
Jupiter (1963) were conducted. As a result of this work, the
astronomical unit was measured with high accuracy, and a
new theory of the motion of the inner planets of the Solar
System was developed and confirmed by measurements. The
radar survey of Venus, carried out in 1983 ± 1984 by the
aboard integrated radar system of automatic interplanetary
probes Venus-15 and Venus-16, was an outstanding world-
class achievement; it produced an image of 115mln km2 of the
northern part of the planet with a resolution of 1 km. An
analysis of the unique data allowed the creation and
subsequently publication of the first Atlas of the Venusian
Surface in the history of science (Moscow: MIIGAiK, 1989).
Its editor-in-chief was Academician V A Kotel'nikov (1961 ±
1989, IRE).

Along with working on scientific problems and teaching,
Vladimir Aleksandrovich was doing a great deal of science
administration. In 1969 ± 1988, V A Kotel'nikov was acting
President, Vice President, then First Vice President of the
USSR Academy of Sciences (AS), and headed a number of
Learned Councils of the USSR AS and then Russian
Academy of Sciences, as well as some interdisciplinary
scientific and technical councils and commissions; he com-
bined all this with systematic daily work at the IRE. He was
doing a great deal of work on organizing and supervising
long-term exploratory and fundamental research projects at
the Academy, and coordinated the research of numerous
organizations in the country that specialized in various fields
of modern radio engineering and electronics. By realizing his
enormous scientific potential and accumulated experience,
possessing his phenomenal capacity for work, and through
his innate responsibility for any assignment he was given, he
was able to produce results with maximum efficiency.

In 1987, Vladimir Aleksandrovich resigned from the
directorship of the IRE and in 1988 from the vice-presidency
of the USSRAS; still heading the learned councils and taking
part in the life of the Institute, he returned to theoretical work
in radiophysics.

At the age of 88 to 89, he published his last papers, which
completed the circle of his work in radiophysics (1996 ± 1997).

As in his younger days, he worked on these papers without
assistance and published them almost on the eve of his 90th
birthday. The problem he was solving was the inverse of the
one he treated in his earlier publications. In those papers he
determined the properties that a signal needs to have for it to
be transmitted through a given channel; now he reversed it:
how to select the properties of a channel in order to best
transmit a given signal. As in his youth, he was again far
ahead of his time. These days these results have enjoyed great
popularity. Radio electronics in the past prohibited the
possibility to change the channel, so one had to shape the
signal. Nowadays, the channel can be selected in such a
manner that it can transmit the signal in an optimal manner,
and on top of that, it `cleans' the signal too, filtering out the
noise that would make it impossible to properly decode the
signal at the output. These are essentially adaptive channels.
These were his last scientific publications. And to top it all, he
turned to quantum mechanics.

Vladimir Aleksandrovich became interested in quantum
mechanics already in his youth. His creative path began (in
1927) when radio engineering was coming of age, and he just
loved it, and quantummechanics was starting to blossom and
provided the major excitement for the scientific intelligentsia;
these people hotly discussed the quantum mechanics papers
appearing in journals. No wonder that the wave of interest in

this `mysterious' field took hold of the young Vladimir
Kotel'nikov.

He started buying books on quantum mechanics that
began to appear in the USSR and browsed through themÐ
there was not enough time to do serious reading. Vladimir
Aleksandrovich later remembered that each time he was left
with a feeling of dissatisfaction as he felt ``unable to
comprehend this quantum mechanics to the very bottom.''
He dreamed of ``some day figuring it all out.''

At last he ``got a bit of free time'' and tackled the subject.
He did not regard himself as a specialist in the field and tended
to look at his new project as a ``hobby for an old man.''

He began by carefully reading the available books on
`classical' quantum mechanics. He decided to shun all
`alternative trends' in order to avoid undesirable influences;
he wanted to see what he could produce himself. His `square
one' was the Schr�odinger equation. By the end of 2003 he was
ready to discuss the obtained results with specialists, but time
ran out for him. V A Kotel'nikov died on February 11, 2005.
The 97th year of his life ended with a nearly complete but
unpublishedworkModelNonrelativistic QuantumMechanics;
the drafts were published in 2008.

