
Abstract. This article describes the history of the creation and
further development of Landau's famous works on phase transi-
tions, diamagnetism of electron gas (Landau levels), and quan-
tum transitions at a level crossing (the Landau±Zener
phenomenon), and its role in modern physics.

1. Introduction

The fate of Landau's scientific legacy has been amazingly
fortunate. It has been 46 years since he stopped doing science,
but the number of citations per year of his papers is only
increasing, rather than decreasing. It is rather difficult to give
a quantitative estimate since, in many cases, whenmentioning
the Landau theory of phase transitions, the Ginzburg±
Landau equation, the Landau±Lifshitz equation, Landau
levels, the Landau criterion of superfluidity, the Landau
theory of a Fermi liquid, etc., no citation to his original
articles is given. Nevertheless, according to the science-
bibliography website Scirus, the number of formal and
informal citations of Landau's papers on phase transitions
exceeds 30,000, of papers on a Fermi liquid is about 45,000, of
Landau levels is 75,500, of the Landau±Lifshitz equation is
23,000, of Landau damping in plasma is 12,000. In the year
2000, at the anniversary session of the American Physical
Society, there were six stands demonstrating the development
of physics in the 20th century. At four of them, the name
Landau was mentioned.

The goal of these notes is to follow the development of
Landau's ideas and their most important applications up to
the present day. The breadth of Landau's contributions
makes this task practically impossible for a single person.
Originally, this article was planned as a review written by
several authors, but unfortunately this idea did not work out.
That is why the part of this review published here is not
complete. Certainly, many wonderful papers by Landau are
not mentioned here, such as those on astrophysics with
predictions of neutron stars and a criterion of collapse, on
the theory of elementary particles and field theory, on the
theory of superfluidity, on the Fermi liquid theory, and many
others. The material collected in these notes is related to three
important and extremely popular articles by Landau: on
phase transitions, on Landau levels, and on the Landau±
Zener theory. Their further development and numerous
applications clearly demonstrate that Landau's papers are
an important part of modern physics and are at the center of
its interests.

It is amazing how much one person was able to
accomplish in the slightly more than thirty years given to
him by his destiny for scientific work! A short acquaintance
with Landau influenced my life very strongly. These notes are
my grateful tribute to his blessed memory.

2. Phase transitions

2.1 Spontaneous symmetry breaking,
the mesoscopic description, universality
In two articles [1, 2] published in the ominous year of 1937,
Landau built a foundation for the general theory of phase
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transitions with a change in symmetry. This theory has
become the most fruitful in terms of its influence on the
subsequent development of physics. The number of publica-
tions devoted to its development and experimental evidences
amounts to the tens of thousands. Landau's theory of phase
transitions is applied in crystallography, biology, high-
energy physics and field theory, astrophysics and cosmol-
ogy, not to mention statistical physics and many branches of
condensed matter physics. Four Nobel Prizes have been
awarded for papers devoted to the development of the
ideas of this theory.

Landau was the first to introduce a concept of sponta-
neous symmetry breaking, which has spread widely in
statistical physics and field theory. Often authors who write
about the spontaneous symmetry breaking of a vacuum think
that this idea is a folklore, but this is incorrect: this concept
has a clearly defined authorship. Landau introduced it many
years before it started to be used in field theory and high-
energy physics, noting that symmetry breaking is equivalent
to the emergence of a long-range order in many-particle
systems.

Another important idea was first formulated in Landau's
theory of phase transitions: the idea of a mesoscopic
description of ordering media. Landau realized that when a
system approaches a continuous phase transition or critical
point, the correlation length grows and microscopic details of
the system are no longer important. Only the initial symmetry
and how it changes as a result of the transition are important.
All significant events occur on the scale between the inter-
particle distance and the size of the whole system. The theory
happens to be universal: phase transitions of a different
nature, which have the same initial and final symmetries, are
isomorphic. Landau suggested considering the amplitude of
emerging (at the transition) irreducible representation of the
initial symmetry group as a measure of symmetry breaking
(an order parameter).

