold symmetry is preserved in
microscopic subdomains several nanometers in size. In
searching for an explanation for these results, physicists
recalled the mathematical discovery of tiles made by British
theorist Rogers Penrose in 1974. These tiles represent
aperiodic regular structures formed by rhombuses of two
types with the internal angles 36� and 72� [30]. These tiles,
now called Penrose tiles, turned out to be planar analogs of
quasicrystals. The role of Penrose rhombuses is played by
icosahedra [31], which can densely fill the three-dimensional
space.

The emerging model relies on the concept of a basis
element. An internal icosahedron formed by aluminum
atoms is surrounded by an external one formed by manga-
nese atoms. The basis element contains 42 atoms of aluminum
and 12 atoms of manganese. On solidification, the basis
elements become rapidly connected through octahedral
bridges. The icosahedron faces are equilateral triangles. The
formation of an octahedral manganese bridge occurs when
two such triangles (one for each cell) are sufficiently close and
parallel to each other. A quasicrystal with icosahedral
symmetry forms as a result. Certainly, the discovery of
quasicrystals does not disprove the foundations of crystal-
lography. The author of Ref. [29] in this respect writes: ``The
concept of the quasicrystal presents a fundamental interest as
it generalizes and completes the definition of a crystal. A
theory based on this concept replaces the long-lived idea of a
`structural unit repeated in space in a strictly periodic way,'
with a key notion of long-range order. This concept extended
crystallography, whose newly acquired richness we are only
beginning to comprehend. Its significance in the world of
minerals could be placed in line with adding irrational
numbers to the set of rational numbers in mathematics.''

2. Theory of magnetron generation

A magnetron is one of the first and most widespread
microwave generators in which electrons moving in crossing
static electric and magnetic fields interact with a high-
frequency electromagnetic field.

Viewed from the perspective of its design, a modernmulti-
resonant magnetron consist of three main components (see,
e.g., [32, p. 202]): (1) a cathode, (2) an anode block containing
resonant contours, and (3) an output loop directing the
microwave energy to the load. Experimental and theoretical
investigations of magnetron led, beginning from early work,
to many contradictions and paradoxes, and to the discovery
of a set of unexplained phenomena. One of the first and
seemingly the only attempt to rigorously clarify these
questions and refute the main myth of the existence of
stationary regimes of magnetron generation was undertaken
by L A Vainshtein and A S Roshal in lectures on microwave
electronics given at the 2nd winter school for engineers
organized in Saratov in 1972 [33]. Unfortunately, this work,
published in the proceedings of the school, remained
unknown to the majority of physicists. Below, we largely
follow Ref. [33] and its adaptation in Ref. [32].

The most difficult problem in the theory of the magnetron
(as well as other microwave generators) was and remains a
correct and complete account for the space charge. As a rule,
it requires using modern computational facilities, but even
numerical simulations do not fully reveal all aspects of the4 According to the uniqueness theorem, such solutions are impossible.
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phenomena related to the space charge. And yet, these
phenomena, in addition to obvious physical interest, are
also important from the practical standpoint because they
determine the limits of the device performance. In a magne-
tron, a strong space charge in the spokes5 leads to their
collapse, i.e., sets the maximum output of the device. A high
noise level in the frequency spectrum of the signal generated
by a magnetron is also related to the space charge.

In what follows, we consider magnetron generators of the
pulse type, for which the space charge plays the main role.
Following Ref. [33], we consider three possible states of a
magnetron: (1) a nongenerating magnetron (the magnetic
field exceeds the critical one), (2) a magnetron at the
beginning of generation (transition from a pre-generation to
the generation regime), and (3) a magnetron in a developed
generation regime (the microwave field is sufficiently strong).

2.1 Three riddles of the magnetron.
The myth of the magnetron stationary regime
We refer to a space charge as strong if its density r � rcr,
where rcr is the critical space charge density,

rcr �
eH 2

4pmc 2
; �1�

e andm are the charge and mass of the electron, c is the speed
of light, andH is themagnetic field strength [Eqn (1) rewritten
in absolute units is to be derived in what follows]. A weak
space charge is defined by the condition r5 rcr.

The physical meaning of rcr consists in the following. We
represent Eqn (1) in the form

rcrmc 2

2e
� H 2

8p
: �2�

The right-hand side of Eqn (2) contains the magnetic energy
density or the magnetic field pressure. As is known, the
magnetic field focuses beams propagating along it, opposing
their transverse spread under the action of forces due to the
space charge (for cylindrical beams, this happens at
r < rcr=2, and at r < rcr for plane beams). The magnetic
field in a magnetron acts similarly, compensating repulsion
forces in the electron spokes of a working magnetron.
Relation (1) can be obtained by setting the plasma frequency
of the electron cloud op �

����������������
4pre=m

p
determined by the

density equal to the cyclotron frequency O � eH=mc, which
corresponds to the magnetic field in the magnetron. A charge
density strongly exceeding rcr cannot exist in a magnetron
except for very thin layers.

Intriguing phenomena have been discovered in experi-
mental and theoretical studies of magnetrons. The main ones
are listed below.
� Riddle one: The existence in the pre-generation regime

(even in a planar magnetron) of the experimentally measured
electric current, which cannot be explained within the existing
analytic approaches.
� Riddle two: The impossibility of explaining the experi-

mentally observed soft self-excitation of cylindrical magne-
trons in the framework of a theory neglecting the space
charge.

� Riddle three: Why is the theoretical search for a
stationary generation regime in magnetrons not always
successful? Moreover, does such a regime exist at all?

We consider these riddles in more detail. The first is
related to the behavior of the magnetron when the magnetic
field exceeds the critical value and generation does not occur.
In the absence of a space charge andwith the boundary effects
neglected, the situation is straightforward: electrons return to
the cathode following cycloidal trajectories in a planar
magnetron, or more complex trajectories in the cylindrical
geometry. The processes become more involved when the
space charge is strong. However, if we assume that the
electrons turn back after having reached some plane y � d in
which dy=dt � 0 (y is the transverse coordinate) and that the
electric field equals zero at the cathode, the problem yields to
an analytic solution [34, 35]. We proceed from the equations
of motion

d2x

dt 2
ÿ O

dy

dt
� fx ; �3�

d2y

dt 2
� O

dx

dt
� fy ; �4�

where fx � �e=m�Ex, fy � �e=m�Ey, and Ex and Ey are the
components of the electric field.

Let fx � 0 and dx=dt � 0 at y � 0. It then follows from
Eqn (3) that

dx

dt
� Oy : �5�

Substituting the expression given by Eqn (5) in Eqn (4), we
find

d2y

dt 2
� O 2y � fy : �6�

Weassume that fy � 0 at y � 0, i.e., that the regime of current
limited by the space charge is realized at the cathode. Below
the plane y � const, the charge per unit surface equals
2j
�0�
y t�y�, where j

�0�
y is the density of the current entering

from the cathode to the interaction domain and t � t�y� is the
time it takes an electron to travel from the cathode �y � 0� to
a given value of y. The factor 2 in the formula for the charge
takes accounts for the fact that half of the charge is created by
the electrons coming from the cathode, while the other half is
created by the electrons traveling to the cathode. Because we
assume thatEy � 0 at the cathode, it follows for a given y that

Ey � 4pj �0�y t�y� ; �7�

and hence

fy � 8p
e

m
j �0�y t�y� : �8�

Integrating Eqn (6) with the right-hand side given by (8) and
with the initial conditions y � dy=dt � 0 at the instant of
leaving t � 0, we find

y � y�t� � d

2p
�Otÿ sinOt� ; �9�

where

d � 16p2

O 3

e

m
j �0�y : �10�

5 It should be remembered that the electron cloud in a generating

magnetron forms a pattern resembling a rotating wheel. The near-

cathode part forms the bush of the wheel connected to the anode by

moving `spokes'Ð the electron structures grouped owing to the self-

phasing mechanism in the region of maximum deceleration of electrons

by a tangential field.
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For the initial conditions x�0� � x0 and jdx=dtjt� 0 � 0, we
have

x � x�t� � x0 � d

2p

��Ot�2
2
ÿ 1� cosOt

�
: �11�

For Ot � 0, the value of y is d, and Eqns (9) and (10) are
applicable if 04Ot4 2p. Because the electrons turn back
after having reached y � d, the total travel time is 4p=O, while
in the absence of a space charge, it equals the cyclotron period
2p=O.