In this manuscript Vladimir Aleksandrovich presented
nonrelativistic quantummechanics (based on the Schr�odinger
equation) in terms of classical probability and classical
concepts of the existence of trajectory of a particle and a
field acting on it (seeAppendix). The theory that he developed
is an example of so-called theories of hidden parameters on
which Luis de Broglie, D Bohm, and some others worked in
the 20th century. Vladimir Aleksandrovich was unaware of
the results published by these authors. He independently
reproduced the entire logic of the theory of hidden para-
meters, introduced his own terminology and notation, and
generated all the basic results of nonrelativistic quantum
mechanics in his own terms. By this we mean wave packet
spreading, analysis of the two-slit experiment and quantum
interference, construction of the theory of stationary states,
the theories of the hydrogen atom and oscillator, the theory of
nonstationary states and quantum transitions, and the
explanation of tunneling effect.

We who worked in the Kotel'nikov Institute of Radio-
engineering and Electronics, RAS loved and respected
Vladimir Aleksandrovich. We consider it our unwavering
duty to sustain the creative atmosphere that he built in the
Institute, and strive to follow his principles in our work.

PACS number: 03.65.Ta
DOI: 10.3367/UFNe.0179.200902h.0204

Appendix
Model Nonrelativistic QuantumMechanics.
Considerations*

V A Kotel'nikov

INTRODUCTION

Quantum mechanics considers the motion of very small
bodies such as elementary particles. Experiments have

*Below, the Introduction andChapters 1 and 2 are presented. The full text

of the work was published in 2008 (Moscow: Fizmatlit, 2008), 72 pages (in

Russian).
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shown that this motion does not always obey the laws of
classical mechanics. Quantummechanics has turned out to be
more complicated and counter-intuitive than classical
mechanics. In `classical' quantum mechanics, particles have
no apparent images. They have no trajectories, cannot have
definite positions and velocities simultaneously, etc. The
motion of particles is determined by many rules that do not
always rigorously follow from the basic laws like, for
instance, in the classical mechanics of macroscopic bodies
and in electrodynamics.

All this complicates learning and applying quantum
mechanics, especially for those who are more inherent in
figurative thinking.

In this work, a figurative model of quantum mechanics is
proposed, which is in agreement with the accumulated
experimental data and makes the quantum mechanics of
small bodies more evident and more logically rigorous.

Chapter 1

CONSTRUCTING THE MODEL

1.1 Basic statements
of nonrelativistic quantum mechanics
The basic statement of classical mechanics is as follows: the
state of a particle with mass m considered as a pointlike body
is determined by its position given by the radius vector r and
its velocityV. Knowing these parameters for a certain instant
of time t and the external force that acts on the particle, we can
find, using Newton's laws, all parameters of the particle
motion for any instant of time.

In quantum mechanics, this turns out to be different. As
experiments and their analysis have shown, the state of a
particle at a given instant of time t cannot be fully described
by the values of r and V.

The basic statement of nonrelativistic quantum mechan-
ics, confirmed by experiments, is as follows: if one does not
take into account the spin of a particle, the state of the particle
at some instant of time t is fully described by some complex
function (the wavefunction) in three-dimensional space:

c�r; t� � a�r; t� exp ÿib�r; t�� ; �1:1�

where a�r; t� and b�r; t� are real. The function a�r; t�
determines the probability that the particle at some instant
of time t resides at a certain point in space. For instance, the
probability that at the point in time t the particle will be found
within a small volume dq containing the end point of the
radius vector r is given by

dP � a 2�r; t� dq : �1:2�

The function b�r; t� determines the dynamical state of the
particle.

