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Abstract. This discussion examines cluster phase transitions
and properties related to those phase transitions. Interpreted
in terms of their potential energy surfaces, phase transitions in
clusters of dielectric and metal atoms differ. Properties of
aggregate states of dielectric clusters vary weakly as functions
of temperature, and phase coexistence takes place in a range of
conditions around the traditional melting point, where the solid
and liquid phases have equal chemical potentials. On contrary,
the configurational state of a solid metal cluster may well vary
as it is heated, and the phase transition results, at least in part,
from electronic coupling, as well as from changes in atomic
configuration.

1. Introduction

In many ways, large homogeneous clusters as systems of
identical bound atoms are convenient models for bulk atomic
systems because clusters include bulk systems when clusters
are extended to contain infinite numbers of atoms. On the
other hand, a cluster constitutes a specific physical object that
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can have some properties which differ significantly from
those of bulk atomic systems. Perhaps first among these
properties is the occurrence of what has been called ‘magic
numbers’ of atoms in solid clusters. Clusters composed of
these numbers of atoms exhibit characteristically unusual
parameters, e.g., maxima in the binding energies of atoms, in
the cluster ionization potentials, in the electron affinities, and
in the abundances, as functions of the number of atoms
comprising the cluster. Magic numbers of solid clusters are
observed as local maxima in mass spectra of clusters [1—7],
and also appear in photoionization spectra of clusters [§ — 10],
and in electron diffraction experiments [11-16], although
these require a specific analysis [17, 18]. The occurrence of
magic numbers of cluster atoms is a prime reason for the
nonmonotonic dependence of these parameters on cluster
size, such as in the case of the cluster melting point. The
reason for these is structural — magic numbers correspond to
closed shells, either of atoms or of electrons.

Another specific property of clusters is the coexistence of
their phases in a range of temperature and pressure in the
vicinity of the ‘melting point’, namely, the set of points at
which the free energy of liquid and solid forms are precisely
equal. This is a specific property of systems comprising
relatively small numbers of atoms or molecules. It was
discovered first from computer simulations of Lennard-
Jones clusters [19—22] and soon thereafter was interpreted
and explored further [23 — 28] for Lennard-Jones clusters with
completed atomic shells. This phenomenon involves the
cluster passing back and forth in some random fashion
between (or among) different phase-like forms, so that, if
only solid and liquid phases are involved, part of time the
cluster spends in the solid state and the rest of the time it
resides in the liquid state. Phase coexistence in the vicinity of
the phase transition is the universal property of small atomic
systems. This coexistence is a consequence both of the time
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scale for passage of a small system from one relatively stable
form to another, and of the relatively small difference between
the free energies of the favored and unfavored states when the
temperature and pressure approach but do not precisely reach
the condition making the free energies equal. The free energy
difference, in turn, is dominated by the relatively small
entropy change in the phase transition, which makes that a
key quantity for description of the cluster phase transitions.

We can treat clusters as specific objects, much like
molecules, with specific compositions and properties or,
alternatively, we can treat them as small, i.e., atomic-scale,
models from which we can build an understanding of the
properties of bulk, macro-scale matter. It is useful, of course,
to do both. We begin by pursuing the second course, and lay
the groundwork for interpreting the nature of bulk phase
transitions on the basis of the behavior of small systems.
Starting from the phase transitions in simple systems of atoms
[29-32], we divide cluster excitations into thermal and
configurational excitations [33], as shown in Section 2.1 for
a cluster consisting of 13 atoms. This phase transition is
connected in principle with the configurational excitation of
atoms, although thermal excitation is also important for the
solid —liquid phase transition [32, 34].

Passing from clusters with a simple interaction of atoms
(for example, with pairwise atomic interaction) to metal
clusters, we add electron excitations to thermal and config-
urational ones; these may or may not be important in the
phase transitions. The electronic spectra of many-particle
systems tend to have dense sets of levels, in effect bands of
energy levels, rather than very sharp, narrow levels. In truly
metallic systems, there is no energy gap between occupied and
empty levels, and energy bands with different quantum
numbers may overlap. The lack of an energy gap for the
electrons and the overlapping of bands can be, in some cases,
important for the melting behavior of metal clusters. Here,
our goal is to analyze the role of electronic transitions in the
phase transitions of metal clusters.

In order to understand the principal peculiarities of the
problem under consideration, we consider various limiting
cases. We compare metal and Lennard-Jones clusters and
consider in detail a cluster consisting of 13 atoms as the
smallest cluster with a completed outer atomic shell, and
therefore the smallest cluster for which configurational
excitation requires a maximum input of specific energy and
free energy. In studying the melting transition of this system,
we are guided by thermodynamic description as the simplest
and most universal method. The possibility of using a
thermodynamic description for some cluster behavior sim-
plifies and clarifies the problem. We also make use of other
approaches, such as the interpretation of cluster dynamics
and kinetics in terms of a potential energy surface. The sum of
a comparison of several concepts, models, and approaches for
metal and nonmetal clusters allows us to understand various
aspects of phase transitions in metal clusters. This is the goal
of this paper.

2. Peculiarities of cluster aggregate states
and phase transitions

2.1 General principles of cluster evolution

We start from general concepts and models for clusters with a
pair interaction of atoms. One can describe such a cluster as a
system of bound identical atoms, both in terms of thermo-

dynamics and dynamics. We use classical thermodynamics
when we take the interacting atoms to be classical particles.
As developed in the 19th century [35, 36], classical thermo-
dynamics deals with concepts of the phase and phase
transitions for the atomic system as a whole. For a macro-
scopic atomic system, the phase or aggregate state of the
atomic system is introduced as a uniform spatial distribution
of atoms with boundaries, and the phase transition between
the aggregate states we call phases has a stepwise character.
Transferring from macroscopic atomic systems to clusters
consisting of a finite number of atoms, it is necessary to revise
this definition, still keeping the concept that thermodynamics
reflects the properties of a large ensemble of systems identical
with the one we wish to study. The aggregate state is a sum of
configurational states (or it may be just one configurational
state) with similar excitation energies if this sum of states is
realized with a very high probability under suitable condi-
tions [32]. We see that clusters occupy an intermediate
position between macroscopic systems and simple systems,
atoms or simple molecules. Thermodynamics does not
describe simple individual atomic systems but is suitable for
describing large collections of them. However, from its
inception, thermodynamics was meant principally for the
description of macroscopic atomic systems. Although clus-
ters individually are systems of relatively small, finite
numbers of atoms, by describing them in terms of Gibbsian
ensembles, thermodynamics is entirely adequate and appro-
priate for their description.

The dynamic description of clusters is based on the
methods of molecular dynamics (MD) in which the equa-
tions of motion are solved for successive, short time steps.
Some questions about the nature of phase transitions in small
atomic and molecular systems can be answered on the basis of
such calculations, via computer simulations. In particular,
simulations help clarify why phase transitions occur in
clusters and are absent in individual atoms and molecules,
they reveal what and how many aggregate states an atomic
system can have; they show the connection between aggregate
states and the character (e.g., the range) of atomic interac-
tions. Classical simulations show the spatial and velocity
distributions of all the atoms or molecules at each time step,
i.e., they provide comprehensive information about cluster’s
behavior. Only small portion of this information is left over
when passing to thermodynamic description but nevertheless
most important characteristics of the object are singled out in
the process.

Computer simulation of clusters by methods of molecular
dynamics is most convenient for a system of atoms with
pairwise interactions. Often the Lennard-Jones interaction
potential is used for a system of atoms and has the form [37,
38]

Ro\ 2 Ro\°

ww-ol() (%) ]
where R is the distance between atoms, Ry is the equilibrium
distance in the diatomic molecule, and D is the well depth.
Although this potential does not describe even compressed
inert gases [32, 39, 40] and hence is not related in a
fundamental way to real atomic systems, the Lennard-Jones
interaction potential may be convenient as a model because it
contains simultaneously short-range and long-range parts
and gives a reasonably accurate description of many
systems, notably systems of rare gas atoms.

(2.1)
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The dynamic description of clusters by molecular
dynamics gives rich information about their behavior. But it
is necessary to extract from this a restricted number of
parameters that best characterize the system. One can obtain
these through a combination of dynamics and thermody-
namics. The basic thermodynamic parameters in a range of
phase coexistence are the cluster temperature (or the
temperature of the solid and liquid states separately when
the cluster is a microcanonical ensemble of atoms), the energy
and entropy of the phase transition, the probabilities of
cluster residence in the solid and liquid states at a given
cluster temperature (or the excitation energy), and the
anharmonicity parameter for the solid and liquid states.
These parameters allow us to portray the character of cluster
evolution in the range of phase coexistence. These data may
be enriched by information on the second level that follows
from the results of dynamic cluster simulation and includes
the average lifetime for each aggregate state at a given
temperature, distributions over lifetimes and other cluster
parameters, etc. This information gives a more detailed
description of cluster behavior.

Such a combination of dynamic and thermodynamic
methods of cluster description opens the way for us to
understand the microscopic nature of cluster aggregate
states. In this way, simulations showed and then led to the
understanding of one striking cluster property — the coex-
istence in clusters of two or more phases over a range of
temperature and pressure at melting, instead of phase
coexistence only along a sharp curve dividing the regions of
stability of the two phases. That the solid —liquid transition is
gradual in very small clusters was recognized for small
Lennard-Jones clusters by both molecular dynamics [19, 20]
and Monte Carlo [21, 22] simulations. A clearer under-
standing emerged with more extensive simulations which
showed that regions of phase coexistence are found for
much larger Lennard-Jones clusters [23—28]. The phenom-
enon of phase coexistence follows from the way the equili-
brium ratio of the amounts of two phases of a small system
remains near enough to unity for the unfavored phase to be
present in observable amounts under attainable, measurable
conditions somewhat away from the precise temperatures and
pressures at which the free energies and chemical potentials of
the two phases are precisely equal. This, in turn, is due to the
relatively small entropy change in the phase transition for
clusters. This transforms a melting point for macroscopic
atomic systems into a transition range for clusters and must
be the basis for describing the cluster phase transitions.

In contrast to how we first came to understanding phase
changes of clusters (and still get the greater part of our
knowledge of these systems), our knowledge of the phase
transitions in macroscopic systems was gained in a different
way. In the case of macroscopic atomic systems, the concepts
and validity of the classical thermodynamics of phase
transitions and of their thermodynamic parameters resulted
from observation and experiment, and thus from correspond-
ing measurements. A particularly vivid example is the Gibbs
phase rule relating the number f of degrees of freedom to the
number of components ¢ and the number of phases p in
equilibrium together: f'= ¢ — p + 2. (This equation is remark-
able insofar as the three variables are almost trivially related,
and the one remarkable entry, that can be found only from
observation and not by deduction, is the 2.) This knowledge
for macroscopic systems obtained within the framework of
classical thermodynamics must also be taken into account for

clusters with suitable adjustment for the size of this atomic or
molecular system.

An important element in the description of dielectric
clusters may be the potential energy surface (PES) con-
structed in a multidimensional space of atomic coordinates.
The basis of this concept is the Born —Oppenheimer approx-
imation in which we assume that the electrons of a polyatomic
system equilibrate essentially instantaneously with respect to
any motion of the nuclei, so that we can associate an internal
energy with every possible configuration or structure of the
system, independent of the history of formation of this
structure. This is particularly useful when all the electronic
excitations in the system are larger than the energies
associated with atomic motions, so that only a single energy
surface need be considered. Therefore, the PES approach is
appropriate for describing dielectric clusters but may not be
appropriate for some kinds of metals or semiconductors.
Next, in considering cluster evolution as changes of atomic
coordinates on one PES, we use the adiabatic approximation
assuming the PES position to be independent of atomic
velocities. This allows us to transfer from a statistical
description of atoms in the phase space to accounting for
their motion in the coordinate space only.

In the analysis of cluster evolution as a motion along the
PES, the topographical properties of the PES are at the
essence of the issue. It is important that a PES of any
dielectric cluster with pairwise atomic interactions has many
local minima [41—45]. In particular, for the Lennard-Jones
cluster of 13 atoms, the number of geometrically distinct local
minima of the PES is on the order of a thousand [41, 47].
Moreover there are approximately n! permutational isomers
of any one geometric structure consisting of n atoms [43 —45,
48, 49]. One can see that the PES description of cluster
evolution holds true if a typical atomic energy is small
compared to a typical potential barrier height between
neighboring local minima of the PES. Then, in the course of
cluster evolution, the typical time that a cluster resides near
each local minimum is long compared to the time of transition
to a neighboring local minimum. This allows one to consider
the vicinity of each local minimum as a current configura-
tional state associated with a configurational excitation
energy. In this way one can separate the oscillations and
configurational degrees of freedom for cluster atoms [33].
This character of cluster evolution provides a basis for the
analysis of dielectric clusters.

Barriers between neighboring local minima of PES are
relevant to the rates of transition between them, and hence the
PES method is easiest to use at zero temperature. At finite
temperatures, one must have a more detailed knowledge of
the surface topography in order to use that topography in a
rigorous way. Nonetheless, even a limited knowledge of a
PES can give a qualitative or even a semiquantitative
description of transitions among the local minima of the
PES. The saddle structure of any PES is a crucial, inherent
characteristic for cluster dynamics [43 —46] because it compels
a cluster to spend a relatively long time near each local
minimum. Therefore, the dynamics of cluster evolution that
proceeds through the transitions between neighboring local
minima of a PES is often called ‘saddle-crossing dynamics’
[47].

2.2 Configurational cluster excitation
We have two forms of atomic excitations in dielectric clusters,
thermal vibrational motion and configurational excitation
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Figure 1. Configurational excitation of a cluster consisting of 13 atoms
with a short-range interaction between the nearest neighboring atoms:
(a) the character of configurational excitation; (b) the pair interaction
potential of the atoms, and (c) the cross section of the potential energy
surface along the transition coordinate. Numbers / and 2 in Fig. 1a mark
stable configurations of atoms that correspond in turn to cluster aggregate
states.

that corresponds to a change in the atomic structure of the
cluster. Figure la demonstrates the lowest configurational
excitation of a 13-atom cluster comprising atoms that interact
via a short-range pair potential of the kind shown in Fig. 1b.
As a result of this excitation, an atom is transferred from the
cluster surface (point /) to a position above the cluster surface
(point 2) which locates the promoted atom in the potential
well created by three surface atoms. Note that a short-range
atomic interaction in a cluster means interaction between
nearest neighbors, which for a pairwise atomic interaction
corresponds to the small well width in Fig. 1b, compared to
the distance between nearest neighbors.