The surface charge density in the entire electron layer
below the plane y � d is

sc � 4pj �0�y

O
� rcd

and

rc �
4pj �0�y

Od
� mO 2

4pe
� eH 2

4pmc 2
;

which coincides with Eqn (1).
We note that the quantities j

�0�
y and d are known to us;

they depend on the anode voltage. The voltage between the
cathode and the external boundary of the electron layer is

Ue � ÿ
� d

0

Ey dy � ÿ
� 2p=O

0

Ey
dy

dt
dt � ÿ2pscd ; �12�

and that between the layer boundary and the anode is
expressed as

UÿUe � ÿ4psc�Dÿ d � ; �13�
because Ey � 4psc � const. Then,

U � ÿ2prcd �2Dÿ d � ; �14�
which leads to a quadratic equation for d,

d 2 ÿ 2Ddÿ U

4prc
� 0 :

Hence, it follows that the thickness of the electron layer
adjacent to the cathode is given by

d � Dÿ
����������������������
D 2 � U

4prc

s
� D

�
1ÿ

��������������
1ÿ U

Uc

r �
; �15�

where Uc � ÿ2prcD 2 �rc < 0� is the critical voltage. The
charge density r�y� in the layer 0 < y < d is not constant, and
the mean density

rc �
1

d

� d

0

r�y� dy �16�

is exactly equal to the critical one.
The twofold increase in the electron residence time in the

interaction domain compared to the time of cycloidal motion
in the absence of a space chargemanifests itself in the fact that
the angular speed of electron rotation in the magnetic field
(equal toO for a single electron) decreases under the action of
a space charge according to the formula

Op � O
�
1ÿ o2

p

2O

�
� O

�
1ÿ r

2rc

�
: �17�

Formula (17) is strictly valid only for r5 rc. However, it
shows that at r � rc, the angular speed is noticeably smaller
than at r5 rc. The electron structures in which jrj > jrcj

cannot be sustained by the magnetic field. Analogous results
were obtained for a cylindrical magnetron in Refs [36, 37].

The main element of the theories mentioned above is that
they consider a two-stream state of the electron cloud in a
closed, nongenerating magnetron. By analogy with the
motion in the absence of a space charge, it is presumed that
the electron cloud is composed of two streams of electrons,
moving from the cathode to the outer boundary and
returning from it.

Later, works by Brillouin [38] appeared, proposing exact
stationary solutions of the Poisson equation and the equa-
tions of motion for both planar and cylindrical magnetrons
and showing that the electron cloud in a closed magnetron
can be found in a single-stream state. In this case, electrons
move parallel to the cathode at speeds that correspond to the
electrons emitted by the cathode (the motion follows straight
or circular trajectories in planar or circular magnetrons,
respectively).

For the planar magnetron, it is assumed that (1) the
charge density in the near-cathode layer is constant, (2)
Ey � 0 at the cathode, and (3) electrons move parallel to the
cathode with the speed dx=dt � Oy [see Eqn (5)].

Because dy=dt � d2y=dt 2 � 0 in this case, Eqn (4) yields

dx

dt
� 1

O
fy : �18�

From the first and second assumptions, it follows that

Ey � 4pry ; fy � 4p
e

m
ry ; �19�

where r is the constant charge density in the layer. Equation
(18) can be written, taking Eqn (19) into account, in the form

dx

dt
� o2

p

O
y : �20�

Then, using the third assumption, we find from Eqn (20) that
o2

p � O 2 and r � rc, i.e., the density has to be critical. The
electron layer thickness d in a planar magnetron is defined by
the same equation (10) as for the two-stream state.

Unfortunately, attempts by Brillouin to prove the validity
of the model distinguished with simplicity and clarity turned
out to be unsuccessful and obscure, and the question of the
possibility of a single-stream state remained open for a long
time. 6

The question as to which state, the single or double
stream, is observed must be resolved experimentally. Investi-
gations showed that neither charge distribution is realized. It
was found experimentally that even for magnetrons with
planar electrodes, irregular oscillations of electron clouds
occur at very different frequencies. The most apparent and
clearly observed phenomenon, incompatible with the theory
neglecting the space charge, turns out to be the anode current.
It can readily be measured and, although it decreases with an
increase in the magnetic field, this occurs more gently than
suggested by computations taking the distribution of initial
velocities into account.

To explain the results of anode current measurements in
the magnetic fields several times greater than the critical
value, one had to assign temperatures of about a million

6 We note that the mechanism of the single stream state was clarified soon

after the appearance of the Brillouin paper, but the results of that work

became available much later (see Ref. [39]).
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degrees to electrons, which is by many orders of magnitude
larger than the cathode temperature.

The beginning of generation in themagnetron is its second
riddle. It is known that the phasing mechanism in the
magnetron is only effective when the electrons and field are
in synchrony. In a planar magnetron (Fig. 1a), an electron
drifts under the action of a uniform static fields E �0� andH in
the direction of the x axis at the speed v0 � cE �0�=H.

If a slow electromagnetic wave propagates in the direction
of the x axis, with the wave dependence on the coordinate x
and time t written in a complex form as exp �i�kxÿ ot��, its
phase velocity u � o=k should be close to v0. The degree of
the closeness in the stationary regime of generation is defined
in the framework of the theory neglecting the space charge
influence [40] by the inequality joÿ o0jT4 1, where
o0 � kv0 is the frequency at which the speed of the slow
wavewith the samewave number k is exactly equal to v0 andT
is the time it takes electrons to travel from the cathode to the
anode. Because the displacement of electrons from the
cathode to the anode is associated with their drift in the field
of a synchronous wave, the timeT is inversely proportional to
the amplitude of this wave: the smaller the amplitude, the
closer the values of o and o0 (u and v0) should be. This
suggests that the generation in a planar magnetron unfolds as
follows. First, a wave with a small amplitude appearing as a
result of fluctuations at a frequency nearly coincident witho0

forms spokes, whence its amplitude increases. As the
amplitude increases, the frequencies o and o0 can depart
from each other.

In a cylindrical magnetron (Fig. 1b), this simple scenario
of beginning the generation is not realized because the electric
field E �0� and consequently the drift velocity v0 are the
inversely proportional to the radial coordinate r, namely,
v0 � v�r=r, where v is the velocity at r � �r. The field of a
synchronous wave rotating in the positive azimuth (coordi-
nate j) direction is now expressed by the factor
exp �i�njÿ ot��. Hence, the linear phase speed on a circle
with the radius r is u � vr=�r. Correspondingly, the full
synchrony v0 � u � v is achieved for only a particular value
r � �r. The absence of full synchrony of the wave and the
electrons in the cylindrical magnetron implies, for example,
that for the ratio ra=rc � 1:5, the spokes are not formed at
amplitudes of themicrowave field only an order of magnitude
smaller than the maximum amplitude that corresponds to the
stationary generation. This is corroborated by numerical
simulations: a wave with a sufficiently small amplitude
`ushered' in the interaction space of a cylindrical magnetron
is not able to form spokes and noticeably augment its
amplitude, whatever its frequency and angular speed.

Admittedly, the theory neglecting the effect of the space
charge does not describe the self-excitation processes of

cylindrical magnetrons. And yet, they are easily excited in
experiments, which is explained by the effect of the space
charge. To understand and assess this effect is to solve the
second magnetron riddle.

The third riddle of magnetrons is related to their behavior
in the well-developed generation regime with a large space
charge, which essentially affects the motion of electrons.

The essence of the problem is that the theoretical search
for stationary regimes was in some cases not reaching the
goal. In other cases, the stationary regimes were rather the
result of inexact computations or limitations set by the chosen
model. This pertains to models in which the self-consistent
problem for a magnetron was solved by stripping electrons of
at least some degrees of freedom and assuming, for example,
that electron spokes have one fixed form or another, or that
the electron motion obeys drift equations, and so on.
Certainly, the results thus obtained were helpful to a degree,
especially when they were confirmed experimentally. How-
ever, they did not permit penetrating deeper into the
mechanism of magnetron functioning, and in particular,
estimating the performance limits of the instrument.

In 1965, paper [45] appeared, devoted to the numerical
study of transient processes in a magnetron, which was
destined to become classical. This work shattered the myth
of the existence of a stationary generation regime in
magnetrons. It was shown that it is never realized. The
electron streams and the anode current pulsate, and the
characteristic pulsation time is markedly smaller than the
oscillation equilibration time in the resonator. Therefore,
even if a stationary state could exist, it would do so for the
resonance field of the volume resonator, but not for the
electron cloud or the space charge field.