In the absence of a magnetic field, knowing c�r; t� at the
initial instant of time, the mass m of the particle, and the
external field forces Fo�r; t� acting on it, one can find c�r; t�
for other points in time using the SchroÈ dinger equation. For
the nonrelativistic case, which will be the only case considered
here, and in the absence of the spin and themagnetic field, it is
written as follows:

i�h
qc�r; t�

qt
� ÿ �h 2

2m
H 2c�r; t� �U�r; t�c�r; t� ; �1:3�

where �h � 1:05� 10ÿ27 erg s is the Planck constant, and
U�r; t� is the force function of the field acting on the particle.
At the same time, the force acting on the particle equals

Fo � ÿHU�r; t� : �1:4�

Knowing c�r; t� and m, one can, using the rules of
quantum mechanics, find the other parameters of the
particle's motion.

One has to use probabilistic parameters here because
completely identical experiments on registering small parti-
cles never have similar outcomes. The coordinates of the
particles are registered within a certain range of results, and
one can only talk about the probability that the particle is
found at one position or another.

The rule given above is the basic statement of nonrelati-
vistic quantum mechanics.

1.2 Velocity of a particle
in model nonrelativistic quantum mechanics
In commonly used quantum mechanics, it is claimed that a
particle cannot be at a certain position and simultaneously
have a certain velocity. However, quantum mechanics
considers the parameters of a particle taken from the
different realizations of a process with the same wavefunc-
tion.

Let us try to construct a model that would correspond to
the above-given basic statement of quantum mechanics and
hence to the experimental evidence but at the same time imply
a certain trajectory of the particle, as is the case in
macroscopic mechanics. While constructing the model, we
will consider the position and the velocity of a particle for the
same realization, in which position and velocity can exist
simultaneously. To this end, let us first find the velocity and
the acceleration of the particle if it moves according to the
basic statement of quantum mechanics, i.e., it satisfies the
SchroÈ dinger equation (1.3).

Suppose that at some instant of time t the particle is at a
point with radius vector r and has velocity V�r; t�. Let us find
the probability that during a time interval t; t� dt the particle
will cross a small area dS (see Fig. 1). 1 During the time
interval dt, the particle moves byV dt. It will cross the area dS
if at some instant of time t it was at a distance of ÿlV dt
�0 < l < 1� from one of the points of this area or, in other
words, if at time t it was within a domain of volume
dq � V dS dt adjacent to this area. According to formula
(1.2), the probability of this event is dPdS � a 2V dS dt.

Thus, dPdS is the probability of the particle crossing of the
area dS during the time interval t; t� dt. For V dS < 0, the
particle will cross the area dS in the opposite direction, and in
this case dPdS will be negative.

Let us choose some volume q bounded by a closed surface
S. The probability that the particle will escape from this
volume, i.e., will cross the surface S, within the time interval
t; t� dt is, according to the Ostrogradsky ±Gauss theorem,
given by

Pÿ � dt

�
S

a 2V dS � dt

�
q

H�a 2V� dq :

The probability that at the point in time t the particle
resided within the volume q is, according to formula (1.2),

1 Unfortunately, figures are absent both in the manuscript and the

published work (Moscow: Fizmatlit, 2008). (Editor's note.)
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equal to

Pt �
�
q

a 2 dq :

The probability that the particle will stay within volume q
at time t� dt can be expressed as

Pt�dt �
�
q

�
a� qa

qt
dt

�2

dq �
�
q

�
a 2 � 2a

qa
qt

dt

�
dq :

Here, we omitted the term with dt 2 as an infinitesimal of
higher order of magnitude.

Evidently, the event `the particle is within volume q at
some instant of time t ' will be necessarily succeeded by either
the event `the particle stays within volume q at some instant of
time t� dt ' or the event `the particle leaves domain q within
the time interval t; t� dt .' Therefore, one finds

Pt � Pt�dt � Pÿ ;

or

Pt�dt ÿ Pt � ÿPÿ :

