
Abstract. The current state of research in the femtosecond
dynamics of low-energy excited electronic states in metals is
reviewed. Some of the major approaches to the experimental
study of the decay of excited states are discussed, including
time-resolved two-photon photoemission spectroscopy, angle-
resolved photoemission spectroscopy, and spintronic techni-
ques. Semiempirical and first-principle theoretical approaches
to electron dynamics are presented. Results of studies on the
dynamics of electron excitations in some simple, noble, para-
magnetic, and ferromagnetic metals are analyzed.

1. Introduction

The dynamics of low-energy electron excitations (the lifetime
and the mean free path of an excited electron, screening
effects, and the mechanisms of damping of excitations) are
important for understanding many physical and chemical
phenomena both in the bulk and on the surface of solids.
These excitations are the key mechanism of energy transfer in
reactions on the surface of a solid, in particular, in oxidation

processes and in desorption [1], photodissociation, and
photodesorption [2, 3], as well as in catalytic reactions [4, 5].
For simulating such reactions, numerous theoretical
approaches have been developed, in which the transfer of
energy into the bulk of a crystal and to molecules on the
surface is considered [6]. The basic quantities in such models
are the relaxation times of the excited states of the molecule
and the crystal. Low-energy electron excitations play an
important role in the processes of electron localization and
in the charge and spin transport in bulk metals and on the
internal and external interfaces [7]. The relaxation time and
relaxation length of an excited electron are valuable char-
acteristics of electron transport in the bulk of solids and
through interfaces [7]; therefore, they are widely used in the
analysis of processes in spintronic devices [11 ± 13]. The
characteristics of the dynamics of excited states in a crystal
such as the attenuation length or the inelastic mean free path
are very important in the theory of photoelectron and Auger
spectroscopy [8 ± 10].

In the last decade, the femtosecond dynamics of electrons
in metals has been given much attention. A number of
experimental methods have been developed that allow
determining the relaxation time and relaxation length of an
excited electron. In particular, the high-precision methods of
measuring spectral-line width, i.e., the inverse of the relaxa-
tion time, have been used, based on angle-resolved photo-
emission spectroscopy (ARPES) [8, 14, 15]. A very important
point was the invention of methods that allow directly
investigating the time characteristics of the dynamics of
excited states and, first and foremost, the method of time-
resolved two-photon photoemission spectroscopy (TR-
2PPE) [16, 17]. In this method, the first (pumping) photon
excites an electron into an intermediate state, and the second
photon (probing photon), which comes after a certain time
delay, transfers the electron from the intermediate state to the
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vacuum. Such experiments can be carried out at a low
intensity of laser radiation, when investigating the dynamics
of excitations of a single electron, or at a high intensity, when
studying collective excitations. The TR-2PPE experiment at a
low intensity of radiation does not directly yield the value of
the lifetime of an electron in the intermediate state; therefore,
to extract this lifetime from the experimental TR-2PPE
dataÐ the so-called cross-correlation tracesÐ simple and,
as follows from a comparison with the results of first-
principle calculations, sufficiently correct computational
procedures have been developed [18 ± 20].

Among the methods of determining the relaxation length,
the most successful are those based on measurements of the
collector current in spintronic devices, namely, in the spin-
valve transistor (SVT) and in the magnetic tunnel transistor
(MTT), depending on the thickness of the layers that form
their base. The main difference between the SVT and MTT
consists in the method of injecting excited electrons; in the
SVT, the excited electrons are generated due to the applica-
tion of a Schottky barrier, whereas in the MTT, they are
obtained upon passage through the tunnel barrier between
the probe and the base of the device. With increasing the
thickness of the base layers, an exponential reduction is
usually observed in the collector current, which allows
determining the relaxation length [12].

This review is aimed mainly at the consideration of
investigations into the dynamics of the relaxation of excited
states in bulk metals (carried out by the ARPES, TR-2PPE,
SVT, and MTT methods), as well as of related theoretical
studies. We note that the relaxation of excited states studied
by these methods includes, as the basic process, the inelastic
scattering of electrons accompanied by the excitation of
electron±hole pairs, as well as some `additional' processes,
which depend on the type of the experiment. In the case of
TR-2PPE experiments, the additional processes are cascade
electronic processes, which are discussed in this review,
transport processes, and processes for the generation of
Auger electrons. An essential achievement of experimental
works is that the basic qualitative features of these processes
(their dependence on the excitation energy, the type of
electronic structure, the presence of defects, etc.) have been
revealed and methods of controlling these processes (i.e.,
controlling the relaxation rate) have been suggested. For
studying inelastic scattering and additional processes, a
number of semiempirical models based on the scattering
theory and the Boltzmann theory [21 ± 24] have been devel-
oped. Their brief description and an analysis of the degree of
their correctness are also given in this review.

The most complete theoretical studies were performed for
the processes of inelastic scattering using first-principle
approaches based on the formalism of the self-energy
operator of the many-body solid-state theory. The self-
energy formalism was first developed by Quinn and Ferrell
for describing the relaxation of excited states in a homo-
geneous interacting electron gas [25, 77]. For a number of
years, the Quinn±Ferrell theory was used for a qualitative
interpretation of the results of measuring spectral linewidths
and the lifetimes of excited states [26 ± 29]. However, notice-
able contradictions were gradually discovered between the
predictions of the Quinn±Ferrell theory and the experimental
spectral linewidths and lifetimes of excited states in noble
metals [30 ± 34]. It was shown that to correctly calculate the
lifetime, it is necessary to include the real energy-band
structure in the theory.

Therefore, subsequent calculations of the lifetimes were
performed on the basis of the many-body theory [35], mainly
using the first-principle GWmethod proposed byHedin [36 ±
39], in which the band structure obtained by the methods of
the electron-density functional theory (see reviews [40 ± 44]) is
used as the starting information. In the GW method, when
considering the self-energy of a quasiparticle, i.e., an excited
electron or hole, only the first term of the exact series
expansion of the self-energy with respect to the screened
potential W is taken into account. Therefore, the GW
approximation is insufficient, for example, for describing
low-energy excitations in ferromagnets, where the interact-
ing electrons and holes form Stoner pairs and (or) spin waves.
The interaction between particles is taken into account in the
T-matrix generalization of the GW method, the so-called
GW�T method [39, 45 ± 47]. In combination with TR-2PPE
experiments, this method was used to investigate the lifetimes
and mean free paths of electrons in simple, noble, transition,
and rare-earth metals [47 ± 50].

Both experimental and theoretical studies of the femto-
second dynamics of electrons in metals were marked by a
number of achievements. On the whole, the femtosecond
dynamics of electron excitations is a rapidly developing part
of contemporary solid-state physics. Recently, such studies
were carried out for some chemical compounds of simple
and transition metals [51 ± 56], compounds with heavy
fermions [57, 58], superconductors [17, 59 ± 64], and nano-
tubes [65]. Studies were conducted for image states above the
surface of metals, for surface and bulk states of metals, and
for adsorbate states on metal surfaces [41, 42]. The
experimental aspects of these studies, predominantly for the
image states and surface and adsorbate states, were con-
sidered in reviews [12, 15, 16], and the theoretical aspects, in
reviews [17, 34, 41±44].

Investigations of the dynamics of bulk excited states in
metals are a good basis for the understanding of dynamics in
more complex cases, in particular, in the practically impor-
tant research on the dynamics of chemical reactions on a
catalyst surface or of electron and spin transport in spintronic
devices. Therefore, our goal in writing this review was to give
a consistent description of the physical foundations of all the
main stages of the research on the dynamics. Following the
Introduction, we give a brief description of the main
experimental approaches, i.e., the TR-2PPE, ARPES, SVT,
and MTT techniques. This description is accompanied by a
consideration of the possible mechanisms of relaxation of
excited states and of the problems related to the complexity of
these processes. We discuss the basic models used for the
extraction of characteristics of relaxation processes from
experimental data. In Section 3, we give a brief description
of the theoretical approaches to femtosecond relaxation
processes. It includes a consideration of both semiempirical
models based on the scattering theory and Boltzmann theory,
and the first-principle approaches to the electronic character-
istics of relaxation based on the Quinn±Ferrell theory and on
the GW and GW�T methods. In Section 4, the concrete
results of experimental and theoretical studies of the
dynamics of relaxation processes in a number of simple,
noble, nonmagnetic, and magnetic transition metals are
discussed. Emphasis is placed on the reliability of the results
obtained and on the existing contradictions between different
experimental studies and between theory and experiment. In
the last section, conclusions are drawn about the degree of
success of experimental and theoretical approaches in
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research on the dynamics of the relaxation of excited states,
and the problems to be solved are discussed.

2. Experimental methods for investigating
the femtosecond dynamics of electrons

Introductory remarks. Some uncertainties exist in the termi-
nology related to the dynamics of relaxation processes. For
example, the relaxation time is considered by some research-
ers to be equivalent to the lifetime. In this review, by
relaxation characteristics, we mean the characteristics that
are obtained from the experimental data via the procedures
for processing these data described in Sections 2.1.2, 2.2,
and 2.3. These quantities are usually determined by the
contributions from several relaxation processes. By the
lifetime and mean free path of electrons, we mean the
quantities introduced in the theory of electron dynamics.
They describe the rates of concrete processes of scattering of
excited electrons, for example, elastic or inelastic, electron±
phonon, or electron±magnon scattering.

Additional information concerning the methods for
investigating femtosecond dynamics, which are used predo-
minantly for studying surface states, image states, and the
states of adsorbates, can be found in reviews [15 ± 17, 34, 41 ±
43] and in Refs [50, 66].

2.1 Time-resolved two-photon photoemission spectroscopy
2.1.1 Description of experiment. The method of time-resolved
two-photon photoemission spectroscopy (TR-2PPE) is based
on a two-step excitation of a crystal, schematically shown in
Fig. 1. First, an electron is excited by a pumping pulse photon
�hn1� from one of the populated states into an unoccupied
intermediate state �Ei�with an energy below the vacuum level.
Then, the probing photon �hn2�, which comes with a certain
delay, excites the electron from this temporarily populated

level Ei into a certain final level above the vacuum level Evac,
and the kinetic energy of this electron Ekin is measured using
an analyzer. (There also exists a small probability of
excitation of the electron into a level above Evac via the
absorption a second photon from the pumping pulse; see
Section 2.1.2.) Because Ei � Ekin � Fÿ hn2, where F is the
electron work function, the energy of the intermediate state is
known. The pumping and probing photons can have the same
or different energies in the visible or near-ultraviolet ranges.
The pulse duration is several tens of femtoseconds; the delay
between the pulses can vary from zero to� 200 fs. In the time
between the pulses, the population of the intermediate state
decreases under the effect of various scattering processes
(electron±electron, electron±phonon, etc.). The electron life-
time in the intermediate state is estimated by measuring the
number of emitted electrons.

As a concrete example, Fig. 2 displays a simplified scheme
of the two-photon spectroscopy setup used in Ref. [67]. A
more detailed description of experiments can be found in
Refs [16, 26, 32]. The experiment is conducted using a pulsed
titanium±sapphire laser (Ti:Sa) with the frequency about
80 MHz, a variable wavelength about 800 nm, and the pulse
duration from 20 to 40 fs. The pumping is effected using an
Nd:YVO3 laser. The titanium±sapphire laser yields linearly
polarized light with the photon energy 1.5 ± 1.7 eV; the shape
of the pulse is close to the sech2 function. Its frequency is
doubled using a b barium borate (BBO) crystal. The light is
passed through a dispersion compensator on the basis of two
prisms of quartz glass, which carries out a preliminary
compensation of the pulse broadening that arises while the
beam passes through the beam splitters (S), lenses (L), and
windows of the vacuum chamber. Then, the beam is split into
two beams of equal intensity for the pumping and probing
channels. The pulse in the probing channel is delayed relative
to the pulse in the pumping channel by passing it through a
delay line controlled by a computer. The pulses are made
collinear by passing them through a second splitter. Two
types of polarization of the pumping and probing pulses can
be used: with an electric field parallel to the plane of the
incident and reflected beam (p polarization) or with the field
perpendicular to this plane (s polarization). The analyzer (in
this work, cylindrical sector analyzer Focus CSA300)
measures the number and the kinetic energy of photoelec-
trons emitted with the maximum deviation �3� from the
normal to the surface of the sample.

In these experiments, two types of primary data are
usually obtained. The first is a two-photon photoemission
spectrum, i.e., the dependence of the number of photoelec-
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Figure 1. Schematic of a TR-2PPE experiment. The shaded region is the
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trons on the kinetic energy at a fixed time interval D between
the pulses. The second type is the correlation trace I 2PPE�D�,
i.e., the dependence of the integrated number of photoelec-
trons on the delay D at a fixed kinetic energy. Usually, it is
normalized to unity with respect to the maximum at D � 0.
For studying the dynamics of single-particle excited states,
experiments are conducted at a small radiation intensity,
about 1 nJ per pulse. With the size of the laser spot being of
the order of 1 mm and the depth of light penetration
approximately 150 A

�
, only � 106 of 1023 atoms are excited

in one pulse, and heating of the sample is virtually absent. As
an example, Fig. 3 demonstrates the shape of a two-photon
photoemission spectrum of Mo (at three different photon
energies) and the cross-correlation trace (for the perpendicu-
lar polarization of the pumping and probing pulses) for Mo
[68] normalized by the authors of this review. The interpreta-
tion of changes in the photoelectron spectrum with a change
in the energy of the photons is given in Ref. [68].

2.1.2Models for the extraction of dynamic characteristics from
the experimental data. In two-photon photoemission spectro-
scopy, measurements are conducted with laser pulses that
strongly overlap in time. The quantummechanical analysis of
this emission process is an extremely complicated problem,
which must be solved based on the many-body theory. A
complete solution of this problem is presently impossible,
although attempts were recently undertaken to approach it
[69, 70]. Instead, a number of comparatively simple semi-
empirical models were developed, which allow obtaining the
dynamic characteristics of the relaxation of excited states
from correlation traces. The degree of the success of these
models is characterized by the data given in Sections 4.1, 4.2,
and 4.4.

Historically, the first model of this type, based on the
Fermi golden rule, was proposed in [18]. The authors
examined the dynamics, in a laser field, of only two
quantum levels, the ground and an intermediate excited
levels, in the approximation of the instantaneous reaction

of the population of the intermediate level to a change in the
laser field, inherent in the Fermi golden rule. Although the
model gave qualitatively accurate results for the lifetime of
the intermediate level, the applicability of the approximation
of the instantaneous reaction has not been confirmed [19];
therefore, a more common model for the two-level system
was developed [19], based on the so-called optical Bloch
equations [71]. The model in [19] is a special case of the three-
level model, which was later developed in [20] and has found
wide application.

The three-level model in [20] is based on the densitymatrix
formalism [71, 72]. In the general case, the density matrix
satisfies the Liouville±von Neumann equation

qr
qt
� i

�h
� r;H � �

�
qr
qt

�diss

; �1�

where H � H0 �HI is the total Hamiltonian, in which H0 is
the main part corresponding to the electron system in the
absence of a laser field andHI describes the interaction of the
systemwith the laser field. Because the wavelength of the laser
radiation is much larger than the lattice parameter of metals,
we can disregard the spatial variation of the field amplitude
and assume that the electric field of the laser pulse has the
form E�t� � E0�t� cos �ot�, where o is the angular frequency
and E0 is the time-dependent envelope of the field (a vector
quantity). The perturbation HI can then be described as an
interaction between the field and the atom dipole moment d:

HI � e dE0�t� cos �ot� ; �2�

where

d �
XZ
j� 1

ri �3�

is the dipole moment of an atom with Z electrons. The
dissipative term �qr=qt�diss describes the change in the
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Figure 3. (a) Two-photon photoemission spectrum recorded at three different photon energies and (b) cross-correlation trace of molybdenum [68]. Both

types of data are normalized to unity at the maximum.
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densitymatrix of the system caused by the interactionwith the
environment. For a model three-level system, the following
dynamic equations can be obtained [71]:

qr11
qt
� ÿif12�r21 ÿ r12� �D11 ;

qr22
qt
� ÿif12�r12 ÿ r21� � f23�r32 ÿ r23� �D22 ;

qr33
qt
� ÿif23�r23 ÿ r32� �D33 ;

�4�
qr13
qt
� ÿi�f12r23 ÿ f23r12� � i�o1 ÿ o3�r13 �D13 ;

qr12
qt
� ÿif12�r22 ÿ r11� � if23r13 � i�o1 ÿ o2�r12 �D12 ;

qr23
qt
� ÿif23�r33 ÿ r22� � if12r13 � i�o2 ÿ o3�r23 �D23 :

Diagonal elements of the density matrix represent time-
dependent populations of the levels Es (s � 1, the ground
level; s � 2, the intermediate level populated due to the first
pulse; s � 3, the upper (vacuum) level, which is populated as a
result of the excitation of an electron from the intermediate
level by the second pulse). The quantities Di j � �qri j=qt�diss
characterize a change in the density matrix caused by
interaction with the environment. The quantities os ÿ ot �
�Es ÿ Et�=�h are the excitation energies. The quantities

fst �
e

�h

�
c �s E0dct dV �5�

are matrix elements of the dipole moment between the wave
functions of states; they determine the probability amplitudes
of transitions between these states. The probability f13 of the
direct excitation from the ground state E1 into the upper
vacuum state E3 is neglected.