How did numerical experiment contribute to solving these
riddles?

Computations revealed that if the emission current is
sufficiently large and the voltage is set gently, electrons
emitted during the setup phase follow trajectories close to
those of the single-stream state. After this phase, the supply of
new electrons from the cathode to the electron cloud is
practically halted. The physical reason for the fact that the
two-stream state is not realized pertains to its strong
instability due to the presence of two inter-penetrating
streams. When velocity components in the direction normal
to the cathode become small and the cloud state becomes
close to a single-stream one, the two-stream instability is
largely eliminated (these questions are analyzed in sufficient
detail in appendices 2 and 3 in Ref. [42]).

It is noteworthy that the single-stream state is also
unstable with respect to perturbations in the form of a
traveling wave. The instability stems from the presence of
electrons with different velocities. However, such electrons
are separated in space, and hence their interaction is weaker
and perturbations grow more slowly than in the two-stream
state.

As a result, the single-stream state is hardly realizable
either: the nonsymmetric perturbations ever present in actual
practice grow and transform the regular (`laminar') motion of
electrons into an irregular (`turbulent') one. The irregularity
emerges through the existence of a multitude of growing
oscillations with different frequencies but roughly the same
increments. As these oscillations reach finite amplitudes, they
begin to interact nonlinearly. As a result, the electron cloud in
a nongenerating magnetron remains symmetric only in the
statistical sense. The electron cloud pulsates (`boils') and is

y
y � D

y � 0

H

H

j

r � rc

r � ra

E 0

x

Anode
a b

Cathode

Figure 1. Schematic of planar (a) and cylindrical (b) magnetrons.

March 2009 Delusions versus reality in some physics problems: theory and experiment 241



therefore confined by the magnetic field less efficiently, such
that electrons can partly hit the anode. This partly solves the
first magnetron riddle: a noticeable anode current in a closed
magnetron already exists in a two-dimensional model if the
space charge is taken into account and boundary effects are
neglected.

We note that the presence of small-scale pulsations does
not exclude the existence of large-scale structures, for
instance, space-charge waves.

If one of the space charge oscillation modes is in
synchrony with oscillations of the resonance system and
both frequencies and phase speeds of the fields are close to
each other, the instability develops differently. In a magne-
tron, the structures of the distribution of the space charge
field and waves in the transmitting line are essentially
different: the potential and the field are related to the
modulation of the electron layer and, in particular, to the
periodicity of the boundary, and hence they decay with
increasing the distance from the boundary; the field of a
synchronous wave decays with the distance from the anode,
i.e., in the opposite direction. This model gives a qualitative
answer to the second riddle of magnetrons. The self-
excitation of a cylindrical magnetron owes its existence to
the interaction of two synchronously rotating waves, the
wave of the space charge and the wave in the resonance
system, which rotate as rigid bodies, such that synchrony
between them is never destroyed. Insofar as the amplitude of
oscillations in the resonator is small, the distribution of the
field is close to the distribution of the space-charge wave
field. Electrons begin to move toward the anode, tending to
form expanding spokes (Fig. 2). But the amplitude of
resonance oscillations grows and determines the field
distribution and motion of electrons to an ever increasing
extent.

In the argument just proposed, it was tacitly assumed that
the generation begins with a single-stream state of the electron
cloud. This is probably not so, because the turbulent
(`boiling') electron layer can also be assumed to support
space-charge waves with a phase velocity of the same order.
Any theoretical evidence proving this is absent, but there are
experimental observations witnessing the existence of such
waves.

The regime of developed generation in magnetrons is
studied noticeably better than the excitation process. Inter-
acting with the tangent field, the electrons channel their
energy into it and thus support the generation. The electron
spokes deform under the action of the space charge field and,
as already mentioned, are nonstationary (pulsating) even in
the regime of equilibrated oscillations. The anode current
oscillates around its mean value because of this nonstationar-
ity. The characteristic pulsation time turns out to be much
smaller than the time it takes oscillations in the resonator to
set in. Correspondingly, the amplitude of a synchronous wave

in the regime of sustained oscillations is virtually constant,
because it is given by the result of natural time averaging (see
lecture 2 in Ref. [42]).

The pulsations of the spokes share the origin with those of
the electron cloud in a closed magnetron: they are caused by
instability of dense electron formations. The only difference is
that the instability of the spokes does not typically proceed to
the end because a synchronous wave with a sufficiently large
amplitude removes electrons from the interaction space
relatively rapidly. The removed electrons are replaced by
new ones, and hence accumulation of perturbations occurs
to a lesser extent.

The pulsations of the spokes demonstrate that they
represent a complex oscillating system connected to another
oscillating system, the volume resonator. The properties of
the electron oscillating system are still studied insufficiently.
The understanding of the transition from the pre-generation
to the generation regime is most obscure. In powerful pulse
devices, the orbital motion of electrons is suppressed to a
large extent and electrons tend to drift along equipotential
lines of the resultant field, forming a laminar stream. But the
laminar spokes are also unstable with respect to a wave
traveling along a spoke (see appendix 3 in Ref. [42]). Each
spoke emitting from the cathode to the anode and formed by
the field of a synchronous wave can be treated as a peculiar
ray system of the magnetron type capable of amplifying and
generating oscillations even in the absence of resonance or a
retarding system. In real conditions, the spokes interact
among themselves, with the electron cloud located near the
cathode, and with fields of different oscillations in the
resonator, and react to random and periodic perturbations.
The outcome is irregular oscillations superimposed on the
stationary generation regime.

In Refs [43, 44], the results of numerical simulations of the
process of self-modulation of the space charge are given.
Qualitatively, the process can be described as follows. A high-
frequency field of the oscillating system, superimposed on a
homogeneous static electron stream, leads first to the
formation of convexity on which new layers of electrons
gradually wind, such that a local rotating bush is formed.
When the upper layers of this bush are elevated and approach
the anode sufficiently close, they are shed off the bush under
the action of the high-frequency field of the resonance system
and gradually, in the form of bundles, in pulses reach the
anode. After this, the local bush is gradually recovered and
the sketched process is repeated. Any irregularity in this
process pertains to the fact that the formation time of the
local bush is not related to its travel time from one resonator
system slit to another. Therefore, the shedding process starts
each time for a new initial state of the bush. Correspondingly,
different charge portions are torn off the bush. This chaotic
self-modulation can serve as one of the factors leading to the
existence of a high noise level in the frequency spectrum of the
signal generated by magnetrons.

Wenote that a set of studies is available (see, e.g., Ref. [45])
in which powerful computer facilities were used to directly
simulate a magnetron based on the system of self-consistent
Maxwell±Vlasov equations in three dimensions. However,
questions related to the characteristics of the developed
generation regime (and those pertaining to the first two
riddles) remain. It must be admitted that the integral
characteristics of a magnetron can be computed fairly well,
whereas devices are frequently constructed using the similar-
ity theory.

Figure 2. Equipotential lines of a space charge near the outer layer

boundary.
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3. Ionization waves
in gas discharge plasmas (strata)

As is known, the excitation of so-called ionization waves
(strata) in a low-temperature plasma is the consequence of
ionization instability [11, 46, 47]. The main role in its
development is played by the dependence of the ionization
rate on the temperature and concentration of electrons.

The excitation of strata in a gas discharge plasma was first
observed at the end of the 19th century. Rich experimental
evidence has been accumulated since then (see, e.g., reviews
[46, 48±50]). In an overwhelming number of experiments, a
single wave with an anomalous dispersion and with the phase
velocity directed from the anode to the cathode (its group
velocity is directed from the cathode to anode) was observed.
Correspondingly, practically all theoretical works dealing
with the instability of the stationary plasma state have
sought a spatial increase in perturbations with a periodic
dependence on the coordinate. We note that the same
approach was and frequently continues to be used in nearly
all works devoted to plasma instabilities (see, e.g., Ref. [51])
and turbulence theory [13, 14, 52]. However, the presence of
boundaries should lead to the existence of an oppositely
directed wave. Accounting for boundary conditions also
allows writing a characteristic equation for wave eigennum-
bers of the excited waves. Treatment of the problem taking
the oncoming wave into account permits assessing the degree
of correctness of the traditional approach that ignores this
wave. A rigorous analysis of the problem indicates that the
instability is of the convective type and its excitation requires
feedback through either the oncoming wave or the supplying
circuit. Thus, views that feedback could be neglected in
describing ionization waves should be considered mythical.
The stability condition of the stationary plasma state with due
regard for feedback through the oncoming wave and
supplying circuit was first investigated in Refs [53, 54]. In
particular, they explain why the oncoming wave was not
observed in many experiments.