From this equality it follows that�
q

qa 2

qt
dq � ÿ

�
q

H�a 2V� dq ;

and, since this equality should be valid for any q, one has

qa 2

qt
� ÿH�a 2V� : �1:5�

Now, let us find the value of qa 2=qt according to
SchroÈ dinger equation (1.3). We substitute c�r; t� from
formula (1.1) into Eqn (1.3). Then we arrive at

i�h

�
qa
qt
� ia

qb
qt

�
exp �ib� � ÿ �h 2

2m

�
H 2a� 2iHaHb

� iaH 2bÿ a�Hb�2� exp �ib� �Ua exp �ib� : �1:6a�
Cancelling both sides of the above equation by �h exp �ib�

and setting the imaginary parts equal, we find that

qa
qt
� ÿ �h

2m

�
2HaHb� aH 2b

�
:

Further, multiplying both sides by 2a, after some
algebraic transformations we obtain

2a
qa
qt
� qa 2

qt
� ÿ �h

2m

�
4aHaHb� 2a 2H 2b

�
; �1:6b�

or

qa 2

qt
� ÿ �h

m
H�a 2Hb� : �1:6�

Setting equal the real parts in Eqn (1.6a) and cancelling by
a exp �ib�, we find

ÿ�h
qb
qt
� �h 2

2m

�
ÿH 2a

a
� �Hb�2

�
�U : �1:7�

We see that equations (1.5) and (1.6) will coincide if we
assume

V�r; t� � �h

m
Hb�r; t� : �1:8�

Hence, if at some instant of time t a particle is at a point with
radius vector r, its velocity should correspond to equation (1.8)
in order that the SchroÈdinger equation and relation (1.2) should
be satisfied.

1.3 Forces in model nonrelativistic quantum mechanics
Let us now find the forces that should act on the particle to
provide these velocities. For this, let us find the acceleration of
the particle from the velocities we obtained. If a particle
moves along a certain trajectory, so that one should take into
account the variation of V�r; t� due to both r and t, its
acceleration and velocity are known to be related by the
equation (see Appendix 1)

dV

dt
� 1

2
H�V 2� ÿ V� �H� V� � qV

qt
: �1:9�

According to Eqn (1.8), the particle velocity V is a
gradient; therefore, the vector product H� V � 0 and,
hence, one has

dV

dt
� 1

2
H�V 2� � qV

qt
: �1:10�

Note that there is a difference between dV=dt and qV=qt.
The derivative dV=dt defines the acceleration of the particle
corresponding to its motion along the trajectory, while qV=qt
is the partial derivative of V�r; t� with respect to time, with r
considered constant.

If we assume that the particle motion satisfies Newton's
law, then the existence of acceleration requires a force acting
on the particle:

F � m
dV

dt
� m

2
�V 2� �m

qV
qt

; �1:11�

or, taking into account formula (1.8), we obtain

F � m

2
H
�

�h 2

m2
�Hb�2

�
�m

�h

m

qHb
qt
� �h 2

2m
H�Hb�2 � �h

q
qt

Hb :

�1:12�

The expression on the right-hand side of Eqn (1.12) can
also be obtained from relation (1.7). Indeed, calculating the
gradients of the left-hand and right-hand parts of equality
(1.7), we arrive at

ÿ�h
qHb
qt
� �h 2

2m

�
ÿH H 2a

a
� H�Hb�2

�
� HU ;

or

�h 2

2m
H�Hb�2 � �h

q
qt

Hb � �h 2

2m
H
H 2a

a
ÿ HU :

Taking this into account, we can rewrite expression (1.12)
as

F � �h 2

2m
H

H 2a

a
ÿ HU � Fq � Fo � m

dV

dt
: �1:13�
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Here,

Fo � ÿHU ; �1:14�

according to condition (1.4), is the external field force acting
on the particle, and

Fq � �h 2

2m
H

H 2a

a
�1:15�

is an additional force that should act on the particle to provide
its motion according to the SchroÈ dinger equation and hence
there is an agreement with the experimental results. This force
is determined by the modulus of the wavefunction a�r; t�.