At a small intensity of the laser field, the population of the
ground state is close to saturation, i.e., r11�t� � 1 and
�qr11=qt�diss � 0. Because the third level is a vacuum level
(the electron left the crystal!), it can also be assumed that
�qr33=qt�diss � 0. The finite time of electron residence in the
intermediate state is introduced by defining the dissipative
term as�

qr22
qt

�diss

� ÿ 1

t2
r22 : �6�

In the absence of a laser field, the solution of dynamic
equation (4) with this definition of the dissipative term has
the form

r22�t� � r22�0� exp
�
ÿ t

t2

�
; �7�

and therefore the quantity t2 introduced here is the lifetime of
electrons being sought at the intermediate level in a weak laser
field (relaxation time), and the quantity g2 � 1=t2 is the rate
of decrease in the population of the level.

The time dependence of the wave function of an electron
in the three-level system can be represented as [71]

C�t� � C1�t�C1�t� � C2�t�C2�t� � C3�t�C3�t� ; �8�

where

Cs�t� � exp

�
ÿ iEst

�h

�
cs �9�

are the states of the system in the absence of a perturbation
and cs are solutions of the equationH0cs � Escs. Therefore,
the elements of the density matrices are expressed as
rss � jCsj2, rst � CsC

�
t , and rts � r �st. Hence, it follows that

in a weak laser field, the intermediate state relaxes in
accordance with the law

C2�t� � C2�0� exp �ÿG2t� ; �10�

where the relaxation rate of the state is G2 � g2=2 � 1=�2t2�,
and the corresponding characteristic time, called the electron
dephasing time, is equal to 1=G2 � 2t2. It is then natural to
introduce the following approximation for the off-diagonal
elements of the density matrix:�

qrst
qt

�diss

� ÿGstrst ; �11�
Gst � Gs � Gt ;

with s; t � 1; 2; 3. The physical meaning of the quantities Gst

becomes obvious from the consideration of the dipole
moment. It can be easily shown that because the operator of
dipole moment (3) is antisymmetric under inversion, the
average value of the dipole moment is equal to

hdi �
X3
s>t

2Re rst

�
c �s dct dV : �12�

Hence, it follows that the Gst characterize the relaxation rate
of the dipole moment that was induced during the excitation
by the pumping pulse. However, in contrast to the relaxation
of the level populations, which is mainly determined by
inelastic scattering, the relaxation of the dipole moment can
also occur due to the processes of misorientation of the
moment, which are related to elastic scattering. Therefore, it
makes sense to introduce a correction for elastic scattering
into the quantities Gs, i.e., to redefine Gs by writing it as
Gs � 1=�2ts� � G �s . These processes can be especially impor-
tant for the low-energy (i.e., first) state because of the
interaction with the phonons and impurities. If we neglect
the dephasing of the third (vacuum) state and the elastic
dephasing of the second state, then G23 � G2 � G3 �
G2 � 1=2t2. Because G12 � G1 � G2 and G13 � G1 � G3,
then, for the strong elastic scattering of the first state, the
approximation of `rapid dephasing' is introduced for these
quantities by setting G12 � G13 � 1 fsÿ1. The electric field in
the TR-2PPE experiment is written as

E�t� � E1�t�g1�t� cos �o1t�

� E2�t�g2�t� D� cos �o2�t� D�� ; �13�

where g1�t� and g2�t� D� (where D is the delay time of the
second pulse) are the envelope functions of the pulses, which
are determined from special measurements [73].

In a weak field, the matrix elements fst can be given
arbitrary sufficiently low values because they are propor-
tional to the electric field strength. Both the experimental and
calculated correlation traces are normalized to unity atD � 0;
therefore, it barely depends on the concrete choice of f12; 23.
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In the final analysis, only one unknown parameter, the
relaxation time t2, remains in dynamic equations (4).
Neglecting the dependence of r22 on the distance to the
surface, we can write the correlation trace for electrons
excited by a pumping photon �ho into the intermediate level
E2 as

I 2PPE��ho� Ei;D� �
�1
ÿ1

dt P�t� r22�t� ; �14�

where P�t� � jE�t�j2 is the intensity of the laser field. For
experiments with cross correlation, the trace can be written in
the form [73]

I 2PPE��ho� Ei;D�

�
�1
ÿ1

P�t�
� t

ÿ1
P�t 0� exp

�
ÿ tÿ t 0

t2

�
dt dt 0

�
�1
ÿ1

P�t� D�
� t

ÿ1
P�t 0 � D� exp

�
ÿ tÿ t 0

t2

�
dt dt 0

�
�1
ÿ1

P�t�
� t

ÿ1
P�t 0 � D� exp

�
ÿ tÿ t 0

t2

�
dt dt 0

�
�1
ÿ1

P�t� D�
� t

ÿ1
P�t 0� exp

�
ÿ tÿ t 0

t2

�
dt dt 0 ; �15�

where the first two terms are independent of the delay and
form the `background' of the trace (see Fig. 3); the two
following terms form the `bell' of the trace. By fitting the
calculated trace to the experimental trace, we can find the
relaxation time t2. With a parallel orientation of the fields in
the first and second pulses, their sum contains a second
harmonic; therefore, there appears a probability of coherent
excitation, i.e., of the direct transition of an electron from the
ground to the vacuum state. Themore complete version of the
three-level model including the possibility of coherent
excitations was developed in [16, 33, 74]. In the experimental
correlation trace, coherent excitations manifest themselves in
the form of an additional peak near D � 0, which is narrower
than the basic bell. Because the narrow peak does not bear
information on the lifetime of the intermediate state, the
measurements are most frequently carried out using ortho-
gonal pumping and probing pulses.

In Refs [32, 33, 75], special versions of the three-level
model were developed, which allowed evaluating the lifetime
of hole excited states. But the cross-correlation TR-2PPE
methods were most widely used in combination with the
three-level model in studies of electron excitations on the
surface [32, 67, 75, 76] and in the bulk of crystals [19, 67, 75]
and of adsorbate states on the surface of metals [20]. In
combination with the first-principle approaches, the above
methods were also used for studying the dynamics of
electrons in Ta [49], Yb [50], and Rh and Mo [68]. In the
absence of additional processes, which are discussed in
Section 2.1.3, the relaxation times obtained from the experi-
ment agree quite well with the lifetimes calculated from first
principles (see Section 4.4). The statistical error in the
determination of relaxation times is estimated as ��2ÿ3� fs.

2.1.3 Inelastic scattering of electrons and `additional' processes.
Figure 4 schematically presents processes that can affect the
relaxation time of an electron excited by a pumping pulse
onto an intermediate level Ei (the second level in a three-level
model) located above the Fermi energy. The main process is
the inelastic scattering of the primary excited electron �e1�

with the excitation of an electron±hole pair �e2ÿh� due to the
energy lost by the primary electron. This was first shown by
measurement of the relaxation times of electrons in simple
and noble metals and by comparison with the lifetimes
obtained from the theory of the interacting free electron gas
[16, 19, 26 ± 28, 76]. Later, the principal role of this process
was confirmed by a comparison of experimental data with the
lifetimes obtained from the first-principle calculations based
on the many-body theory. Such calculations, mainly per-
formed using the GW method, which considers processes of
only this type, are discussed in Section 4. The processes b, c,
and d in Fig. 4 are additional; they can manifest themselves
for a number of objects under some specific experimental
conditions.

Cascade processes. If the pumping pulse has an energy
�ho, then electrons with energies in the range from EF ÿ �ho
to EF can be excited, i.e., the energy of the excited electron Ei

can be from EF to EF � �ho. Therefore, if Ei < EF � �ho, then
in the time between the pumping and probing pulses, the
population of the intermediate level can increase due to
electrons that fall from the higher populated levels; this is the
heart of so-called cascade processes, which can lead to an
increase in the relaxation time. More precise estimates can be
obtained from the many-body theory. According to the
classic work by Quinn and Ritchie performed in the frame-
work of the Fermi liquid theory [77, 78], the electron loses
from 1=2 to 2=3 of the excess energy Ei ÿ EF in a single
scattering; therefore, due to the cascade processes, the
population of the levels from EF to EF � �ho=2 can
increase. The effect of cascade processes was first noted in
paper [19] devoted to relaxation times of excited electrons in
copper. In Ref. [22], a semiempirical method for the
evaluation of the effect of cascade processes on the
relaxation time was developed based on the Boltzmann
equation. A brief description of this theory is given in
Section 3.1, and the applications of the theory are compared
with experimental results in Section 4.2. In particular, it was
shown that the increase in the relaxation time connected with
the cascade processes can be partially compensated due to
transport processes (see below), and the total effect can be
insignificant. No first-principle theory of cascade processes
exists yet, but there are at least two experimental methods for
probing their presence. If the photoemission spectrum is
independent of the delay time of the second pulse, this
means that the cascade processes do not influence the

e2

h

e1

EF

a b c d

Figure 4. Processes that determine the lifetime of electrons in the excited

state (schematic): (a) inelastic scattering of a primary electron �e1�with the
excitation of an electron ± hole pair �e2ÿh�; (b) cascade process;

(c) transport process; and (d) the excitation of Auger electrons.
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population of the intermediate level. On the other hand, the
effect of cascade electrons on the relaxation time for a certain
level Ei depends on the energy of the pumping photon, and if
this dependence is absent, then the contribution of cascade
processes during relaxation for the Ei level is also insignif-
icant.

Transport processes.A second type of additional processes
is the transport of electrons from the laser-irradiated region.
It can diminish the time-dependent electron population of the
intermediate state, i.e., decrease its relaxation time. The basic
features of transport processes were first considered for the
noble metals in Refs [26, 27]. In particular, it was shown that
the transport of electrons in single-crystal films occurs with a
velocity comparable with the electron velocity at the Fermi
level, � 108 cm sÿ1, i.e., it is predominantly ballistic. Because
the size of the irradiation spot is a macroscopic quantity
(approximately 100 mm) and because the depth of light
penetration is approximately 100 A

�
, transport occurs mainly

perpendicular to the surface, since the transport in any
direction parallel to the surface is compensated by transport
in the opposite direction. With these factors taken into
account, it was concluded in [27] that for 20 ± 30 fs after the
maximum of the first pulse, the transport effects in noble
metals noticeably reduce the relaxation time.

According toMatthiessen's rule [79], if the relaxation of a
state is controlled by several independent processes, the
relaxation rates that correspond to these processes are
summed. In particular, if the decay of an excited state is
defined by inelastic electron±electron scattering and trans-
port processes, then the total relaxation time is given by

1

t
� 1

tinel
� 1

ttrans
; �16�

where tinel characterizes the effect of inelastic scattering and
ttrans corresponds to the contribution of transport processes.
In the framework of this approximation, the dependence of
transport effects on the electron energy at the intermediate
level Ei was estimated in [32] based on first-principle band
energies and electron velocities in copper. It was shown that
ttrans only weakly depends on Ei. According to the Fermi
liquid theory, tinel decreases with increasing the energy
according to a law that is qualitatively similar to
�Ei ÿ EF�ÿ2 [25, 77], and therefore the role of transport
effects in comparison with inelastic scattering increases with
decreasing Ei. In the same work, it was shown that the
transport effects depend substantially on the Miller indices
of the surface.

It is obvious that for transition metals, the transport
effects are much less essential than for noble metals, because
the velocity of d electrons in the latter is several times lower
than that of the nearly free electrons (see Section 4.6). For the
simple and noble metals, if only the inelastic lifetime tinel is to
be estimated, some measures can be undertaken that decrease
the transport effects. Transport effects can be reduced due to
the elastic scattering at grain boundaries, i.e., by using
polycrystalline films instead of single-crystal ones. During
elastic scattering, the directions of the wave vectors of excited
electrons are randomized, which can lead to a decrease in the
rate of escape of electrons from the irradiated region. A
similar effect is provided by the elastic scattering of the
excited electrons on phonons and defects. If experiments are
conducted on thin single-crystal films, the transport can be
decreased by using insulators as the substrates, which impede
the draining of the excited electrons from the film [80].

Auger electrons and the role of d bands. A very interesting
additional process that can increase the relaxation time of
excited electrons in noble metals is the process of the
generation of Auger electrons, which was first observed in
copper [32, 74] and was emotionally named a `d-band
catastrophe.' It is connected with the existence of two types
of holes generated by the pumping pulse along with excited
electrons. If the energy of a pumping photon is less than the
threshold energy of the d bands (� 2 eV for copper), then
both electrons and holes appear in the s and p bands. They
have a relatively short lifetime, which qualitatively corre-
sponds to the Fermi liquid theory. If the energy of the
pumping photon exceeds the threshold energy of the
d bands, the electrons appear in the s and p bands, which are
similar to the bands of free electrons, but the holes are
generated partially in d bands, and they have considerably
longer lifetimes (see the results of first-principle calculations
in Section 4.2). In this case, a process of generation of Auger
electrons occurs (Fig. 4d); the electrons from levels lying
above the d states fill holes existing in d bands, and the
liberated energy quantum is then spent on a new electron
excitation. If the energy of the level Ei is less than the
threshold energy of the d bands, the population of this level
increases, which is equivalent to an increase in the relaxation
time. In Ref. [81], an analogous process was described for
gold. If the aim of a study is the lifetime and there is a need to
avoid the influence of Auger electrons, then the experiment
should be conducted at photon energies less than the thresh-
old energy of the d band, i.e., using a red laser. Such
measurements were made for copper in [28]; the data
obtained there correspond much better to the results of first-
principle calculations than the data of measurements
obtained at the photon energy of 3 eV (see Section 4.2).

Electron±phonon scattering. In principle, electron±pho-
non scattering can also affect the relaxation time of an
electron in the intermediate excited state. But in contrast to
the inelastic electron±electron scattering, the energy losses of
the excited electron upon the generation of phonons are
limited by the low energy of phonons. In TR-2PPE experi-
ments, the excess energy Ei ÿ EF of an electron is usually
much greater than the energy of phonons; therefore, electron±
phonon scattering can be considered a quasielastic process,
i.e., can be referred to dephasing processes.

The contribution of the electron±phonon scattering can
be controlled by conducting TR-2PPE experiments at an
ambient temperature sufficiently low to suppress the
formation of phonons. Such experiments were carried out,
for example, in [82] for copper. At excess energies
Ei ÿ EF > 1 eV, the relaxation time is virtually independent
of temperature, but at lower energies, a certain insignificant
effect is observed. Measurements at different temperatures
were carried out for ytterbium [50]; they also showed that the
relaxation time was independent of the temperature. In
Refs [83, 84], the contribution of the electron±phonon
interaction to the magnitude of the lifetime of electrons in
beryllium and palladium was studied theoretically.

2.2 Angle-resolved photoemission spectroscopy
The possibility of estimating the lifetime of excited electrons
and holes using ARPES follows from the uncertainty
principle [72], according to which the uncertainty DE in the
energy of a state is related to its lifetime Dt as

DtDE5 �h : �17�
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It follows from Eqn (17) that to obtain the error in
determining a lifetime equal to �3 fs, as in the TR-2PPE
method, the resolution in the case of ARPES spectroscopy
should be not worse than 10 meV.Many commercial spectro-
meters (see, e.g., Ref. [8]) have a similar resolution. However,
many problems exist in studies of the dynamics of electrons by
the ARPES method, and work in this field is quite scarce.