Let us analyze the configurational excitation of Fig. la in
more detail. In this case, the transferring atom has 6 bonds
with nearest neighbors in the initial state (at position /) and
only 3 bonds in the final state (at position 2). Hence, in
ignoring a thermal motion of atoms, the excitation energy
equals 3D, where D is the energy required to break one bond.
But in the course of atom transferring, one can preserve only
two bonds under optimal transfer conditions. Therefore, this
configurationally excited state is separated by an energy
barrier between the initial and other states, and the barrier
height is 1D above the upper minimum and 4D above the
lower minimum. These energies relate to a short-range
interaction. Accounting for an additional long-range interac-
tion and thermal motion of atoms leads to a change in the
parameters of configurational excitation and barrier height,
but the character of the interrelation between these values will
be conserved.

This simple consideration for the 13-atom cluster with a
short-range interaction between atoms allows us to describe
the character of transitions between configurational states.
Along with cluster excitation, an inverse transition is possible
for an atomic particle from the cluster surface to an external
shell. Then, after some time, another atom transfers from an
external shell to its surface. In this manner, an equilibrium is
established between the ground and excited cluster config-
urational states. Thus, the atomic transitions require over-
coming a barrier of height 1D for atoms with short-range
interaction. Correspondingly, motion of a promoted atom
over the cluster surface proceeds more easily than transitions

between the ground and excited configurational states and
even more so in comparison with the exchange of positions of
two atoms in the ground configurational state. Hence,
relating the cluster’s aggregate state with the atomic mobility
in this state, we identify the ground configurational state as
the solid aggregate state of the 13-atom cluster, and the lower
excited configurational state perturbed due to atomic inter-
action as the liquid aggregate state. The presence of a long-
range interaction between atoms does not change this
representation so long as the short-range interatomic interac-
tion dominates.

We now look at treating the dynamics of cluster evolution
in terms of the PES for this system in the many-dimensional
space of atomic coordinates [48, 49]. We have to recognize
significant differences between the behavior of metal and
dielectric clusters in their evolution along their PESs. Figure Ic
exhibits a cross section of the relevant part of a PES when one
atom is displaced from the ground configuration and goes to
the lowest configurationally excited state of a 13-atom cluster
with a short-range interaction. With this displacement,
12 atoms occupy the same positions as in the ground state,
the icosahedron structure, and one atom moves along the
higher-energy region of shallow valleys and ridges created by
interactions with other atoms. Thus, the coordinate x of
Fig. 1c is at first the arc that joins points / and 2 in Fig. 1a,
when an atom is transferred between these positions such that
the equilibrium interatomic distances remain equal to the
bond length Ry of an atomic pair. This establishes the analogy
between the phase transition and a transition between
configurational states of this cluster that correspond to local
minima of its PES.

This description of the cluster behavior on its PES is
appropriate for dielectric clusters. There are many configura-
tional states of a metal cluster accessible with a low
configurational excitation, and several atoms may partake
in this transition. Therefore, the simple form of interpreting
such a behavior in terms of the PES is not productive for
metal clusters. It is better to use the electronic spectrum for
metal clusters that consists of separate bands in the energy
space. If the valence band is not completely filled, so that
there are empty levels very close to occupied levels, then the
cluster exhibits metallic properties. The highest state occupied
by electrons is generally called the ‘highest occupied mole-
cular orbital’ or HOMO for small clusters, by analogy with
the terminology for molecules. At low temperatures, the
electron energy levels below the HOMO level are occupied,
and the behavior of electrons at the HOMO level determines
the cluster properties. This cluster description is more
productive than that based on the Fermi surface for
electrons, a concept more appropriate for bulk materials.

One important mode of studying clusters and their
relation to bulk materials relies on connecting the results of
numerical simulations with thermodynamics. Indeed, the
dynamic character of cluster evolution includes a lot of
information, and extraction of its principal and important
part leads to a description in thermodynamic terms. Next, the
character of cluster evolution depends on external conditions.
Figure 2 presents the most common cases of cluster interac-
tion with its environment, when a cluster as a system of atoms
is a member of a microcanonical or canonical ensemble. In
terms of a Maxwellian ensemble, rather than a Gibbsian
ensemble, a single isolated cluster in a vacuum represents a
microcanonical ensemble of atoms, whereas a cluster located
in a thermostat composes a canonical ensemble of atoms. In
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Metal walls

Microcanonical ensemble
of atoms

Canonical ensemble
of atoms

Figure 2. Interaction of a cluster with its environment when the cluster
constitutes a microcanonical (a) or canonical (b) ensemble, i.e., is
characterized by constant energy or constant temperature, respectively.

experiment, the latter case may be realized if a cluster is placed
inside a chamber that is filled with helium (Fig. 2b). Collisions
of helium atoms with the chamber walls and with the cluster
establishes the cluster temperature equal to the chamber
temperature. Experiment and theory reveal that clusters
have at least two aggregate states. We will base the following
discussion on the supposition that we can deal with just two
cluster aggregate states, solid and liquid.

Let us analyze dynamics of the evolution of a cluster with
two aggregate states when the following hierarchy of times
takes place:

T < Tagg, (2.2)

where 744, is a typical dwell time for a cluster in each aggregate
state, and 1 is a typical time between atomic collisions inside
the cluster, i.e., a typical time for the establishment of thermal
equilibrium of the vibrations. This distinction allows us to
introduce the vibrational temperature of the cluster atoms,
when this cluster resides in a given aggregate configurational
state. Note that this description is independent of the nature
of the excited configurational state, i.e., criterion (2.2) relates
simultaneously to both dielectric and metal clusters.

We now consider external conditions that affect this
cluster. If the cluster is isolated (i.e., it is assumed to be in a
microcanonical ensemble and its energy is conserved in time),
thermodynamic equilibrium is established during cluster
residence in each aggregate state according to criterion (2.2).
Therefore, the cluster’s state is described by two vibrational
temperatures, T and Tiq, which correspond to the solid and
liquid aggregate states. According to the kinetic definition of
the temperature, these temperatures are expressed through
total kinetic energy K of cluster atoms, averaged during a time
that exceeds the period of cluster vibrations. This relationship
has the form

3In—=6
2
where n is the number of cluster atoms, and 3n — 6 is the
number of vibrational degrees of freedom for this cluster. In
the case of the 13-atom cluster, we obtain
33 33

7 Tsor, Kliq = 7 Tliq .

K=

T,

Kool = (2.3)

The other case of external conditions under consideration has
to do with the cluster in a thermostat, so that the temperatures
T of atoms in both aggregate states are identical, but the total
cluster energy is different for the two aggregate states. Of
course, in the constant-energy case with the cluster represent-
ing a microcanonical ensemble, one can introduce one
average temperature 7 that is expressed through the average
kinetic energy of cluster atoms and is averaged over the time
during which the cluster undergoes many transitions between
aggregate states. Evidently, this temperature is defined as

T = wso1 Tso1 + Wiig Thq . (2.4)
Here, w01, wiiq are the probabilities of the cluster occurrence
in the solid and liquid states, respectively.

In considering the behavior of an isolated dielectric cluster
and characterizing it by one PES, we find for the total energy
of cluster atoms:

E=U+K, (2.5)

where K is the total kinetic energy of atoms, and U is the
internal potential energy of the cluster that corresponds to the
cluster’s location near a particular local minimum of the PES.
Let usintroduce the cluster aggregate states, including to each
of them the regions in the vicinity of local minima of the PES
with similar energies. Hence, we define the cluster aggregate
state as a set of states with similar potential energies [50—52],
i.e., they relate to corresponding local minima of the PES.

Thus, restricting our discussion to two aggregate states,
we find the total energy of cluster atoms for the solid (Eso)
and liquid (E;q) aggregate states in the form

Esol = Ep + Kso1 + Usol ’ Eliq =Ep+ AE + Kliq + Uliq7
(2.6)

where Ej is the total energy of atoms in the solid state at zero
temperature, AE is the energy of configurational excitation to
reach the liquid state, Ko and Kjiq are the total atomic kinetic
energies for the solid and liquid aggregate states, respectively,
and U and Ujq are the total atomic potential energies
relating to those of the optimal atomic configuration, the
global energy minimum.

We now construct the cluster thermodynamic model in a
range of phase coexistence for two cluster aggregate states
[50—52], and on the basis of this model we transfer from a
dynamic cluster description to a thermodynamic one. Separ-
ating thermal and configurational degrees of freedom [33], we
assume that the atomic thermal vibrational motion of atoms
in the vicinity of a chosen local minimum of a PES is a sum of
classical cluster oscillations, and that thermodynamic equili-
brium is established among the vibrational modes corre-
sponding to criterion (2.2). Then it is possible to construct a
strict thermodynamic theory [53] for each aggregate state; it is
especially easy if we accept these vibrations as harmonic.

In reality, it is necessary for several reasons to take into
account anharmonicity in cluster oscillations, describing it by
the anharmonicity parameter n — the ratio of the total kinetic
energy K of the atoms in this aggregate state to the total
excitation energy U + K for this state. For a purely harmonic
system, this parameter of course has the value of 1/2. Note
that a cluster as a system of a finite number of atoms is
characterized by large fluctuations due to cluster oscillations,
while our present treatment ignores these fluctuations. There-
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fore, the quantities under consideration are averaged in time,
and a typical average time significantly exceeds a typical
period of cluster oscillations.

Thus, with these assumptions, we can transfer from a
dynamic description of clusters as atomic systems to their
thermodynamic description, thus dealing with average values
of energies; the anharmonicity parameter is then introduced
as
Ksol Kliq

Dl 2.7
Ksol + Usol ( )

Hsol =
Because the liquid configuration of atoms is looser, 174 < 71501
at any temperature where both aggregate states are present.
In the case of harmonic cluster oscillations, # = 1/2, and
formula (2.6) takes the form

3n—6 3n—6
Tsol Eliq:E0+AE+T Tiiq

(2.8)

Esol = Eo +

where n is the number of cluster atoms. In reality, the
anharmonicity coefficient is close to 1/2, but its difference
from one-half significantly influences cluster properties.

Note that equilibrium between two aggregate states of a
dielectric cluster, which determines phase coexistence, is
expressed through the entropy jump in the phase transition,
i.e., the difference in entropies for the states participating in
transitions. For a macroscopic atomic system, the tempera-
ture dependence for the entropy jump is not essential because
the temperature range for the phase transition is extremely
narrow, but for clusters this dependence may be important.
The entropy jump is summed from two parts, due to
configurational excitation and to atomic vibrations in the
cluster. The first part is independent of the temperature, while
the second part is zero for harmonic atom vibrations.
Therefore, the anharmonicity determines the entropy part
that is connected with thermal atomic motion. Then the
looser liquid state is characterized by a lower value of the
anharmonicity parameter. Since the contribution of atomic
thermal motion to the entropy jump is significant, the
deviation from 1/2 of the anharmonicity parameter # that is
defined by formula (2.7) is significant both for the value of the
entropy jump that determines the melting point and for the
temperature dependence of the entropy jump that is respon-
sible for the character of phase coexistence.

3. Melting of a 13-atom cluster

3.1 Aggregate states

of the 13-atom Lennard-Jones clusters

A cluster consisting of 13 atoms is a convenient system for
studying cluster properties. This cluster has an icosahedral
structure with a filled atomic shell in the ground state,
virtually independent of the interaction between atoms. A
large energy gap separates this state from the lowest
configurationally excited state and allows one to extract the
configurational excitation for a 13-atom cluster in a very
straightforward way, as we have seen. Next, its small number
of atoms makes this system convenient for computer
simulation; yet, simultaneously, this cluster contains enough
atoms to model some its properties within the framework of
classical thermodynamics. Interactions of atoms in the course
of their motion establish statistical equilibrium among cluster
oscillations and allow one to describe the thermal motion of

atoms by a certain temperature. The statistical distribution of
atoms, at least for the ground state with the icosahedral
cluster structure, is established faster than transitions invol-
ving a change of atomic configuration. This allows one to
analyze the role of configurational excitation in the phase
transitions of a 13-atom cluster in the optimal way.

We start from the 13-atom Lennard-Jones cluster (i.e.,
with the Lennard-Jones interaction between cluster atoms) or
a cluster with a pair interaction of atoms for which a short-
range interaction dominates. Then it is simple to construct the
lowest configurationally excited state of this cluster as a result
of the formation of a perturbed vacancy in the atomic shell, as
shown in Fig. 1a. For formation from the ground configura-
tional state (the solid aggregate state) of this lowest config-
urationally excited state (the liquid aggregate state) within the
framework of our model it is necessary to transfer one atom
from the cluster shell to the cluster surface in such a way that it
is not contiguous with the newly formed vacancy. After this,
atoms shift slightly as a result of their interaction, and the
newly formed atomic configuration will correspond to the
lowest excited configurational state.

It should be noted that the principal cluster property of
phase coexistence in clusters near melting point was discov-
ered for just the 13-atom Lennard-Jones cluster [19-25, 27,
28]. The historical basis for the analysis of phase coexistence
was computer simulation of this cluster, primarily by the
method of molecular dynamics (but also by the Monte Carlo
method), and thermodynamic cluster parameters can be
inferred from the results of such cluster simulations.

The evolution of a cluster in an excited aggregate state
corresponds mainly to the motion of the promoted atom over
the cluster surface and to the exchange of the promoted atom
with shell atoms. This latter process proceeds more effectively
than the process of atomic motion within the icosahedral shell
with the vacancy. Therefore, the configurational excitation in
Fig. lamay be considered as representing the liquid aggregate
state. As seen from Fig. la, c, the lowest configurational
excitation of a 13-atom cluster includes only one elementary
excitation. Though not all configurational excitations are
equivalent, it is attractive to use the model that considers
configurational excitation of a dielectric cluster as a sum of
elementary configurational excitations, with these excitations
being distinguished from thermal excitations. This separation
of the degrees of freedom allows one to understand the nature
of configurational excitation for a 13-atom cluster and, from
that, for larger clusters. If the atomic interaction comprises a
long-range component, but interaction between nearest
neighboring atoms dominates, the character of configura-
tional excitation is identical for various interaction potentials
of atoms, as shown in Fig. 1 for a 13-atom cluster.

The dynamics of cluster evolution may be considered in
terms of the potential energy surface of the system in a many-
dimensional space of atomic coordinates [48, 49, 54]. This
approach is convenient for clusters with short-range interac-
tion, for which interaction between nearest neighbors dom-
inates. If a long-range interaction is also present, we cannot
use as the energy of configuration excitation 3D and as the
barrier height D in the case of a short-range interaction (D is
the energy needed to break one bond), although the general
character of configurational excitation is conserved. Figure 3
[55] displays excited cluster configurations, the energies of
excitation for these configurations, and the energies of saddle
points for the 13-atom Lennard-Jones cluster. Comparison of
these values with those in the case of a short-range atomic
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Figure 3. Atomic configurations for (a) excited cluster states and (b) saddle
points for the 13-atom Lennard-Jones cluster [55]. Numbers indicate the

excitation energy for a given atomic configuration in units of D, the energy
needed to break one bond between two atoms.

interaction shows the identical character of excitation in these
examples but different values of the parameters which are
responsible for this excitation.