1.4 Model of a small particle
in model nonrelativistic quantum mechanics
Based on the above considerations, the following model of a
small particle is proposed. The model involves two compo-
nents: a bulk one, the scalar field a 2�r; t� equal to themodulus
of the wavefunction (1.1), and a pointlike one, being the
particle moving in this field. The model field will be called the
quasifield, the pointlike particle will be called the T-particle,
and the combination of the quasifield and the T-particle will
be called the quanton.

The dynamics of the quasifield are determined by
Schr�odinger equation (1.3). The motion of the T-particle
obeys Newton's law (1.13), i.e., the T-particle moves as a
pointlike particle in classical mechanics under the action of
two forces: the classical one, Fo (1.14), and the quantum one,
Fq (1.15). The existence of force Fq makes the difference
between quantum and classical mechanics.

If the force Fq can be neglected in comparison with the
external forces Fo, the motion is executed according to the
rules of classical mechanics. The probability that at some
instant of time t the particle will be found within a small
volume dq containing the end of the radius vector r is given by
expression (1.2). In this case, the velocity of the T-particle will
be defined by expression (1.8). If exactly the same experiment
is performed many times, each time the wavefunction, as well
as the quasifield, will have the same form but the T-particle
will take up different positions, with the probabilities given by
Eqn (1.2). Correspondingly, for the different positions of the
T-particle, its velocity will be defined by expression (1.8).
Since the position of a T-particle does not enter the
Schr�odinger equation, the particle has no effect on its
quasifield. A T-particle can sets up electromagnetic and
other fields and act, through external forces, on other
elementary particles.

We have considered the case where the elementary
particle has a single wavefunction. This is the so-called
pure case. The situation may be more complicated, with the
elementary particle having one of several possible wavefunc-
tions c1�r; t�;c2�r; t�; . . . ;cn�r; t�, with the probabilities
P1;P2; . . . ;Pn. This is the so-called mixed case, when the
situation should be considered separately for each wavefunc-
tion, and the results should be summed upwith an account for
the probabilities P1;P2; . . . ;Pn.

Nonrelativistic quantum mechanics can be constructed
from the proposed model of an elementary particle, alluding
to the fact that the model does not contradict the experiment.
The rest, including the Schr�odinger equation, can be logically
derived from this model.

Chapter 2

QUASIFIELD

2.1 Let us consider the properties of the quasifield in more
detail. According to Eqn (1.2), the probability that at some
instant of time t the T-particle will be found within some
domain q equals

Pq�t� �
�
q

a 2�r; t� dq ; �2:1�

where integration is taken over this domain. Let us call a 2�r; t�
the density of the quasifield at point r and some instant of time
t, and the integral (2.1) the amount of the quasifield within
volume q. Then, the following statement will be valid: the
probability that a T-particle is found within some domain is
equal to the amount of the quasifield in this domain.

The quasifield, which can be viewed as some gas or
compressible fluid with the density a 2�r; t�, neither appears
nor disappears with time but only moves with the velocity
V�r; t�. Under these conditions, the quasifield must satisfy the
relation

dt
q
qt

�
q

a 2 dq � ÿdt
�
S

a 2V dS : �2:2�

The left-hand integral in formula (2.2) is taken over some
domain q, while the right-hand one, over the closed surface S
surrounding it. During a time dt, the amount of quasifield in
domain q will be reduced by the value of the left-hand side of
expression (2.2). This reduction will be only due to the field
escaping through the surface S. The amount of the quasifield
escaping through an element dS of the surface during a time
dt will be equal to a 2V dS dt, while the amount escaping
through the whole surface will be equal to the right-hand side
of equation (2.2).