Because a nearly free electron, which is detected by an
analyzer, and a hole in the crystal are simultaneously
generated in the photoemission by one photon, it follows
that the linewidth in the ARPES method is determined by the
lifetimes of both the electron and the hole. Here, an essential
complication arises because of the influence of the surface on
the spectral line shape. This influence originates from the
nonconservation of the wave vector component perpendicu-
lar to the surface, which leads to a broadening of the line. The
magnitude of this effect depends strongly on the emission
angle, which was analyzed in Refs [8, 14, 15, 85]. The
photoemission spectrum is usually recorded in the form of
the dependence of the number of photoelectrons on the
kinetic energy at a fixed emission angle y and the photon
energy �ho. It was shown in Ref. [85] that under the
assumption of a Lorentz shape of the undisturbed spectral
line and linear dispersion of the electron and hole bands with
the influence of the surface taken into account, the full width
of the line at the half-maximum (FWHM) becomes equal to

G � Gh=jvh?j � Ge=jve?j��1=vh?�1ÿmvhk sin
2 y=�hkk�ÿ1=ve?�1ÿmvek sin

2 y=�hkk�
�� :
�18�

(We note that in the many-body theory and in a number of
experimental works, the FWHM is denoted as 2G!) Here, Ge

and Gh are the inverse relaxation times (relaxation rates) of
the electron and hole:

G � �h

t
; �19�

v? � �hÿ1 qE=qk? is the component of the group velocity that
is perpendicular to the surface, and kk is the component of the
wave vector that is parallel to the surface. Therefore, G is not
the inverse relaxation time of the electron or hole, but their
combination, which depends on the conditions of the
experiment. Usually, the excess energy of the emitted
electron, i.e., its energy with respect to the Fermi level,
reaches several tens of electron volts. It is much greater than
the excess energy of a hole, and therefore Ge 4Gh, i.e., the
FWHM is mainly determined by the electron lifetime. The
inverse relaxation times of high-energy electrons with energies
up to 100 eV satisfy the empirical relation

Ge � a�Eÿ EF� ; �20�

where a � 0:13� 0:1 [86], i.e., they strongly deviate from the
quadratic law G � �Eÿ EF�2 that follows from the Fermi
liquid theory; this appears to be due to the participation of
plasmons in the electron relaxation [87]. Nevertheless, under
some specific conditions, it is possible to determine the
lifetime of holes as well. For normal emission, i.e., when
y � 0 and vk � 0, we have

G �
�
Gh � vh?

ve?
Ge

������1ÿ vh?ve?
�����ÿ1 : �21�

If vh? � 0, then G � Gh. For example, this means that in the
case of an fcc structure, measurements of the relaxation time
of holes are possible for states with the wave vector oriented
along the azimuth GÿKÿX. Such studies were carried out
for copper [88] and silver [89]. Figure 5 shows, as an example,
the shape of the photoemission spectrum obtained from a
Cu(110) thin film at �ho � 15:9 eV. Below 2 eV, i.e., below the
d-band threshold, the spectrum contains three narrow lines,
which relate to the emission from the states X7� (1), X6� (2),
and X7� (3); by resolving the spectrum into Lorentz
components, it is possible to determine their FWHMs and,
correspondingly, the relaxation times. But the measurements
of the relaxation times of states at energies from 2 eV toEF are
impossible because of the strong broadening of the bands in
view of the nonconservation of the vector k?. We note that
the surface states are free of the effect of broadening in k?;
therefore, measurements of the lifetimes for them can be
carried out relatively easily [90].

The linewidth G also includes broadening due to surface
defects, Gdef, and due to electron±phonon interaction, Geÿph.
The broadening Gdef can be eliminated by recording ARPES
spectra at different concentrations of surface defects and
extrapolating the results to the zero concentration of defects
[88, 91]. The concentration of defects can be changed by
varying the regimes of annealing of the samples after ion
bombardment [88]. In a similar way, by conducting measure-
ments at different temperatures and extrapolating the results
to the zero temperature, it is possible to estimate the
contribution Geÿph. According to the many-body theory of
the electron±phonon interaction [92], this quantity is
expressed as

Geÿph�T � � 2p�hl
� oD

0

do 0
�
o 0

oD

�2�
1ÿ f �oÿ o 0�

� 2n�o 0� � f �o� o 0�� ; �22�
where f �o� is the Fermi distribution for electrons, n�o� is the
Bose distribution for phonons, and �hoD is the maximum
energy of phonons in the Debye approximation. Given the
experimental temperature dependence of Geÿph, it is possible
to determine the electron±phonon coupling constant l.
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Figure 5. Photoemission spectrum of copper recorded from a Cu(110)

sample at the photon energy �ho � 15:9 eV [88]. The energy of the initial
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We note that the TR-2PPE and ARPES methods of
studying the relaxation of excited states are complementary.
The TR-2PPE method allows extracting the relaxation times
of electrons with an excess energy from zero to the energy of
pumping photons, but the relaxation times cannot be resolved
in the wave vector. On the contrary, the ARPES method
allows obtaining the lifetimes of states with an accurately
determined wave vector, but only if there is no dispersion of
the state in the vector k?.

2.3 Spintronic devices: spin-valve transistor
and magnetic tunnel transistor
The spin-valve transistor (SVT) and the magnetic tunnel
transistor (MTT) are devices with a giant response of
electron transport properties to an applied magnetic field
and are the prototypes of many industrial nanoelectronic
devices (magnetic sensors, storage cells, etc.). Studies on the
physics of SVTs and MTTs were described in detail in
Refs [11 ± 13]; in this section, we therefore limit ourselves to
the consideration of the role of electron relaxation in the
functioning of SVTs and MTTs and of the methods of
extracting data on the relaxation of excited electrons from
experiments with SVTs and MTTs.

The giant response of electron transport effects to an
appliedmagnetic field is a consequence of the difference in the
relaxation lengths of electrons with spin `up,' i.e., with the
magnetization parallel to the applied field, and electrons with
spin `down,' i.e., with the magnetization antiparallel to the
field. Figure 6 shows a simplified diagram of an SVT and the
energy diagrams that elucidate the reaction of the device to
the applied field. The electron conduction of the device is
mainly ballistic, and the charge carriers are electrons with an
energy exceeding the height of the Schottky barrier at the
boundary between the semiconductor emitter of the n type
(Si) and the first nonmagnetic layer of the base (NM1). The
base has three nonmagnetic layers (Pt, or Pd, or Au) and two
magnetic layers with a different coercivity (Fe, or Co, or
permalloy). The electrons, after they overcome the Schottky
barrier, move in the base, losing their energy. Electrons with a
residual energy exceeding that of the second Schottky barrier
between the last layer of the base (NM3) and the collector
penetrate the collector and form the collector current Ic.
Because the coercivity of the ferromagnetic (FM) layers is
different, they can have parallel or antiparallel magnetiza-
tions. With properly chosen heights of the Schottky barriers
and thicknesses of the FM layers, the collector currents for
the parallel and antiparallel magnetizations, IPc and IAP

c , can
be very different. Figure 6b schematically also shows changes
in the energy that are due to the electron motion. In a
ferromagnet, electrons with spins up have a relaxation time
and a relaxation length much larger than the electrons with
spins down. The reasons for this are discussed in Sections 4.5
and 4.6. In the case of FM layers with parallel magnetizations,
it is possible to choose their thicknesses such that spin-up
electrons penetrate the collector, while spin-down electrons
are reflected by the second Schottky barrier. If the magnetiza-
tions of the layers are antiparallel, the electrons that had the
spin up in the FM1 layer become electrons with spins down
when they pass into the FM2 layer. Their relaxation rate
increases, and at a suitable thickness of the FM2 layer, they
are also reflected from the second barrier. The field of
magnetization reversal is equal to 22 Oe in Co and 5 Oe in
Ni. Therefore, in the fields 22 > H > 5 Oe, the magnetiza-
tions in the layers are antiparallel, and in the fields exceeding

22 Oe, they are parallel. A practically interesting character-
istic of an SVT is the so-called magnetocurrent, defined as

IMC � IPc ÿ IAP
c

IAP
c

; �23�

its value can reach 500% [12, 93].
It is obvious that the existence of a difference in the

relaxation lengths for spin-up and spin-down electrons is
very important for switching the collector current. The
experimental determination of the relaxation length of an
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Figure 6. (a) Schematic of a spin-valve transistor and (b, c) energy

diagrams of a transistor at the parallel orientation of the magnetizations

in the ferromagnetic layers FM1 and FM2 (b) and at the antiparallel

orientation of magnetizations FM1 and FM2 (c). NM1, NM2, and NM3

are the nonmagnetic layers of the transistor.
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electron is based onmeasuring the dependence of the collector
current on the thicknesses of the ferromagnetic layers. The
collector current for the parallel and antiparallel orientations
of magnetizations in the FM layers can be written as [12]

IPc / TM
FM1T

M
FM2 � Tm

FM1T
m
FM2 ; �24�

IAP
c / TM

FM1T
m
FM2 � Tm

FM1T
M
FM2 ;

where the coefficients of electron transmission in the FM1
and FM2 layers for spin up �M� and spin down �m� are
introduced. It is assumed that they depend on the thicknesses
of the layers d and the structure of the interfaces as

T m
FMi � Gm

in exp

�
ÿ d

lm
FMi

�
Gm
out ; �25�

where m �M or m, Gin is the transmission coefficient of the
interface for the electrons entering the layer, and Gout is the
transmission coefficient of the interface for the electrons
that leave the layer. The magnitudes of G depend on a
mismatch of the band structure on the opposite sides of the
interface, on the degree of disordering of the interface, on
the presence of impurities, etc. For the layer thicknesses
d > 40 A

�
, the exponential dependence on d is confirmed by

experiments [94]. The magnitudes of l, the relaxation lengths,
are determined by the inelastic and elastic scattering of
electrons and by the electron±phonon and electron±magnon
interactions (see below). Experiments show the existence of a
very weak dependence of Gin and Gout on the orientation of
spins. These quantities, together with the relaxation lengths,
can be found by fitting the calculated collector currents to the
experimental ones, using Eqn (24).

TheMTTdiffers from the SVTmainly in that in theMTT,
the injection of the excited electrons into the base occurs not
through a Schottky barrier but through a tunnel barrier
between the probe and the surface of the base. The physics
of electron conduction in the MTT is similar to that in the
SVT, and the relaxation length of the excited electrons in
MTTs is measured analogously.

Similarly to the relaxation time, the relaxation length is
mainly determined by inelastic scattering, but is also affected
by some additional processes. According to Matthiessen's
rule, the quantity 1=lm can be represented as the sum of
contributions of different scattering processes:

1

lm
� 1

lminel
� 1

lmel
� 1

lmphon
� 1

lmswa
� 1

lmswe
; �26�

where lminel is the inelastic relaxation length, lmel corresponds to
elastic relaxation, and lmphon is the relaxation due to electron±
phonon scattering. The last two terms are nonzero only for
ferromagnets; lswa is connected with the spin-wave absorp-
tion, and lswe, with the spin-wave emission.

The most important contribution to the total relaxation
length lm comes from the inelastic relaxation length lminel,
but processes of elastic relaxation can also give a compar-
able contribution. This is confirmed by both experimental
and theoretical data. If the inelastic relaxation is predomi-
nant, we can expect a monotonic decrease in lm with
increasing the energy because of a decrease in the inelastic
lifetime, which is observed, for example, for the Ni80Fe20
layer in a CoFe=Al2O3=NiFe SVT [95]. But this tendency is
absent, for example, for the platinum layer in the
Si=Pt=NiFe=Au=Co=Au=Si SVT [96] or for the iron layer in

the NiFe=Au=Fe structure [93]. An attempt to include the
elastic and inelastic scattering into the phenomenological
model of the collector current in the SVT was made in [97];
however, the authors ignored the dependence of scattering on
the electron energy. A series of first-principle calculations for
lminel is discussed in Section 4.6. A comparison of the computed
values of lminel with the experimental values of lm confirms the
significant role of elastic scattering processes.

Two terms in Eqn (26), lmphon and lmswa, are temperature
dependent. They correspond to the absorption of thermal
phonons andmagnons by the excited electron; therefore, they
must tend to infinity as T! 0. The temperature dependence
of lm was studied experimentally forNi80Fe20 andCo layers in
Ref. [94]. A substantial increase in lmswa was revealed as the
temperature decreased to 100 K. However, even at room
temperature, this quantity is greater than lm or lminel, i.e., the
absorption of magnons is an insignificant process compared
to inelastic scattering.

In contrast to lmphon and lmswa, the term lmswe, which
corresponds to the emission of spin waves, does not tend to
infinity as T! 0, because the electrons in ferromagnets can
lose energy via emission of spin waves at any temperature.
(The emission of phonons, which can occur even at 0 K, is
referred to as quasielastic scattering; see Section 2.1.2.) The
energy loss of excited electrons by the generation of spin
waveswas studied based on themany-body theory inRefs [46,
48, 98] (see Sections 4.5, 4.6). Because of the conservation of
the total spin angular momentum, only spin-down electrons
can lose energy, generating spin waves. For Fe and Ni, first-
principle calculations were carried out. They showed that the
generation of spin waves was only important in iron for spin-
down electrons with an excess energy up to 1 eV [46, 48].

3. Theoretical approaches
to femtosecond dynamics

Note: In this section, which is mainly devoted to the many-
body relaxation theory of an excited electron, we predomi-
nantly use the Hartree system of atomic units, which is usual
for this theory, i.e., we assume that �h � me � e � 1, the unit
of length is the Bohr radius a0 � 0:529 A

�
, the energy unit

(frequently called hartree) is e 2=a0 � 27:2116 eV, and the
velocity unit is the electron velocity on the first Bohr orbit
v0 � ac � 2:19� 108 cm sÿ1.

3.1 Perturbation theory and the Boltzmann equation
A series of semiempirical studies of the dynamics of electrons
in the bulk of solids were carried out using a combination of
the Boltzmann theory and perturbation theory (see Refs [21 ±
24, 97, 99 ± 103]). The Boltzmann theory in this case is used to
describe the electron distribution function gs�r; k; t�, which
depends on the spin s, coordinate r, momentum k (which is
equal to the wave vector in the Hartree system), and time t.
The time evolution of the distribution function for an electron
in an external electromagnetic field is described by the
equation

dgs
dt
� qgs

qt
� vHrgs � qk

qt
Hk gs � Ss�r; k; t� �

�
dgs
dt

�coll

;

�27�
where qk=qt � F � ÿe�E� �1=c�v�H� is the Lorentz force,
Ss is the source function, and the term �dgs=dt�coll describes
the change in gs caused by `collisions' with other electrons,
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impurities, and phonons [79, 104, 105]. For the last term, a
relaxation-time approximation is typically used, in which it is
assumed that the collisions tend to take the system to an
equilibrium with the distribution function g0 of the system in
a zero external field. For a macroscopically homogeneous
system in a weak laser field with a low photon energy, we can
assume that Hrg � 0 and neglect the term qk=qtHkg and the
source strength. Then, in the relaxation-time approximation,
the following expression is valid for this system:�

dgs
dt

�coll

� gs0�k� ÿ gs�k�
t�k� ; �28�

where t�k� is the relaxation time. At a small source strength,
the distribution function gs0 for a homogeneous system is the
usual Fermi±Dirac distribution.

We can begin with assuming that the energy loss of a
primary excited electron occurs through the excitation of a
secondary electron, which interacts with the primary electron
via a dynamically screened potentialW�o�, which depends on
the transferred energy o. Then, to compute the relaxation
time we can use the perturbation theory [72]. In this theory,
according to the Fermi golden rule, the probability of
transition of primary electrons per unit time from the state i
into a state f with a smaller energy upon excitation of the
secondary electron from the state i 0 into a higher state f 0 is
equal to

p i; i 0
f; f 0 � 2p

��Wi; i 0
f; f 0 �o�

��2d�Ei � Ei 0 ÿ Ef ÿ Ef 0 � : �29�

Here, W is the matrix element of the dynamically screened
interaction potentialW�o�:
Wi; i 0

f; f 0 �o� �


i; i 0
��W�o�j f; f 0�

�
�
dr dr 0 c �i �r�c �i 0 �r 0�W�o; rÿ r 0�cf �r�cf 0 �r 0� : �30�

Summing the probabilities of all possible excitations of
the secondary electron weighted by the distribution function
yields the total probability of the transition i! f of the
primary electron with a reduction in energy:

P�i; f � �
X
i 0; f 0

p i; i 0
f; f 0g�Ei 0 �

�
1ÿ g�Ef 0 �

�
: �31�

Upon further summation over the lower states of f with their
populations taken into account, we obtain the probability of
transition per unit time, i.e., the relaxation rate:

1

t�Ei� �
X
f

P�i; f ��1ÿ g�Ef�
�
: �32�

In Refs [99, 100, 106], various types of electron±electron
scattering processes were considered, such as direct and
exchange scattering, processes with the conservation of
energy in the spin channel of the primary electron, and with
energy transfer to states with the opposite spin. The realistic
calculations are based on the assumption that elements
averaged over the wave vector can be used instead of the
matrix elements Wi; i 0

f; f 0 �o�. This is the so-called `random-k'
approximation, which was first introduced in Refs [107, 108].
If the transitions i! i 0 and f! f 0 occur between states of
the same type (e.g., d states), then the expression for the
relaxation rate of an electron with an excess energy E in this

approximation is reduced to a formula with only one matrix
element M�o�:
1

ts�E� � 2p
� E

EF

dE 0 r>s �E 0�
� EF

EFÿo
dE

� � r<s �E� r>s �E� o� � r<ÿs�E� r>ÿs�E� o����M�o���2; �33�
where o � Eÿ E 0 is the energy lost by the primary electron,
r>s �E� � �1ÿ g�E�� rs�E�, and r<s �E� � g�E� rs�E�, where g�E� is
the distribution function and r�E� is the density of states. It
can be assumed that in a narrow energy range, the matrix
element M is constant. If the internal integral in Eqn (33) is
only weakly dependent on the energy, then the relaxation rate
is determined by the external integral

1

ts�E� � Ns�E� �
� E

EF

dE 0 r>s �E 0� ; �34�

which represents a `phase space' for a relaxing electron, i.e.,
the number of states allowed for transitions. The phase-space
interpretation of the measurements of electron lifetimes was
widely used in experimental works (see, e.g., Ref. [109]). The
reliability of this approach was verified by the authors of this
review by calculating the lifetimes in Al, Nb [110], Mo, Rh,
Pd, Ag [111], and Fe, Ni, Pt, and Au [48] (see a discussion in
Section 4). The general conclusion that follows from a
comparison of the results obtained in the phase-space
approximation with first-principle data is that the phase-
space approximation correctly describes the dependence of
the lifetimes on the electron energy and spin in a number of
cases, but in general, the best results are obtained in terms of
the random-k approximation [Eqn (33)].