We now examine the coexistence of phases in the
Lennard-Jones cluster when a cluster is found in the solid
aggregate state part of the time, and the rest of the time it
resides in the liquid aggregate state. Ignoring fluctuations, we
see that the total kinetic energy or the total potential energy of
cluster atoms will vary in time as shown in Fig. 4a, which
corresponds to the validity of criterion (2.2). In reality,
fluctuations are of course present, as we can see in Figs 4b
and 4c, also based on computer simulations [56, 59]. Never-
theless, the latter dependences may be approximated by the
dependence plotted in Fig. 4a.

The 13-atom Lennard-Jones cluster was studied by MD
computer simulation in both ensembles, canonical [54] and
microcanonical [23]. We next use the results of these studies to
examine cluster behavior in the range of phase coexistence.
The existence of two aggregate cluster states follows from
Fig. 5 which gives the distributions of potential energies for
the 13-atom Lennard-Jones cluster under isothermal condi-
tions at various temperatures, with the maxima of this
distribution relating to the two aggregate cluster states. The
bimodal forms of these distributions testify to the existence of
two aggregate states in the coexistence range. A general
characteristic of behavior in the range of phase coexistence
is that the liquid state is ‘looser’ and is therefore characterized
by parameters with stronger temperature dependence than
those of the solid state. Therefore, the anharmonicity
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Figure 4. Time variation of the total potential energy of cluster atoms:
(a) averaged over all the fluctuations, the total potential energy in a range
of phase coexistence; (b) averaged over cluster oscillations, the total
potential energy of cluster atoms for the isothermal 13-atom Lennard-
Jones cluster according to computer simulation [56], and (c) the same
quantity for the isolated 13-atom Lennard-Jones cluster at the excitation
energy of 10.8D, below the melting energy (13.8D) according to computer
simulation [59].

parameter and the contribution of thermal motion of atoms
to the entropy jump in the phase transition is determined by
the liquid aggregate state.

For the 13-atom Lennard-Jones cluster at constant energy
[23] we can extract the energy AE of configurational
excitation and the anharmonicity parameters 1, and n;,
from computer simulation data for the solid and liquid cluster
states in the range of phase coexistence. It should be
emphasized that in formulas (2.3) the temperatures of the
solid (T01) and liquid (77q) aggregate states are expressed in
terms of the mean kinetic energies of atoms for the solid (K1)
and liquid (Kjq) aggregate states at each energy of cluster
excitation, Eex = E — Ey. The treatment of data [23] from
computer simulations of the Lennard-Jones cluster reveals
that the energy AE of the phase transition is effectively
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of the regions around a single local minimum configuration. The energy is
expressed in units of D, the bond dissociation energy.

independent of the total cluster energy in the range of phase
coexistence and is given by [32, 57, 58]

AE = (2.40 £ 0.05) D. (3.1)

The anharmonicity parameters defined for the solid and
liquid aggregate states of the isolated 13-atom Lennard-Jones
cluster according to formulas (2.7) are presented in Fig. 6 [29,
32] as the functions of temperature. These dependences result
from a treatment of the data from computer simulation [23];
they may be utilized whether the cluster constitutes a
microcanonical or canonical ensemble of atoms and are
reduced to the temperatures of the corresponding aggregate
states. Note that the anharmonicity parameter 1 defined
according to formulas (2.7) takes essentially identical values
for this Lennard-Jones cluster under adiabatic conditions for
the solid and liquid aggregate states at their temperatures,
Nsol(Tsol) = Miiq(Thiq)> Within the limits of accuracy for these
quantities. This confirms the fact that the anharmonicity of
vibrations for a looser liquid state shows up at lower
temperatures than that for the solid state. In addition,
Table 1 contains some parameters of the 13-atom Lennard-
Jones cluster. It should be noted that the temperature
dependence for the anharmonicity parameter of the liquid
state, given in Fig. 6, is derived from computer simulation for
this cluster [56], treated as a canonical ensemble of atoms.

Defining the melting temperature 7, of an isothermal
cluster in the following form

AE

AS’

taking the above value of the energy jump AF as characteristic
of the phase transition for the 13-atom Lennard-Jones cluster,
and ignoring the deviation of the temperature dependence of
the entropy jump from that at zero temperature,
AS=1In180 =52, we obtain for the melting point:
T ~ 0.5D. When we employ the data of Table 1 to account
for the temperature dependence of the cluster parameters, we
obtain an entropy jump at the melting point AS = 8 and the
melting point T, =~ 0.3D. From this we see the importance of
the temperature dependence of cluster parameters in the range
of phase coexistence for the character of the phase transition.
Note that if a cluster could be modelled as a sum of harmonic
oscillators in both the solid and liquid states, the temperature
dependence for cluster parameters would be weak. Therefore,
an important set of quantities that characterizes the behavior
of a cluster in the range of phase coexistence are the
anharmonicity parameters #, and 7y, .

We add to the thermodynamic parameters of the isolated
13-atom Lennard-Jones cluster information that follows
from computer simulation when this cluster constitutes a
canonical ensemble of atoms [56] and the phase transition
energy is given by formula (3.1). On the basis of the results of

Th =
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computer simulation one can construct caloric curves for the

solid [Esi(T')] and liquid [Eiiq(7)] aggregate states, and the

difference between these quantities is given by the formula
33 1 1

th ESO] AR+ 2 d nliq(T) "sol(T)
Because under isothermal conditions the relationship
Tso1 = Tiiqg = T is true, we have ny, (T) > nliq(T), and the
above energy difference between the two phases exceeds the
energy of configurational excitation [32] determined by
formula (3.1) for an isolated cluster. Figure 6 depicts the
temperature dependences of the anharmonicity parameters
Nso1 a0d 1y in a range of phase coexistence and allows us to
determine the difference between these energies Ejq(7) and
E1(T) on the basis of results obtained from computer
simulation of the isolated, constant-energy 13-atom Len-
nard-Jones cluster [23]. The analysis of this computer
simulation also shows that the anharmonicity parameters
for the solid and liquid states are identical for the isolated
13-atom Lennard-Jones cluster, whereas the temperature of
the liquid state is lower than that for the solid state.

Figure 7 presents the analog of caloric curves for the
isothermal 13-atom Lennard-Jones cluster — the total
potential energies for atoms of this cluster that are obtained
from computer simulation [56] of this cluster and computed
on a scale such that Uy, = 0at T = 0. These data allow one to
check the model according to which the motion of the atoms
is a sum of slightly anharmonic vibrations. In the limit of low
temperatures, the heat capacity of this cluster is C =
K/T=33/2, in accordance with the definition of the
temperature for both aggregate states, where K is the total
kinetic energy of cluster atoms. The anharmonic model we are
using gives the following expressions for the potential
energies of the solid (V1) and liquid (V7q) aggregate states:

1
nsol(T)

(3.2)

VS()]:C[ 71], qu:AEJrC[

1
ﬂliq(T) - 1] .
(3.3)

Figure 8 demonstrates the temperature dependences of the
parameters
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Figure 7. The total potential energy of atoms for the isothermal 13-atom
Lennard-Jones cluster relating to the global energy minimum for this
cluster at 7= 0 and averaged over cluster oscillations.
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Figure 8. The ratio (3.4) of the total potential energy of cluster atoms to
that described by formula (3.3) for an anharmonic model applied to the
13-atom Lennard-Jones cluster.

These parameters would be equal to unity for the model of
harmonic oscillators. As follows from Fig. §, the model of
slightly anharmonic oscillators holds true more or less for the
solid aggregate state, while it describes the liquid aggregate
state significantly less well. The reason for this behavior is
that an atom located on the cluster surface executes a free
motion over that surface rather than just a small-amplitude
vibrational motion.

This information about the I13-atom Lennard-Jones
cluster is enriched by the data describing the character of
equilibrium between aggregate states at a given temperature.
Let us introduce the equilibrium constant p in the following
way:

Wiliq
= )
Wsol

(3.5)

where w01 and wy;q are the probabilities of a cluster occurrence
in the solid and liquid states, respectively, and under these
conditions w, + Wiiq = 1, which gives for these probabilities:
(3.6)

Wsol = Wiiq =

l+p’ l+p’

One can introduce the configurational temperature 7oy
that can differ from the vibrational temperature and is given
implicitly by the relationship

AE
p =exp ( — + AS) , (3.7)

con

where AS is the cluster entropy change associated with the
phase transition. It is clear that if the cluster under considera-
tion is in a canonical ensemble, the configurational tempera-
ture Teo, at equilibrium coincides with the vibrational
temperature T of the atoms. If the cluster constitutes a
microcanonical ensemble of atoms, the vibrational tempera-
tures are different for the solid (7Ty,) and liquid (7iq)
aggregate states, and their difference for a 13-atom cluster
equals

AE 2AE

AT = —

c -3 (3.8)
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if we assume that the vibrations behave classically, then the
heat capacity of a 13-atom cluster is C = 33/2 (we express
temperatures in energy units). In particular, for the Lennard-
Jones cluster involving 13 atoms this temperature difference
amounts to

AT ~0.06D,

and D is again the bond dissociation energy. Evidently, the
configurational temperature Tco, lies between those of the
solid (7o1) and liquid (T3q) states. Next, we shall find the
configurational temperature in this case.

Let us use the equation of detailed balance for transition
between the solid and liquid aggregate states, which holds
under equilibrium conditions:

WsolVsol ( Tso1) = WiigViiq(Tiiq) » (3.9

where vy is the rate of solid-to-liquid transitions, and viq is
the rate of liquid-to-solid transitions. These rates are
connected by the principle of detailed balance [40, 57, 60— 62]

Vsol(T) _ 7A7E _ 7A7E
(1) —gexp< T ) =exp T +AS]), (3.10)

where g is the ratio of statistical weights for the liquid and
solid aggregate states that is related to the transition entropy
as AS=Ing, and AE is the energy of configurational
excitation for this transition. Accounting for the basic
temperature dependence of the rates of transitions between
aggregate states and the activation character of these
transitions, we find

Vsol(T') ~ exp (—A—E—@) s vig(T) ~ exp (—E> :
(3.11)

where T is the atomic vibrational temperature for the initial
aggregate state, AE is the energy of cluster configurational
excitation, and Ej, is the energy of the barrier that separates
the local minima of the potential energy surface. From this we
obtain the following expression for the equilibrium constant
of an isolated cluster:

W[iq AE ( 1 1 )]
=—=c¢xp |AS — —F - . 3.12
b Wsol P [ Tsol b Tsol Tliq ( )

Comparing this expression with the definition of the config-
urational temperature (3.7), we obtain the formula for the
latter:

Tsol
1+ (Ev/AE) (AT/Tiq) -

Teon = (3.13)

This relation for the isolated 13-atom Lennard-Jones cluster
takes the form (E, = 0.56D, AE = 33AT/2n)

Tsol

Toon =2
" 140.034Dn/ Tiig

(3.14)

From this it follows that the configurational temperature of
the cluster considered is closer to the solid temperature than
to that of the liquid. In particular, at the melting point, p = 1,
we have [32] Teon=0.95TF, = 0.315D, while T = 0.827,

(T2 =0.33D, T{R = 0.27D, 1 () = 1 (TiR) = 0.39).
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Figure 9. The entropy jump upon melting of the 13-atom Lennard-Jones
cluster. Closed circles are obtained from the results of computer simulation
of the isolated 13-atom Lennard-Jones cluster [23], and open circles
correspond to the isothermal 13-atom Lennard-Jones cluster [56].

On the basis of formula (3.12) for the solid—liquid
equilibrium constant p and the values of the latter recovered
from computer simulation, one can determine the entropy
jump AS as a function of temperature in the range of phase
coexistence. One can relate the entropy jump to the liquid
temperature Tjq in a constant-energy computer simulation
[23], if we later reduce the entropy jump to the isothermal
conditions of the phase transition for the case of the
isothermal cluster, given in Table 1 and Fig. 9. We also
present in Fig. 9 the entropy jump upon melting, based on
the equilibrium constant when these data have been derived
from simulations under isothermal conditions [56]. Then, the
equilibrium constant is equal to

Esol - Eliq

p(T) =exp +AS(T)| . (3.15)

con

Here we use the energy of configurational excitation rather
than the energy difference Ejq — Eso for these aggregate
states. These values are different due to the anharmonic
character of cluster atom vibrations. The degree of coin-
cidence of the entropy jump reduced to isothermal conditions
and obtained on the basis of computer simulations for
isolated and isothermal clusters (Fig. 9) testifies to the
accuracy of this treatment and thermodynamic description
of the cluster.

Computer simulation of 13-atom Lennard-Jones clusters
by the molecular dynamics method gives a useful experience
in the study of cluster behavior in the range of phase
coexistence. Detailed information about cluster evolution
follows from the dynamic analysis and is richer than that
gained from direct application of thermodynamics, but
thermodynamical approach reduces the description of clus-
ter behavior to simple and standard schemes on the basis on a
restricted number of parameters. In this way we learn that a
thermodynamic description of clusters in the range of phase
coexistence from the results of dynamic simulation allows one
to represent the character of phase coexistence in a simple
form.

Side by side with this, the transition from the dynamic
cluster description to the thermodynamic one allows us to
elaborate simple models for the description of cluster
behavior in the range of phase coexistence. Experience in
the analysis of the 13-atom Lennard-Jones clusters associ-
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ates these peculiarities in the behavior with a small anharmo-
nicity of atomic vibrations in clusters. Introduction of the
anharmonicity parameter in the model of phase coexistence
exhibits a very significant contribution of thermal atomic
motion to the entropy jump in the phase transition, and this
contribution increases with increasing cluster temperature.

3.2 Phase transitions in 13-atom metal clusters

One can expect that the analysis of metal clusters is more
complicated than that of dielectric ones because of additional
degrees of freedom in metal clusters, arising from accessible
transitions of electrons. But if the cluster temperature is
sufficiently low, electrons occupy the lowest part of their
spectral band, so that the cluster’s behavior will be deter-
mined just by the PES on which the electrons are not excited.
Then if the PESs for dielectric and metal clusters are
essentially identical, one can expect the same behavior for
dielectric and metal clusters. This analogy does hold for
13-atom clusters — the ground configurational states of these
clusters, both dielectric and metal, are icosahedral. Never-
theless, a significant difference between these two types of
clusters arises from the small energy of configurational
excitation and the consequent large number of configuration-
ally excited states for metal clusters, as illustrated in Fig. 10b.
This difference becomes apparent in the study of metal
clusters. In contrast to Lennard-Jones clusters, for which
each aggregate state can be studied separately in the range of
phase coexistence, averaging over aggregate states is usual in
the study of metal clusters. Even 13-atom metal clusters have
large numbers of low-lying configurationally excited states, a
property that distinguishes them sharply from dielectric
clusters, and this justifies averaging over cluster configura-
tional states in computer simulation. The configurationally
excited states of the latter are sparse and well separated in

E a

o

Figure 10. The character of cluster configurational excitation for a cluster
consisting of (a) inert gas atoms with one PES, and (b) a metal cluster with
many intersecting PESs. The schematic coordinate is chosen in a multi-
dimensional space of atomic coordinates.

energy for the ground configurational state of the icosahedral
structure, and this allows one, in principle, to study separately
the ground configurational state that is of importance for
information about cluster aggregate states and transitions
between them.

