
Abstract. The Landau diamagnetism of conduction electrons at
sufficiently high temperatures (larger than the Landau level
spacing but smaller than the Fermi energy) is considered using
the analogy with Pauli paramagnetism. An expression obtained
for the diamagnetic susceptibility is identical to the well-known
Landau result. While the model describing free particles as-
sumes a quadratic dispersion law, the difference between the
effective mass of a carrier and electron mass is taken into
account.

1. Pauli paramagnetism

Amagnetic fieldH brings about an energy level shift of states
with different spin projections:
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where mB is the Bohr magneton; in a solid, a carrier may
possess a different magnetic moment. Figure 1 shows the
momentum dependence of energy and how the applied
magnetic field affects the positions of the energy levels. In
this figure, EF is the Fermi energy (it does not change with
magnetic field provided the density of states is constant), the
dashed line is the original momentum dependence of energy,
the solid lines on the left and right correspond to shifted
energies for various magnetic momentum directions, and the
horizontal dotted lines indicate the energies corresponding to
the former value of the Fermi momentum: these energies are
shifted by �D=2 relative to EF.

In the ground state, particles with energies higher than EF

(on the left in the figure) move to free states with energies of
less than EF (on the right). The number per unit volume of

such particles is gD=2 (g is the Fermi surface density of states
per spin projection), and the corresponding energy decrease
per particle amounts to D=2, so that the change in the energy
of the system due to the application of the magnetic field is
given by
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Here,m is the effective mass of the carrier. The magnetization
(magnetic moment per unit volume) M is calculated in the
usual way to give
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where wP, the spin magnetic susceptibility, is expressed as
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with vF � pF=m being the Fermi velocity. It should be noted
that although the above calculations were performed for
zero temperature, the result is valid for finite temperatures
as well, provided they are small compared to the Fermi
energy. To see this, note the following. The Fermi surface
density of states (as well as the position of the Fermi level) is
unchanged by the application of a magnetic field (as long as
the field is weak); hence, the temperature-dependent part of
the thermodynamic potential is found to be the same as
without the field. The only change is left in the energy of
states in the magnetic field.
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Figure 1. Spin-related energy level shifts in a magnetic field.



2. Landau diamagnetism

The generalÐand commonly usedÐway of calculating the
magnetic susceptibility is to first find one of the thermo-
dynamic potentials [for example, the free energy F �T;V;H�]
and then to apply the well-known thermodynamic relation

dF � ÿS dTÿ P dVÿ ~M dH

( ~M �MV is the total magnetic moment) to find the magnetic
moment. However, in the limit T4 �hoH, where �hoH is the
Landau level spacing, there is a very simple alternative way to
obtain the required expression.

In considering spin paramagnetism, we first determined
energy level shifts due to the inherent magnetic moment, and
then looked at what energy decrease will result from this in
equilibrium (due to particle energy redistribution). Our
analysis below proceeds in a similar way.

In a magnetic field, motion transverse to the field is
quantized [1], giving rise to the Landau levels
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Now suppose the magnetic field is H=2, half of that before,
and look at Fig. 2with Landau levels shown both forH (right)
and forH=2 (left). It is seen that the Landau levels doubled in
number for the latter case, so that each of the levels (3) is in a
sense split into two. For example, instead of E0 � �hoH=2,
there are two levels E0=2 and 3E0=2 or, more generally, instead
of the level En there appear levels En � E0=2. The doubling of
levels corresponds to the fact that in a fieldH=2 the number of
states at a Landau level is half that in a fieldH. The splitting of
the initial level is d � E0. As a result, we arrive at the same
picture as in the previous case: half of the states shift upwards,
and the other half downwards. The diagram in Fig. 1 relates
to each one of the Landau levels (with the replacementD! d;
the energy depends on the field-direction component of the
momentum), with the shifted curves corresponding to H=2.
The fact that themoment is one-dimensional should not cause
any confusion, because for temperatures T4 �hoH the total
density of states remains the same as in the absence of a
magnetic field.

Using Eqn (1), we obtain the following equation for the
energy difference upon the establishment of equilibrium:
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The required energy difference E0�H� ÿ E0�0� can be
written out as
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Employing expression (4) for various values of the magnetic
field we obtain
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Notice here that this (orbital) energy increasesÐa fact which
corresponds to the phenomenon of diamagnetism. Then

diamagnetic susceptibility wL is written out in accordance
with Eqn (4) as
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This result agrees exactly with Landau's formula [1]. For free
electrons �m � m0� this susceptibility is three times smaller
than and opposite in sign to spin susceptibility. In a lattice,
however, this relation may be different Ð if for no other
reason than because of the difference between the effective
mass of a carrier and free electron mass.

It should be emphasized that Landau quantization results
in a set of discrete levels in the plane normal to the magnetic
field, whereas for spins (for either projection) the spectrum is
continuous. Therefore, both our analogy with the spin case
and the conclusions we came to are valid only for sufficiently
high temperatures �T4 �hoH�, for which this difference is of
no significance.

The helpful comments by A V Chaplik are appreciated.
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Figure 2. Landau levels in a magnetic field.
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