In general, different states (of the s, p, or d type) can be
present near the Fermi level. An example is given by the
sufficiently complex band structures of nickel or iron (Fig. 7).
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Figure 7.Density of states (DOS) in Fe andNi [110]. Solid lines correspond

to the DOS for spin-up electrons; the dashed lines are the DOS for spin-

down electrons.
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In the case of nickel, at the exchange splitting of the bands
equal to 0.3 eV, the difference in the densities of states (DOS)
for electrons with spins up and down can be neglected, i.e., it
can be assumed that the occupied states are only states of the
d type and that the empty states are nearly free states of the
p type. Then the transitions of the primary electron are of the
p! p type, while the excitations of the secondary electron are
of the d! p type. Therefore, for Ni, we can use Eqn (33) with
one matrix element M �M pd

pp [with the arrangement of
indices as in Eqn (30)]. In the case of iron, we can also
assume that spin-up states below the Fermi level are d states,
while those lying above the Fermi level are p states. However,
spin-down d states also exist above the Fermi level; this is a
peak in the DOS with a maximum at 1.7 eV. Therefore, we
should introduce three different types of matrix elements (for
details, see Ref. [100]). Analogous expressions can also be
obtained for other objects, depending on their band structure.
The matrix elements are determined by fitting the calculated
relaxation rates to the experimental data. This method of
evaluating relaxation rates was first used in [99, 100, 106]
when studying the relaxation time and relaxation length for
Fe, Ni, and Co. Similar methods with somewhat different
approximations for the densities of states andmatrix elements
were also used in Refs [21, 23, 24, 102] for a number of
ferromagnetic and nonmagnetic metals.

A more rigorous theory of relaxation of excited states
must take the inhomogeneity of a system into account, i.e., at
least, the presence of a surface, and also include the additional
processes described in Section 2.1.2 for TR-2PPE spectro-
scopy. An analysis with transport and cascade processes
taken into account was first carried out in [99, 100, 106].
Later, amore detailed analysis of the additional processes was
performed in [22, 103, 112, 113] for Cu, Fe, Co, and Ni. In
these works, the distribution function for an electron with an
energy E near the surface is characterized by the projection of
the wave vector onto the surface �kk�, the order number of the
band �n�, and the distance to the surface �z�, i.e., gs �
gs�E; kk; n; z; t�, and the Boltzmann equation is represented
in the form

qgs
qt
� P�t� ÿ gs

t �
: �35�

Here, P�t� is the laser field intensity, which plays the role of a
source function, and qgs=qt contains terms that correspond to
inelastic electron±electron scattering and to the additional
processes, i.e.,

qgs
qt
�
�
qgs
qt

�opt

�
�
qgs
qt

�eÿph
�
�
qgs
qt

�inel

�
�
qgs
qt

�casc

�
�
qgs
qt

�trans

�
�
qgs
qt

�Au

: �36�

Because additional processes are included here, the time t � in
this equation is not the lifetime but the relaxation time. In
what follows, we omit details related to the presence of bands
of the p and d types; they can be found in Refs [22, 103, 112,
113]. The term �qgs=qt�opt corresponds to optically induced
transitions of an electron from the excited to lower states, i.e.,
to transitions in which the role of the perturbation is played
by the laser field. Since the laser field is weak (the fraction of
excited atoms is � 10ÿ6), this term is negligibly small in
comparison with the term �qgs=qt�inel, which depends on the
screened electron±electron interaction potential W. We can

also omit the small second term, which corresponds to the
quasielastic electron±phonon interaction (a simple model in
the random-k approximation was proposed for it in [112]).
The term �qgs=qt�inel is the rate of relaxation via inelastic
electron±electron scattering, which was discussed above:�

qgs�E�
qt

�inel
� ÿ gs�E�

t inels
: �37�

Here, the time of inelastic processes is given byEqns (33) or by
similar equations in Refs [99, 100, 106]. The next term
describes an increase in the population of the excited level
due to the transitions of electrons from the higher levels
populated as a result of the pumping pulse; it includes the time
t cascs that characterizes the intensity of the cascade processes:�

qgs�E�
qt

�casc
� 1ÿ gs�E�

t cascs
: �38�

The expression for t cascs can easily be obtained in the random-
k approximation; it takes the densities of states and the
distribution function into account and differs from Eqn (34)
only in the integration limits:

1

t cascs �E� � 2p
� EF�hn

E
dE 0 r>s �E 0�

� EF

EFÿo
dE

�
X
s 0

r<s 0 �E� r>s 0 �E� o�jMj2 : �39�

As was shown in Section 2.1.2, in analyzing transport
effects, we can neglect transport in directions parallel to the
surface and examine only the transport perpendicular to the
surface. The necessary expression is obtained with the use of
the Liouville theorem [114]:�

qgs
qt

�trans

� ÿvzHz gs : �40�

The last term in Eqn (36) corresponds to the contribution
of Auger processes (see Section 2.1.2). It satisfies an equation
similar to Eqn (38) but with another characteristic time,
tAu
s �E�, which can also be obtained in the random-k approx-
imation by analogy with Eqn (33). Namely, it can be shown
that tAu

s �E� is given by the convolution

CAu
s �E� �

� 0

ÿ1
dE 0 r<s �E 0�

� 0

EFÿhn
dE

�41�
�
X
s 0

r<s 0 �E� r>s 0 �E� o� :

In this expression, the first integral accounts for all electrons
that can be excited into a given energy level E from the levels
with a density of states rs�E 0� due to the energy lost by the
primary hole (i.e., by the energy that was generated by the
pumping pulse). The second integral accounts for all possible
ways of energy loss by the primary hole. The energy loss
occurs when electrons `fall' from states with the density
rs 0 �E� o� into hole-occupied states with the density rs 0 �E�;
here,o � Eÿ E 0 is the energy lost by the hole. The smaller the
lifetime of the primary hole th�Eÿ hn�, where hn is the energy
of the pumping photon, the greater the number of Auger
electrons; therefore, we can assume that

1

tAu
s �E�

� Rth�Eÿ hn�CAu
s �E�jMj2 ; �42�
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where R is an empirical constant. Because all the terms in
Eqn (36) are now determined, we can solve Boltzmann
equation (35) and calculate the correlation trace using
Eqn (14) with trial values of the parameters jMj and R.
These parameters can then be refined via fitting to the
experimental correlation trace.

3.2 First-principle approaches to the dynamics
of electrons in an interacting free electron gas
The model of a free electron gas with interaction between the
electrons (DFEG), also frequently called the Fermi liquid
theory, is one of the simplest models of the many-body solid
state theory. Nevertheless, it sufficiently well describes the
dynamics of nearly free electrons in metals, for example, in
aluminum or copper. In addition, it allows analyzing some
physical phenomena that are ignored in more complex
methods of the many-body theory. The properties of the
electron gas in this theory depend on the electron density n0,
which is usually expressed through the electron density
parameter rs defined by the relation 1=n0 � �4=3�p�rsa0�3;
i.e., rs is the radius of a sphere (in units of the Bohr radius a0)
that contains one electron. The basic results of the DFEG
theory in the dynamics of electrons were obtained in the
classic works of Quinn and Ferrell [25, 77] and Ritchie [78,
115]. A review of these works and of subsequent improve-
ments in the theory was given in [40]; therefore, in this section,
we give only some basic results of the theory and some
remarks on the connections of the DFEG theory with other
theories.

An expression for the lifetime of an excited electron in the
DFEG theory can be obtained based of the perturbation
theory, described in the foregoing section, with the applica-
tion of some results of themany-body theory. If the initial and
final states of free electrons in Eqns (29) and (30) are
represented in the plane-wave form

ck�r� �
1����
O
p exp �ikr� �43�

with an energy ek � k2=2 and a normalizing volume O, then
Eqn (29) is reduced to

p i; i 0
f; f 0 � 2p

��W�q;o���2d�qÿ k 0f � k 0i � d�oÿ ekf 0 � eki 0 � ; �44�

where W�q;o� is the Fourier transform of the screened
interaction, which depends on the energy loss of the excited
electron o � eki ÿ ekf and the momentum loss q � ki ÿ kf.
The Dirac d functions ensure the energy and momentum
conservation. Then the expression for the inverse lifetime
becomes

1

t�eki�
� 4p

O 2

Xcond
q

X
k 0i

��W�q;o���2gk 0i �1ÿ gk 0i�q�

� d�oÿ ek 0i�q � ek 0i � : �45�
The index `cond' means that the summation over q obeys the
condition 0 < o < eki ÿ EF, because the primary electron
cannot pass into an occupied state of the Fermi liquid. It
follows from the many-body theory that the screened
potential W�q;o� in the free electron gas is related to the
usual Coulomb potential V�q� via the dielectric function
E�q;o� [79, 105]:

W�q;o� � Eÿ1�q;o�V�q� : �46�

It also follows from the many-body theory that the sum over
states in Eqn (45) is expressed through the imaginary part of
the dielectric function obtained in the random-phase approx-
imation (RPA) [116]:

Im ERPA�q;o� � 2p
O

V�q�
X
k

gk�1ÿ gk�q�d�oÿ ek�q � ek� :
�47�

If we also express the screened potential through the RPA
dielectric function, then, in the limit of an infinitely large
normalizing volume, expression (45) becomes

1

t�ek� � 2

� cond dq

�2p�3 V�q� Im �ÿE�q;o��ÿ1 ; �48�

where E�q;o� � ERPA�q;o�, and `cond' again means that the
integration in the q space is limited by the condition
0 < o � ek ÿ ekÿq < ek ÿ EF.

Quinn, Ferrell, and Ritchie were the first to study electron
dynamics using the self-energy formalism of the many-body
theory. In this formalism, the damping rate (inverse lifetime)
of an excited state is determined by the imaginary part of the
electron self-energy (see Section 3.3). To compute the self-
energy, they used the method that is equivalent to the GW
approximation discussed below. The final expression that
they obtained is similar to Eqn (48), but with an exact
dielectric function. An analogous expression was also
obtained for the damping rate of holes, but with the
integration region modified so as to include all occupied
electron states that are accessible for holes to pass on them
(see the details in review [40]). It is proven in the many-body
theory that the dielectric function in the RPA approach
becomes exact as rs ! 0 [105]. But at finite values of rs, the
exact dielectric function is unknown; the use of some
approximations is therefore unavoidable. The simplest
approximation is to use Eqn (48) per se and insert the
analytic expression for the RPA dielectric function obtained
by Lindhardt (see textbook [105]) into it. At a finite rs, the
integral obtained in this approximation cannot be solved
analytically, but Quinn and Ferrell obtained an analytic
solution as rs ! 0 in the case of low excess electron energy.
It takes the form

t�Ei� � 263rÿ5=2s �Ei ÿ EF�ÿ2 �49�

(in units of fs and eV). Hence, it follows that the so-called
scaled lifetime t�Ei ÿ EF�2 is independent of the energy and is
determined only by the value of the parameter rs. The energy
dependence of the lifetime close to that following from
Eqn (49) is observed for electron excitations in noble metals
[117, 118]. Later, Ritchie [78] and Quinn [77] found an
analytic solution as rs ! 0, but with an energy far from the
Fermi level (see [40]).

For real metals with nearly free electrons, the value of the
parameter rs is large (for example, 2.06 for aluminum);
therefore, numerical methods are required for calculations.
Such methods for the self-energy and lifetimes were first
realized in the GW approximation in [119, 120]. However, in
the concrete calculations for the interacting gas, the dielectric
function was used only in the RPA. Such calculations in
principle are similar to calculations in the GW approxima-
tion for real crystals, which are described in the following
sections.
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3.3 First-principle GW and T-matrix approaches
3.3.1 Self-energy, quasiparticle equation, and the Hedin
equations. Modern calculations of the dynamics of single-
particle excitations in real crystals are based on the self-energy
formalism of the many-body theory [35, 36, 105, 121, 122]. In
this formalism, the evolution of a system with a single extra
electron or with a single hole added to the system of N
interacting electrons is described by a single-particle Green's
function defined as [35, 36]

G�xt; x 0t 0� � ÿi
N ��TC�xt�C y�x 0t 0���N� ; �50�

where x � �r; s� denotes spatial and spin coordinates, jNi is
the wave function of the ground state of the system with
interaction between electrons, C y and C are the Heisenberg
electron creation and annihilation operators, andT is the time
ordering operator. At t > t 0, the Green's function describes
the evolution of the system with an electron added at the
moment t 0, and at t < t 0, it describes the evolution of the
system with an electron added at the moment t.

For the Green's function of the system with the usual
Coulomb interaction between the electrons Vc�r; r 0� �
1=jrÿ r 0j, there exists a formally rigorous equation of
motion, which includes the two-particle Green's function
[35, 36, 105]; but this equation cannot be solved at present.
The problem is simplified by replacing the two-particle
Green's function with the self-energy. A detailed description
of the self-energy formalism can be found in monographs [35,
105], and the discussion in this section is therefore restricted
to some points related to the dynamics of relaxation of excited
states. In particular, it was shown that if the system is placed
in a field with a weak electrostatic potential f�x; t�, then the
exact equation of motion for the Green's function can be
written as�
i
q
qt
ÿ h�x� ÿ V�x; t�

�
G�xt; x 0t 0�

ÿ
�
dx 00 dt 00 S�xt; x 00t 00�G�x 00t 00; x 0t 0�� d�xÿ x 0� d�tÿ t 0� ;

�51�

where h�x� is the kinetic energy of a quasiparticle, i.e., of an
electron or hole, S�xt; x 00t 00� is the self-energy of the
quasiparticle, and V�x; t� is the total electrostatic potential

V�x; t� � f�x; t� � VH�r; t� ;

VH�r; t� �
�
dr 0 Vc�r; r 0�



N
��C y�x 0t�C�x 0t���N�

�
�
dr 0 Vc�r; r 0� r�r 0� : �52�

VH in Eqn (52) is the Hartree electrostatic potential, which
depends on the electron density r. Equation (51) is equivalent
to the well-known Dyson equation [122]

G�xt; x 0t 0� � G0�xt; x 0t 0�
� G0�xt; x 00t 00�S�x 00t 00; x 000t 000�G�x 000t 000; x 0t 0� ; �53�

in which G0 is the Green's function for a system without the
interaction between the electrons, i.e., with a zero self-energy.
It is understood that integration over repeated variables is
performed.

In the absence of an external field f, i.e., when the
properties of the system depend not on the values of t and t 0

but on tÿ t 0, Eqn (51), as a result of a time Fourier
transformation, is reduced to the form�

oÿ h�x� ÿ VH�x�
�
G�x; x 0;o�

ÿ
�
dx 00 S�x; x 00;o�G�x 00; x 0;o� � d�xÿ x 0� : �54�

The general approach to the calculation of the Green's
function consists in the use of the spectral representation

G�x; x 0;o� �
X
k

ck�x;o�c �k �x 0;o�
oÿ Ek�o� ; �55�

where ck are the wave functions of quasiparticle states. It can
be shown that they satisfy the quasiparticle equation�

Ek�o� ÿ h�x� ÿ VH�x�
�
ck�x;o�

ÿ
�
dx 0 S�x; x 0;o�ck�x 0;o� � 0 : �56�

The eigenvalues of this equation (quasiparticle energies) are
complex: Ek � ReEk � i ImEk. It follows from expansion
(55) that the imaginary part of G (spectral function) consists
of a set of Lorentz peaks with maxima at frequencies
ok � ReEk and the FWHM equal to Gk � 2 ImEk. It is
shown in the many-body theory that for the electron Green's
function, these peaks exactly correspond to the energies of
excited states of the �N� 1�-electron system (with one extra
electron), and for the hole Green's function, to the energies of
excited states of the �Nÿ 1�-electron system (i.e., with one
hole). It has also been proven that the time evolution of the
Green's function at the energy o � Ek follows the law
exp �ÿGkt�, i.e., solving Eqn (56), we obtain the damping
rate of the excited state Gk and the lifetime tk � 1=Gk.