To simulate metal clusters reliably, it is necessary to take
into account the effects of electron—electron interaction,
including exchange interaction and the effects of Fermi—
Dirac statistics. Furthermore, the results obtained from any
given model must be checked against real data for a
macroscopic metal whose measured parameters allow one to
correct parameters of the interaction potential for any given
configuration of cluster atoms. Such an interaction potential
may be used for the analysis of various cluster properties. We
list below some papers on 13-atom metal clusters which were
studied in this manner: Au[63—71], Mo [72, 73], Pt[74, 75], Al
[76—78], Ni[79], Rh [80], Ni, Ag, Au [81], Pd [82], Al, Ni, Cu,
Ag, Pd, Pt, Au, Pb[83, 84], Nb [85], Cu, Ag, Au[86,87],Y, Zr,
Nb, Mo, Ru, Rh, Pd, Ag, Cd [88], and Ni, Ag, Au [89]. This
list is not exhaustive; it is introduced here as evidence of a
wide front of studies for 13-atom metal clusters.

It should be noted that 13 is the magic number both for
clusters of noble metals and for more reactive metals, such as
Fe, Ti, Zr, Nb, Ta [90], and the icosahedral structure
corresponds to the PES global minimum in practically all
the 13-atom metal clusters. This was called into question for
13-atom gold clusters with the relatively lowest energy of
configurational excitation. Indeed, according to Refs [63 — 65,
67, 68], the icosahedral structure corresponds to the global
energy minimum, although, according to Refs[63, 69, 86], the
icosahedral structure is appropriate to the lowest configur-
ationally excited state. Thus, the sequence of configurational
levels inferred from simulations depends on the choice of
atomic interaction model for the computer simulation. In any
case, the energy gap between the ground and lowest excited
configurational states in gold is relatively small, and relati-
vistic effects are strong in their influence on hybridization of
the s and d shells of the atomic valence electrons. This causes
mixing of cluster structures even at low temperatures. Along
with cuboctahedral and decahedral structures, amorphous
and planar atom distributions can partake in structure
mixing, though no simulation has yet been done with a
strongly correlated basis for the electrons.

If the energy gap between the ground and lowest
configurationally excited states is small, the question arises
about the absence of the phase transitions for gold and other
metal clusters with electron coupling neglected. Indeed, if the
cluster excitation energy is low and the spectrum of config-
urational excitations is almost continuous, it is problematic to
separate energetically the cluster aggregate states if these are
composed of configurational states of the cluster. We cannot
answer this question in the simple terms which are used for
dielectric clusters, but one can rely on the results that in all
cases of experimental studies or computer simulations there
are both solid and liquid aggregate states. Although the solid
and liquid phases are not separated in computer simulations
of metal 13-atom clusters, these clusters have two different
aggregate states. This follows, in particular, from the
temperature dependences of the heat capacities of the
clusters, which are characterized by their peaked, resonant
shape, as is well known for traditional phase transitions.
Nonetheless, it seems plausible that the existence of those two
observable aggregate states in metal clusters is connected with
the behavior of the electron component.
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We next consider certain simulations of metal clusters and
the results of such simulations that give us an insight into the
properties of metal clusters. The interaction potential in metal
clusters is of course more complicated than that used in
describing the dielectric system. In addition to accounting
for the interaction between atomic cores, the effective
potential must include electron coupling. Nevertheless, this
can be taken into consideration in a simple way in some
models that conserve the pair form of the interaction
potential. Indeed, separating the interaction potential
between cores and the electron coupling, one can represent
the interaction potential in the form [91]

U= V(i) —ay_ /Ne,
ik i

(3.16)

where r;; is the distance between nuclei i and k, V(r) is the
interaction potential between two atomic cores at separation r
between them, a is a numerical coefficient, and N, is the
electron number density. The first term of this formula
corresponds to repulsion between atomic cores and has the
form V(r) ~ r~", where n is the appropriate factor. Electron
coupling described by the second term in formula (3.16)
depends on the electron density in atomic cores because
electrons are attached to cores. Then, one form of the
potential energy, the Sutton—Chen interaction potential, is
given by [92]

U D{Z(Rey CZ<R5>M] (3.17)

ik \lik izk \Tik . .
Thus, in spite of the different character of interaction in metal
and dielectric clusters, one can, at least to some degree of
approximation, reduce the potential energy of atoms in metal
clusters to a form similar to that of Lennard-Jones clusters.
The parameters of this potential may be determined in its
application to bulk metals. In this operation we assume that a
metal cluster is an element that is cut from bulk metal, taking
into account surface effects.

We have ascertained that the potential energy surface of a
cluster of metal atoms may be similar to that of a cluster of
dielectric atoms or of weakly interacting atoms for which a
pairwise form of the potential energy is valid. Note that the
Sutton—Chen form (3.17) of the potential energy is empirical,
and its parameters must be inferred from the properties of real
metals. Of course, different forms of potential energies are
also used for treating the properties of small metal clusters
(see, for example, Refs [75, 93—98]). The most appropriate
form may depend on what metal we are examining. Table 2
contains parameters of the Sutton — Chen interaction poten-
tial for some metals [89, 99] we consider below; these
parameters follow from the constraint that the parameters
of bulk metals must be described by this interaction potential.

The Sutton—Chen form of potential naturally presents
metal clusters as similar, structurally, to Lennard-Jones

Table 2. Parameters of the interaction potential (3.17) of bulk metals [89,
99].

n m D, meV C R., A
Ni 9 6 16 39 3.52
Ag 12 6 2.5 144 4.09
Au 10 8 13 34 4.08

clusters. Based on the results of numerical simulations [70,
71, 89], we give some results for 13-atom metal clusters in
analogy with the Lennard-Jones cluster. Comparing the two
kinds of systems gives us insight into the origin of the values of
the parameters for these clusters, and also of the information
content of these models for computer simulation.

Basing our treatment on analogy with dielectric clusters,
we consider the phase transition in metal clusters as config-
urational excitation in accordance with Fig. lIc. Then for
13-atom metal clusters, the global energy minimum corre-
sponds to the icosahedral geometry, and this minimum is
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separated by an energy gap from configurationally excited
states whose energies are very close and can effectively be
treated as a continuous band in accordance with Fig. 10b.
Then, the number of possible configurational states, equiva-
lent to the number of isomers, increases with the excitation
energy, as shown in Fig. 11. Hence, the liquid state of metal
clusters constitutes a mixture of many atomic configurations
whose number grows with increasing excitation energy.
Although the properties of these states are determined by
the behavior, especially the interactions, of the valence
electrons, the liquid state of metal clusters remains analo-
gous to that of Lennard-Jones clusters, at the very least
because the melting process involves similar changes of
atomic configurations. For this reason, both cluster types
exhibit two aggregate states despite the fact that the liquid
aggregate state of metal clusters involves another, altogether
different kind of interaction.

The indicator of the phase transition for clusters is the
change in character of atomic motion, and the appropriate
parameter indicating this is the fluctuation of bond length.
Naturally, in the liquid state, atoms acquire a higher mobility
to move within the cluster, and this parameter increases
sharply at melting. Commonly, the relative root mean square
of the bond-length fluctuation ¢ is used as the indicator of this
behavior. It is expressed as

e [

i<j J

5=

(3.18)

where r;;is the distance between i and j atoms, n is the number
of atoms in a cluster, and the angle brackets mean an average
over fast atomic vibrations. This approach was first intro-
duced by Lindemann [100], who used atomic fluctuations
from equilibrium positions as the measure, but further,
slightly more indicative parameters based on interparticle
distances have been utilized in Refs [21, 22, 101, 102], and
formula (3.18) gives the widespread form of the correlation
function [23, 103]. For the solid cluster state, in which atoms
are tied closely to lattice sites, parameter (3.18) is typically
smaller than 0.1, and it increases sharply at melting. Figure 12
gives the caloric curve for silver clusters consisting of 13 and
14 atoms [89], in which some points are indicated that are of
interest for the phase transitions. Figure 13 displays the
temperature dependence of the reduced bond-length fluctua-
tion J defined by formula (3.18) for clusters Ary3, Ags, and
Agis. One can see that the parameter ¢ exhibits a jump
precisely around the melting point of this cluster. This jump
may be used as the basis for definition of the melting point
from computer simulations, although the ‘jump’ clearly takes
place over a finite temperature interval. On the basis of the
behavior of parameter (3.18), one can conclude that such a
phase transition occurs for all sufficiently small metal
clusters.

The points marked in Fig. 12 with numbers indicate
different ranges of cluster states. In particular, the tempera-
ture / corresponds to the solid cluster state, 2, the point of
inflection, is the melting point, and 3 lies in the liquid region.
In the case of the Agy4 cluster, the structure of the parameter &
is more complicated and gives evidence of two-stage melting.
In particular, the second jump of ¢ near point 4 testifies to the
appearance of a new group of cluster structures. It is an open
question, perhaps a semantic one, as to whether we can
consider the regions around 3 and 4 points as indicating two
different phases.
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Figure 12. Caloric curves for clusters Ag;s (a) and Agy4 (b) [89].

Larger clusters, e.g., consisting of 45 or 50 atoms or more,
clearly exhibit more than two distinct phases [26, 27]. In any
case, the 13-atom clusters which have completed icosahedral
shell structures for their ground states are characterized by a
simpler kind of melting, as well as by higher melting
temperatures than clusters of neighboring sizes with incom-
plete outer atomic shells. As a demonstration of this fact,
Fig. 14 indicates the melting points of Lennard-Jones clusters
reduced to the interaction of argon atoms, and the melting
points of metal clusters of different sizes according to
simulation [89]. We see that the melting point is a non-
monotonic function of cluster size and clusters of magic
sizes are characterized by higher melting points than clusters
of neighboring sizes.

One notable peculiarity of metal clusters, as compared to
dielectric (Lennard-Jones) clusters, is their relatively small
fusion energies. From Fig. 12 it follows that metal cluster
melting becomes apparent only weakly in the caloric curves
because of those small fusion energies. In addition, Table 3
gives the values of the binding energy ¢y and the fusion energy
AHys per atom for bulk argon and some metals. These values
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Figure 13. The root mean square ¢ for fluctuations of cluster bond lengths
according to formula (3.18) for the Lennard-Jones cluster Arz [105] (a),
for the cluster Ag;s [89] (b), and for the cluster Ag;, [89] (c).

confirm the above statement and make it a bit problematic to
distinguish the solid and liquid aggregate states of metal
clusters in computer simulations on the basis of the caloric
curve behavior, in contrast to Lennard-Jones clusters where
this distinction is significant.

Although Lennard-Jones clusters and other dielectric
clusters can have the same icosahedral or fcc (face-centered
cubic) ground state structures as many metal clusters, they
differ considerably with respect to their low-lying configur-
ationally excited states. As we have seen (Fig. 1a), the lowest
configurationally excited state of the 13-atom Lennard-Jones
cluster has the symmetry Cs, whereas configurational excita-
tion of metal clusters typically involves changes in the
positions of many atoms with low barriers between various
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Figure 14. (a) The melting points (triangles) of Lennard-Jones clusters
reduced to the interaction of argon atoms of various sizes and a range of
phase coexistence [105], and (b) the melting points of nickel, silver, and
gold clusters of different sizes [89].

Table 3. Parameters of bulk metals.

Bulk &, eV AHps, eV AHyys /80, %
Ar 0.068 0.0123 18
Ni 4.13 0.181 4.4
Cu 3.40 0.138 4.1
Ag 2.87 0.120 4.2
Au 3.65 0.130 3.6

structures, and, as a result, is really a mixture of many excited
low-lying configurationally excited states. Next, as appears
from the above, the number of lower excited states in the
13-atom Lennard-Jones cluster at zero temperature equals
12 x 15 = 180, where 12 is the number of cluster atoms on the
external atomic shell, and 15 is the number of positions of a
promoted atom on the cluster surface where it is located in a
hollow in contact with three surface atoms. In the metal case,
the number of low-energy configurationally excited states is
far more, typically on the order of 1000 [89].

Note that the occurrence of a solid—liquid phase transi-
tion in metal clusters requires the global energy minimum to
be separated by an energy gap from lower excited states.
Table 4 gives the total binding energy of atoms, Ej, at zero
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Table 4. The binding energy Ep of cluster atoms and configurational
excitation energy AE for some 13-atom metal clusters.

Cluster Nis3 Ag]3 Aups
Ep, eV 44.11 27.87 41.96
Ae, eV 0.73 0.66 0.11
A¢/Ey, % 1.6 2.4 0.26

temperature and the excitation energy AE of the lowest
configurationally excited state for some 13-atom metal
clusters as derived from numerical simulations [89]. In all
these cases, the lowest state corresponds to the icosahedral
configuration of cluster atoms.

Let us now analyze the character of melting for the Ag;;
cluster using the data of simulations. Its caloric curve shown
in Fig. 12 [89] is characterized by the melting point
Tm = 820 K, and the cluster excitation energy at the melting
point is E.x = 2.89 eV. Note that the binding energy of this
cluster amounts to 2.144 eV per atom, less than
&n = Eyp/n =2.87 eV for bulk silver. This relation between
the atom binding energy for a cluster and bulk systems is of
course consistent with the classical expectation for small
systems [104]. Tt is difficult to find the cluster fusion energy
from the caloric curve, and we take it to be proportional to the
atomic binding energy. Estimated in this way, the cluster
fusion energy according to the data of Tables 3 and 4 is
0.090 eV per atom or 1.16 eV per cluster. Next, the total
kinetic energy of cluster atoms for the solid aggregate state at
the melting point is Eyj, = 1.16 eV, as follows from the
kinetic definition of temperature. Thus, we obtain the value
of the anharmonicity parameter # = Exin/Eex = 0.40 at the
melting point. This value coincides with that of the Lennard-
Jones cluster (3 = 0.39) within the accuracy limits of these
values. For comparison, it should be indicated that for the
Lennard-Jones cluster of 13 atoms we have E, = 44.34D,
Ae =2.86D, and A¢/Ey, = 6.4%.