2.2 Let us now find the velocity V�r; t� of the quasifield
required in order to satisfy both relation (2.2) and the
condition that the quasifield density a 2�r; t� correspond to
the wavefunction c�r; t� � a�r; t� exp ÿib�r; t��, which is the
solution to the Schr�odinger equation. For this, let us utilize
the theorem2 from Appendix 2, assuming in (A2.3) that

c1 � c2 � a exp �ib� :
Then, taking into account that Hc1; 2 � �Ha� exp �ib��

i�Hb�a exp �ib�, we obtain
q
qt

�
q

a exp �ib�a exp �ÿib� dq

� i
�h

2m

�
S

n
a exp �ÿib���Ha� exp �ib� � i�Hb�a exp �ib��

ÿ a exp �ib���Ha� exp �ÿib� ÿ i�Hb�a exp �ÿib��o dS :

2 This theorem states: ``If c1�r; t� and c2�r; t� vary in time according to the

same SchroÈdinger equation, namely

i�h
q
qt

c1 � ÿ
�h 2

2m
H 2c1 �Uc1 ; �A2:1�

i�h
q
qt

c2 � ÿ
�h2

2m
H 2c2 �Uc2 ; �A2:2�

then

q
qt

�
q

c �1c2 dq � i
�h

2m

�
S

ÿ
c �1 Hc2 ÿ c2 Hc

�
1

�
dS : �A2:3�''

(Editor's note.)
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After simplifying this expression, we get

q
qt

�
q

a 2 dq � ÿ �h

m

�
S

�Hb� a 2 dS :

Comparing this expression with Eqn (2.2), we see that
they will coincide if the quasifield velocity is assumed to be

V�r; t� � �h

m
Hb�r; t� : �2:3�

Thus, we can assume in the model that the quasifield
cannot disappear or appear but can only move with the velocity
given by expression (2.3).

If the integration domain is assumed to be the whole space
occupied by the quasifield, where a 6� 0, then the integral of
the right-hand side of expression (2.2) will be equal to zero,
since in this case a � 0 on the surface S.

Thus, the full amount of the quasifield of an elementary
particle is always constant. This amount will be equal to the
probability that the T-particle is found somewhere in the
quasifield, and this probability equals unity. Hence, it follows
that the full `amount' of the quasifield of an elementary particle
is always equal to unity, i.e., the integral (2.1) taken over the
whole field should be equal to unity:�

Q

a 2�r; t� dq � 1 : �2:4�

Hereafter, the subscript Q of an integral means that
integration is performed over the whole space where a 2 6� 0.

2.3 Comparing expressions (1.8) and (2.3) we see that the
velocity of a T-particle is equal to the velocity of travel of the
quasifield at the point where the T-particle is placed, i.e., the
particle is entrained by the quasifield and moves together with
it.

Since the velocities of the quasifield and the T-particle are
equal, their accelerations should also be equal. Therefore, an
element of the field moving along some trajectory will have
acceleration, according to formula (1.13), equal to

dV

dt
� �h 2

2m 2
H
H 2a

a
ÿ 1

m
HU0 : �2:5�

The second term in the right-hand side of this
equation is determined by external forces, while the first
term, by the forces of the field itself. It depends on the
field density and its derivatives at the point where the
T-particle is placed, namely, on the parameter H 2a=a,
which will often occur further. Therefore, let us consider
it in more detail.

2.4 Let the origin of the coordinate system be put at our
point of interest. Let us represent a as a Taylor series and limit
the domain of consideration, so that the quadratic terms are
sufficient. We will get

a�x; y; z� � 1

2

q2a
qx 2

x 2 � 1

2

q2a
qy 2

y 2 � 1

2

q2a
qz 2

z 2 � q2a
qx qy

xy

� q2a
qy qz

yz� q2a
qz qx

zx� qa
qx

x� qa
qy

y� qa
qz

z� a ;

where the derivatives and the a function are taken at point
�0; 0; 0�. Let us find the average value of a at a distance d from

the point �0; 0; 0�, understanding it as

hadi � 1

6

�
a�d; 0; 0� � a�ÿd; 0; 0� � a�0; d; 0�

� a�0;ÿd; 0� � a�0; 0; d� � a�0; 0;ÿd�� :
Then we arrive at

a�d; 0; 0� � a�ÿd; 0; 0� � 1

2

q2a
qx 2

d 2 � qa
qx

d� a

� 1

2

q2a
qx 2

d 2 ÿ qa
qx

d� a � q2a
qx 2

d 2 � 2a :

Expressions for a 0; d; 0� � � a 0;ÿd; 0� � and a 0; 0; d� ��
a 0; 0;ÿd� � are obtained similarly.