For solving Eqn (56), numerical methods are normally
used, based on the electron density functional theory (DFT)
[123]. The DFTmethods allow obtaining single-particle wave
functions cq; s and the eigenvalues eq; s (q is the wave vector),
i.e., solutions of the Kohn±Sham equation. Estimates of the
lifetime cannot be obtained from the Kohn±Sham equation;
however, the excitation energies are quite frequently obtained
correctly within the DFT. It is therefore assumed that the
Kohn±Sham wave functions cq;s are a good approximation
of quasiparticle wave functions ck and that the quasiparticle
energies differ from the Kohn±Sham energies only in small
corrections due to the self-energy. Substituting cq;s for ck,
redefining the self-energy as DSs�o� � Ss�o� ÿ Vxc

s , and
calculating averages over the states cq; s, we can write the
quasiparticle equation in the absence of spin mixing as

Eq; s�o� � eq; s � DSq; s�o� ; �57�

where DSq; s�o� �


cq;s

��DSs�o�
��cq; s

�
. In calculations, it is

frequently assumed that o � eq;s; this is the heart of the so-
called `on-shell' approximation [117, 124, 125]. Another way
is to keep only the linear part of the dependence of the self-
energy on the frequency o near the energy eq; s. In this
approximation, the self-energy corrections to the Kohn±
Sham energies take the form

Deq;s � Eq; s ÿ eq;s � Zq; sDSq; s�eq; s� ; �58�
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where

Zq;s �
�
1ÿ qDSq;s�o�

qo

�ÿ1
o� eq; s

�59�

is the renormalization factor of the Green's function. The
Lundqvist calculations for the gas of the interacting electrons
[120] in a sufficiently wide range of the parameter rs (about 2 ±
5) and energy (�1:5 hartree with respect toEF) showed thatZ
is a complex function slowly varying with the momentum,
with its real part close to 0.7. The imaginary part ofZ is much
less than the real part; therefore, it is usually neglected. Below,
this approximation is called the `computed-Z' approxima-
tion. If we assume that Z � 1, we obtain the `on-shell'
approximation. Finally, the damping rate of the quasiparti-
cle state (electron or hole) is calculated as

1

tqs
� 2jImDeq;sj : �60�

Because the computed-Z approximation is mathemati-
cally more correct, it might be assumed that the lifetimes
computed in this approximation must be more precise.
However, the concrete calculations for a number of metals
discussed in Section 4 do not confirm this.

Because the Green's function G, according to Eqn (55),
is determined by quasiparticle energies and because the
quasiparticle energies themselves depend on the self-energy
S, the quantities G and S must be self-consistent. A
formally exact set of equations, which in principle allows
obtaining a self-consistent solution for G and S, was
obtained by Hedin [36]. The derivation of these equations
[36, 37, 122] is based on the analysis of the response of the
system to a weak external field f�x; t�. Below, we use
abbreviations of the form �1� � �x1; t1� � �r1; s1; t1�. In the
Hedin equations, the self-energy is represented in the form of
an expansion into a series in the dynamic screened electron±
electron interaction potential

W�12� �
�
vC�13�Eÿ1�32�d�3� ; �61�

where vC�13� � VC�r1; r3� d�t1 ÿ t3� is the usual Coulomb
potential. The inverse dielectric function Eÿ1 is a general-
ization of the classical dielectric function. It describes the
response of the total internal field V � f� VH to a small
applied external field f and is expressed in terms of a
functional derivative

Eÿ1�12� � dV�1�
df�2� � d�1ÿ 2� �

�
d�3�vC�13� dr�3�df�2� : �62�

The second part of this equation follows from Eqn (52).
Equation (62) contains the so-called response function

R�12� � dr�1�
df�2� ; �63�

which describes the reaction of the electron density to an
applied external field. One additional quantity used in the
Hedin equations is the irreducible polarization function,
which is connected with E by the relation

E�12� � d�1ÿ 2� ÿ
�
d�3�vC�13�P�32� : �64�

It represents a change in the electron density with a change in
the total field �f� VH�:

P�12� � dr�1�
dV�2� : �65�

Equations (52), (62), and (65) immediately imply a relation
between R and P,

R�12� �
�
d�3�P�13�Eÿ1�32�

� P�12� �
�
d�3�d�4�P�13�vC�34�R�42� : �66�

The introduction of the polarization function allows
representing the screened potential as

W�12� � vC�12� �
�
d�3�d�4�W�13�P�34�vC�42� �67�

or as

W�12� � vC�12� �
�
d�3�d�4�vC�13�R�34�vC�42� : �68�

Finally, a vertex function is introduced in theHedin approach
as

G�12; 3� � ÿ dGÿ1�12�
dV�3� : �69�

With this notation, the Hedin equations take the form

S�12� � i

�
d�3�d�4�W�13�G�14�G�42; 3� ; �70�

W�12� � vC�12� �
�
d�3�d�4�W�13�P�34�vC�42� ; �71�

P�12� � ÿi
�
d�3�d�4�G�23�G�42�G�34; 1� ; �72�

G�12; 3� � d�12�d�13� �
�
d�4�d�5�d�6�d�7� dS�12�

dG�45�
� G�46�G�75�G�67; 3� : �73�

The Hedin equations are extremely complicated; their
exact solution is impossible even in the model of a free
electron gas. Instead, they can be used to generate series that
represent expansions of S, P, and G in powers of the screened
potentialW. A systematic procedure for such constructions is
described in textbook [122]. After this, we can drop suppo-
sedly small terms of the series (or sum up the summable series)
and solve the equations.

We note the general nature of the Hedin equations.
Because the self-energy depends on two spin coordinates,
the equations in principle are applicable to nonmagnetic and
magnetic systems, to systems without mixing and with mixing
of spin coordinates. In Ref. [126], analogous equations were
obtained in terms of the Matsubara Green's functions, i.e.,
for finite temperatures. In Ref. [127], a method of introducing
spin±orbit interaction into the Hedin equations was sug-
gested.

3.3.2 GW approximation. If we assume S � 0 as the initial
approximation for the calculations of the vertex function G,
then we obtain G�12; 3� � d�12�d�13�. This considerably
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simplifies the Hedin equations; they acquire the form

S�12� � iW�12�G�12� ; �74�

W�12� � vC�12� �
�
d�3�d�4�W�13�P�34�vC�42� ; �75�

P�12� � ÿiG�12�G�21� : �76�

Together with Eqns (62) ± (68), these equations represent the
so-called GW method, which is sufficiently simple for
programming and for concrete calculations. The self-energy
in the GWmethod contains the screened potential only in the
first order; the terms of higher orders in W are omitted.
Usually, the self-energy in the GW approximation is inter-
preted as the interaction energy of a quasiparticle (electron or
hole) with the polarization field produced by the quasiparticle
itself. It is described by the Feynman diagram shown in Fig. 8.
For concrete calculations, a Fourier transformation from
time to frequency coordinates is made for all the quantities
involved, and the quantities that depend on spatial coordi-
nates are expanded into series in the full sets of basis orbitals.
Because the exact screened potential is unknown, the
polarization and then E and W are usually calculated using
the Green's function without interaction, G0. This is equiva-
lent to the RPA, in which

P0�12� � ÿiG0�12�G0�21� : �77�
TheGreen's functionG0 can be constructed using Eqn (55) by
substituting the wave functions and energies obtained from
theDFT into it. The thus obtained version of theGWmethod
is usually designated as G0W0.

We omit consideration of the diverse options for improv-
ing the GW method based on the introduction of vertex
corrections to G in terms of the DFT, i.e., by going from the
GW to the GWG method. A review of these works can be
found in [37 ± 39]. The results of calculations in the GWG
approximation are on the whole contradictory. The GWG
approach was mainly used for the introduction of corrections
into band calculations done in the DFT methods. Some
improvements in the energies of bands in the GWG method
compared to the results of GW calculations were noted for Li,
Na, and Al in [128] and for diamond, Si, and Ge in [129]. But
for the energy gap, the GWGmethod gives values either very
close to G0W0 results (Al [130]) or worse than those obtained

in the G0W0 approximation (diamond, Si, Ge, LiCl [129]). It
was shown in Ref. [131] that the influence of vertex
corrections on the lifetimes in Cu, Ag, and Au is very small;
however, it is unclear whether the accuracy of the calculation
of the G corrections based on the DFT was sufficient in this
case.

Meanwhile, an analysis of the basic expressions of theGW
method in the frequency representation allows comparing it
with the theory of scattering, revealing physical processes
disregarded in the GW method, and outlining ways to
improve it. The self-energy in this method is diagonal in spin
and can be represented in the form

Ss�r; r 0;o� � i

2p

�
do 0 Gs�r; r 0;o� o 0�W�r; r 0;o 0� : �78�

By expanding the self-energy and all the related quantities (P,
R, E, Eÿ1) into series in some complete basis of Bloch functions
Bki, we can calculate the expectation value ImSq; n;s�o� �
hcq; n; sjImSs�o�jcq; n;si, o ' eq; n; s, that determines the life-
time of a quasiparticle in the cq; n; s state. For the electron
excitations �o > EF�, it is equal to

ImSq; n; s�o� � ÿ
X
k

Xunocc
n 0

X
i; j

ImWi; j�k;oÿ ekÿq; n 0; s�

� hcq; n;sckÿq; n 0; sjBkiihBkjjckÿq; n 0;scq; n;si
�Y�oÿ ekÿq; n 0; s� : �79�

The polarization matrix in the RPA in the Bloch-function
basis is written as

P 0
i; j�q;o� �

X
s; t; k

Xocc
n

Xunocc
n 0

1

toÿ ek�q; n 0;s � ek; n;s � id

� hBq; ick; n;sjck�q; n 0; sihck�q; n 0; sjck; n; sBq; ji ; �80�
where t � 1;ÿ1. The other equations of themethod (inmatrix
notation) take the form

R�o� � P 0�o� � P 0�o�vCR�o� ; �81�
E�o� � 1ÿ vCP

0�o� ; �82�
Eÿ1�o� � 1� vCR�o� ; �83�
W � Eÿ1�o�vC : �84�

For the screened interaction, we therefore have

ImW�o� � vC ImR�o�vC
� vC Im

�
1ÿ P 0�o�vC

�ÿ1
P 0�o�vC : �85�

In the `on-shell' approximation, we haveo � eq; n;s. The poles
of the function �1ÿ PV�ÿ1 determine plasmon energies.
Usually, these energies are considerably higher than the
maximum energies of the quasiparticles under considera-
tion, � 3 eV in the TR-2PPE method. Only in MgB2 are
they about 2 eV [132]; in silver, they are approximately 3.8 eV
[133]. Consequently, in the calculations of lifetimes at low
energies, it is possible to neglect plasmon poles and to assume
that the damping of excitations is accompanied only by the
excitation of secondary electron±hole pairs with energies
corresponding to the zeros of the denominators in (80). In
this approximation, we have

ImW�o� � vC ImP 0�o�vC : �86�

GW
a

e2
e2
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Figure 8. (a) Self-energy Feynman diagram in theGWmethod; the straight

line represents the Green's function and the wavy line, the screened

potential. (b) A schematic representation of electron transitions that are

taken into account in the lifetime calculations by the GWmethod; e! e 0

corresponds to the process of damping the excitations of primary

electrons; h! e2 is the processes of the excitation of secondary electron±

hole pairs in two spin channels (see text).
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With the approximation of a single matrix element used in
Eqn (79), which includes the factored matrix element
Wij �W00d0 jd0i and integrals of the form hccjBi, i.e., the
random-k approximation, we can obtain an equation for the
damping rate of a state similar to Eqn (33) at the zero
temperature. A good agreement between the lifetimes
calculated by the G0W0 method and by the methods of
scattering theory was demonstrated in Refs [110, 111].

Thus, according to the GW approximation, the process of
damping the excitations of primary electrons is accompanied
by the process of excitation of secondary electron±hole pairs
in both spin channels (see Fig. 8). The energy and the
momentum lost by the primary electrons are transferred to
the secondary quasiparticles. In this case, the interaction
between the primary electrons and the secondary quasiparti-
cles is ignored. However, this interaction can be important in
the case of ferromagnets, where the interacting electrons and
holes from different spin channels can form spin waves. This
limitation is bypassed in the GW�Tmethod described in the
next sections.

3.3.3TheT-matrix approximation.Theconceptof theTmatrix
was introduced as a tool for describing the evolution of a
system that includes two interacting quasiparticles [134]. The
T matrix enters the integral equations that describe the
evolution of a two-particle propagator [104, 121, 135, 136].
There exists an intimate relationship between the T matrix
and the self-energy, which follows from the Hedin equations.
Namely, if we substitute the T matrix instead of the screened
potential in the self-energy of a quasiparticle calculated in the
GW approximation, we obtain a new self-energy that
corresponds to the evolution of the quasiparticle accompa-
nied by the emission of bosons. For nonmagnetic systems,
excitons can serve as such bosons; for magnetic systems, these
aremagnons. Even if the interaction described by theTmatrix
is insufficiently strong to ensure the emission of bosons with a
large lifetime, it nevertheless can noticeably change the
spectral properties and the dynamics of electrons.

The dynamics of electrons in metals accompanied by
generation of spin waves have been studied on a semiempi-
rical level in Refs [98, 137, 138]. The effect of the Tmatrix on
the spectral properties of nickel was studied in [139]. Later, a
first-principle variant of the T-matrix theory was developed,
which was applied to calculations of magnons in Fe and Ni
[126, 140] and of a plasmon satellite in Ni [45]. A more
complete first-principle variant of the theory adapted to
studying electron dynamics was published in [47].

In the theory of the evolution of two interacting
quasiparticles, the T matrix is defined as a solution of the
Bethe±Salpeter equation

Ts1; s2�1; 2j3; 4� �W�1; 2�d�1ÿ 3�d�2ÿ 4�

�W�1; 2�
�
d�1 0�d�2 0�Ks1; s2�1; 2j1 0; 2 0�Ts1; s2�1 0; 2 0j3; 4�

�87�

[in this section, we use abbreviations of the form �r1; t1� � 1].
The corresponding Feynman diagrams in the case with the
interaction between an electron and a hole are shown in
Fig. 9a. The kernelK of integral equation (87) is the electron±
hole propagator for noninteracting particles, i.e., the product
of the electron and hole Green's functions

K eh
s1; s2�1; 2j1 0; 2 0� � iGs1�1; 1 0�Gs2�2 0; 2� : �88�

Substituting the T matrix instead of the screened interaction
in the expression for the self-energy in the GW approxima-
tion, we obtain a direct T-matrix term of the self-energy for
the electron±hole interaction, whose diagram for the electron
excitation is shown in Fig. 9b. This term corresponds to a
process in which the quasiparticle loses part of its energy and
momentum, which are transferred to the generated electron±
hole pair (to a Stoner pair or to a spin wave if the electron and
hole have different spin projections). The second type of
kernel is the kernel of the electron±electron interaction, i.e.,
the product of two electron Green's functions:

K ee
s1; s2�1; 2j1 0; 2 0� � iGs1�1 0; 1�Gs2�2 0; 2� : �89�

The Tmatrix and self-energy diagrams corresponding to this
propagator are given in Fig. 9c. In contrast to the electron±
hole interaction, two types of self-energy arise in the case of
the electron±electron interaction. The first (direct) type is
shown in Fig. 9d; it is analogous to the direct electron±hole
interaction. The second (exchange) type appears upon the
exchange of points 3 and 4 in the diagram for the direct term
(Fig. 9e). Similar diagrams also exist in the series for the self-
energy that follow from the Hedin equation. Below, we
discuss only the self-energy of electrons; additional informa-
tion on the holes can be found in [47]. There is an essential
difference between the self-energy of the direct electron±hole
or electron±electron interaction and the self-energy of the
exchange interaction. In the direct term, the spin coordinate
s2 of the relaxing electron can be equal to or be opposite to the
spin coordinate s1 of the electron or hole in the polarization
loop. Thus, the direct T-matrix term describes the electron±
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Figure 9.Feynman diagrams: (a) for the Bethe ± Salpeter equation with the

interaction between an electron and a hole; (b) for the direct term in the

expression for the self-energy in the T-matrix method with the electron±

hole interaction; (c) for the Bethe ± Salpeter equation with the electron±

electron interaction; (d) for the direct term in the self-energy with the

electron±electron interaction; and (e) for the exchange term of self-energy.

The arrows denote the Green's functions and the wavy lines are the

screened interaction.
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electron and electron±hole interaction between the quasipar-
ticles with the identical or opposite spin. The exchange term
acts only between electrons with like spins, by analogy with
the usual Hartree±Fock method.

Explicit expressions for the self-energy are obtained
according to the usual Feynman rules [122, 105]. For the
electron±electron interaction, the direct self-energy term is
written as [45]

S d
s2�4; 2� � ÿi

X
s1

�
d1 d3Gs1�1; 3�Ts2; s1�1; 2j3; 4� ; �90�

and the exchange term as

S x
s2�4; 2� � i

�
d1 d3Gs2�1; 3�Ts2 ;s2�1; 2j4; 3� : �91�

For the electron±hole interaction, the Green's function in
Eqn (90) is replaced by the function Gs1�3; 1�.