On the basis of the above results, one can outline the
character of change of cluster parameters at the melting point
Tm. We take the relationship between cluster parameters at
the melting point in the standard form

AE

AS = lng(Ee)u Tm) = T

(3.19)

where AS is the entropy jump in the phase transition, and
g(E«) is the ratio of the statistical weights for the liquid and
solid aggregate states at the melting point. Taking the fusion
energy AE = 1.16 eV for the cluster Ag;3, we find AS = 16.4
from formula (3.19) at the melting point or, correspondingly,
the number of participating liquid states g = 1.3 x 107. This
value is several orders of magnitude higher than the number
of configurational excitations, which is about 103 (the total
potential energy of cluster atoms is U = 0.6E = 1.72 eV).
From this it follows that the thermal motion of atoms plays a
significantly greater role in a metal cluster than in a Lennard-
Jones cluster.

Basing our analysis on computer simulations of 13-atom
metal clusters [70, 71, 75, 89], the following simple model can
be suggested for the phase transition of metal clusters,
resulting from the positions of the potential curves in
Fig. 10b. The liquid state includes all the configurationally
excited states whose excitation energies lie below a given one.
The connection between the cluster excitation energy Eex and
the number of configurational states n whose excitation

energy is below the indicated one is given by

Eex :AE+ S—n _;max , n < Nmax - (320)
On the basis of this dependence, one can construct the

partition function for the liquid state as

[ Eoy AE I3
Ziiq=Z J exp <— 7) dn = Zy exp <— 7) F(ﬁ)’

1
xcoshx

F(x) (3.21)

Here, Zy, is the part of the partition function related to the
thermal motion of atoms in the liquid state with respect to
the solid one. Treating the caloric curves [89] for the
isothermal case and using the energy dependence (3.20) of
the isomer number allow us to separate the parts of the
entropy jump at melting due to configurational excitation
and to thermal atomic motion in the liquid state; these data
are given in Table 5. Note that the contribution of the
thermal part to the entropy jump is less for metal clusters
than for Lennard-Jones clusters. According to this model,
the properties of the liquid state vary sensitively with
temperature, while classical thermodynamics would attri-
bute constant parameters to the liquid aggregate state in the
region of the melting point.

Table 5. Parameters of the phase transition for 13-atom metal clusters.

Cluster Ni]} Ag13 AU13
Tm, K 860 420 440
AE, eV 1.5 1.5 0.68
0Tm, K 200 60 400
AS 6.4 7.1 7.2
AS, 20 41 18
ASy/ASm, % 32 17 40

Thus, in comparing the melting of Lennard-Jones and
metal clusters, especially with regard to their differences, we
have an analogy in configurational excitation from the energy
standpoint. Indeed, for both cases, the liquid state is
separated from the solid one by an energy gap, and the
configurations of their atoms change as a result of melting.
But the number of configurations that are available for liquid
metal cluster increases very rapidly with an increase in the
excitation energy, while the number of atomic configurations
available for molten Lennard-Jones clusters remains rela-
tively constant in the temperature range nearby the melting
point. This leads to quite different behavior of entropy jumps
and different relative fusion energies in these cases. Never-
theless, in spite of their differences, the phase transitions for
Lennard-Jones and metal clusters may be considered from the
same standpoint.

As for the methods applied to simulate Lennard-Jones
and metal clusters, one can conclude that coexistence of
phases, and the consequent recognition of separate, distin-
guishable solid and liquid forms, allows us to understand in a
deepened way the character of the phase transition and, in
particular, to find the temperature dependence for the
entropy jump in the range of the phase transition. The
absence of phase separation in computer simulations of
metal clusters gives us only a rough picture of the phase
transition in this case.
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3.3 Character of phase coexistence in 13-atom clusters

In this analysis we shall consider clusters consisting of
13 atoms as convenient objects for describing the phase
coexistence in phase transitions, since in this case we have
the maximum relative range of phase coexistence because of a
significant energy gap between the ground and configura-
tionally excited states. In addition, 13 is a magic number of
cluster atoms, corresponding to a completed icosahedral
structure. Nevertheless, phase coexistence is also a general
property of clusters of other sizes, although for a 13-atom
cluster it is particularly striking.

Figure 14a exhibits the size dependence of the melting
point for Lennard-Jones clusters [105], and the temperature
range of phase coexistence is indicated in each case. The
maximum melting points correspond to completed atomic
shells (n = 13, 19). Moreover, these ‘magic number’ sizes
exhibit particularly wide coexistence ranges, compared with
clusters of other sizes. By contrast, for Lennard-Jones clusters
consisting of 8, 14, and 17 atoms, coexistence of phases is not
observed [56], i.e., the distribution functions of clusters over
the total kinetic or potential energies according to computer
simulations are characterized by single maxima. One can
explain this difference by the character of the corresponding
configurational excitation. Indeed, comparing clusters of
13 and 14 atoms and defining the liquid aggregate state as
that in which an atom can move over the cluster surface freely,
we reveal that an atomic transition onto the cluster surface
gives the entropy jump AS = In(12 x 15) = 5.2 for a 13-atom
cluster, while the entropy jump is significantly less for a
14-atom cluster. Hence, in the latter case we have an
apparently smooth entropy change with cluster excitation,
i.e., phase coexistence is absent or occurs too rapidly for
thermal equilibration of each phase in this case. Thus, the
character of phase coexistence depends on the cluster
structure and the character of configurational excitation.
The 17-atom cluster requires a rather different explanation
from this standpoint; in this case, the solid and liquid states
were not separately identifiable because passage between
them seemed very labile. (More recent and precise simula-
tions may in fact show phase coexistence for the 17-particle
cluster, but with only brief dwell times in each phase.)

In this context, the question arises of just what the liquid
aggregate state is for clusters. We were faced previously with
different definitions, depending on the property under
consideration. In considering a 13-atom cluster, we have
taken this state as a configurationally excited state, as shown
in Fig. 1a. From the other standpoint, we took the liquid state
as the state with a high mobility of the surface atom or atoms.
Evidently, this definition may be considered as a general
definition of the liquid state, at least for the surface layer.
From this standpoint, a surface atom of a 14-atom cluster in
the liquid state moves freely over the cluster surface, while it
is locked in a surface well between three surface atoms in the
solid aggregate state. Then in this case, an increase in the
temperature or the energy of the surface atom mobilizes that
atom and allows the surface atom to pass among neighboring
surface wells. Here, we would say that coexistence of phases is
not a simple 2-state situation, i.e., the cluster may be found in
one aggregate state, solid or liquid surface, depending on the
average energy of the surface atom. At higher temperatures,
the core atoms become mobile and one can observe a liquid
state for the entire cluster. In the case of the 13-atom cluster,
the transition of a surface atom onto the cluster surface
establishes the solid —liquid transition, and the phase coex-

istence takes place for this cluster in some range of
temperatures or cluster excitation energies.

It is necessary to distinguish ‘true’ melting from what we
shall call ‘surface melting’. In the case of clusters consisting of
13 and 14 atoms, surface melting is realized, and an atom or
atoms have a high mobility on the cluster surface. Surface
melting is more evident in larger clusters, with two or more
shells [26, 27, 106], and also in bulk atomic systems. The ‘true’
melting is determined by internal atoms and is not so vivid as
surface melting. The volume of an atomic system in the liquid
state is greater than that for the solid. An increase in the
volume per atom leads to an increase of the entropy of this
atomic system and simultaneously to a decrease of the
binding energy. One can infer the optimal size of this atomic
system with respect to its chemical potential. The correspond-
ing state, stable or metastable, differs from the solid state and
is indeed the liquid state. From this consideration it follows
that the existence of the liquid state requires definite
conditions. In particular, within the framework of the void
model for configurational excitation of clusters, these
requirements are formulated in monograph [32].

Evidently, the definition of the liquid state, based on a
high atomic mobility, is analogous to the generalized
Lindemann criterion. Indeed, the Lindemann criterion [100]
for simple atomic systems with a pairwise atomic interaction
postulates that the solid —liquid phase transition occurs when
nuclear vibrations reach an amplitude that is 10— 15% of the
equilibrium distance between nearest neighbors. In general-
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Figure 15. The vibrational spectra of the cluster Alj; at different
temperatures [78].
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izing the Lindemann criterion [100], the vibrational amplitude
of each atom is replaced by fluctuations of bonds between
nearest neighbors [21-23, 102, 103], i.e., correlations in the
positions of nearest neighbors. Usually, the relative square
root of the fluctuation for the square of distances between
nearest neighbors, averaged over the positions of all atoms
and given by formula (3.18), is used for this goal. This
quantity is taken for a certain time scale, when atoms change
their positions in the liquid states, and conserve these
positions in the solid state. Then, the phase transition leads
to a large increase of the parameter o, as shown in Fig. 13.

Let us consider the liquid cluster aggregate state from
another standpoint. If a cluster is found in the solid aggregate
state, atoms oscillate in their wells, and the characteristic
oscillation frequencies, broadened as they may be due to
thermal atom motion, change weakly as the cluster is excited.
Transition to the liquid state is accompanied by a change in
the spectrum of cluster vibrations. This is demonstrated in
Fig. 15, in which the vibrational spectrum of the cluster Al;; is
given at several temperatures [78]. This shows that the
cluster’s characteristic frequencies vary with temperature.
This example also shows that the concept of the potential
energy surface is not suitable for liquid metal clusters because
of mixing of atomic configurations in the many excited states,
including the low-lying electronic states. Therefore, the
vibrational spectra of liquid metal clusters vary significantly
with variations of the cluster temperature or the degree of
excitation.

4. Phase transitions in large dielectric clusters

4.1 Phase coexistence in dielectric clusters
The specific phenomenon of coexistence of the solid and
liquid phases is most striking for clusters consisting of 13
atoms, when interaction between nearest neighbors domi-
nates. In particular, this effect was discovered for the 13-atom
Lennard-Jones cluster [23-25, 27, 28]. In this case, the
average residence time in each aggregate state in the range of
phase coexistence is long compared to a typical time of
passage between phases, and the relative probability that a
cluster will be located in each aggregate state determines
(or reveals) thermodynamic parameters that follow from
averaging these parameters over long times. For larger
clusters, phase coexistence changes its character somewhat,
becoming more complex, so the 13-atom cluster is perhaps the
best candidate to elucidate the phase coexistence in a simple
form, for two reasons [31, 32]. First, the solid state of this
cluster corresponds to the completed icosahedral structure
with one filled shell, and the icosahedral structure is
significantly more favored than others because all the surface
atoms are found in identical positions. Therefore, this cluster
ground state is separated from the first configurationally
excited state by a large energy gap that provides a large
lifetime of each aggregate state compared with the time of
transition between these states. Second, because a large
fraction of atoms occupy the cluster’s shell, the phase
transition is characterized by a large entropy jump and
therefore proceeds at low temperatures. This decreases the
rate of transition between aggregate states and increases the
lifetime for each aggregate state under given conditions.

Let us represent a general principle of phase coexistence
that the lifetime in each aggregate state exceeds significantly
the time of transition between these aggregate states. The

lifetime of an aggregate state is inversely proportional to the
rate of transition between these states, which in turn is
proportional to exp (—FE,/T), where E, is the activation
energy for a given transition that exceeds the energy
difference AE between states (here, in this crude approxima-
tion, we neglect the energies of the transition states above the
initial minima), and T 'is the cluster temperature expressed in
energy units. A typical time of transition between aggregate
states is the time of rearrangement of the atomic configuration
that changes from one aggregate state to another. This is a
typical time of atomic displacement over distances of the order
of a distance between nearest neighbors. We estimate the
order of magnitude of this time as ~ 1 ps, and this depends
weakly on temperature. Thus, the criterion of phase coex-
istence is fulfilled if the energy gap between aggregate states
significantly exceeds the thermal atomic energy that provides
a long cluster location in each aggregate state compared to a
time of free displacement of atoms over atomic distances.
Therefore, the concept of phase coexistence is applicable to
clusters of various sizes, including macroscopic atomic
systems, for which the energy of excitation of an aggregate
state exceeds the thermal atomic energy at the melting point. It
is quite another matter that the range of phase coexistence
becomes very narrow for large clusters, which makes this
effect unobservable, although the fundamental meaning still
holds, in principle, for large systems.

We now consider the peculiarities of the phase transitions
in large dielectric clusters in which interactions between
nearest neighbors dominate. They differ from the 13-atom
cluster in two ways [32]: the possibility of several aggregate
states, and large fluctuations of parameters for each aggregate
state, which are comparable to or exceed the energy gap
between these states. Let us take as an example for
demonstration of these peculiarities a 55-atom Lennard-
Jones cluster for which various aspects of the phase transi-
tion were studied [26, 27, 107—112]. This cluster has a
completed icosahedral structure that is separated from the
lowest excited configurational state by a moderately wide
energy gap, guaranteeing a long lifetime for the ground state
and excited states and leading to phase coexistence. But, in
contrast to the 13-atom cluster, we have in this case several
aggregate states. Indeed, a 55-atom cluster with a dominant
nearest-neighbor interaction has an icosahedral structure
with one central atom, 12 atoms in an internal shell, and
42 atoms in an external shell. For this structure, one can
identify three aggregate states [27, 111] in the caloric curve
(the temperature dependence for the internal cluster energy).
The first and lowest-energy is the solid state, the ground
configurational state. The second aggregate state is character-
ized by a solid internal atom shell and liquid outer shell, and
the third aggregate state is the liquid cluster state.

Another peculiarity of aggregate states of the 55-atom
Lennard-Jones cluster is connected with large fluctuations of
parameters for each aggregate state. Figures 4b, 4c contain the
time dependences for the total potential energy of a 13-atom
Lennard-Jones cluster under different external conditions,
and the corresponding dependences can be obtained for the
total kinetic energies of cluster atoms. These dependences
were generated from computer simulations by methods of
molecular dynamics in which mean values of the desired
quantities are extracted at each successive short time inter-
val, typically the time of a few vibrational periods. These data
allow us to distinguish the aggregate state for cluster location
at each short time interval. It is possible to construct the same
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dependence for clusters of other sizes, e.g., a 55-atom cluster,
but the results are typically somewhat more complicated. For
example, for Lennard-Jones clusters of roughly 50 atoms, one
can distinguish solid, liquid, and intermediate, ‘surface-
melted’ phases from the simulation data [26, 27, 106]. The
parameters from each of these phases could, in principle, be
extracted from molecular dynamics simulations.

One can determine the phase transition parameters in
another way. Specifically, the temperature range of phase
coexistence is the temperature range for the resonance-like
peak in the temperature dependence for the cluster’s heat
capacity under isothermal conditions. The transition between
aggregate states in a phase coexistence range is characterized
by a change of atomic configuration for this cluster estab-
lished by atomic positions. In the case of a 55-atom Lennard-
Jones cluster, the first configurationally excited aggregate
state is characterized by 5—7 promoted atoms [32], which are
promoted from the outer atomic shell to the cluster surface.
These atoms are termed ‘floaters’ [26, 110] and they arise and
disappear over the cluster surface.