Below, starting with the hydrodynamic model, we show
where this result comes from. The hydrodynamic model
comprises continuity equations for the charge of electrons
and ions, the energy conservation for electrons (the energy of
ions is supposed to be equal to zero), and the Poisson
equation for the electric current. In a widely used approxima-
tion of plasma quasineutrality, 7 the system of equations can
be brought to the form [46]

qn
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j � enme

�
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qn
qx
ÿ g1

qT
qx

�
;

where n is the concentration of electrons (and ions) at the tube
axis, e is the electron charge, T is the temperature of electrons
in electronvolts, me and mi are the mobilities of electrons and

ions, Da � miT is the coefficient of electron diffusion related
to the ion mobility (it is termed the coefficient of ambipolar
diffusivity), Z�n;T � is the effective ionization frequency,
Z0�T � � �2;4=R0�2miT is the quantity inverse to the diffusion
lifetime of electrons and ions due to recombination at the tube
wall,R0 is the tube radius, E is the longitudinal component of
the electric field strength, j is the current density,H�n;T � are
electron energy losses per unit time due to collisions, and z, g1,
and g are the kinetic coefficients, whose values depend on the
shape of the electron distribution function over velocities (for
the Maxwell distribution, z � 2, g1 � 1=2, and g � 1).

Equations (21) form a closed system if the current is
known. If this is not the case, this system has to be augmented
by Ohm's law for a closed circuit:

E � jRiS�
� L

0

E dx ; �22�

where E is the electromotive force of the power supply,Ri is its
internal resistance, and S and L are the effective cross section
and the length of the positive column in the gas discharge
tube.

To facilitate understanding the physical principles under-
lying the relevant processes, we choose the simplest boundary
conditions expressing the absence of electron temperature
and concentration perturbations at the boundaries of the
positive column,

n�0; t� � n�L; t� � n0 ; T�0; t� � T�L; t� � T0 ; �23�
where n0 and T0 are the stationary values of n and T,
determined from the equations following from Eqns (21)
and (22),

Z�n0;T0� � Z0�T0� ; meE
2
0 � H�n0;T0� ;

j0 � E ÿ E0L

RiS
; j0 � en0meE0 :

For subsequent calculations, it is convenient to eliminate
the electric field E from Eqns (21) and (22) and pass to the
dimensionless variables
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:

The equations obtained can be conveniently written, taking
boundary conditions (23) into account, in the form
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dx ; �25�7 The quasineutrality condition implies that concentrations of electrons

and ions are equal.
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where

ZT �
�
2:4T0
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0
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R � E0L=j0S is the discharge resistance with respect to the
direct current, and l � E0L=T0 is the dimensionless length of
the positive column. The left-hand sides of Eqns (24) contain
linear conservative terms, while their right-hand sides contain
nonconservative and nonlinear terms.

To find the self-excitation conditions of the strata,
Eqns (24) and (25) should be linearized. Neglecting the
dependence ofH on the electron concentration, we obtain
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A solution of Eqn (26) can be represented as a sum of
two terms, a term describing traveling waves and an in-
phase component related to modulation of the discharge
current, i.e.,
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 X4

j� 1
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�28�
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where bj are complex-valued roots of the dispersion equation
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Vj are the weighted coefficients of electron temperature and
concentration amplitudes,

C0 � J0
�pÿ Zn�hT=2ZT � 1

; �30�

and J0 is the current modulation amplitude �J � J0 exp � pt��.
Substituting Eqn (28) in Eqn (27) and taking Eqn (30) into
account, we find the relation between the coefficient C0 and

the other coefficients Cj:
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Dispersion relation (29) allows finding complex wave
numbers bj or, more precisely, the relation between them
and the frequency p of excited waves. We emphasize that the
wave frequencies are still unknown. They can be computed
from the characteristic equation obtained upon substitution
of the expressions found for wave numbers in the boundary
conditions. The presence of oncoming waves is necessary in
this situation in order to satisfy all the boundary conditions.
Finding an exact analytic solution is difficult in the general
case. To proceed, we limit ourselves to the case of traveling
strata in plasmas of inert gases, in which the parameter ZT is
typically large [46], and hence the small parameter e �
Zÿ1=4T 5 1 can be introduced. In this case, as follows from
the results obtained below, the condition

j pÿ Znj
ZT

� e �32�

holds in the vicinity of the stratum excitation boundary.
Under condition (32), one of the roots of dispersion

equation (29) is of the order of unity, while the other roots
are markedly larger. The smallest root is

b1 � 2� � pÿ Zn�hT
ZT

� o�e� ; �33�

and the root that is next in amplitude is

b2 � ÿ
ZT

g� pÿ Zn�
� o�e� : �34�

The two remaining roots are related to standing strata [11]
and present no interest to us.

Substituting Eqn (28) in the boundary conditions and
taking Eqn (30) into account, we obtain a system of
homogeneous equations for the coefficients Cj. Setting the
determinant of that system equal to zero yields the character-
istic equation. It can be readily demonstrated that this
equation can be split, up to terms of the order e, into two
independent equations. One of them, of the form

exp
��b2 ÿ b1�l

�ÿ 1� 1

b1l

��Ri � R�b1
2R

ÿ 1

�ÿ1
� �1ÿ exp �ÿb1l �

��
exp �b2l � ÿ 1

� � 0 ; �35�

specifies the conditions of excitation of traveling strata.
The solution of Eqn (35) can be represented in the form

b2 � c0�k� � ik ; �36�

where k is a real wave number taking a discrete set of
eigenvalues and c0�k�5 k is the increment of the wave
spatial growth. It weakly depends on the wave number k
and is largely determined by the ratioRil=R. Setting b2 � ik in
Eqns (33) and (34), we find

b1 � 2� ik1 ; �37�
where k1 � hT=gk. Awave corresponding to the wave number
b2 is the basic ionization wave. The other wave, with the wave
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number b1, strongly decays with the distance in the direction
from the anode to the cathode. The existence of this wave was
first predicted theoretically in Refs [53, 54] and then observed
experimentally by many researchers. When the discharge
takes power from the source with a very high internal
resistance, such that the current in the circuit remains
virtually constant, it is precisely this wave that provides
feedback leading to the self-excitation of strata. However, if
the resistance is sufficiently small, the influence of this wave is
negligible. That is why it escaped the attention of many
researchers.

Substituting Eqn (36) in dispersion relation (29), we find
the complex eigenfrequencies p associated with eigenvalues k:

p � Zn ÿ k 2 ÿ 2ZT
gk 2

�
a� c0

2

�
� iZT

gk
; �38�

where a � 1ÿ a=2g. It follows from Eqn (38) that the
quantity d � Re p can be positive, i.e., the self-excitation of
oscillations is possible. The maximum value of d,

d � Zn ÿ 2

�
ZT�2a� c0�

g

�1=2
� eÿ2 ; �39�

is attained at

k � k0 �
�
ZT�2a� c0�

g

�1=4
� eÿ1 ;

o � Im p �
�

Z 3
T

g 3�2a� c0�
�1=4
� eÿ3 :

Hence, it follows that condition (32) used in our computa-
tions is satisfied.

4. Stochastic resonance

One example, this time related to recent times, is the
explanation of the so-called stochastic resonance. The
concept of `stochastic resonance' was first introduced in
1981 because of the need to explain a close-to-periodic
sequence of Earth's glaciation epochs (with the period T
approximately equal to 100,000 years) [55±57]. One of the
reasons behind this sequence can be the observed periodic
variation in the Earth's orbit eccentricity with nearly the same
period. But this variation is very small and, taken alone,
cannot result in a significant change in the climate. However,
having added some noise to the derived equations, the

authors of the works cited above found that such changes
become possible in a certain range of noise amplitudes. In this
manner, the phenomenon called stochastic resonance was
discovered. Although the question of whether this explana-
tion corresponds to the real causes of Earth's glaciation
epochs has not yet been ultimately solved, the phenomenon
of stochastic resonance has become widely known [58, 59]. It
is observed in systems of very different physical natures,
including turbulent jets [60].