At a low excitation energy, we can assume the static
approximation W�1; 2� � W�r1; r2�d�t1 ÿ t2� for W in
Eqn (87). In the general case, the Fourier transform W�o�
of the screened potential is frequency dependent, whereas in
the static approximation, o � 0. In the calculations of the
T matrix and self-energy, it is also possible to accept a local
approximation, i.e., to assume that 1 � 2, 1 0 � 2 0, and 3 � 4
in Eqns (87), (90), and (91). This approximation, suggested in
Ref. [140], is good at least for transition metals, which is
confirmed by the successful calculations of the dispersion of
magnons in iron and nickel. With this approximation, the
kernels transform into functions similar to polarization, for
example, K eh

s1; s2�1; 1 0� � iGs1�1; 1 0�Gs2�1 0; 1�; they depend
only on two coordinates, which leads to a significant
simplification of the calculations. In addition, the exchange
self-energy S x

s2 is canceled in this approximation by the part
of the direct self-energy S d

s2 with the same spin coordinate,
which also leads to a simplification of the calculations.

The Fourier transform of the Bethe±Salpeter equation has
the form

Ts1; s2�r1; r2;o� �W�r1; r2; 0�

�W�r1; r2; 0�
�
dr1 0 Ks1; s2�r1; r1 0 ;o�Ts1; s2�r1 0 ; r2;o� ; �92�

where 0 means that we accepted the static approximation
o � 0. The explicit expressions for the Fourier transforms of
the kernels and the imaginary part of the self-energy are given
in Refs [45, 140, 47]. Upon expansion of all quantities into
series in the functions of a certain complete basis, expressions
are obtained for the T-matrix part of the self-energy, i.e., for
the contribution of the T matrix to the damping rate of the
excited state [47]. According to Eqn (92), the T matrix in the
complete basis is expressed as

Ts1; s2�o� �
�
1ÿWKs1; s2�o�

�ÿ1
W : �93�

If we introduce susceptibilities as the quantities defined by the
matrices

Rs1; s2 � Ks1 ;s2

�
1ÿWKs1 ;s2

�ÿ1
; �94�

then the expression

ImTs1;s2�o� �W ImRs1; s2�o�W �95�

holds for the imaginary part by analogy with Eqn (86). If
the matrices are approximated by their leading elements,
then

ImRs1; s2 �
ImKs1; s2

�1ÿWReKs1; s2�2 � �W ImKs1; s2�2
; �96�

i.e., the contributions of the T matrix to the self-energy are
determined by the longitudinal �Rs;s� and transverse �Rs;ÿs�
susceptibilities. For paramagnetic crystals, these susceptibil-
ities are identical.

It follows from Eqn (96) that the susceptibilities have
poles of two types. The poles of ImKs1; s2 correspond to the
formation of electron±hole pairs with a hole in the spin
channel s2 and an electron with a spin s1 (Stoner pairs at
s1 6� s2). An essential advantage of the T-matrix approach in
comparison with the GW approach is that the poles of the
function �1ÿWK �ÿ1 are also taken into account, which can
be important at low energies. This is, for example, the case for
ferromagnetic metals, where ImRÿ1=2; 1=2 is the spectral
function of the excitation of spin waves. As is shown in
Section 4.5, in the range of magnon energies, i.e., about
0.5 eV, the contribution of the T matrix to the self-energy is
greater than the contribution of the GW term. We also show
in what follows that the T-matrix term with the electron±hole
interaction, although less important than the GW term, gives
a noticeable contribution to the damping rate of electron
excitations in paramagnetic metals such as Ta, Mo, and Rh,
leading to a better agreement with experiment. Of large
importance is also the T-matrix contribution to the lifetime
of electrons in ytterbium [50, 66].

3.3.4 GW+T approximation. The GW�T method is an
alternative method (with respect to the above-mentioned
GWG approach) of including terms of higher orders in W
into the self-energy. The idea of combining the GW and
T-matrix approaches was first proposed in [141], where it
was noted that it would be incorrect to simply add the GW
and T-matrix self-energies. Indeed, by constructing a series of
self-energy diagrams corresponding to the Hedin equations,
for example, according to the algorithm suggested in [122], it
can be easily shown that theT-matrix term of the first order in
W is absent in the Hedin equations, as is the second-order
term, which contains the polarization loop [the so-called
double-counting term, which is denoted as D�P� below]. In
the simplified notation, this term takes the form GWPW. In
calculating lifetimes with a static screened potential, we can
neglect the first-order Hartree-like term of the self-energy
because this term does not have an imaginary part. It would
then be simplest to calculate the D�P� term separately and
subtract it from the self-energy SGW � ST. Another
approach, suggested in [141] and realized for the first time in
[68], is to sum the T-matrix terms starting with the term
proportional to W 3. The problems in the calculation of the
D�P� term were revealed in the first calculations of the self-
energy and spectral function of nickel [45]. It was shown that
this way of eliminating double counting leads to a situation
where the spectral function is negative for some energies,
which makes no physical sense. Subsequent calculations
showed that with this treatment of double counting, non-
physical results can also appear for the lifetime [47]; indeed,
when the T-matrix terms are small (for example, for
palladium), this method of the correction for double count-
ing leads to an increase in the lifetime.
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Amore correct method of compensating double counting
was suggested in [45]. It was shown that the self-energy in the
GWmethod contains a term similar toD�P�, which, however,
is determined not by the polarization function but by the
response function; below, it is denoted by D�R�. This term
compensates double counting in theGWpart and in theTpart
of the self-energy with the electron±hole interaction taken
into account. But if the T-matrix terms with the electron±
electron interaction are included, the second-order term inW
should be compensated again. If we take into account that the
exchange T-matrix term is canceled by the direct spin-
diagonal part of the T-matrix self-energy, then the second
term of the double counting must be equal to D�P�=2. Thus,
in the GW�T approach, the self-energy is defined as
ImSGW�T� ImSGW� ImSTÿ ImSD�R� ÿ ImSD�P�=2. The
electron±electron term is usually small in comparison with the
electron±hole one; therefore, this term and ImSD�P�=2 are
omitted. The concrete formulas for computing the double-
counting terms are given in Ref. [47].

3.4 Basis functions and programs for calculations
The concrete details of computer programs for the calculation
of the relaxation characteristics for electrons or holes are to a
considerable extent determined by the type of basis functions
that are used for the representation of the band states and
many-body characteristics of solids (polarization, response
function, etc.). From this standpoint, two groups of computa-
tional methods should be distinguished.

3.4.1 Methods based on the expansion into plane waves. Two
methods of this type have been suggested, both in the
framework of the GW approximation. The first was used for
calculations of the lifetimes of electrons in copper and
aluminum [117], magnesium and beryllium [125], holes in
copper [124, 88], and electrons in gold [142]. In this method,
which is based on the pseudopotential band method of
augmented plane waves (APWs), the Kohn±Sham equation
is solved using the standard exchange±correlation potential
and the electron±ion pseudopotential for the band states that
are expanded into a large number of plane waves (600 ± 900).
Because the subsequent GW calculations with such a long
basis (APW GW) are very hindered, a so-called `local-field'
approximation is used. This approximation ignores the off-
diagonal elements of the dielectric matrix, i.e., the EGG 0

elements with unequal wave vectors G and G 0, which allows
avoiding the inversion of matrices that are too large. The
rationality of this approximation is confirmed by a compar-
ison with the results obtained in the basis of linear `muffin-tin'
orbitals, in which calculations without the local-field approx-
imation meet with no problems. The lifetimes are calculated
in the `on-shell' approximation, i.e., avoiding calculations of
the renormalization factor.

Another version of the GW method [143] was developed
for the basis of plane waves in the framework of the
Matsubara formalism of Green's functions for finite tem-
peratures [105, 121]. In this version, the Fourier transforms of
the Green's function and self-energy are determined for
imaginary frequencies, i.e., instead of the integration over
real frequencies in the equation for the self-energy (78), a
summation over imaginary Matsubara frequencies is per-
formed. In practice, the Green's function is calculated for
imaginary frequencies, which is corrected for the self-energy
effect, and then its analytic continuation to the real axis is
found. The imaginary part of the Green's function on the real

axis is the spectral function of excited states. The position of
the peaks of this function determines the energies of excited
states, and the width of the peaks determines the damping
rate. The lifetimes for Al and Cu calculated using this scheme
[143] are in qualitative agreement with the experimental data,
but noticeably differ from the results of calculations with
other methods (see Sections 4.1, 4.2).

The main obstacle for a wide use of methods based on
plane waves is the large length of the basis, which hampers
their use for objects with localized electron states. In such
cases, a more efficient way may be the use of the methods
discussed in Section 3.4.2 with the basis states coordinated
with the effective potential in the crystal.

3.4.2 Methods based on expansion into partial waves. Partial
waves are functions that are approximate solutions of the
Kohn±Sham equations for an approximate potential in a
crystal. They are constructed via sufficiently complex
procedures, but they result in a number of advantages in
comparison with plane-wave methods. To construct partial
waves, the space of the crystal is divided into specific muffin-
tin spheres, in which the potential is considered spherically
symmetric, and the interstitial space between the spheres, in
which the potential is considered constant. The partial waves
are solutions of the Kohn±Sham equation inside the muffin-
tin spheres smoothly coupled to solutions in the interstitial
space. Such solutions depend on the energy and can be chosen
in different ways. In particular, one can take a linearized
solution, which is exact in the sphere of some atom for an
average energy of the occupied bands and linearly changes
with the deviation from this energy (the `head' of the
orbital). If this solution is smoothly coupled on the sphere
to the solution in the interstitial space, which decreases with
the distance from the center of this sphere (the `tail'), and if
the tail is expanded into solutions of the Kohn±Sham
equations in other spheres, then we obtain a linear muffin-
tin orbital (LMTO) [144]. But if the linearized Kohn±Sham
solutions in the spheres are coupled to plane waves in the
interstitial space, we obtain the so-called linear augmented
plane wave (LAPW) [144].

The fastest calculations of the band structure are achieved
in terms of the tight-binding LMTO method (TB-LMTO). A
description of very ingenious methods of constructing such
orbitals can be found in Ref. [145]. It is shown there that the
interstitial solution can be chosen such that the value of the
tail of the TB-LMTO in the atomic spheres nearest to the
`head' sphere is an order of magnitude smaller than the TB-
LMTO value in the head sphere, and for atoms of the third
coordination shell, the tail is completely negligible. With such
atomic-like orbitals, sufficiently exact Kohn±Sham solutions
for close-packed structures are obtained with a minimum
s, p, d, f set of basis orbitals. An additional acceleration of
calculations is achieved by the use of the atomic-sphere
approximation (ASA), in which spheres of an increased
volume, which cover the entire volume of the crystal, are
introduced instead of the nonoverlapping muffin-tin spheres,
and the calculation of the matrix elements of the Hamiltonian
is performed only over the atomic spheres.

The method of constructing a complete but very short
basis set for many-body calculations based on the LMTO
method was suggested in [146]. The idea in [146] follows from
expressions (79) and (80) for the polarization; because the
polarization matrix elements are determined by the products
of the band states, the basis in the LMTO approach should be
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constructed from the products of LMTOs. Because the
products of LMTOs are not mutually orthogonal and can
be linearly dependent in general, an orthonormalized basis of
the so-called `product orbitals' should be constructed via the
orthogonalization of the matrix of the overlap integrals of the
products of LMTOs. Linear dependences can then be
eliminated by the removal of product orbitals with small
weights (which can be estimated in terms of the appropriate
eigenvalues of the overlap matrix). The number of the thus
obtained product orbitals sufficient for calculations of the
dynamics of electrons is 40 ± 50 for atoms with valence
s, p, d orbitals and 70 ± 100 for atoms with s, p, d, f orbitals.

The majority of calculations for the dynamics of electrons
discussed in the subsequent sections were performed in the
basis of product orbitals. These are TB-LMTO GW calcula-
tions for the lifetime of excited electrons in Cu, Ag, Au [147],
Nb, Mo, Rh, Pd, Ag [111], Nb, and Al [110]. The results of
TB-LMTO GW�T calculations were published for the
lifetime of electrons in Fe and Ni [46, 148], Pd, Ta, Al [47],
V, Nb, Ta, Mo, W, Rh, and Ir [149], and for the mean free
path of electrons in Fe, Ni, Pt, and Au [48]. TB-LMTO GW
calculations were also made with spin±orbit interaction for
the time and length of spin depolarization in Al, Cu, Au, Nb,
and Ta [127].

Calculations in the basis of products of orbitals are fastest
and sufficiently precise for the close-packed structures or
structures that can be artificially made close-packed by the
introduction of additional atomic spheres into the interstitials
with a basis but without an atomic core (extraspheres).
However, for many structures, for example, for layered
ones, this is impossible, and then more complex methods are
required. One such method, based on the full-potential
LMTO band method (FP-LMTO) was developed in [150,
151]. In contrast to the TB-LMTO method, the FP-LMTO
method is based on the geometry of a potential with
nonoverlapping muffin-tin spheres. The basis functions used
in this method have a large spatial extent; the way of
constructing them and the methods of computing matrix
elements of the Hamiltonian in this basis are described
in [151]. To increase the accuracy of calculations, `floating'
orbitals can be introduced with the centers in the extra-
spheres, as can `local orbitals' with the centers in the real
atoms. The Kohn±Sham equation in the FP-LMTO method
is solved for the full potential rather than the potential that is
spherically symmetric in the atomic spheres, as in the TB-
LMTO method.

The many-body method based on the band FP-LMTO
method is a self-consistent GW method. As the TB-LMTO
GW method, the FP-LMTO GW method involves product
orbitals localized inside the atomic spheres, but with a basis
extended by adding plane waves necessary for calculating the
interstitial parts of the matrix elements (for details, see [151]).
Eventually, a method was obtained that works more slowly
than the GWmethod on the basis of TB-LMTO orbitals, but
has a wider field of application and involves no additional
approximations except the GW approximation itself. The
method was widely used for calculating energy band
structures with self-energy corrections [151], but there are
only two examples of the application of the method to the
dynamics of excitation damping; these are works [152] for
holes in Cu and Au and [153] for holes in Ag.

In Ref. [154], a modified GWmethod was also developed
in the basis of LAPW partial waves (LAPW GW). It was
used in the calculation of lifetimes for Al, Cu, Au, and Pd.

The results of calculations are compared with the results of
TB-LMTO GW calculations in Section 4.1.

4. Some concrete results of studies
of the femtosecond dynamics of electrons in metals

4.1 The dynamics of electrons in aluminum
The energy band structure of aluminum is well known (see,
e.g., Ref. [155]). This metal has a relatively low density of
states, which is very close to that in a free electron gas with the
electron density value rs � 2:06, which follows from its crystal
structure. Therefore, aluminum is a good object for testing
the theory of the dynamics of excited states. The relaxation
times of excited electrons in aluminum were first determined
by the TR-2PPE method in [156]. Recently, new measure-
ments of relaxation times were carried out, in which the
contributions from the cascade electrons, transport, and
photon scattering were excluded [81]. At energies above
1.2 eV, the results obtained in [81] almost coincide with the
data obtained previously in [156]; therefore, at this energy, the
results in [156] can be considered to be confirmed and to be
related to the relaxation via electron±electron scattering only.
The divergences between the data of these works at energies
below 1.2 eV are ascribed in [81] to problems with the vacuum
in the experiments in [156].

The first calculations of the lifetime of excited electrons
were performed in Refs [143, 157] by the GW method in the
Matsubara formalism of Green's functions. Their results
differ substantially from the results of later, more correct
calculations, and we do not discuss them in what follows. The
more complete calculations of lifetimes, with the averaging
over the directions of the momenta for each excess energy of
an electron, were performed by the APW GW method in
[125]. Calculations by theGWmethod in the TB-LMTO [110]
and LAPW [154] bases then followed. Self-energy terms of a
higher order inWwere included in calculations by theGW�T
method in [47].

The results of measurements and first-principle calcula-
tions of the lifetime in aluminum are shown in Fig. 10. The
lifetimes averaged over the wave vector that were calculated
in the plane-wave basis almost coincide with the data
obtained in the TB-LMTO basis and in the DFEG theory.
Furthermore, these data are very close to the results of
calculations in the random-k model [110]. The lifetimes
calculated in the LAPW basis are somewhat higher, but with
increasing the energy of the excited electron, they demon-
strate quite a similar tendency. However, all the calculations
(carried out in the framework of the G0W0 version of the
method, i.e., using theRPAandGreen's function uncorrected
for the self-energy) give lifetimes noticeably greater than both
the old and new experiments.