4.2 Character of the melting of dielectric clusters
Depending on the behavior of the potential energy surface
(PES) for cluster atoms, we divide clusters into two groups. In
dielectric clusters for which a short-range interaction, i.e.,
interaction between nearest neighbors, dominates, an excited
aggregate state is characterized by a restricted number of local
minima of the PES, and until a cluster moves to a different
excited aggregate state as the result of a change of the cluster
temperature, the cluster’s location in the initial set of local
minima of the PES is conserved. By contrast, metal clusters at
low temperatures have many excited local minima of their
PESs with approximately the same excitation energy, and the
cluster configurational state that is described by the distribu-
tion of occupancies of local minima of the PES varies very
sensitively in the course of temperature change. We here
consider dielectric clusters.

Let us analyze the character of phase coexistence in large
dielectric clusters on the basis of the above data. Strictly, the
range of coexistence is the full range between the low
temperature at which the liquid loses its local stability, the
freezing limit, and the higher temperature at which the solid
loses its local stability, the melting limit [25, 28]. Nonetheless,
here we take for definiteness, convenience, and especially as a
way to estimate the practical observability of the coexisting
phases, the range of phase coexistence such that

0.1<p<10, (4.1)
where the parameter p is given by the formula
wliq AE
=—= ———AS 4.2
Wsol exp ( T ) ’ ( )

and wyo and wyq are the probabilities of a cluster residing in
the solid and liquid states at this temperature, respectively,
AEis the change of the internal cluster energy as a result of the
phase transition, and AS'is the entropy jump. Introducing the
width of the coexistence range as

oT=T —T,
where p(T>) = 0.1, and p(T;) = 10, we obtain
5
T'~-—— 4.
ST o (43)

where AS is the entropy jump at the melting point.

Let us apply formulas (4.1)-(4.3) to the 13-atom
Lennard-Jones cluster with argon parameters. In consider-
ing isothermal conditions (with the cluster in a Gibbsian
canonical ensemble), taking the melting point to be
Twm =37 K and the entropy jump at the melting point
AS =~ 9, we find coexistence of phases in the temperature
range 28—-46 K according to formula (4.3). For a nickel
cluster of 13 atoms with the melting point 7}, = 860 K and
the melting parameters according to Table 5, we have on the
basis of formula (4.3) that the phase coexistence takes place
throughout the temperature range 740—980 K. Next, for the
Lennard-Jones cluster of 55 atoms with argon parameters we
have for the melting point 7;;, = 44 K and the entropy jump
at the melting point AS =45+ 2. In this case, the phase
coexistence according to formulas (4.1) and (4.3) occurs in the
range 40—48 K. One can see that the range of readily
observable phase coexistence for metal clusters is proportio-
nately narrower than that for dielectric clusters but is
nonetheless very observable, and the range of observable
coexistence is wider for small clusters than for large clusters.
As follows from these estimates, phase coexistence is
important for small dielectric clusters when the number of
cluster atoms is below 100!

4.3 Role of the anharmonicity of atomic vibrations

in cluster melting

In the analysis of the 13-atom Lennard-Jones cluster, we
emphasized the important role of the anharmonicity of
atomic vibrations for the phase transition. Indeed, the upper
state of the phase transition corresponds to the more rarified
atomic distribution, and the anharmonicity of atomic vibra-
tions in this state is certainly greater than that for the lower-
energy solid state. Therefore, the temperature dependence of
the transition entropy in the range of the phase transition can
be connected with the anharmonicity of atomic vibrations in
the upper aggregate state. Note that the anharmonicity of the
13-atom Lennard-Jones clusters, as follows from an analysis
of computer MD simulations [23], is relatively small [57].
Nevertheless, it is important for the behavior of the entropy
jump in the range of phase coexistence [31, 32].

For larger clusters, the contribution of the anharmonicity
of atomic vibrations to thermodynamic parameters in the
phase transition range is determined by the anharmonicities
of the potential wells, rather than the valley regions of the PES
[112]. The influence of the anharmonic character of atomic
vibrations on some thermodynamic parameters is given in
Table 6. Evaluations were fulfilled for the Lennard-Jones
cluster of n atoms with completed icosahedral shells. The

Table 6. The role of the anharmonicity of atomic vibrations in clusters for
the thermodynamic parameters of two Lennard-Jones clusters LJ, with
completed icosahedral shells under isothermal conditions [112].

Cluster Tm, D Ly, D
LJ3, harm. 0.35 2.9
LJ3, anharm. 0.29 3.7
LJss, harm. 0.34 13
LJss, anharm. 0.30 16

Here, T, is the melting point expressed in units of the binding energies
per bond, and L, is the energy difference of the two phases in the caloric
curve at the melting point.

! Note added in proof: see Berry R S, Smirnov BM Int. J. Mass. Spectr. 280
2004 (2009)
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contribution due to the anharmonicity of atomic vibrations to
the cluster parameters depends on the character of atomic
interactions in this cluster [66, 113].

The role of the quantum character of atomic vibrations
in the phase transition has been studied in Ref. [114] for
Lennard-Jones clusters consisting of 19, 31, 38, and 55 atom:s.
It follows from this analysis that whatever quantum correc-
tions may be significant due to zero-point vibrational energies
and may play an important role in mixing cluster structures
when the system has an icosahedral core structure and the fcc
structure on its potential surface. This method later was
generalized for Lennard-Jones clusters of sizes with nonico-
sahedral global minima [115].

4.4 Cluster heat capacity near the melting point

The heat capacity of a cluster that is under constant energy
conditions is of special interest because the heat capacity of
such a cluster may be negative. It is important to recognize
that in this case the temperatures of the solid (7;) and liquid
(Tiiq) aggregate states are different. But one can introduce the
average cluster temperature

T = weo1 Tso1 + Wiliq Tliq s (4~4)

where w1, wiiq are the probabilities of the cluster residing in
the solid and liquid states, respectively. This allows us to
consider anisolated cluster as a thermodynamic system that is
characterized by a certain temperature. Let us represent the
caloric curves (the temperature dependences for the cluster
energy) for cluster aggregate states in the absence of the phase
transition simply by straight lines (Fig. 16). If a cluster is
heated starting from low temperatures, its temperature equals
T = Tyo at low temperatures, and T = Tjq at high tempera-
tures. The transition between these curves near the phase
transition can give the caloric curve an S-form [49, 53], which
results in a negative heat capacity in the vicinity of the melting
point. The analysis [32, 49] showed the reality of this character
of the caloric curve.

It should be noted that the negative cluster heat capacity
near the melting point does not violate general physical
principles. Indeed, the heat capacity is expressed through the
derivative of the mean kinetic energy of cluster atoms with
respect to the average cluster temperature, and the negative
heat capacity means that an increase of the total energy of
cluster atoms induced an increase in configurational excita-
tion to regions of high potential energy, and consequently to a
decrease of the total kinetic energy of the cluster atoms.
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Figure 16. Caloric curves for a cluster with two aggregate states in the
melting range. The S-shape transition between the straight lines related to
the solid and liquid aggregate states corresponds to a negative value of the
cluster heat capacity near the melting point.

Evidently, this phenomenon may even also occur for
macroscopic atomic systems. In particular, in the case
Tsol - Tliq 1
- 7 > —,

Tsol \/ﬁ
where 7 is the number of cluster atoms, the heat capacity at
the melting point is —Cj [30, 32], where Cy is the cluster heat
capacity far from the melting point. Criterion (4.5) is not
fulfilled for the 13-atom Lennard-Jones cluster or for many
other such clusters, but the negative cluster heat capacity has
been found by experiment for charged clusters of sodium
[116, 117].

1> (4.5)

5. Melting and properties of metal clusters

5.1 Properties of metal clusters

Whether we are analyzing dielectric or metal clusters, we
often assume that there is no electronic excitation, i.e.,
electrons do not partake in cluster excitation in either case.
Then by analogy with dielectric clusters, one can construct the
PES (potential energy surface) for a metal cluster based just
on nuclear coordinates. The 13-atom clusters of the coinage
metals exemplify this behavior. Computer simulations then
reveal many local minima corresponding to isomers with low
excitation energies (see Fig. 10b). The differences in the
energies among these neighboring minima are typically
small. Interparticle interactions in metal clusters are subtle
and are not restricted to short ranges. This has the
consequence that, in contrast to dielectric clusters for which
interactions between nearest neighbors dominate, the energy
gap between the ground configurational state of a metal
cluster and the first configurationally excited state is, in
many cases, relatively small, as are the differences in
excitation energies for subsequent excited states. This leads
to mixing of configurational excited states whose number
increases with an increase in the excitation energy. Therefore,
the liquid aggregate state of a metal cluster as a sum of a large
number of configurational states changes with variation of
the excitation energy. In addition, the lifetime of aggregate
states of metal clusters is shorter than that for dielectric
clusters, sometimes making it problematic to separate the
solid and liquid aggregate states in the range of phase
coexistence, as can be done for dielectric clusters.

Thus, metal clusters are characterized by similar excitation
energies for neighboring configurationally excited states, and
the liquid state that is composed from many excited config-
urational states corresponds to a varying atomic configura-
tion in the cluster as the excitation energy varies. Taking into
account the electronic degrees of freedom enhances this
property of a metal cluster. Clear illustrations of this are
clusters of the alkali metals, whose electronic valence shells are
half-filled; that leads to an effectively continuous electronic
spectrum for each nuclear configuration in principle [118].
This in turn strengthens the mixing of configurationally
excited states of such a metal cluster. Therefore, interaction
inside the electron subsystem and, in particular, electron—
electron coupling may be vital components for describing
aggregate cluster states and phase transitions between them.

Previously, we analyzed dielectric clusters as consisting of
weakly interacting atoms, so that the properties of atoms are
at least partially conserved in those systems in which they are
bound. Now we consider metal clusters, and the first question
is what clusters are actually metallic, i.e., which exhibit
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properties analogous to those of bulk metals. The electrical
conductivity is the most characteristic and simplest property
to define membership of a given material in a category of
metals. The electrical conductivities of materials vary between
the limits of 10° Q 'em™"' up to 10722 Q~'em~! (for example,
see Refs [119—121]). That spans 31 orders of magnitude. The
high electrical conductivities that characterize metals corre-
spond to relatively free electron motion in these materials.

When we transfer our attention to objects the sizes of
atomic clusters, other properties due to electron properties
may be taken as defining metal characteristics. Physically, it is
convenient to use the electron spectrum that, for a metal, is
effectively continuous for low-energy electronic excitation.
Indeed, the electron spectrum of bulk materials that may be
interpreted as excitation energies of individual electrons
consists of continuous energy bands which interact with
each other and with atomic cores. For metallic atomic
systems, the valence band that corresponds to valence
electrons is only partially filled, i.e., electronic transitions
with small energy variations are possible. When we deal with
clusters, systems of a finite number of atoms, the spectrum
becomes discrete; that is a general property of finite systems,
both because of the small number of component atoms and
because of the atomic-scale boundaries of the systems. But if
the excitation energy for neighboring cluster levels is small
compared to the thermal energy, one can still consider this
spectrum to be continuous.

It is appropriate to start the analysis of the behavior of
metal clusters from Wigner’s papers [122, 123] where the
importance was shown of the correlation interaction of
electrons in a quantum system containing electrons and
ions. This correlation energy, together with the Coulomb
interaction between charged particles, determines the optimal
distance between nearest neighbors in metal systems, which is
described by the Wigner — Seitz radius ry [122]. This para-
meter is defined such that the radius of a spherical metal
particle consisting of n atoms is given by

13 (5.1)

and the volume of a sphere of a radius rw corresponds to the
volume per atom of the condensed system.

This description of the electron behavior in metal clusters
indicates that electrons may travel freely inside the cluster,
but the correlation of electron positions is important for the
cluster’s structure. This aspect of electron —electron interac-
tion is taken into account in the jellium model of metal
clusters, in which the positive charge is distributed smoothly
over a restricted volume determined by the cluster’s physical
size, and each electron resides in the field of the positive
charge and a self-consistent field due to the other electrons. In
this case, the electronic states are determined by the solution
of the Schrodinger equation for the electron wave function
that locates the electron in a self-consistent spherical field
U(r), where r is the electron’s distance from the cluster center.
Then the electronic state is characterized by the same
quantum numbers as those of electrons in atoms: n is the
principle quantum number; /, the orbital momentum; m, the
momentum projection onto a given direction, and o, the
electron spin projection onto this direction. Correspond-
ingly, the electron component in a cluster is distributed over
shells, similar to those in atoms. The difference between the
atom and jellium cluster model is such that for atoms n >/,
whereas for a cluster the relation between positive n and / may
be arbitrary. (This corresponds to the difference between

r=rwn
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Figure 17. Mass spectrum of cluster sodium ions — the dependence of the
intensity of cluster ions extracted by a field on the number of cluster atoms
[128]. Intensity maxima correspond to the cluster magic numbers that are
indicated.

hydrogenic and Sturmian functions in the Coulomb field.)
Thus, the jellium model is an analogy of the self-consistent
field model for atoms, and within the framework of this
model cluster electrons are characterized by the same
quantum numbers as those for atoms.

The shell structure of a jellium cluster leads to certain
magic numbers of cluster atoms— or, more precisely, of
electrons—at which various cluster parameters are extre-
mal. This structure of cluster shells is confirmed by mass
spectrometry experiments (for example, see Refs [124—127])
for various clusters of alkali metals. Figure 17 gives the mass
spectrum for sodium clusters — the dependence of the relative
intensity of cluster flux on cluster size, which corresponds to
the jellium model for a spherical sodium cluster [128].

The jellium model for metal clusters may have different
versions due to different methods of introducing the self-
consistent field that acts on electrons [118, 129-137].
According to the experience people have had using the
jellium model, it is suitable for alkali metal clusters, and, as
follows from experiments (see, for example, Refs [124, 125,
127, 138, 139]), practically identical magic numbers corre-
spond to clusters of different alkali metals. In particular, the
sequence of filling electron shells for clusters of alkali metals
with the number of atoms below 100 is as follows:
1s21p®1d192s21f142p01¢!82d193s21h?% [124], if we use the
notation of electron shells in atoms. As we can see, in
contrast to atoms, states with low principal quantum number
n can have any orbital momentum /. Note that, like electron
shells in atoms, there is a competition for the filling of
electronic shells in clusters. This is important for large
clusters in which the sequence of filling of electron shells
depends on the method of the cluster’s formation. In
particular, cluster heating acts on its magic numbers [127].2

Just how metal-like properties develop in clusters as their
size varies is a challenging aspect of the general problem of the
insulator —metal transition (for example, see Refs [121, 140—
145]). There are various methods to analyze this transition in
clusters in terms of the electronic behavior. One of these is
based on the size dependence of the polarizability. Indeed, the

2 Authors’ note to English proof: The jellium model does have limits,
however; it does not give an accurate representation of aluminium clusters
(see, for example, paper by Cheng H-P, Berry R S, Whetten R L Phys. Rev.
B 43 10647 (1991)).
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polarizability of a spherical metal particle with radius R is
o = R3 [146]; the polarizability of a dielectric particle is of
course lower. In this manner, measurement of the cluster’s
polarizability as a function of its size allows one to find a size
above which clusters become metallic and their polarizabil-
ities vary at larger sizes close to the relation o = R3. This
operation [147] shows that aluminium clusters become
metallic when their size exceeds 40.