Substituting these expressions into hadi, we find

hadi � 1

6

�
q2a
qx 2
� q2a
qy 2
� q2a
qz 2

�
d 2 � a � 1

6
d 2H 2a� a :

Hence follows

H 2a

a
� 6
hadi ÿ a

ad 2
: �2:6�

Therefore, the quantity given by formula (2.6) shows how
much the field at the center is weaker than the field in the
nearest neighborhood. This quantity will be further called the
rarefaction of the quasifield.

Note that the rarefaction is independent of the field
intensity. It is also independent of the rotation of coordinate
axes, since, as we know, H 2a is independent of it.

In Eqn (2.5), the first term in the expression for the
acceleration of the quasifield and the T-particle is directed
along the rarefaction gradient of the quasifield towards larger
rarefactions and is proportional to the gradient. Therefore,
the quasifield will tend to move in such a way that the
rarefaction will be reduced and spread uniformly over space.

Since the velocities of travel of the quasifield elements are
determined, according to Eqn (1.8), by a gradient of the scalar
b, then rotV � 0, i.e., the quasifield cannot have any vortices.

2.5 As we have already mentioned, the state of an
elementary particle is fully determined by its wavefunction
(1.1). This wavefunction also fully determines the parameters
of the quasifield, such as its density a 2 and velocity of travel
V � ��h=m�Hb. However, the inverse is not true: it is
impossible to fully determine the wavefunction knowing
only the density and the velocity of the quasifield. Indeed, in
this case we will only know, according to Eqn (1.8), the
modulus of the wavefunction and the gradient of its
argument, i.e., the derivatives of the argument with respect
to the coordinates.Moreover, one can add to the argument an
arbitrary function of time, which is independent of the
coordinates, and the gradient will not change.

In order to define b, one should also know the derivative
qb=qt. It can be found from equation (1.7), provided thatU is
known, since the wavefunction should satisfy the Schr�odinger
equation. Then we obtain

b�r; t� � b�r0; t0� �
� t

t0

qb�r0; t�
qt

dt�
� r

r0

Hb�r; t� dr : �2:7�

Thus, the quasifield, in combination with U, determines
the wavefunction up to a constant b�r0; t0�, which has no
effect on the state of the quanton.
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Similarly to the way in which not every complex
function can be a wavefunction, since it has to satisfy the
Schr�odinger equation, not every field a 2�r; t� and V�r; t� can
represent a quasifield: they have to correspond to some
wavefunction.

2.6 If we substitute the wavefunction c�r; t� �
a�r; t� exp ÿib�r; t�� into SchroÈ dinger equation (1.3) and take
into account relation (2.3) for the quasifield velocity, then
expressions (1.6) and (1.7) for the real and imaginary parts of
the SchroÈ dinger equation acquire a simple physical meaning.
Indeed, with account for Eqn (2.3), relation (1.6) becomes

qa 2

qt
� ÿH�a 2V� ; �2:8�

and relation (1.7), if one takes the gradients of both its sides,
changes to

ÿm qV
qt
� ÿ �h 2

2m
H

H 2a

a
�m

2
HV 2 � HU : �2:9�

Equation (2.8) is equivalent to equation (2.2) and
indicates that the quasifield cannot appear or disappear but
can only be displaced. Equation (2.9), taking into account
Eqns (1.10) and (2.3), will be equivalent to Eqn (2.5), i.e., to
the statement that acceleration of the quasifield elements is
equal to the sum of the forces, the external one and the
quasifield one, divided by the particle mass. Thus, the
SchroÈ dinger equation for the quasifield corresponds to the
gas dynamics equation, the only difference being that the
force of the quasifield self-action, denoted here by Fq, is
essentially different from the analogous force in gas
dynamics.
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Vladimir Aleksandrovich Kotel'nikov
and Solar System studies