The first researchers of stochastic resonance simulated the
sequence of glaciation±deglaciation phases in the Earth's
climate using an equation for the Earth surface temperature
in the form of an equation of motion of a light particle in a
bistable potential field perturbed by a weak input periodic
signal and noise:

_x� f �x� � A cosot� x�t� ; �40�
where x is the temperature, A cosot is the weak periodic
perturbation caused by variations in the Earth's orbit
eccentricity at the frequency o, f �x� � dU�x�=dx �
ÿx� x 3, U�x� � ÿx 2=2� x 4=4 is a symmetric two-well
potential, and x�t� is the white noise with intensity K, with
hx�t�x�t� t�i � Kd�t�. The potential U�x� � ÿx 2=2� x 4=4
and the force f �x� corresponding to it are given in Fig. 3,
where U0 denotes the potential barrier height for the
transition of a particle from one well to another. We note
that from the standpoint of the four-pole network theory, the
perturbation A cosot in Eqn (40) can be considered an input
signal and the variable x an output signal. A schematic of a
respective four-pole network is given in Fig. 4.

As follows from Ref. [61], the solution of Eqn (40)
contains discrete components (odd harmonics of the
frequency o) and continuous components enforced by the
noise. The ratio of the amplitude of the first signal
harmonic B at the output to the signal input amplitude A
is called the amplitude transformation coefficient 8 and is
denoted by Q�K �.
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Figure 3. The potential U�x� � ÿx 2=2� x 4=4 (a) and the corresponding force f �x� � ÿx� x 3 (b).
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Figure 4. Schematic of a four-pole network.

8 This definition of the transformation coefficient is standard and

generally accepted.
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Numerical and approximate analytic solutions ofEqn (40)
show that the transformation coefficient Q�K;o;A� and the
phase shift c�K;o;A� are nonmonotonic functions of the
noise intensity K (Fig. 5). The magnitude of Q reaches a
maximum at a certain value ofK, and this value increases with
the frequency of the signal. The dependence of Q on K at a
fixed frequency and amplitude of the signal resembles a
resonance dependence of the amplitude of an oscillator on
the forcing frequency. Because K defines the mean frequency
of jumps from one well to another under the action of noise,
with the jumps related to random transitions through the
potential barrierU0, it is natural to assume that the maximum
in the dependence of Q on K occurs when the resonance
condition is satisfied between the signal frequency and mean
frequency of noise-induced transitions from one stable state
to another. 9 In the case considered, this condition corre-
sponds to the equality between the signal period T � 2p=o
and the doubled mean time Ttr of the first transition through
the potential barrier,

Ttr � p���
2
p exp

�
2U0

K

�
: �41�

In English-based literature, the expression for Ttr is called the
Kramers formula, although the first work on computing Ttr

by Pontryagin, Andronov, and Vitt [62] was published in
1933, prior to paper [63] by Kramers, which only appeared in
1940.

It is apparent, however, that the assumption formulated
above, although supported by a simple logical consideration,
remains mythical. If it were true, the magnitude of Q would
reach a maximum not only under the variation of the noise
intensityK that determines the mean transition frequency but
also under the variation ofo (the input signal frequency). It is
well known that as o increases, the value ofQmonotonically
decreases (Fig. 6).

In works that followed, it was shown that the cause of
stochastic resonance is the change under the action of noise in
the system elasticity and the damping coefficient with respect
to the reaction to the input signal [64±66]. Noteworthy is the
fact that the noise-driven variations in the system effective
parameters have been known for a long time (see, e.g.,
Refs [67, 68]). The stochastic resonance, however, has been
addressed from such a perspective only in the works cited
above.

Thus, the observational data frequently fail to provide an
unambiguous explanation of the phenomenon observed, i.e.,
fail to suggest a relevant theory based on these data. Only a
rigorous theory, albeit with a limited applicability, based on
rigorous mathematics can allow deciding which of the two
explanations is correct.

The nonmonotonic dependence of Q on K prompted an
idea that the phenomenon of stochastic resonance can be used

9 We note that just this hypothesized resonance condition has brought

about the name `stochastic resonance' [55±57].
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to increase the signal-to-noise ratio. This is indeed so in the
case of a harmonic signal. But for a harmonic signal, other,
more efficient methods of signal retrieval from a noisy
background are known, for example, those based on
synchronous detection. For a nonharmonic signal, the
question of the possibility of increasing the signal-to-noise
ratio with the help of a stochastic resonance remains open
because both the transformation coefficient Q and the phase
shift c are strongly dependent on the frequency, which would
inevitably lead to the input signal distortion. We also note
that the mere notion of the signal-to-noise ratio is defined in
many works ambiguously. For example, review [59] suggests
the following definition: ``The signal-to-noise ratio (SNR) is
defined as the ratio of spectral power densities of the signal to
the noise at the frequency of the signal... For a harmonic input
signal, this definition in experimental conditions corresponds
to the ratio of the amplitude of the modulation signal spectral
line above the noise background to that of the noise back-
ground in the spectrum of the output signal.'' However, as
follows from Ref. [61], the spectral signal density represents a
set of d-functions, and hence the amplitude of the spectral line
at the signal frequency tends theoretically to infinity. Thus, if
one follows this definition, then the signal-to-noise ratio is
theoretically always equal to infinity. For a numerical
procedure, the amplitude of the spectral line depends on the
realization length, the discretization frequency, averaging
parameters, and other factors. Similar definitions can be
found in other papers. It then follows from the material
presented above that using a stochastic resonance for
retrieving a complex signal out of noise is not feasible, but a
solution to the task of discriminating a signal based on
stochastic resonance is apparently possible and deserves
attention.

5. Turbulence in unbounded flows

5.1 Hydrodynamic and acoustic waves
It is well known that both hydrodynamic and acoustic waves
exist and interact in jets. Just this fact offers a possibility to
control the level of turbulence through the effect of acoustic
waves [69]. It is seemingly less known that acoustic and
hydrodynamic waves represent two wave solutions of the
same equations of fluid dynamics in a moving medium. We
demonstrate this for a two-dimensional unbounded fluid
satisfying the Euler and continuity equations. Assuming that
the fluid moves in the direction of the x axis with a speed U0,
we have

qu
qt
� �U0 � u� qu

qx
� v qu

qy
� ÿ 1

r0 � r
qp
qx

;

qv
qt
� �U0 � u� qv

qx
� v qv

qy
� ÿ 1

r0 � r
qp
qy

; �42�

qr
qt
� �U0 � u� qr

qx
� �r0 � r� qu

qx
� v qr

qy
� �r0 � r� qv

qy
� 0 ;

where p0 and r0 are the pressure and the density in a
stationary state and u, v, p, and r are respective deviations
of the velocity components, pressure, and density from their
stationary values.

The system of three equations (42) contains four unknown
fields. The relation between two of them (p and r) is provided
by thermodynamics. Assuming that the processes are adia-

batic, we express p through r as

p � p0

��
r
r0
� 1

�g

ÿ 1

�
; �43�

where g is the adiabatic process exponent. Substituting
Eqn (43) in Eqn (42) and limiting ourselves to terms linear in
the perturbation, we obtain the equations

qu
qt
�U0

qu
qx
� a 2

r0

qr
qx
� 0 ;

qv
qt
�U0

qv
qx
� 0 ;

�44�
qr
qt
�U0

qr
qx
� r0

qu
qx
� 0 ;

where a � ��������������
gp0=r0

p
is the speed of sound relative to the fluid

at rest.
Solutions of Eqns (44) are sought in the form of traveling

waves of a frequency o propagating along the x axis:

u � A cos �otÿ kx� ; v � B cos �otÿ kx� ; �45�
r � C cos �otÿ kx� ;

where k is the wave number. Substituting Eqn (45) in
Eqns (44), we obtain a system of equations for the unknown
amplitudes A, B, and C. The condition that its determinant is
zero gives the dispersion equation

�oÿ kU0�
��a 2 ÿU 2

0 �k 2 � 2oU0kÿ o2
� � 0 : �46�

It can be readily seen that Eqn (46) describes two types of
waves, a hydrodynamic wave and two acoustic waves. For the
hydrodynamic wave, which always propagates in the direc-
tion of fluid motion,

k � o
U0

; �47�

whereas for the oppositely directed acoustic waves,

k1; 2 � � o
a�U0

: �48�

The difference in the propagation speed of two oppositely
directed acoustic waves is related to the Doppler effect. It
follows from Eqn (48) that the speed of the wave propagating
downstream can be much larger than that of the upstream
wave.