When an object becomes metallic and electrons can freely
travel in it, the Mott— Hubbard correlation energy U=1—EA
becomes zero [141, 144, 148 — 150] ({ is the ionization potential
for this atomic object, and EA is the electron affinity). This
corresponds to the concept of a metal with no energy gap
between highest filled and lowest empty electron energy levels,
HOMO and LUMO, respectively, and is realized for clustersin
a form simpler than that of macroscopic systems. Moreover,
this character of an insulator —metal transition, the closing of
the energy gap between HOMO and LUMO, takes place both
for the solid and liquid states of atomic clusters.

One can use as a criterion for the cluster’s metallic state
the condition that the electronic spectrum is continuous from
the electronic ground state. Nevertheless, just because of the
small finite size of the system, the ground state of a cluster is
separated from the lowest electronic excited state by some
energy gap, as demonstrated above for 13-atom clusters of
coinage elements and in Fig. 10b. Therefore, atoms of simple
monovalent metals form the simplest metal clusters because
their electron shells are half-filled, and this leads to a nearly
continuous electron spectrum for each nuclear configuration,
in principle [118]. In the case of bivalent metals, an additional
problem occurs regarding the continuous electron spectrum,
since the metallic character of the cluster is realized only if
electrons can transfer freely, presumably with only thermal
energy, from the occupied valence band with /=0 to the
lowest empty excited levels of the spectrum with / = 1.

As a result, clusters of bivalent metals may have insulator
properties up to some sizes, and metallic properties at larger
sizes. We now consider mercury clusters from this standpoint
[151]. These clusters include atoms with filled 6s shells and
empty 6p shells. In clusters, atomic levels are split and, if
dense enough, can be considered as broadened into bands.
Mercury clusters of small sizes have occupied s?>-bands and
vacant p-bands. With cluster growth, the energy of the s—p
gap decreases, eventually leading to overlapping of the s- and
p-bands, yielding a transition to a partially filled, effectively
continuous band for the valence electrons. At that stage, the
cluster becomes metallic in accordance with the Mott—
Hubbard criterion. To determine the threshold of this
transition, we note that a negatively charged cluster Hg, has
one excess electron added to a neutral mercury cluster. Then
following paper [152], we compare the energy of lowest
unoccupied molecular orbital (LUMO) and the energy of
highest occupied molecular orbital (HOMO). Hence, mea-
surement of the photodetachment threshold for a negatively
charged cluster Hg, and its comparison with the excitation
energy for a neutral cluster Hg,,, as the threshold of photon
absorption, allow one to determine the energy gap of the
LUMO-HOMO electron transition that is analogous to the
Mott—Hubbard transition for macroscopic systems. Mea-
surement of this energy gap for clusters of small sizes and the
approximation of this gap to larger clusters reveals that this
gap disappears at the cluster size [151]

n =400+ 30,

and therefore we can consider just this size as that of the
dielectric —metal transition for mercury.

5.2 Interactions in metal clusters

One can divide the interaction of atoms in metal clusters
into an electrostatic interaction of electrons and atomic
cores, and correlation interaction between electrons [122,
123] due to coupling of valence electrons. We previously
used the Sutton—Chen interaction potential [92] that
accounts for the electron—electron interaction according to
formulas (3.16) and (3.17), and is suitable both for metal
clusters and bulk metals. There are other, related forms of
this interaction, but in any case it includes both the
interaction between cores for a given nuclear configuration
and the interaction of the electron component, and this
interaction depends on the configuration of the nuclei in the
cluster. Electrons are distributed throughout the cluster
volume, and the electron density at each point is self-
consistent with interaction between electrons and between
electrons and cores.

Let us list the interaction potentials that are used for the
analysis of metal clusters. The Gupta potential [153] com-
pares parameters of interaction inside a bound system of
metal atoms with energy parameters of the bulk metal;
various modifications of this potential (see, for example,
Refs [154, 155]) are also employed. The tight-binding model
[156] represents the interaction between cores as a sum of
short-range repulsive interactions and an electron exchange
interaction [157, 158]. This creates a definite band in the
electronic spectrum. Including the electronic density of states
in the tight-binding method leads to the second-moment
approximation for the tight-binding scheme [159, 65],
although this model may have other modifications [160].
The embedded atom method, based on the Voter—Chen
approach, is represented in Refs [81, 161, 162]. The density
functional theory with expansion of the wave functions in a
basis set of plane waves [163], corresponding to the free-
electron basis, is used to develop some pseudopotentials for
interactions in a bound metal atom system. This form
requires adopting some form of exchange interaction
between electrons as, for example, was done in Ref. [164].
Various modifications of these potential forms conserve the
main elements of this interaction: pair interaction between
cores, Coulomb and exchange interaction between electrons,
and interactions of electrons with atomic cores.

When the phase transition in clusters is analyzed by
methods of molecular dynamics, the degree of order or
disorder may be established on the basis of the correlation
between the positions of neighboring atoms [166—170]. Let us
represent the relative position ry of two neighboring atoms i
and k in terms of spherical harmonics for a fixed reference
frame in the form

Fii
Y/m(ﬂ_]) = Ylm(qu))v

ik

where 6 and ¢ are the polar and azimuthal angles of a vector
ri in the given frame of reference. Averaging over the p bonds
between nearest neighbors, one can introduce an invariant for
a given cluster atom 7 [168, 169]:

. 1
QIm(l) = _Z Ylm(ey QD) .
P
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Table 7. The second-order invariants for some bulk structures: fcc — face-
centered lattice, hex — hexagonal lattice, ico — icosahedral structure, dec
— decahedral structure, and liq — liquid [169].

Structure [on Q¢ QO3
fec 0.191 0.575 0.404
hex 0.097 0.485 0.317
ico 0 0.663 0

dec 0.053 0.430 0.139
liq 0 0 0

Averaging of the spherical harmonics over the momentum
projection is done in the following way:

. 4 .
qi(i) = A1 > lam(), (5.2)
m=-1

and then these second-order invariants are averaged over the
positions of all the atoms as

01 =(q(i) . (5.3)

where angle brackets mean averaging over positions of the
atoms. In the same way, one can construct the third-order
invariants [170].

Table 7 contains the second-order invariants for various
atomic structures in clusters when only internal cluster atoms
are included in averaging (5.3) [169]. On the basis of this
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Figure 18. Temperature dependence for the second-order invariant Q¢ (a)
and for the binding energy per atom (b) for gold clusters consisting of
459 atoms (open circles), 1157 atoms (closed circles) and 3943 atoms (open
triangles) [169]. A stepwise change in these parameters corresponds to
cluster melting.

invariant, one can determine the cluster structure. Corre-
spondingly, in this way one can analyze cluster melting. As a
demonstration of this, Fig. 18 depicts the temperature
dependence for the second-order invariant Qs of gold
clusters of different sizes, together with the temperature
dependences for the binding energy per atom for these
clusters. We see that cluster melting leads to a decrease in
the binding energy of cluster atoms and simultaneously the
second-order invariant Q¢ becomes zero for the liquid state.
Therefore, determination of the second-order invariant in the
course of cluster evolution via its simulation by dynamic
methods allows us to determine its current aggregate state.

5.3 Structures and phase transitions in gold clusters

We now consider specifically the structures and phase
transitions in gold clusters among other metal clusters for
several reasons. First, in 1857, Faraday [171] developed
methods for creating gold nanoparticles of a given size in
colloidal solutions, further advanced by Zsigmondy [172].
These systems were the vehicles for studying light scattering
by small particles [173] and the character of growth of fractal
aggregates [174—178]. Gold clusters play roles now in
medicine [179], lithography [180], chemical catalysis [181],
and nanoelectronic devices [182]. Second, relativistic effects
are important for atomic interactions in gold clusters and lead
to various forms of isomers as a result of structural mixing.
This yields a variety of cluster structures, and hence shows the
consequence of small energy differences between neighboring
configurational states, including the lowest state. Therefore,
in several ways, gold clusters are paragons of clusters with
metallic properties. Furthermore, gold clusters exhibit che-
mical behavior that is strikingly different from the inert
character usually associated with bulk ‘noble’ metals.

Gold clusters may have various structures, depending on
cluster size. For small clusters, in addition to planar and
polyhedral structures, zigzag and linear structures are
possible [183]. These provide the highest binding energies for
small clusters, those with n < 9; they resemble nanowires. In
contrast and conflicting with that result, according to
calculations [87], gold clusters of 7 atoms have a planar
structure in the ground configurational state. This may also
be so for n =4 — 11 [87] and even for liquid-state clusters
[184]. Gold clusters of dozens of atoms, in addition to planar
and 3D structures including icosahedral ones, can also have
cagelike and tubelike structures [183, 185, 186]. The variety of
structures for gold clusters determines their catalytic proper-
ties because the favored structure may change as a result of
interaction with gaseous molecules, and with it, presumably,
the chemical behavior as well. We can only conclude from the
information at hand that small gold clusters may assume
many structures, and which are found probably depends
sensitively on the conditions of formation and the environ-
ment.

The variety of structures for gold clusters is confirmed by
experimental studies. In particular, one of the magic numbers
for the icosahedral structure is 55, corresponding to two
completed shells of this structure. Indeed, 55 is the magic
number for Aggs, but not for Augy, according to mass-
spectrometer measurements [187, 188]. The same conclusion
follows from high-resolution UV photoelectron spectra [189]
which have been obtained for mass-selected clusters Cu,,
Ag, ,and Au, , withn = 53 — 58. Such measurements give the
electron density of states in the uppermost occupied band;
Fig. 19 gives some spectra taken from these measurements.
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Figure 19. Photoelectron spectra of clusters Cu,, Ag,’, Au, with n = 53, 55, 57, 58 obtained at the cluster temperature 7 = 200 £ 50 K and photon

energy of 6.42 eV [189].

We can see that the resonant structure of these spectra gives
information about the cluster structure. Comparison of each
of these spectra with that calculated for a chosen cluster
structure shows that only in the cases of clusters Cusy and
Aggs is the icosahedral cluster structure realized for the
ground configurational state. In the other cases of Fig. 19,
including the cluster Aug;, observed spectra testify to
mixtures of simple structures. Nevertheless, according to
evaluations [190] on the basis of the Voter — Chen interaction
potential, the ground state of the cluster Ausy corresponds to
the icosahedral structure without the central atom.

The actual cluster structure may be determined by the
method of high-resolution electron microscopy combined
with computer simulations [191—-197]. According to these
measurements, the favored structure of gold clusters contain-
ing from hundreds up to a few thousand atoms is the
truncated decahedral structure with fivefold symmetry axes
or the icosahedral structure. It follows from computer
simulations that the icosahedral structure becomes energeti-
cally metastable starting from sizes of dozens of atoms in a
gold cluster, under thermodynamic equilibrium conditions
[198, 199]. Nevertheless, computer simulation by molecular

dynamics method exhibits preferential formation of the
icosahedral structure for a wide range of cluster sizes [169,
170, 200]. The reason for this distinction lies, of course, in the
character of the freezing process [200]. During the first stage
of this process, when internal atoms are random, i.e., the core
is found in the liquid state, the surface atoms form a structure
with fivefold symmetry. Subsequent cluster freezing with core
solidification leads to formation of the icosahedral cluster
structure. Hence, the icosahedral structure of large clusters is
explained by the dynamics or kinetics of the solidification
process. The icosahedral structure is highly favored kineti-
cally, even though it is not the thermodynamically most stable
form. Evidently, the melting process proceeds in the same
manner in the sense that the pathways for melting are the
most kinetically accessible.

The specific character of the melting and freezing of gold
clusters is connected with mixing of structures because
various structures of gold clusters have similar excitation
energies. But the character of the process of cluster solidifica-
tion enhances the role of the icosahedral structures for gold
clusters because this process starts from the cluster surface.
Computer simulation of solidification and melting allows one
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to determine the melting point depending on cluster size [169,
170, 200—-202] and the character of the phase transition. In
the course of heating, structural transformations appear at
temperatures below the melting point. In particular, on the
basis of computer simulations [203] of the melting process for
the cluster Au,4¢ with the truncated decahedron as its optimal
structure, and the cluster Auysg with the optimal truncated
octahedron structure at low temperatures, the authors of
Ref. [203] concluded that precursors are formed below the
melting point. Experimental study [197] by the method of
high-resolution electron microscopy showed the transition
between the icosahedral and decahedral cluster structures
occurring at temperatures below the melting point. More-
over, this allowed constructing the phase diagram (the size
dependence for transition temperatures) both for melting and
for the icosahedral —decahedral structural transition for large
gold clusters.

5.4 Experimental methods for the analysis of metal
clusters

Computer simulation is the most powerful method for the
analysis of dielectric clusters in which interaction is deter-
mined mostly by the interaction between nearest neighbors.
Since experimental methods require huge resources, both
material and intellectual, the contribution of experiment to
studying dielectric clusters is not always a major one. For
metal clusters we have another situation. First, computer
simulation is not as reliable in this case as it is for dielectric
clusters. In particular, this is reflected in the fact that using
different models of interaction in metal clusters can lead to
different atomic configurations for the solid cluster state;
examples of such contradictions were given in Section 3.2.
Second, because of the growing applications of metal clusters,
development of experimental methods for their study has
created a basis for cluster diagnostics and the technology of
such applications.

Note that experimental research somehow or other does
use computer simulation of clusters. In particular, Fig. 19
displays high-resolution photoelectron spectra for metal
clusters containing approximately 50 atoms and separated
to size. Then, the structure of each cluster follows from a
comparison of measured spectra with results from numerical
evaluations for different cluster structures. In the same
manner, infrared (IR) cluster spectroscopy is used with
results from simulation (see, for example, Refs [204 —206]).
Small neutral clusters are formed in this method in a standard
manner [207 —209] by laser irradiation of a metal rod and then
they are captured by a flowing buffer gas, usually helium. The
gas flow with clusters is intersected by a pulsed beam of tuned
IR radiation from a laser that can excite specific cluster
vibrational states. Then clusters are ionized by an excimer
laser, and the mass spectrum of newly formed cluster ions
allows one to ascertain what sort of cluster corresponds to the
measured spectra. The composition of various clusters in a
flow may be controlled by both the regime of cluster
formation and the gas temperature. It is important that the
absorption spectra of clusters in the IR range consist of
separate resonance lines which correspond to certain identifi-
able vibrational transitions, and each resonance can be
accompanied by the absorption of one or several photons.