A noticeable improvement in the first-principle results
was achieved when higher-order terms in the screened
potential were included into the self-energy in the framework
of the GW�T approach. After the inclusion of T-matrix
terms with the electron±hole interaction, the estimated life-
time becomes only 20 ± 30% higher than the experimental
value. After the inclusion ofT-matrix termswith the electron±
electron interaction, the estimated lifetimes with an excess
energy above 1 eV practically coincide with the experimental
values, but at energies below 1 eV, they become lower [81]. It
is therefore obvious that the self-energy terms of higher orders
in W should also be taken into account, but the problem of
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their correct calculation has not yet been completely solved.
The first-principle calculations carried out for aluminum are
not perfect. Possible ways of improving the theory are
calculations of the screened potential beyond the RPA and
the inclusion of self-energy effects into the Green's function,
i.e., self-consistency. Another possibility is also offered by the
GWG method. It was asserted in [158, 159] that the
approximation of the static screened potential used in the T-
matrix calculations for materials with nearly free electrons
overestimates the T matrix by a factor of approximately 1.5;
however, the calculations with a reduced T matrix led to
results that were only slightly better than theGW calculations
in the RPA. Further efforts are required in this research
direction.

4.2 The dynamics of electrons in copper, silver, and gold
Figure 11 displays the total densities of states for copper,
silver, and gold obtained by the TB-LMTOmethod [147]. The
high peaks in the density of states belong to bands of the
d type; they lie in the energy rangesÿ6 toÿ1:5 eV for copper,
ÿ6:3 toÿ2:6 eV for silver, and ÿ7:5 to ÿ1:6 eV for gold. The
states with the lower energy are mainly formed from valence
s orbitals of metals, and those with the higher energy, from
valence p orbitals. Therefore, it can be expected that the
dynamics of the relaxation of electron excitations in these
metals must be similar to the dynamics in metals with nearly
free electrons. This assumption, as we show below, is justified
only partially in view of the complexity of relaxation
processes, which include inelastic scattering and a number of
additional processes.

We note that the energy of the d zones for these metals is
not calculated entirely correctly, which is a disadvantage of all
bandmethods of the density functional theory. A comparison
with the photoemission spectroscopy data shows that the
energies of the d bands are overstated by 0.5 eV in copper, by
1.2 eV in silver, and by 0.9 eV in gold. Attempts to correct the
energies of the d bands by self-energy methods of the many-

body theory have not led thus far to positive results. In
Ref. [147], we studied the effect of the energy of d bands on
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the lifetimes of electron excitations. The energy of the bands
was varied by changing the specific parameter of the LMTO
method, the so-called generalized principal quantum number
of d orbitals. It was shown that this influence is insignificant.

Experimental studies of the relaxation time of electron
excitations in Cu, Ag, and Au were mainly performed by the
TR-2PPEmethod. The first studies for copper [19, 26] showed
a monotonic decrease in the relaxation time with increasing
the electron energy, as is expected from the DFEG theory;
this decrease was not confirmed later, however. On the
contrary, a nonmonotonic change in the relaxation time
with a sharp increase at energies from 1.5 to 2.5 eV was
observed in [160] (Fig. 12). The presence of this effect was
confirmed in Refs [161] and [32]. The authors ascribed this
phenomenon to the effect of the generation of Auger electrons
upon filling the primary holes in the d zone, i.e., to the `d-band
catastrophe' (see Section 2.1.2). The magnitude of this effect
depends on the energy of the pumping photon. Because the
maximum energy of the d bands in copper is smaller by 2 eV
than the Fermi energy, this effect should be absent at energies
of the pumping photon less than 2 eV. This is completely
confirmed by the data in [28] obtained at the pumping photon
energy 1.63 eV. The results obtained in [160] and [28] are given
in Fig. 12, together with the lifetimes calculated in the GW
approximation. The first calculated lifetimes obtained in [117]
are insufficiently reliable, because at energies below 1.5 eV,
they differ from the later data in a way that is difficult to
explain. But the almost complete agreement of the results
obtained independently in the plane-wave basis in [143] and
by Zhukov et al. in the LMTO basis show the reliability of
later calculations. The results of LMTO GW calculations are
far from the lifetimes that can be obtained using the DFEG
theory at rs � 2:65, which follows from the number of
s electrons and the lattice parameter. However, by varying
rs, good agreement can be obtained between the results of the
DFEG theory and LMTO GW calculations at rs � 2:1.

Because the experimental relaxation times obtained in [28]
are free of the effects caused by Auger electrons, it is
instructive to compare them with computed lifetimes. It is
evident that agreement is observed at the excess energies of

electrons above 1.2 eV. At lower energies, the calculated
lifetimes are noticeably higher than the relaxation time. The
most probable factor that can be responsible for this
difference is the transport of electrons from the irradiated
spot, which reduces the relaxation time. From the theoretical
standpoint, errors can appear in the calculations due to the
use of the noninteracting Green's function G0, as well as the
use of the RPA in the calculations of the screened interaction
and the neglect of the self-energy terms of higher orders inW.

The relaxation times of excited electrons in silver in the
widest energy range were studied by the TR-2PPE method in
[162]. At energies below 0.5 eV, they are close to the earlier
results in [163], and at energies greater than 1.5 eV, they are
confirmed by the data in [164]. However, at energies between
0.5 and 1.5 eV, the relaxation times obtained by Aeschli-
mann [80] are higher than the relaxation times according to
Wolf [162]. This is explained by the different conditions of
conducting the experiments; Wolf's experiments were carried
out on thick metallic films, whereas the measurements of
Aeschlimannwere performed on thin (from 10 to 30 nm) (100)
films on magnesium oxide. This prevents the transport of
excited electrons and results in an increase in the relaxation
time with decreasing the thickness of the film. On the other
hand, because the experiments were conducted at energies of
the pumping photons approximately equal to 3.3 eV, the
effect of Auger electrons can be excluded because the energy
of the d bands is too low, lower than ÿ3:8 eV.

Two first-principle calculations of the lifetime of excited
electrons with averaging over the wave vector have been
performed; these are the APW GW calculation in [131] and
the LMTO GW calculation in [147]. The APW lifetimes
appear to be incorrect, because, in spite of the similarity of
the band structures of noble metals, they are 2 ± 3 times less
than the lifetimes for copper and gold. The LMTO lifetimes
are somewhat lower than the relaxation times given by
Aeschlimann, which can be explained by the positive
contribution from cascade electrons. The relaxation times
calculated by Wolf are less than the lifetimes obtained in
LMTO calculations, apparently because of the transport
effects.
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For gold, the relaxation times of electron excitations
were measured by Aeschlimann et al. using thin (111) Au
films on MgO, which allowed, as in the case of silver,
eliminating transport effects. The lifetimes were calculated
by the APW GW method in [118] and in the LMTO GW
approach in [147]. The second set of results is more reliable,
because the results in [118] are not extrapolated to the
infinite lifetime at the zero excess energy of an excited
electron. However, at the excess energy of electrons above
1 eV, the correspondence between the results of these
calculations is satisfactory. As in the case of silver, the
estimated lifetimes are less than the experimental relaxation
times. This can be partly explained by the effect of cascade
electrons. But because the maximum energy of the d bands
is 2.5 eV away from the Fermi level, which is less than the
energy of the pumping photon, the generation of Auger
electrons, which increases the relaxation time, should also
be efficient. Indeed, the experimental energy dependence of
the relaxation time exhibits a local maximum at 1.7 eV.

Figure 13 displays the results of the estimation of
relaxation times for Cu, Ag, and Au according to the
Boltzmann theory. For copper, data are given that are
obtained by the successive inclusion of the qgs=qt terms in
Eqn (36), which describes different mechanisms of changes in
the population of the excited level. The relaxation times
calculated with only the `inel' term in Eqn (36) are in good
agreement with the results of LMTO GW calculations. The
inclusion of the effect of cascade electrons (the `casc' term)
that fall onto a given excited level from the higher levels,
substantially increases the relaxation time, but the effect of
electron transport from the irradiated zone almost completely
compensates the cascade effect. When taking the effect of
Auger electrons into account (the `Au' term), a local
maximum at 1.3 eV appears in the dependence of the
relaxation time on the electron energy. It corresponds to the
maximum in the experimental curve near 1.2 eV. On a
qualitative level, the calculated energy dependence of the
relaxation time corresponds to the experimental data.
However, there are significant quantitative differences; an
increase in the relaxation time with decreasing Eÿ EF in the

calculation is observed beginning at 1.15 eV, whereas in the
experiment, it occurs at 0.75 eV.

The calculations within the Boltzmann theory for Ag and
Au were carried out in [80]. The calculations included `inel,'
`transp,' and `Au' terms, but the effect of cascade electrons
was omitted. The calculations of the transport effect were
carried out for both a bulk crystal and thin films. For both Ag
andAu, a reduction in the transport effect with decreasing the
film thickness was noted. As is expected from the experiment
and the band structure, no effect of Auger electrons is present
in silver, but it substantially increases the relaxation time in
gold and leads to the appearance of a local maximum at
1.6 eV. Because the first-principle GW approach includes
only the inelastic scattering, the lifetimes estimated according
to the LMTOGWmethod prove to be considerably less than
the experimental values and than the lifetimes calculated
according to the Boltzmann theory.

4.3 The dynamics of holes in copper, silver, and gold
It can be expected that the relaxation time of holes in the d
states of noble metals, because of their smaller spatial extent,
can differ noticeably from the lifetimes of electrons or holes in
nearly free states. Therefore, the dynamics of holes in d bands
have attracted the attention of many researchers. The first
measurements of the relaxation times of d holes were carried
out in [165] by theARPESmethod. They showed a decrease in
the relaxation time from the upper to the lower states of the
d band, but the values of the relaxation time were 5 ± 7 times
less than the results of later measurements. It is remarkable
that the first correct results on the dynamics of holes were
obtained not by the ARPES method, which is suitable for
such measurements in its physical essence, but by the TR-
2PPE method, which was developed for studying the
dynamics of electron excitations. The corresponding mod-
ification of the three-level model and related measurements
were performed in [32, 33, 74, 75]. The problem of this
approach is that it results in an averaged relaxation time,
without resolution in the hole energy. Therefore, we restrict
ourselves to the examination of more complete data obtained
only by the ARPES method.

R
el
ax

at
io
n
ti
m
e,
fs

Eÿ EF, eV

Ag
80

60

40

20

0

1.0 1.5 2.0 2.5

R
el
ax

at
io
n
ti
m
e,
fs

Eÿ EF, eV

Au

160

140

120

100

80

60

40

20

0
1.0 1.5 2.0 2.5 3.0

R
el
ax

at
io
n
ti
m
e,
fs

Eÿ EF, eV

Cu

300

250

200

150

100

50

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 13.Relaxation times of excited electrons in Cu, Ag, and Au calculated within the Boltzmann theory (see Section 3.1). For copper [22, 103, 113], the

solid line corresponds to calculations performed with only inelastic scattering taken into account; dotted line, the effect of cascade electrons is added;

dashed line, the transport effect is subtracted; solid squares, the effect of Auger electrons is added; open squares, experimental data of Pawlik et al. For

silver [80], the dotted line corresponds to calculations performed for a bulk sample with allowance for inelastic scattering and the transport effect; dashed

line, analogous results for a film 30 nm thick; solid line, analogous results for a film 15 nm thick; open circles, experimental relaxation times for a film

15 nm thick. For gold [80], the dotted line corresponds to calculations with inelastic scattering and the transport effect for a bulk sample; dashed line,

analogous results for a film 26 nm thick; solid line, analogous results for a film 10 nm thick; and open rhombi, experimental relaxation times for a film

10 nm thick.

February 2009 The femtosecond dynamics of electrons in metals 127



The first relaxation times with resolution in the energy of
holes were calculated in [31] from the high-resolution ARPES
spectra obtained for copper in [166]; they were equal to 26 fs
for states near the upper edge of the d band and � 3:5 fs for
the bottom edge of the band. More complete studies were
carried out byGerlach et al. for states at the pointsG andX of
the Brillouin zone (BZ) of copper [88] and for states at the
point X of the BZ of silver [89]. One of these high-resolution
spectra is given in Fig. 5. The measurements were performed
at different temperatures and the results were extrapolated to
0 K, which allowed eliminating the contribution of the
electron±phonon interaction to the linewidth, i.e., to the
inverse relaxation time. Furthermore, the authors of [88, 89]
carried out measurements for different durations of anneal-
ing, i.e., for samples with different concentrations of defects.
The concentration of defects wwas estimated from the widths
of the diffraction lines of low-energy electrons; the relaxation
times were then extrapolated to w � 0. The data obtained by
Gerlach et al. are free from the effects of the electron±phonon
interaction and the imperfection of the sample, and can
therefore be compared with the first-principle lifetimes.

For copper, the first calculations of the lifetime of holes
(not entirely successful) were performed by the APW GW
method (with averaging over the wave vectors) in [124, 125].
Then, calculations performed within the TB-LMTO GW
[147] and FP-LMTO GW [152] approximations appeared.
The lifetimes for the states at the points X and G were also
calculated by the APW GW method in [88]. For silver, the
lifetime of holes was calculated by the TB-LMTO GW [147]

and FP-LMTO GW [153] methods. The results of the
experimental studies and first-principle calculations are
given in Fig. 14.

It is obvious fromFig. 14 that according to the FP-LMTO
GW calculations, the average lifetimes of holes in the nearly
free hole states agree well with the data of theDFEG theory at
rs � 2:0, at which the lifetimes of the nearly free electron
excitations are also described satisfactorily. But the results of
the APW GW calculations for copper [124, 125] are almost
2 times higher. For the holes in the d bands, a deviation from
the DFEG model is confirmed, but the magnitude of the
deviation is much higher in the APW GW than in the
FP-LMTO GW calculations. For silver, the lifetimes calcu-
lated for the states at the L, G, and X points within the
FP-LMTO approach agree with the results of APW GW
calculations, except for the states X5 and X2 at the top of the
d band. However, the calculation data for both copper and
silver are considerably higher than the experimental data.
Thus, on the qualitative level, the first-principle calculations
correctly describe the lifetimes of the hole d states, confirming
their decrease in going from the top of the d band to the
bottom of the band; however, there are noticeable differences
between the experimental data and the results of calculations
in the GW approximation.

4.4 The dynamics of electrons
in nonmagnetic transition metals
The first experimental studies of the relaxation time of
electrons in transition metals were performed for tantalum
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in [27, 163]. Later, the relaxation times were studied by the
TR-2PPE method for Ta [49] and Mo and Rh [68]. The first
calculations of the lifetime with averaging over the wave
vector were carried out by the TB-LMTOGWmethod forNb
[110, 111] and Mo, Rh, and Pd [111]. In Ref. [167], the APW
GW method was used to calculate the lifetime of electrons at
some symmetrical points in the Brillouin zones of Y, Rh, Nb,
Mo, and Pd. Then, two first-principle calculations by the
GW�T method for Ta [49, 47], Pd [47], and Pt [48] appeared.
Later, a new version of the GW�T method, with the
summation of the T matrix beginning with the term propor-
tional toW 3, was used in the calculations for Mo and Rh [68]
and V, Nb, Mo, Rh, and Ir [149].

Some information on the dynamics of relaxation of
electrons in transition metals can be derived from the
densities of states, which are given in Fig. 15 for the most
studied cases of Ta, Mo, and Rh. In all these cases, the Fermi
level lies in the region of a high density of d states; therefore,
shorter lifetimes can be expected for both electrons and holes
in these metals. Because of the short lifetime of holes, the
influence of Auger electrons must be weak. Since the d-band
electrons have a large effective mass and a low velocity (in
comparison with nearly free electrons), it may be expected
that the transport effects are also weak. This is completely
confirmed by the results of experiments in [81], which have
shown the absence of noticeable changes in the correlation
traces upon changes in the thicknesses of Ta, Mo, and Rh
films. For the transition metals, in view of the absence of the
above-mentioned secondary processes, it is possible to expect
better correspondence (than for the noblemetals) between the
experimental relaxation times and the first-principle lifetimes.

Figure 16 displays the experimental and calculated data
on the dynamics of electrons in tantalum, molybdenum, and
rhodium. It is evident that already at the GW level, the first-
principle calculations agree well with the experimental
tendencies. Moreover, even some fine details are repro-
duced, such as a smooth change in the lifetime with
increasing the state energy in molybdenum, the presence of a
bend in this curve at 1 eV in tantalum, and a sharp bend at 1 eV
in rhodium. The contribution of the T matrix to the self-
energy somewhat reduces the lifetimes, bringing them into
better correspondence with experiment. However, in contrast
to the case of aluminum, the T-matrix contributions are
inessential in general. A qualitative explanation of this
circumstance is given in Ref. [47]. In view of the high density
of states near the Fermi level, the electron±electron interac-
tion is more effectively screened in the transition metals. As a
result, the screened potential W in the transition metals is
noticeably lower than in aluminum, which, in view of
Eqn (93), ensures the smallness of the T matrix.