Quantitatively, Landau's theory was based on the self-
consistent field approximation. Fluctuations were assumed to
be negligibly small. Based on this approximation, Landau
formulated group-theoretic rules allowing the classification
of possible second-order phase transitions, under which the
order parameter in the ordered phase continuously grows
starting from zero, and the criterion for the transition to be
always accompanied by jumps of some physical quantities
(first-order phase transition). In the second of the cited
papers, Landau showed that one-dimensional crystal order
in two-dimensional and three-dimensionalmedia is broken by
fluctuations. A congenial statement was formulated by
Peierls [3]: a long-range order in two-dimensional systems
with spontaneously broken continuous symmetry is broken
by fluctuations.

2.2 Classification of phase transitions. Order parameters
The development of Landau's ideas took place in several
directions. One of them was the concrete implementation of
Landau's general scheme for systems of the highest interest
in physics. The first group-theoretic calculation of the phase
transition between different crystal phases was performed
by E M Lifshitz [4]. The literature on the reconstruction of
crystals is widespread and partially connected with general
crystallographic research. The conclusions of this work up
to the middle of the 1990s were summarized in books by
Izyumov and Syromyatnikov [5] and ToleÂ dano and Dmit-
riev [6].

A review of phase transitions in crystals with initial
colored (Shubnikov) group symmetry [7], which is physically
interpreted as a magnetic crystallographic structure with
discrete magnetic symmetry, is given in paper [8] based on
Landau's theory. Andreev andMarchenko [9] have built a full
classification of magnetic crystallographic structures with an
initial magnetic symmetry group of rotation SO(3), which is
typical for exchange interactions. The phenomenon of weak
ferromagnetism in crystals was predicted by Dzyaloshinsky
[10] based on investigations of group invariants using Lan-
dau's method, and was experimentally discovered by Boro-
vik-Romanov [11]. A microscopic interpretation of weak
ferromagnetism was given by Moriya [12].

Phase transitions in ferroelectrics were interpreted based
on the Landau±Ginzburg±Devonshire theory [13], which had
multiple experimental confirmations and technological appli-
cations [14].

In their famous study of 1950, Ginzburg and Landau gave
a symmetry description of superconduction near the transi-
tion point [15]. They introduced a complex wave function of
superconducting condensate as the order parameter. This
work had a deep influence not only on the theory of
superconductivity but also on many other areas of physics
and mathematics. An analogous theory for superfluids was
constructed by Ginzburg and Pitaevskii [16]. Gross [17] and
Pitaevskii [18] have proposed a nonlinear theory of a weakly
nonideal superfluid Bose gas, which is applicable at low
temperatures and perfectly describes modern experiments
with laser-cooled gases of alkali metal atoms. The Ginz-
burg±Landau theory and its application to the description
of the vortex state in superconductors was the reason for
awarding Abrikosov, Ginzburg, and Leggett the Nobel Prize
in Physics 2003.

Based on the principles of Landau's theory, P-G de
Gennes has built his theory of phase transitions from an
isotropic liquid to a nematic liquid crystal, and from a
nematic to a smectic liquid crystal (the so-called Landau±
de Gennes theory) [19, 20]. This theory represents a signifi-
cant part of a cycle of works on `soft matter', for which de
Gennes was awarded the Nobel Prize in Physics 1991. The
universal use of liquid crystals in displays, monitors, and
televisions has converted Landau's theory into an applied
science.

Many first-order phase transitions, in particular, all
transitions of liquid crystals from the isotropic to nematic
phase, are close to second-order transitions: the jumps in
volume and the specific heats of transition are small. The
theory of weak melting±crystallization based on Landau's
free energy was elaborated by Brazovskii [21]. Later on, it was
used for the description of blue phases in liquid crystals.