According toEqns (44), the amplitudes of the longitudinal
component of velocity and of the density (A and C ) are equal
to zero in the hydrodynamic wave, and only the transverse
velocity amplitude B differs from zero. This implies that in
contrast to acoustic waves, the hydrodynamic wave is
transverse. For acoustic waves, on the contrary, the ampli-
tudes of the transverse velocities are equal to zero, while the
amplitudes of the longitudinal component are related to the
amplitudes of density perturbations by the known formula

A1; 2 � � a

r0
C1; 2 : �49�

It follows from Eqns (47) and (48) that in the linear
approximation adopted here, the hydrodynamic wave,
similarly to the acoustic waves, shows no dispersion and has
the speed equal to that of the fluid. But experiments with jets
in which the hydrodynamic wave is usually identified with the
motion of vortices indicate that the speed of this wave
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constitutes 0.5±0.7 of the fluid speed. The reasons reside in
both nonlinear effects and jet divergence.

5.2 Basic properties of turbulent jets
On leaving a nozzle, a jet in a fluid 10 always noticeably
diverges in the transverse direction. This is caused by
viscosity, owing to which neighboring layers of the fluid are
entrained in motion. The mean velocity profile changes
accordingly. If the velocity profile is close to that at the
nozzle exit, it gradually becomes bell-shaped (Fig. 7a). Close
to the jet axis, the jet velocity first slowly decreases with the
relative distance from the nozzle x=D, where D is the nozzle
diameter, and the decrease becomes stronger further down-
stream. Admittedly, the marked reduction in the mean
velocity begins at the progressively smaller values of x=D,
the greater the level of turbulent pulsations at the nozzle exit.
This is well illustrated by Fig. 7b, which shows experimental
dependences of the normalized mean velocity U=U0 on x=D
for three values of the turbulence level at the nozzle exit,

Eu�0� �
������������������������
u�0� 2 ÿU 2

0

q
U0

;

where U0 and u�0� are respectively the mean velocity and the
longitudinal component of the full velocity vector at the
nozzle exit [70].

The fluid layer where the mean velocity varies essentially
is called the boundary or mixing layer. Interestingly, vortices
typical of turbulence are created just in this layer and have a
size of the order of the layer thickness. Downstream from the
nozzle, the thickness of the boundary layer increases. At a
certain distance x � xin (Fig. 7a), the thickness of the internal
part of the boundary layer reaches half of the jet width,
whereupon the boundary layer spans the entire jet. The jet
part x4 xin is termed the initial part. Within the initial part,
the jet velocity changes but slightly. This initial part is most
interesting for many practical purposes.

The vortices formed in the boundary layer exhibit a high
degree of order and are therefore called `coherent struc-
tures.' 11 Within the initial jet part, this order might be related
to the resonant character of the spectra of velocity and

pressure pulsations. Experiments show that the frequency
fm corresponding to the spectral density maximum decreases
downstream from the nozzle [11, 69, 72±76] 12 and this
decrease can be approximately described by a power law
with an exponent depending on the distance to the jet axis
[76]. We note that at the jet axis, Stm � fmD=U0 decreases
muchmore slowly, while the intensity of velocity pulsations is
much less than in the boundary layers. The dependences of
Stm on x=D were already obtained by different techniques in
the 1970s, mainly in the work by Petersen [73] (Fig. 8). It was
found that Stm is approximately inversely proportional to
x=D.

A widespread misconception in the theory of turbulent
jets is related to the explanation of these shifts in spectral
maxima with the distance to the nozzle. In virtually all papers
(see, e.g., Refs [5, 70, 72±75, 77±82]), the shifts are attributed
to vortex merging, which reduces the frequency twofold.
According to the views advocated by the authors of these
works, as two vortices merge, a feedback is established
through an acoustic wave generated by a strong vortex
perturbation in the merger region and propagating
upstream. The presence of such a wave finds support in
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Figure 7. (a) Schematic of a free jet illustrating the deformation of the mean velocity profile and broadening of the boundary layer: lines 1 and 2

schematically show the internal and external boundaries of the boundary layer. (b) Experimental dependences of the normalized mean velocityU=U0 at

the jet axis at the relative distance x=D from the nozzle for three levels of turbulence at the nozzle exit, Eu�0� � 0:015, 0.093, and 0.209 (curves 1, 2, and 3,

respectively).

10 The discussion here encompasses both liquids and gases.
11 We note that the term `coherent structures' is multifaceted. For

example, a book by A Scott [71] entitled Nonlinear Science: Emergence

and Dynamics of Coherent Structures was recently published. However, it

offers no definition of coherent structures.
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Figure 8. Dependence of the Strouhal number corresponding to the

spectral density maximum Stm on the relative distance to the nozzle along
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12 In works on turbulent jets, frequencies f are commonly measured in

terms of Strouhal numbers, St � f D=U0, where D is the characteristic

nozzle diameter.
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many experiments (see, e.g., Ref. [78]). This presence is
manifested through side frequencies in the spectra of
turbulent pulsations in the mixing layer near the nozzle,
which are shifted from the maximum by the frequency that
corresponds to the frequency of the spectral maximum in one
of the merger regions. For the feedback to be efficient, the
resonance condition

xi

�
fi
vh
� fi
va

�
� N �50�

should be satisfied. Here, xi is the coordinate of the section
where the ith merger occurs, fi is the frequency of the spectral
maximum in this section, vh is the velocity of the hydro-
dynamic wave, va is the speed of the acoustic wave, andN is an
integer. Condition (50) states that an integer number of
acoustic and hydrodynamic waves should fit the length from
the nozzle exit to the location of the ithmerging. In support of
their views, the authors of the works mentioned above point
to a satisfactory agreement of the frequencies fi with
experimental data if the values vh � 0:6U0 and N � 2 are
assumed. Why it should be N � 2 and not 5 or 10 is not
explained by the authors of these views. The gradual
evolution of spectra observed in experiments contradicts the
discrete evolution dictated by Eqn (50), but is explained via
the statistical scatter of merger regions. This is explicitly
formulated, for example, in book [69]: ``The gradual, not
stepwise, character of the curve Stm�x=D� bears witness that
locations where the coherent structures are generated, merge,
or break up are subject to stochastic scatter.'' However, as is
known, any statistical scatter should have its causes. This
question is not discussed by the authors of these works.

All these arguments could be considered logical if it were
not for the results of the theory dealing with generation of
turbulent pulsations at small distances from the nozzle [83].
To treat this generation theoretically, one uses the approx-
imation of an incompressible fluid satisfying the Navier±
Stokes equation, which is solved with the Krylov±Bogolyu-
bov asymptotic method. In this approximation, the acoustic
wave is totally neglected. The method is applicable to that
part of the jet where turbulent pulsations remain small. As a
result, the evolution of the spectral density of the stream
function of a hydrodynamic wave is estimated. The shift of
the spectralmaximumobserved in experiments is predicted by
this theory even in the first (linear) approximation. This
implies that the merging of vortices and induced acoustic
waves, which are nonlinear effects, cannot be governing the
observed evolution of spectra. In other words, the above
fairly common explanation of the reasons for the observed
spectral evolution is a myth. The theory maintains that the
shifts in spectra described above should be explained not by
discrete mergers but by a gradual jet expansion. Thus,
theoretical results discard the myth enjoying wide popularity
that the turbulence in jets develops via feedback involving an
acoustic wave, i.e., the myth that turbulence represents self-
oscillations. We remark that the development of feedback
through an acoustic wave induced by the scattering of
hydrodynamic waves on irregularities can be fairly strong
and indeed lead to self-oscillations if a screen is placed across
the jet such that the jet hits it. In the presence of such a screen,
the jets, called impact jets [69, 84±87], generate strong
acoustic waves. The mechanism through which self-oscilla-
tions are excited in such jets pertains to global instability. In
ordinary jets, the feedback through acoustic waves is
insufficient to trigger self-oscillations.

One more widely shared myth refers to an important
property of turbulent jets related to their ability to transform
weak input acoustic waves into amplifying hydrodynamic
waves [88, 89]. This transformation occurs mainly at the edge
of the nozzle. In this case, as is shown in Ref. [89], for a low-
frequency acoustic excitation, the amplification coefficient of
pressure pulsations varies nonmonotonically with the dis-
tance from the nozzle. The results inRef. [89] pertaining to the
Reynolds number Re � 2:6� 105 are presented in Fig. 9a for
the jet axis and for the middle of the boundary flow; in the
second case, the sensitivity of the dependence of the
amplification factor from x Sta=D to Sta, where Sta is the
acoustic perturbation frequency expressed through the
Strouhal number, is very weak, whereas it is much stronger
in the first case. The most significant issue is that in the
boundary layer region, the positions of the maximum
amplification coefficient approximately coincide for differ-
ent Strouhal numbers and are determined by x=D � 1=Sta.
They are essentially different at the jet axis.