The advantage of this method is that the clusters analyzed
are in a gas. In particular, we give peculiarities for gold
clusters Au,, n =7 — 20 in accordance with measurements
[206]. In this case, the spectral range under consideration was

47-220 cm™!; a typical half-width of measured resonances
reached 4 cm™!, while a typical line width for an infrared
source was 2 cm~!. This relation allows one to distinguish
spectra of clusters which contain only gold atoms from those
that also hold a buffer gas atom in a cluster under
observation. Such clusters may be removed from a gas flow
subsequently by heating. It is natural that identification of
spectra, i.e., assignment of a spectrum to a certain cluster, was
established then by comparison of these spectra with those
found by numerical calculations.

Another experimental method for the analysis of the
structure of charged clusters is based on mobility measure-
ments in gases for clusters of a given sort and size. In this case,
basing identification on the mobility magnitude, one can
discern oblong and roughly spherical cluster structures.
Earlier measurements of cluster mobilities for clusters of
carbon [210], silicon [211, 212], aluminium [213], and
germanium [214] in helium allowed one to ascertain the
possibility of distinguishing various cluster structures. In
particular, it was shown in paper [213] that at some number
of cluster atoms, the structures of positively charged
aluminium clusters are revealed by their mobility in helium,
compared with that evaluated for the hard sphere model. An
increase in the helium temperature leads to transition to a
structure that is close to spherical, and on the basis of the
temperature dependence of the mobility of cluster ions Alj,,
Alf,, and Alj,, the activation energies were found for
transitions between these structures.

Let us consider the peculiarities and possibilities of this
method. Cluster ions are injected into the drift chamber after
selection by a mass spectrometer, i.e., they contain a specific
number of atoms. Next, if there are several isomers of cluster
ions at the entrance to the drift chamber, and these clusters
conserve their structures in the course of drift, signals from
different isomers may be separated at the chamber exit, if the
signal width for one isomer is not too large. At low
temperatures, one can separate signals from at least three
different isomers, as observed for tin clusters Snn*, n < 68 in
helium [215]. Note that the heating-induced transition from
an oblong structure to an almost spherical one may be
interpreted as the transition from the solid aggregate cluster
state to the liquid. Using these considerations for cluster ions
Sn} with n = 19-31 gives evidence that this transition is
absent at temperatures below 555 K [216], which means the
melting point for these clusters is above the melting point of
bulk tin, 505 K. One may immediately think that this
contradicts general principles. Indeed, if a small element is
cut off from a bulk system, the binding energy of atoms for
this small element will be less than that for a bulk system
because of surface effects. This means that the energy
parameters of a cut-off element-cluster, including the cluster
melting point, must be less than those for a macroscopic
system. For example, in the sodium case this decrease in the
melting point for clusters consisting of 55 to 357 atoms equals
approximately 30% [217].

This contradiction is explained by computer simulation
that, in particular, was made for the cluster Snj, [218]. In this
case, the oblong structure that relates to the ground cluster
state is a tri-capped trigonal prism structure in which the
prisms are joined by bases. This structure is simply not the
structure of bulk tin, i.e., this cluster cannot be cut off from
bulk tin. Since this structure exhibits a higher binding energy
of atoms than that of ‘cut-off bulk’ tin, this structure could
well exhibit a melting point above that of the bulk. The nature
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of the interatomic binding could, correspondingly, also differ
from that of the bulk.

Analogous results were obtained for clusters Ga! with
n =17, 39, 40 in the temperature range 7 = 90—720 K [219].
In this case, an indirect method of increasing the internal
energy of the cluster proceeds from its acceleration up to
energies of several hundred electron-volts and subsequent
braking in helium; this method is analogous to photoexcita-
tion of sodium clusters [116]. Computer simulations of the
clusters Gaf;, Gaf; [221] and the clusters Gaj,, Gaj; [221]
show that a specific structure of the ground state different
from that of the bulk may lead to a heightened cluster melting
point, in comparison with that of a macroscopic system.

The development of experimental techniques and diag-
nostics for the analysis of small metal clusters paves the way
for cluster applications as catalysts. The task of a catalyst is
acceleration of a chemical process without consumption of
the catalyst material. Typically, in the catalyzed reaction, one
of the reactant molecules attaches to a catalyst and reacts with
other molecules in this state. From the formal standpoint, this
character of the process generally leads to a decrease in the
activation energy of the process (or to an increase in the
entropy of the transition state) and hence to its acceleration in
this way. If the process consists of several stages, the catalyst
may decrease the number of stages. Of course, one cannot
generally state beforehand that a given metal may be a
catalyst for a certain chemical process, although the tech-
niques for making such predictive calculations are being
developed now. Nevertheless, one can expect the coinage
metals to be among the prime candidates for this because of
competition of both electronic and configurational cluster
structures.

Let us consider the peculiarities of utilizing metal catalysts
for the simple chemical process

1

NO + CO 4’5N2+C02, (5.4)
for which palladium clusters Pd, with the numbers of atoms
from 4 to 30 were used as catalysts [222, 223]. One can describe
a simple scheme of this process such that two molecules of NO
form bonds with the cluster surface due to nitrogen atoms and
then these nitrogen atoms of the NO molecules establish a
bond with each other. Then as a result of collisions with CO
molecules they lose oxygen atoms, and a newly formed
nitrogen molecule may lose its bonds with the cluster.
Palladium clusters are bonded in these experiments to an
MgO surface. Mass-spectrometric cluster size selection
provides a means to locate clusters of a given size on the
surface, and because clusters occupy a small part of the surface
(below 0.5%), one can ignore interactions between clusters.

The study of this process showed that it proceeds if the
number of cluster atoms exceeds 5, sufficient to correspond to
the above process scheme because two nitrogen atoms must
form a bond between themselves. Next, the rate constant of
this process as a temperature function has a maximum in the
temperature range 400—500 K; the interpretation of this is
that at higher temperatures the NO molecules do not bond
readily with the cluster surface.

Now let us discuss why clusters may be better as catalysts
than a macroscopic surface of the same material. In a catalyst,
a metallic property shows its worth in capturing a reacting
molecule at the surface and in deceasing the potential barrier
of a chemical process in this manner. Evidently, such
possibilities are wider for a cluster for various reasons. The

cluster has a much higher proportion of its atoms on a
surface; in contrast with a bulk sample, a cluster may well
exhibit a large number of isomers — configurationally excited
cluster states with low excitation energies. The possibility for
a cluster to change its atomic configuration in the course of a
reaction gives flexibility for the system to find optimal
configurations, both for the initial reaction stage when a
reactant molecule is captured by the cluster, and for
intermediate or final process stages when a change in cluster
configuration may lead to a decrease in the reaction barrier.
These conditions hold true for an atomic system in which
transitions between configurational states are possible when a
reacting molecule forms a bond with this atomic system.
While the surfaces of both a cluster and a macroscopic atomic
system are suitable as a catalyst, the cluster may have a
structural flexibility unavailable to the bulk material. The
optimal distance between potential wells where reacting
molecules are located may be different for reagents and
reaction products. Then, metal clusters which permit a
change in the atomic configuration in the course of a
chemical reaction may be better as catalysts than a macro-
scopic metal surface [224] with a single structure. Note that a
cluster catalyst is more complicated than a metal surface
because in a typical use of a cluster catalyst, the clusters must
be attached to a macroscopic surface and form bonds with it,
still conserving the individuality of the clusters. It should be
emphasized that the above example (5.4) is not ideal from the
standpoint of comparing cluster and surface catalysts because
both large palladium clusters and bulk palladium are good
catalysts for this process [225—227]. Nevertheless, this
example was convenient for explanation of the process’s
character because of its simplicity.

Speaking in support of the standpoint that clusters are
better catalysts than a macroscopic metal surface, we base our
discussion on the example of CO oxidation when gold clusters
on an iron oxide surface are the catalyst [228]. Then, the
oxidation reaction is selective with respect to cluster size, and
an optimal cluster size is on the order of ten atoms. An
analogous result [229] corresponds to a low-temperature
oxidation of CO formed by oxidation of hydrocarbons. This
process may be considered as a result of structural transitions
for gold clusters bonded with CO molecules [87]. One more
example of this type relates to a fuel cell with a platinum
catalyst in which oxidation of hydrocarbons (and possibly
hydrogen) creates an electric potential, i.e., chemical energy is
converted into electric. Then, the addition of gold clusters to
the platinum surface increases the time of catalyst functioning
without contaminating the catalyst [230, 231].

The technology aspect of this problem is noteworthy. In
order to prepare the catalyst under consideration, it is
necessary to have a specific experimental technique that
includes a cluster generator with mass selection of the
clusters, an atomic force microscope or a scanning electron
microscope to study the cluster behavior on the surface, and
diagnostic tools for the analysis of the chemical process under
consideration. Although this technique exists for some
systems and may even be available, such investigations
become expensive. In addition, the tasks require a high
qualification for specialists partaking in these investigations.
Therefore, the availability of an expensive experimental
technique and of qualified personnel are necessary condi-
tions for the creation and development of cluster catalysts,
i.e., we are dealing with the same requirements that relate to
other spheres of science-intensive technology.
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6. Conclusions

The analysis achieved by computer simulation of Lennard-
Jones clusters by methods of molecular dynamics under
various conditions gives a detailed representation about the
evolution of cluster parameters in the course of variation of
cluster temperature or excitation energy in terms of thermo-
dynamics. Separation of the solid and liquid phases in the
dynamic cluster simulation and a separate analysis under
adiabatic and isothermal conditions allow us to study cluster
behavior in detail in the range of phase coexistence. Passage
to a thermodynamic cluster description on the basis of the
results of dynamic cluster simulation gives us the possibility
of analyzing cluster behavior in the phase coexistence range
within the framework of simple models. Dynamic simulation
of metal clusters is fulfilled without separating the solid and
liquid phases. Nevertheless, the experience of cluster study in
the phase transition range testifies to the paramount role of
dynamic cluster simulation for gaining information about
cluster behavior.

The analysis has been applied especially to treat the results
of computer simulations of clusters consisting of 13 atoms.
These clusters have one completed shell and an icosahedral
structure for the ground configurational state, and therefore
they have only one liquid state; that simplifies the analysis. In
addition, the ground configurational state of these clusters
(the solid aggregate state) is separated from lower excited
configurational states (the liquid aggregate state) by an
energy gap whose relative value is greater than that for
clusters of other sizes. Therefore, for 13-atom clusters, the
properties under consideration are revealed particularly
clearly, in a way that simplifies the analysis and allows one
to be free from concomitant effects.

The results of computer simulations for Lennard-Jones
clusters of 13 atoms by methods of molecular dynamics that
are made under microcanonical and canonical conditions,
together with the analysis of the potential energy surface for
this cluster in a multidimensional space of atomic coordi-
nates, allow us to compose a simple model for cluster
behavior in the range of dynamic phase coexistence.
Namely, the aggregate states comply with atomic configura-
tions which relate to certain local minima of the potential
energy surface, and the phase transition corresponds to
configurational cluster excitation due to transition between
local minima of the potential energy surface. But separating
the cluster’s degrees of freedom into configurational and
thermal ones, where the latter are associated with cluster
vibrations, and then identifying the phase transition with the
configurational transition, we find nevertheless that thermal
atom motion plays a significant role in the phase transition.
This is connected with the anharmonicity of cluster oscilla-
tions; because in the liquid state the cluster is looser than in
the solid state, the different contribution to the transition
entropy by the solid and liquid states determines the
important contribution of atomic thermal motion to the
entropy jump at cluster melting. For the 13-atom Lennard-
Jones cluster, this contribution to the entropy is comparable
to the contribution due to configurational excitation, whereas
for metal clusters the contribution from atomic thermal
motion may be even greater. Thus, different characters of
atomic motion in various aggregate states may be integral to
the character of the phase transition. This effect shifts the
cluster’s excitation energy at the melting point, if the cluster is
under microcanonical conditions, in the direction of small

values and allows us to connect the melting point with the
character of thermal atom motion (the Lindemann criterion,
etc.). In addition, this leads to a temperature dependence for
the entropy jump in the range of phase coexistence, as
demonstrated for the 13-atom Lennard-Jones cluster.

Comparing the behavior of the Lennard-Jones and metal
clusters in the phase transition range, we find an analogy that
consists in the existence of two aggregate states, the solid one
and the liquid one, and these states are separated by an energy
gap. But the nature of the liquid state is different for these
clusters. For the 13-atom Lennard-Jones cluster, the liquid
state corresponds to a simple configurational excitation that
consists of the one-atom transition from the completed shell
to the cluster surface, and the newly formed configuration is
conserved in the course of subsequent cluster heating or
excitation. In the case of metal clusters, the liquid aggregate
state is a mixture of different atomic configurations in the
cluster, and the number of isomers in the liquid state increases
with increasing temperature. Therefore, the atomic config-
uration for the liquid state of a metal cluster varies with
cluster excitation. In addition, the relative value of the energy
gap between solid and liquid states is significantly more for
Lennard-Jones clusters than for metal clusters. Hence, the
contribution to the entropy of the phase transition due to
configurational excitation is more striking for Lennard-Jones
clusters than for metal clusters. Correspondingly, the range of
phase coexistence for clusters of a given size is wider, relative
to the absolute melting point, for the Lennard-Jones clusters
than for metal clusters.

The variety of atomic configurations in metal clusters
also reflects the role of electrons in the formation of cluster
structures. Additional degrees of freedom of metal clusters
due to electrons widens the number of atomic configura-
tions that compete in the course of its evolution. Moreover,
due to a high rate of transition between structures of metal
clusters, the kinetics of cluster evolution is important. In
particular, we learn from the study of large gold clusters
that the structure of the solid cluster, resulting from cooling
of a hot cluster, is determined by the kinetics of cooling and
solidification of this cluster rather than by the thermody-
namics of its solid aggregate state. This testifies to the
complexity of processes proceeding in the course of phase
transitions in metal clusters. Subsequent studies will allow
us to understand in detail the character of the phase
transition for various metal structures and the role of the
electronic component in this phenomenon.

Experimental methods are used to a lesser degree for the
study of dielectric clusters compared to metal ones for two
reasons. First, computer simulation for dielectric clusters is
more reliable than that for metal clusters. Second, metal
clusters are of interest for applications, and therefore
experimental methods may be used for diagnostics in applied
problems. Experimental methods are based on applying mass
spectrometric techniques, devices of IR and UV spectroscopy
of high resolution, atom force electron microscopy (AFM)
and scanning electron microscopy (SEM), and generators of
metal clusters. Usually, the experimental study of metal
clusters is combined with their computer simulation. Master-
ing the contemporary experimental technique is necessary for
solving new applied tasks in the nanotechnology field, such as
the creation of specific catalysts in which metallic clusters of a
certain size and composition are fasten to a certain surface. In
spite of the complexity and expense of the requisite devices for
this goal, which also require highly qualified attendant
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personnel, the subsequent development of this area of science
and technology will progress just in this direction.
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