2.3 Fluctuation theory
In the middle of the 1940s, there was a crisis in the theory of
phase transitions, related to the great achievement of
L OnsagerÐ the exact solution of the two-dimensional Ising
model [22]. This solution uncovered singularities of thermo-
dynamic quantities, which were completely different from the
predictions of Landau's theory. Precise measurements of the
specific heat of liquid helium near the transition to the
superfluid state (Buckingham and Fairbank [23]) and of
argon near its critical point (Voronel' et al. [24]) have
revealed a singular behavior which was not accounted for by
the mean-field theory. This contradiction was explained by
Levanyuk [25] and Ginzburg [26], who showed that the
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fluctuations in the order parameter and entropy, even if they
are weak when far away from the transition point, become
strong in its vicinity. The range of temperatures within which
the fluctuations are weak and the self-consistent field
approximation is valid does not exist by far in every system
susceptible to a phase transition [27]. In particular, it does not
exist in the Ising model. However, there are reasons to believe
that the behavior of systems in the region of strong
fluctuations is universal in the above sense, and that it
depends only on the initial symmetry and the method of its
breaking. The hypothesis for universality in the fluctuation
region was introduced by Vaks and Larkin [28] and was later
proven by Kadanoff and Wegner [29].

Another hypothesis formulated in the middle of the 1960s
was the scale invariance of critical fluctuations (Patashinskii
and Pokrovskii [30, 31], Kadanoff [32], and in a narrow sense,
only for the equation of state, by Widom [33], and by Domb
and Hunter [34]). According to this hypothesis, when varying
the linear scale the picture of fluctuations should not change if
the units of measurement of the fluctuating fields were altered
appropriately. Every fluctuating quantity, for example, an
order parameter, entropy, temperature, etc. are characterized
by their scaling dimensions (critical exponents). The hypoth-
esis for scale invariance together with simple thermodynamic
equations allowed finding a number of relations between the
scaling dimensions, and therefore it reduced the number of
independent dimensions, but did not solve the problem
completely. In 1959, M E Fisher was one of the first who
pointed out the significance of calculating the critical
exponents, and introduced the index of anomalous dimen-
sion [35]. Powerful numerical methods of finding critical
exponents using the first several series terms of the high-
temperature perturbation theory allowed Domb et al. to find
critical exponents of the three-dimensional Ising model with a
precision of several percent [36]. However, a real theory did
not yet exist.

In the late 1950s, Landau formulated the problem of the
fluctuating theory of phase transitions as one of evaluating a
partition function of the systemwhoseHamiltonian coincides
with the free energy of the self-consistent field of the order
parameter, which he introduced in 1937. Exactly on this way,
K G Wilson found in 1972 a constructive solution to the
problem of a phase transition [37±39], for which he was
awarded the Nobel Prize in Physics 1982. To calculate a
partition function, Wilson developed a new version of the
method of renormalization group which was first introduced
in quantum field theory by Gell-Mann and Low [40] and
StuÈ ckelberg and Green [41]. An attempt to use the field-
theory renormalization group in the theory of phase transi-
tions was made byDi Castro and Jona-Lasinio [42], but it did
not lead to quantitative results. In Wilson's method, the
renormalization means a consecutive elimination of short-
wave fluctuations, starting from the shortest waves and
following to longer ones, and the calculation of the effective
energy of the remaining long-wave fluctuations. This idea was
put forward earlier by Kadanoff [32] but was accomplished
only byWilson. Another important idea ofWilson and Fisher
[38], which allowed finding critical exponents analytically, is
the expansion in the powers of a small parameter e equal to a
deviation of space dimensionality from the critical value 4, at
which the critical exponents have the same values as in
Landau's theory. The interaction between fluctuations leads
only to logarithmic singularities which were found earlier in
the work of Larkin and Khmel'nitskii [43], although in the

real world this parameter is not small �e � 1� and to prove this
procedure in a strictly mathematical sense is difficult. Never-
theless, the calculation of critical exponents [44] employing
the method of series summation in e with the use of the
asymptotic behavior of the high-order terms (found by
L N Lipatov [45]) leads to results close to the best numerical
calculations and to the data of the most precise experiments.