In the linear approximation, the behavior of the amplifi-
cation coefficient with the distance from the nozzle, as
demonstrated in Fig. 9b, can be explained based on a jet
model formulated in terms of a set of resonators with
eigenfrequencies changing with the distance to the nozzle
and to the jet axis. Such a model corresponds to the behavior
of spectra of the unperturbed jet described above. Under the
assumption that the eigenfrequencies are equal to those of the
spectral peaks, their behavior can be approximately assessed
from the dependence of the Strouhal number Stm on the
distance to the nozzle along the line shifted one nozzle radius
away from the axis presented in Fig. 8. Figure 8 shows that in
this case, the eigenfrequency is approximately inversely
proportional to x=D, i.e., the condition of resonance between
the forcing frequency Sta and the eigenfrequency is realized at
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x Sta=D � 1, which is observed in experiments reported in
Ref. [89].

It follows from the suggested explanation that the
observed dependence of the amplification coefficient on the
distance to the nozzle, featuring a maximum at some point,
represents, in principle, a linear effect and can be explained by
the dependence of the resonance jet frequency, linked to shifts
in spectral maxima, on the distance, i.e., the expansion of the
jet. This is supported by the results in Ref. [90], where, by
approximately solving linearized Euler equations for a slowly
expanding jet, theoretical dependences were obtained that are
similar to those in Fig. 9. The difference in the dependences
for the jet axis and the boundary layer in Ref. [90] could be
attributed to the fact that the acoustic pressure at the input
section was held constant in the region of the boundary layer.
Thus, it had an effect at the jet axis only some distance

downstream from the nozzle. Despite this obvious explana-
tion, one may encounter mythical conclusions drawn from
the effect in the literature. Thus, book [69] argues: ``The
analysis of these dependences shows that the perturbations of
pressure p 0 propagate from the shear layer to the jet axis
because they start growing at the jet axis not immediately on
leaving the nozzle, but some distance downstream.''

The next myth pertains to the interpretation of changes in
turbulent spectra caused by acoustic excitation. It is known
that under the action of acoustic waves on the jet, the spectra
of turbulent pulsations become drastically modified. First
and foremost, this is exemplified through the appearance of a
discrete component induced by acoustic excitation, together
with subharmonic resonance regions. This can be seen from
Fig. 10, which displays spectra of lateral velocity pulsations
under the acoustic excitation at both low �Sta � 0:25�
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(Fig. 10a) and high �Sta � 2:75� (Fig. 10b) frequencies [76]. In
the first case, the spectra contain discrete components of the
acoustic frequency and its harmonics in a vicinity of the
nozzle. The level of turbulence increases. In the second case,
the spectra also contain discrete components at the action
frequency and its harmonics, but only very close to the nozzle.
However, at small distances downstream from the nozzle, the
spectra exhibit maxima at the second and fourth subharmo-
nics. The appearance of these maxima can be explained as a
manifestation of an nth-order resonance [91] between the
frequency of the acoustic signal and frequencies around the
spectral maximum of the unperturbed jet. Further down-
stream, the intensities of the subharmonics and the main
harmonic decrease. If the distance increases even further, the
spectrum decays monotonically.

The dependence of spectral density maxima on the
distance to the nozzle under acoustic excitation with the
Strouhal number 3.54 is presented in Fig. 11 as found by
Kibens [75]. It is readily seen that this dependence is stepwise,
with clearly expressed hysteresis phenomena. It is therefore
markedly different from the respective smooth dependence in
the absence of acoustic influence. The stepwise character of
the dependence can be interpreted as the subsequent appear-
ance of subharmonic resonances of increasingly higher orders
with the increase in x=D. It is apparent that the transition
from a subharmonic resonance to that of another order can be
accompanied by hysteresis if both resonances are stable over
some interval of x=D. The interpretation outlined here has no
relation to the widespread myth explaining the observed
spectral behavior by localization of vortex region merger
under acoustic excitation (see, e.g., Ref. [69]). It is known [61]
that a spectrum of any system (linear or nonlinear), subject to
a periodic signal and noise, should contain discrete compo-
nents at frequencies that are multiples of the forcing
frequency in the continuous background. This actually
explains the observed behavior of spectra under acoustic
excitation. The mythical character of assertions that the
difference between the spectra in the presence and absence
of acoustic excitation is explained by `statistical scatter of
merger locations' and their `localization' thus becomes
apparent.

Another myth is the description of the transition from a
laminar to the turbulent flow in terms of the excitation of

chaotic self-oscillations. As already mentioned, a laminar
flow of a fluid in a tube is almost always unstable with
respect to small perturbations. It can be shown that this
instability is convective, i.e., propagates downstream, and
hence cannot lead to self-excitation of turbulence in the
absence of a global feedback. Nevertheless, as already
noted, recent editions of books [13, 14] argue based on
Refs [21, 22] that the turbulence represents chaotic self-
oscillations, i.e., that the system giving birth to turbulence
can be considered a dynamic one.13 In certain cases, for
example, in bounded flows14 or jets intercepted by some
obstacle (a plane screen or wedge), this is indeed so, because a
global instability develops there. But in free jets, the transition
to turbulence is related not to the excitation of self-oscilla-
tions but to strong amplification of weak perturbations that
are always present upstream [93±96]. Because hydrodynamic
waves and acoustic waves formed at flow inhomogeneities do
not interact in the linear approximation, the linear feedback
in jets, which could lead to self-excitation of self-oscillations,
is absent. All this implies that turbulent jets, at least in some
vicinity of their nozzles, cannot be considered in the frame-
work of dynamic models.

Since the works mentioned above, a significant number of
papers have appeared whose authors connect the transition to
turbulence with the appearance of a low-order strange
attractor, i.e., with the excitation of self-oscillations in
dynamic systems [97±101]. Granted that instability in
turbulent jets is of a convective type, one can conjecture that
the existence of such an attractor is one of the myths.

According to the ideas formulated in Ref. [83], the
turbulent character of jet flows pertains to a strong amplifica-
tion of random perturbations, which are always present at the
nozzle exit.15 At some distance from the nozzle, the amplifica-
tion becomes essentially nonlinear. As a result, the system
evolves into a qualitatively new state whose characteristics
depend on the source of perturbations only weakly. Its
behavior turns out to be very similar to that which would be
observed had the system underwent a certain nonequilibrium
phase transition. This is supported by the existence of a highly
interesting analogy between processes in turbulent jets and
the behavior of a pendulum with a randomly vibrating
suspension axis, which undergoes such a phase transition
[11, 76, 93 ± 96].

Because turbulent pulsations are weak at small distances
from the nozzle, they can be explored using a quasilinear
theory and the Krylov±Bogolyubov asymptotic method for
distributed systems [47]. Such a theory is elaborated in
Ref. [83]. We note that the first applications of the linear
theory to the analysis of jet stability were proposed in
Refs [103 ± 106] based on the Euler equations. Seemingly, in
addition to an obvious simplification of the solution, the
authors of those papers used a statement shared by many
works that processes in jets can be assessed in the inviscid
fluid approximation. As is shown inRef. [83], solving this task

101

Stm

x=D
101

100

100
10ÿ1

10ÿ1

Figure 11. Dependence of the spectral density maxima on the distance to

the nozzle in high-frequency acoustic excitation with the Strouhal number

3.54 along the jet axis (white circles) and along the line passing through the

edge of the nozzle (black circles).

13 A system is termed dynamic when its state is fully determined by initial

conditions (see, e.g., Ref. [92]). Random behavior is also possible for

dynamic systems, but it should be linked not to the external noise but to an

instability.
14 One example can be furnished by the Couette flow in an annulus

between two coaxially rotating cylinders.
15 It is noteworthy that random sources exist everywhere in jets even in the

absence of any external perturbations; these are so-called natural fluctua-

tions [102]. Their influence, however, is noticeably less than that of

perturbations at the nozzle exit and they can therefore be neglected.
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based on the Navier±Stokes equation leads to results that
differ essentially from those obtained by these authors.

In all classical works on the theory of turbulence,
beginning from those by Reynolds (see Refs [13, 14]), a
solution of the Navier±Stokes equation was represented as a
sum of mean fields and their random deviations. Because the
mean fields depend on the deviations through the quadratic
nonlinearity of the Navier±Stokes equations, the problem of
closing the equations thus obtained emerged. To avoid this
problem, the authors of Ref. [83] proposed representing the
solution as the sum of stationary solutions (dynamic
components) and random deviations from stationary solu-
tions (stochastic 16 components). The latter are defined by the
sources at the nozzle exit.