L M Zelenyi, N A Armand

1. Introduction
In biographically portraying the work of Academician
Vladimir Aleksandrovich Kotel'nikov, one usually describes
his outstanding work devoted to the fundamentals of the
communication theory (the famous sampling theorem, the
potential noise immunity theory, theorems in cryptography
theory). His role in Soviet space programs is described to a
lesser extent. Meanwhile, the contribution of Vladimir
Aleksandrovich and colleagues from the organizations
founded and headed by him [the Special Design Bureau of
Moscow Power Engineering Institute (OKB MEI in Russ.
abbr.) and the Institute of Radioengineering and Electronics
of the Russian Academy of Sciences (IRE RAS)] to this field
is also very significant. Another side of his `space' activity is
related to his positions as the Vice President of the USSR
Academy of Sciences and the Head of the Intercosmos
Council.

In this short report we shall briefly describe the main
stages of V AKotel'nikov's activity, who was an outstanding
scientist, engineer, politician, and scientific manager.

2. V A Kotel'nikov and space radar
The development of space radar was motivated by quite
practical needs. In the 1960s, the state of space facilities in
the USSR and USA allowed scientists and engineers to plan
scientific space missions in order to explore nearby planets:
Venus and Mars. To ensure the approach of spacecraft to
these planets at a distance of several hundred kilometers, one
needed to know their position relative to Earth with a good
accuracy. Previous astronomical observations of Solar
System's bodies located them precisely only relative to each
other, while the absolute values of the mutual distances had
been known very crudely from the space navigation point of
view, which required high accuracy to handle the spacecraft.

All distances between planets are conveniently expressed
through the astronomical unit (a.u.), which is equal to the
mean distance from Earth to the Sun and is estimated to be
around 150 mln km. Astronomical observations had deter-
mined this value to an accuracy of about 10,000 km. This
means that the distance, for example, to Venus had been
known to an accuracy of several thousand kilometers.
Clearly, this accuracy could not be considered as satisfactory.

Radio ranging provided the possibility of measuring the
distance between Earth and a nearby planet with the required
accuracy. To measure the distance with a one-kilometer
accuracy, it is sufficient to send radio pulses with a duration
of approximately 6 ms. The question is how powerful these
pulses should be for the reflected signal to exceed the noise
level in a ground-based detector. Considering that in radio
ranging `the inverse fourth power distance law' operates and
interplanetary distances are at best several dozen million
kilometers, it is easy to understand that antennas with an
area of several thousand square meters and transmitters with
a power of several dozen kilowatts are required for successful
radio ranging of planets. This was very expensive and
accessible only for countries with highly developed industry.
So it was quite natural that planetary radar started develop-
ing in the USA, the USSR and partially in the UK.

At that time, the Remote Space Communication Center
(RSCC) was constructed near the city of Eupatoria (Crimea)
in the USSR. The center was designed for communications
primarily with spacecraft to be sent to Venus and Mars. For
this purpose, three ADU-1000 antennas (Fig. 1) were
constructed: one for signal transmission, and the other two
for signal reception. The radio transmitter with a power of
about 10 kW operated at a wavelength of 40 cm. These
characteristics fit planetary radar requirements, so the
RSCC was chosen to perform the experiment.

Advances in radar facilities (increase in transmitter
power and detector sensitivity, development of digital
frequency-linear signal modulation, etc.) allowed a very
precise measurement of the astronomical unit: 1 AU �
149;597;867� 0:9 km. Such an accuracy required knowing
very precisely the speed of light, since in radio ranging one
directly measures the time of radio pulse propagation, and the
distance between space bodies is obtained by multiplying the
delay time by the speed of light. For this reason, the XVIth
General Assembly of the International Astronomical Union
(1967), by analyzing the results of experiments carried out in
the USSR and USA, adopted the value of 1 AU �
149;597;870� 2 km for the assumed speed of light c �
299;792;558� 1:2 m sÿ1. Such a high accuracy in determin-
ing the astronomical unit has provided successful flights of
spacecrafts for planetary studies and exploration of the
interplanetary space in the Solar System. Moreover, such an
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