2.4 Dynamics of critical fluctuations
As the characteristic size of fluctuations grows, their motion
gets slower. This is a so-called critical slowdown. The first
quantitative theory of the critical slowdown was established
by Landau and Khalatnikov [46] in 1954. It was based on a
phenomenological assumption that the critical dynamics is of
a purely relaxational character: the time derivative of the
order parameter is proportional to the self-consistent fieldÐ
that is, the derivative of thermodynamic potential with
respect to the order parameter. The kinetic coefficient G
relating these quantities was assumed to be independent of
the distance from a transition point. Hence it followed that
the relaxation time of the order parameter is proportional to
the square of the correlation length. As in the static case, the
fluctuations were considered to be negligibly small in
comparison with the average values. A new effect on
anomalous absorption of sound because of the excitation of
critical fluctuations at a frequency on the order of the inverse
relaxation time was predicted. This phenomenon was exam-
ined experimentally [47].

The Landau±Khalatnikov theory has been generalized in
various aspects. One of them is the transition to the region of
large fluctuations. The simplest generalization was intro-
duced by Pokrovskii and Khalatnikov [48], who assumed
that the kinetic coefficient G remains a constant but the
correlation radius and other physical quantities follow the
laws of static scaling. A more detailed generalization was
suggested by Ferrell et al. [49, 50], and in a more general and
physically transparent form by Halperin and Hohenberg [51]
(so-called dynamical scaling). They have noticed that in
systems with a continuous order parameter, the dynamics of
the ordered state is determined by the conservation laws
which follow from the remaining continuous symmetry, and
therefore in general is nondissipative. The long-wave excita-
tions are propagating waves. Their velocity is determined by
thermodynamics, e.g., by the Laplace equation for the speed
of sound. Thus, the frequency of the wave in the critical region
is determined by static scaling. The dynamics have a purely
relaxational character above the critical point at any
wavelength l and below the critical point at wavelengths
shorter than the correlation radius x (e.g., fluctuational
thermal conductivity near the transition to the superfluid
state). The hydrodynamic and relaxation frequencies coincide
to an order of magnitude at l � x. This relationship allows
finding dynamic critical exponent z which determines the
scaling dimension of frequency o. For l5 x, we have
o � lÿz and we can find the critical behavior of kinetic
coefficients. This theory has found excellent agreement with
experiments 1 [51].

The renormalization-group theory of dynamic critical
phenomena has been developed in papers by Halperin,
Hohenberg, Ma, and Siggia (see review [52]).

1 A detailed description of experiments on dynamic scaling and their

comparison to the theory was done in review [52].
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3. Landau levels

3.1 Landau levels and the diamagnetism of metals
This is the commonly used name of the energy levels of a
charged particle in constant uniform magnetic field. The
solution to this very important question, which was as
important in quantum mechanics as questions about the
spectrum of the hydrogen atom and the quantum harmonic
oscillator, was found by Landau [53] in 1930. Landau found
that motion in the plane perpendicular to the magnetic field is
quantized. 2 The energy levels are strongly degenerate in the
quantum number corresponding to the center of the Larmor
circle in classical mechanics. The number of states per unit
area, belonging to a given Landau level, is equal to the ratio
B=F0 of a magnetic field induction to the magnetic flux
quantum F0 � h=2e. In other words, each state carries one
magnetic flux quantum. The energy of transverse motion of
an electron on the nth Landau level is equal to

en �
�
n� 1

2

�
�ho ;

where o � eB=mc is the cyclotron frequency. The solution of
this relatively simple problem led Landau to the important
conclusion that the quantization of the transverse motion is
the reason for the diamagnetism of electrons in ametal, which
could not be explained from the classical point of view, as was
shown by Bohr [57] and van Leeuwen [58].