The solution of the equations for the dynamic component,
even if obtained numerically, is fairly complex. Therefore, we
specified the longitudinal velocity profile based on experi-
mental data and a set of physical arguments. It contained
some unknown functions of the longitudinal coordinate x, the
most important of which is the boundary layer thickness
d0�x�. It should be mentioned that the mean longitudinal
velocity profile similar to ours was earlier used in Refs [103 ±
106], where the Euler equations were solved.

To find these unknown functions, it is convenient to use
conservation laws for the energy and momentum fluxes.
These laws are routinely derived from the Reynolds equa-
tions for the mean values of these fluxes [70, 107] and
therefore contain the so-called turbulent viscosity. In
Ref. [83], they are derived from the Navier±Stokes equa-
tions. The resulting expression for the boundary layer
thickness is

d0�x� �
��������������������������
d 2
00 �

32q 2

3Re
x

r
; �51�

where d00 � d0�0� is defined by conditions of fluid ejection
from the nozzle, Re is the Reynolds number, and q � 3. If
the jet leaves the nozzle in a laminar regime, the boundary
layer can be approximately described by Blasius's function
[13] and d00 is proportional to 1=

������
Re
p

. We assumed
d00 � 1=�b0

������
Re
p �, where b0 � 0:1. The dependence of

d0�x�
������
Re
p

at q � 3 and the specified value of b0 is presented
in Fig. 12. We mention that the dependence d0�x� found by

us is essentially different from that given in Ref. [107], which
contains the turbulent viscosity nt. Because nt is proportional
to d0�x� according to the Prandtl hypothesis [108], the
dependence obtained in Ref. [107] turns out to be linear.
But experiments show that this dependence is essentially
nonlinear. We emphasize that accounting for the nonlinear-
ity in higher orders of the Krylov±Bogolyubov method
makes the dependence d0�x� closer to the experimental one.

The dynamical components of the velocity Ud�y� and
Vd�y� and the vorticity Od�y� found in that way are plotted in
Fig. 13 for x � 0 and x � 8. It can be inferred that for all
values of y, excluding the narrow vicinities of y � �1, Ud�y�,
Vd�y�, and Od�y� are approximately constant; the values of
Vd�y� and Od�y� are close to zero for jyj < 1 and are
respectively close to Vd�x;�1� and Od�x;�1� for jyj > 1.
We note that the presence at jyj > 1 of a nonzero transverse
velocity component directed to the jet axis reflects the known
fact of entrainment of the surrounding fluid by jets.

In Ref. [83], stochastic components were assumed to be
small, i.e., proportional to some conventional small para-
meter e. This permitted solving equations for stochastic
components with a method similar to the Krylov±Bogolyu-
bov method applied to distributed systems (see Refs [47, 83]).

In the first (linear) approximation, the following approx-
imate equation was obtained for the stream function Cst1:

qDCst1

qt
�Ud�x; y� qDCst1

qx
� Vd�x; y� qDCst1

qy

ÿ qOd�x; y�
qy

qCst1

qx
� qOd�x; y�

qx
qCst1

qy
ÿ 2

Re
DDCst1 � 0 :

�52�
Because Eqn (52) is nonlinear and the jet expands slowly, the
solution can be sought as a sum of traveling waves with a
frequency S, a slowly varying complex wave numberQ�S; x�,
and an amplitude f �S��mx; y�:
C1�t; x; y�

� 1

2p

�1
ÿ1

f �S��mx; y� exp
�
i

�
Stÿ

� x

0

Q�S; x� dx
��

dS : �53�

Here, m is one more conventional small parameter reflecting
the slowness of jet expansion. It is convenient to set

Q�S; x� � S

vph�S; x� � iG�S; x� �54�

in Eqn (53), with vph�S; x� being the phase velocity of the
hydrodynamic wave with the frequency S and G�S; x� the
amplification coefficient related to it.

Expanding the functions f �S��mx; y� and Q�S; x� in series
in the small parameter m and substituting these expansions in
Eqn (53) and then substituting C1�t; x; y� in Eqn (52) and
keeping only the terms of the first order in m, we obtain the
following equation for the function f �S; mx; y�:

i
ÿ
SÿUd�x; y�Q

��q2f
qy 2
ÿQ 2f

�
� Vd�x; y�

�
q3f
qy 3
ÿQ 2 qf

qy

�

� iQ
qOd�x; y�

qy
f� qOd�x; y�

qx
qf
qy

ÿ 2

Re

�
q4f
qy 4
ÿ 2Q 2 q2f

qy 2
�Q 4f

�
� 0 : �55�16 Here and below, `stochastic' is used as a synonym to `random.'

Quantities are truly stochastic when their probability can be computed.
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Figure 12. Dependence of the thickness of the boundary layer related to������
Re
p

on the distance to the nozzle.
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Equation (55) with the vanishing boundary conditions for
f at y � �1 describes a boundary value problem that is not
self-adjoint and in which Q plays the role of a complex
eigenvalue. We note that such boundary value problems are
only little explored by mathematicians.

The general solution of Eqn (55) can be represented in the
form

f �x; y� �
X4
j� 1

Cj�x� fj�x; y� ;

where Cj�x� are arbitrary functions of x. It is known from
experiments that in a plane jet, velocity perturbations in the
vicinity of the nozzle are even functions of the transverse
coordinate y. Consequently, the stream function should be an
odd function of y. In this case, only positive values of y can be
considered.

Because Eqn (55) has constant coefficients outside the
boundary layer, its solutions at y4 y1�x� and y5 y2�x�,
where y1; 2�x� are the internal and external boundaries of the
boundary layer, can be found analytically. Then they should
be matched at the turning point 17 of the longitudinal velocity

defined by the function qf �x; y�=qy. The matching condition
reduces to the requirement that a certain complex-valued
determinant depending on vph�S; x� and G�S; x� is zero. This
condition determines eigenvalues of the phase velocity and
the related amplification factor.

Prescribing an input perturbation, we can easily compute
its transformation with the distance from the nozzle. As a
result of such computations, we find that the perturbation
spectrum gradually shifts to the low-frequency domain
downstream from the nozzle. We emphasize that these
results are obtained in the linear approximation without
accounting for merger events and feedback through an
acoustic wave.

We note that on varying the Reynolds number in wide
limits, the eigenvalues of vph and G vary rather weakly. Had
the Euler equation been used instead of the Navier±Stokes
equation, the variation would be quite noticeable. This is
related to the fact that for an arbitrary Reynolds number, odd
eigenfunctions of the Navier±Stokes equation represent a
linear combination of two particular solutions, the fast and
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Figure 13.Dependences of Ud�y�, Vd�y�, and Od�y� for x � 0 and x � 8 at b0 � 0:1 and Re � 25;000.

17 A value y � y � of the argument of a complex-valued function is called a

turning point if the derivative of the modulus of this function with respect

to y changes its sign, i.e., the modulus has an extremum at this point.

Turning points can have different orders. For the turning point of the first

order, the equation for the modulus of this function should be reducible to

the Airy equation in some vicinity of this point.
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slow ones, whereas eigenfunctions of the Euler equation are
defined by only one solution, which is the slow one. Even the
correction to the Euler equation defined by the Reynolds
number, found, e.g., in Ref. [90], does not change the essence,
because it contributes to only the slow part of the solution.
Hence follows our conclusion: The claim contained in
numerous papers that turbulent processes in jets can be
computed based on the Euler equations is a delusion.

6. Conclusion

A set of myths pertaining to different problems of physics is
considered. Having started from discussing myths on the
caloric and aether, we subsequently moved to problems of
microwave electronics (magnetron), plasma physics (strata),
nonlinear dynamics (stochastic resonance), and fluid
dynamics (turbulent jets). Turbulent jets are given special
emphasis because their theory is a constellation of various
myths. To be sure, we have touched only several topics that
are closest to our interests; many volumes can be dedicated to
discussing myths and reality in physics. The topic `myths and
reality' is multifaceted. Its surprising aspect is a metamor-
phosis of myths into reality. An example can be furnished by
teleportation, a favorite topic of science fiction writers that is
frequently mentioned today under the name of quantum
information and which includes quantum cryptography and
quantum computing [109].

During the preparation of this work, papers [6, 110]
appeared, which bear evidence that even the newest physical
results are quickly accumulating myths.
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