4.5 The dynamics of electrons
in magnetic transition metals
The first studies of the dynamics of the relaxation of excited
electrons in magnetic metals were performed for Co by the
TR-2PPE method [109]. The scheme of the experiment was
similar to that depicted in Fig. 2; however, the experiments
were conducted with time and spin resolution, which allowed
determining the spin-dependent relaxation times. Analogous
studies were then carried out for iron and nickel [22].

The first theoretical estimations of the dynamics of excited
electrons in ferromagnetic metals were performed in [99, 100,
106] in the framework of the semiempirical scattering theory.
For Fe, Co, and Ni, the energy dependence of the spin
polarization of excited electrons, the mean free path, and the
spin asymmetry of the lifetime (i.e., the ratio of the lifetime of
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electrons with spin up to the lifetime of electrons with spin
down) were studied. Later, in [22], the relaxation time of
electrons in Fe, Co, and Ni was studied using the Boltzmann
theory and, unlike in [99, 100, 106], transport processes,
cascade processes, and the generation of Auger electrons
were introduced into the consideration. The scattering
theory with a somewhat different choice of parameters was
also used for calculations of the lifetime in [21].

On the whole, a correct choice of the theory parameters
leads to a correct description of the tendencies in changes in
the relaxation characteristics. However, all the above-noted
approaches have one common shortcoming: they are all
based on the first Born approximation, and hence do not
account for a multiple interaction of particles. As a conse-
quence, they ignore energy losses by electrons in magnets via
the generation of spin waves. As was shown in Section 3.3.3,
such processes can be taken into account in terms of the
T-matrix theory. At the model level, the T-matrix formalism
for the self-energy and spin magnetic susceptibility was
developed in [137]. A more realistic approach, based on the
RPA and a modified Hubbard Hamiltonian, was developed
in [98, 138, 168 ± 170]. Apart from the correlation Hubbard
term, the Hamiltonian considered there included an exchange
term, computed using first-principle d orbitals. The authors
calculated the energy of spin waves, spin-dependent electron
lifetimes, and the mean free path. However, their approach
was not entirely a first-principle one.

Amany-body formalism for the spin susceptibility and the
self-energy of electrons in ferromagnets based on the
Matsubara Green's functions was suggested in [45, 126,
140]. The first completely first-principle calculations of a
self-energy and lifetimes of excited electrons, including both
the longitudinal and transverse T-matrix terms, were per-
formed in [46] for Fe andNi (see the description of themethod
in Section 3.3.3). The authors then calculated the mean free
path of electrons in Fe andNi [48]. Themain results in [46] are

given in Fig. 17. Because interesting effects are observed at
low energies, the results are shown for the inverse lifetime G,
i.e., the damping rate, equivalent to the spectral linewidth.

The possibility of the generation of spin waves upon
energy loss by primary electrons in ferromagnets is deter-
mined by the conservation law of the total spin. Upon the
appearance of a spin wave, the magnetic moment of a
ferromagnet decreases by two Bohr magnetons [114], and
therefore the transition of a primary electron must also occur
with an increase in its spin momentum by two Bohr
magnetons. Consequently, only spin-down electrons can
lose energy, generating spin waves. This completely corre-
sponds to the results of calculations of the damping rate G for
iron. It is seen that G for spin-up electrons in iron is
determined by the GW contribution, whereas both the spin-
diagonal and spin-off-diagonal T-matrix contributions to G
are negligible. The calculated damping rate of spin-up
electrons is noticeably higher than the experimental value.
Because the experiments were conducted using oriented thick
films grown on a Cu�001� surface, the probable factor
responsible for this difference can be the electron transport
from the irradiated zone.

The calculations show that the damping of spin-down
electrons in iron is the case where both spin-diagonal and
spin-off-diagonal T-matrix terms are important. The spin-
diagonal terms are small at electron energies below 1 eV, but
they become significant at higher energies. This is explained
by an increase in the propagator Kÿ1=2;ÿ1=2 related to the
excitation of secondary electrons from spin-down states,
which form a peak in the density of states with a maximum
nearÿ1 eV, to states that form a peak at approximately�1 eV
(see Fig. 7). On the contrary, spin-off-diagonal terms, which
correspond to the relaxation that is accompanied by the
generation of spin waves, are important at electron energies
below 1 eV; in the G�Eÿ EF� dependence, they yield a
maximum at approximately 0.5 eV.
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The processes of damping of spin-up electrons in nickel
are similar to those in iron; the contribution of the T-matrix
terms is also small, and the calculated damping rate is lower
than in experiment, probably for the same reasons. However,
the processes of damping of spin-down electrons in iron and
nickel differ noticeably. In nickel, the spin-diagonal T-matrix
terms increase noticeably with increasing the electron energy
near 0.3 eV. This is related to the excitation of spin-down
electrons in the limits of a bandwith a high density of states, in
which the Fermi level is located (see Fig. 7). In this case,
charge-density waves rather than magnons are generated.
However, the contribution of spin-off-diagonal T-matrix
terms, which are related to the generation of spin waves, is
much less in Ni than in Fe. Qualitatively, this is explained by
the difference in the screened potential. For a wave vector
close to zero, the leading matrix element of this potentialW11

is equal to 1.3 Ry for iron (where Ry is the Rydberg energy),
and to only 0.63 Ry for nickel. According to Eqn (95), the
ratio of the damping rates for Fe and Ni at close spectral
functions ImR1=2;ÿ1=2 is

G1=2;ÿ1=2�Ni�
G1=2;ÿ1=2�Fe� �

W 2
11�Ni�

W 2
11�Fe�

;

and therefore the magnitude of G�Ni� is considerably lower
than G�Fe�.

Thus, the first-principle GW�T calculations show that
the effects of the T matrix, which correspond to the
generation of magnons in iron and of charge-density waves
in nickel, are important for the relaxation of excited electrons
with energies below 1 eV. We show in what follows that they
are also important for the mean free path at electron energies
below 1 eV, whereas the GW term is prevalent at higher
energies.

4.6 The mean free path of excited electrons in metals
The mean free path of excited electrons that is computed in
the first-principle approaches in a state with an energy eqns
and group velocity vqns is usually defined as the distance
covered by an electron in a time equal to the lifetime of the
state tqns, i.e., lqns � vqnstqns. The group velocity is here
defined as vqns � qeqns=qq [114]. In this case, it is assumed
that the electron velocity does not change during the lifetime
of the state, i.e., the electron motion is ballistic. After
calculating the electron velocity and the inelastic lifetime
from first principles, it is possible to find the inelastic mean
free path.

In virtually all experimental works, it is assumed that the
motion of an electron with the excess energy approximately
equal to 1 eV (typical of the SVTs and MTTs) is ballistic, i.e.,
that the probability of an electron penetrating a film with a
thickness d is given by p�d � � exp �ÿd=lb�, where lb is the
ballistic mean free path, which, however, is determined not
only by inelastic scattering of the excited electron but also by a
number of other processes described by Eqn (26). Omitting
the terms connected with spin waves and including the
electron±phonon interaction in the term that describes elastic
scattering, we obtain

1

lb
� 1

linel
� 1

lel
�97�

for paramagnetic materials. The quantity lb can be deter-
mined from experiments on electron transmission through

films of different thicknesses (see Section 2.3). But the values
of linel and lel cannot be experimentally obtained separately,
and here first-principle calculations can be useful.

However, the question arises under what conditions the
motion can be considered ballistic, i.e., under what conditions
Eqn (97) is valid. It was shown in Ref. [171] that with the
elastic scattering by defects and impurities taken into account
using the theory of Markov processes, a diffusion term
appears in the expression for p�d �, and it becomes

p�d � � exp

�
ÿ d

lb

�
�
�
1ÿ exp

�
ÿ d

lel

��
exp

�
ÿ nlel
linel

�
:

�98�

At small d, of the order of 10 A
�
, ln p tends toÿ1=linel, i.e., the

electron motion is determined only by inelastic scattering,
while at large d, more than 50 A

�
, ln p tends to ÿ1=lb, i.e., the

motion is ballistic, but it depends on both elastic and inelastic
scattering. At intermediate d, the electron motion is a
combination of these two types of motion.

The majority of experiments concerning the determina-
tion of themean free path have been conducted on thick films,
for which Eqn (97) is correct. Such experiments with excess
energies of excited electrons of approximately 1 eV were
carried out for Al, Ag, Au, Pd [172, 173], again for Au [174],
for permalloy Ni80Fe20 [94, 95], and for iron [93]. These
experimental data are compared in Table 1 with the results
of first-principle calculations of the inelastic mean free path
that was calculated using lifetimes obtained from GW and
GW�T calculations. The table also gives the values of the
elastic mean free path lel calculated from the experimental lb
and the first-principle linel according to Eqn (97). It is seen
that they are comparable in all the cases; i.e., both the
processes of inelastic scattering, connected with the finiteness
of the lifetime of an excited state, and the processes of elastic
scattering, i.e., the randomization of the directions of motion
of the excited electron because of the elastic scattering by
defects and impurities, are of great importance. But any
theoretical approaches to the calculations of the elastic
scattering length, either semiempirical or first-principle
ones, are absent at present. For aluminum and noble metals,
there exist only first-principle data on the dependence of the
inelastic mean free path on the electron energy; in Fig. 18,
these are given for gold, as an example. The estimations of
elastic and inelastic mean free paths according to the existing

Table 1. Experimental values of the mean free path lb and the calculated
values of the inelastic �linel� and elastic �lel�mean free paths at the energy
of an excited electron Eÿ EF � 1 eV.

Metal lb, A
�

References linel, lel, A
�

GWmethod

linel, lel, A
�

GW�T
method

References

Al

Ag

Au

Pd

Fe(")
Fe(#)
Ni(")
Ni(")

100

265

220

220 ë 230

230 ë 280

31

87

16

4

78.43

12.10

[173]

[173]

[173]

[172]

[174]

[171]

[173]

[93]

[93]

[95, 94]

[95, 94]

670, 117

797, 397

1300, 283

89, 47

60

1

95

12

270, 159

414, 736

470, 460

ì

ì

ì

ì

ì

[48]

[127]

[48]

[127]

[48]

[48]
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experimental data were made only for palladium [171].
Together with the appropriate first-principle data, they are
shown in Fig. 18.

The `experimental' values of linel and lel for palladium
[171] were obtained by fitting the current passing through
the film, calculated via Eqn (98) at varying linel and lel, to
the experimental data. The value of lel is almost indepen-
dent of the energy of the excited electron, whereas the
experimentally found reduction in the value of linel with
increasing the electron energy agrees with the results of first-
principle calculations. For palladium, states with energies
Eÿ EF > 0:3 eV are almost free-electron states. Their
velocity increases slowly with the energy, whereas the lifetime
decreases much more rapidly, as t � �Eÿ EF�ÿ2, which
explains the reduction in linel with increasing the electron
energy. The variation of linel for gold is explained similarly.

Figure 19 displays the theoretical and experimental
characteristics of the dynamics of electrons in iron and
nickel. In both cases, the inelastic mean free path of spin-up
electrons is 5 ± 7 times greater than that for spin-down
electrons. But the reasons for this difference in Fe and Ni
are different. In iron, spin-up electrons are nearly free, while
spin-down electrons are d-like. Therefore, the velocity of spin-
up electrons is considerably greater, and at comparable
lifetimes, the difference in the mean free paths is determined
by the difference in the velocities. In nickel, on the contrary,
electrons of both types are nearly free (at Eÿ EF > 0:3 eV)
and the difference in the velocities of electrons with spin up
and down is considerably less than the difference in the
lifetimes. Therefore, the main reason for the spin dependence
of the inelastic mean free path is the difference in the lifetimes.
This is discussed in more detail in Ref. [48].

The role of the effect of generation of spin waves in the
relaxation of excited states with spin down can be deter-
mined from a comparison of the inelastic mean free path

calculated for iron using the lifetimes estimated from GW
and GW�T calculations. It is seen that for iron, the
inclusion of the T-matrix terms, which account for the
generation of spin waves, sharply reduces the mean free
path at the energies of the excited state Eÿ EF < 1 eV, but
this effect is insignificant at higher energies. An analogous
effect of the reduction in the mean free path upon the
inclusion of T-matrix terms (insignificant at the energies
above 1 eV) exists in nickel.

The relaxation lengths of electrons in iron were investi-
gated experimentally in Ref. [93]. It was shown that the
measured spin asymmetry of the relaxation length, l"=l#, is
much less than the theoretical value �� 5ÿ7�, mainly because
of the shorter theoreticalmean free path for spin-up electrons.
The authors of [93], using their results and the data of first-
principle calculations [48], estimated the elastic mean free
path as barely depending on the energy and equal to 20 A

�
. As

for Al, Ag, Au, and Pd, the mean free path of electrons in iron
is thus determined by the processes of both inelastic and
elastic scattering.

Experimental data on the attenuation length for electrons
in pure nickel are absent; therefore, in Fig. 19 the first-
principle results are compared with the experimental data
for permalloy Ni80Fe20 taken fromRefs [94, 95]. It is seen that
the correspondence between the calculation and the experi-
ment is better for Ni80Fe20 than for iron. However, we are
inclined to consider this agreement accidental, because
analogous experiments conducted in [94] give the much
smaller value lex � 43� 0;3 A

�
for spin up at Eÿ EF �

0:9 eV. Furthermore, the experiments in [95, 94] were carried
out on films with a thickness less than 100 A

�
. According to

Eqn (98), electron diffusion may be an important factor at
these thicknesses, whereas the experimental data in [95, 94]
were fitted to the function exp �ÿd=lex�, which corresponds
only to ballistic motion.
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5. Conclusion

The studies on the dynamics of electrons in metals described
in this review have led to a number of achievements, but have
simultaneously highlighted some difficult problems.

From the standpoint of experiment, the most important
result is probably the fact that a sufficiently complex nature
of the relaxation of excited states was revealed, which
includes a set of processes that affect the population of the
excited level, such as the electron±electron and electron±
phonon scattering, processes of electron transport, the
generation of Auger electrons, and elastic scattering by
impurities and defects. Several methods for controlling
these processes have been suggested, such as variation of
the energy of the pumping photons, experiments with films
of different thicknesses on insulating substrates with anneals
of different durations, etc. Various methods for extracting
characteristics of electron relaxation (relaxation times and

mean free paths) from the experimental data have been
developed. Based on the scattering theory and the Boltz-
mann equation, semiempirical models of the most impor-
tant relaxation processes were developed. In spite of their
simplicity, these models describe experimental data qualita-
tively correctly. But the accuracy of such calculations is
often low, and significant divergences between the experi-
mental data and the results of calculations are frequently
observed.

From the theoretical standpoint, the most important
achievement appears to be the fact that a concretization of
the first-principle GW method was carried out and reliable
computer programs were created that allow calculating the
characteristics of electron dynamics. First-principle calcula-
tions performed for a sufficiently large number of objects
suggest that in the cases where the inelastic electron±electron
scattering that predominates all possible mechanisms of
relaxation, the GW method (if necessary, augmented by the
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T-matrix method) can lead to good results. Examples are
tantalum, molybdenum, rhodium, and ytterbium.

However, in a number of cases with nearly free electrons
(aluminum, noble metals, spin-up states in ferromagnetic
metals), there are noticeable deviations of the first-principle
lifetimes from the experimental data. The reasons for the
deviations are thus far obscure. They may be both the
influence of relaxation processes that occur in experiment
but are not taken into account in the GW approach, and
errors inherent in the first-principle approach itself. In this
respect, it would be useful to design new experiments that
would allow separating processes of electron±electron scat-
tering from the observed relaxation phenomena and obtain-
ing their time characteristics. Because the GWmethod found
awide application for calculating the energy band structure of
real objects beyond the limits of the theory of the electron-
density functional, it is very important to continue studies
directed toward an increase in the accuracy and speed of the
method. Calculations of the lifetime can serve as a good test of
the accuracy of new versions of the method. Because the
lifetime of nearly free excited electrons in metals obtained
with the GW method is reproduced well by GW calculations
for an interacting free electron gas with an optimized rs
(DFEG), further studies of the dynamics of electrons in the
DFEG model are also of great interest.

Thus far, even the very reason for the relative success of
theGWapproach in research on electron dynamics is unclear,
because, being based on the formalism of a single-particle
Green's function, it does not entirely correspond to the
experimental TR-2PPE method, in which the pumping
photon generates electron±hole pairs. A qualitative explana-
tion of the success of the GW approach is based on the
assumption that the electron±hole interaction is screened
quite rapidly, in several femtoseconds, and subsequently the
electron and the hole behave like independent particles.
However, the dynamics of electron±hole pairs is a sphere of
research in which the introduction of first-principle
approaches is just starting.

We also note that no first-principle approaches have yet
been developed for the processes that are characterized in this
review as `additional.' These are, for example, processes of the
elastic scattering of electrons in experiments with spintronic
devices or the cascade, transport, and Auger processes in TR-
2PPE experiments.
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