3.2 Magnetic oscillations: Shubnikov±de Haas
and de Haas±van Alphen effects
At the end of his article [53] Landau noted that the
quantization of energy levels leads to oscillations of diamag-
netic susceptibility in a changing field. However, he believed
that examining these oscillations experimentally would be
hard because of the nonuniformity of the magnetic field.
Most probably he did not know about the Shubnikov±
de Haas experiment [59], which was also performed in 1930.
In 1937, Landau learned from D Shoenberg about the
de Haas±van Alphen effect [60]: oscillations of magnetic
susceptibility vs. magnetic field. Landau immediately made
a preliminary calculation of the oscillations and handed it to
Shoenberg, but was not able to publish it because of his arrest.
In 1939, Shoenberg published this calculation [61], obviously
under Landau's 3 name, as complementary material to his
experimental work [63]. Landau made the calculation for an
extremely simplified model of free electron gas. A more
realistic approach, which accounted for the band structure
of the energy spectrum and the anisotropy of metals, was
introduced independently by I M Lifshits [64] and Onsager
[65]. They showed that quasiclassical orbits of electrons in

momentum space are the cross-sections of the isoenergetic
surface by planes perpendicular to the magnetic field. The
orbits of electrons in the configuration space differ from
orbits in momentum space by a rotation and scale factor,
which is chosen in such away that amagnetic flux through the
orbit is equal to an integer number of magnetic flux quanta.
Using this, Lifshits andKosevich [66] elaborated the theory of
the de Haas±van Alphen effect for an arbitrary dispersion of
electrons. Lifshits and Pogorelov [67] found a solution to the
inverse problem on reconstruction of a Fermi surface using
experimental data on the de Haas±van Alphen effect.
Numerous measurements of this effect, as well as of the
Shubnikov±de Haas effect, allowed creating an atlas of
Fermi surfaces [68].

3.3 Quantum Hall effect
With the creation of two-dimensional electron systems,
inversion layers in silicon, and GaAs ±AlGaAs heterojunc-
tions, objects appeared for which the theory of magnetic
Landau levels became fully applicable. In 1980, a completely
unexpected effect was discovered in these systems, which is
known as the quantum Hall effect (QHE) [69]. It turned out
that at a relatively low temperature and a high mobility of
carriers the Hall conductivity sH, i.e., the ratio of the current
flowing in the direction perpendicular to the electric and
magnetic fields to the magnitude of the magnetic field is
quantized. In addition, the Hall conductivity quantum is
equal to e 2=h with a very high precision of � 10ÿ7. More
precisely, this means that when a magnetic field B varies then
sH, which is on average proportional to 1=B, becomes a step
function of 1=B with the values of ne 2=h on its steps (n is an
integer number). Klaus von Klitzing was awarded the Nobel
Prize in Physics 1985 for the discovery of the integer Hall
effect. The reason for the stepwise dependence of sH on 1=B is
the localization of all states of a given Landau level by
impurities, with the exception of a single edge state which
corresponds to the drift of an electron along the boundary of
the sample in the direction given by the magnetic field and the
force holding the electron inside the sample. When all
remaining states on the Landau level are occupied, the
scattering on impurities for the edge state is not effective,
since it is impossible to change the direction of rotation, and
unoccupied states on the next Landau level are separated by
an energy gap. The drift of the edge state gives the same effect
as the motion of all Larmor circles (electrons) of the filled
Landau level. Indeed, integer values of sH in units of e 2=h
correspond to the drift of all electrons with the flux density
nB=F0 per unit area with the typical drift velocity cE=B.

In 1983, Tsui, StoÈ rmer and Gossard [70] discovered the
fractional quantum Hall effect: the Hall conductivity is
quantized in fractions with an odd denominator, for exam-
ple, 1=3, 2=3, 4=3, 2=5, 3=5 in the same units. This constitutes
a more complicated phenomenon based on the interaction
between Landau electrons. Laughlin [71] has explained this
phenomenon using as an example the filling factor 1=3, when
there are 3 magnetic flux quanta per electron. In this case,
electrons can more successfully avoid each other at small
distances than at fractional concentrations with large
denominators, and thus the Coulomb repulsion energy is
reduced. This is the reason for the appearance of a gap in the
spectrum, but the rest is similar to the integer QHE. The
excitations in this strongly interacting incompressible elec-
tron liquid carry as before only one flux quantum, and
therefore they have a fractional charge of 1=3. For the

2 Landau had predecessors: in 1928, I I Rabi solved the problem of Dirac's

electron in an external magnetic field [54], and in the same year V A Fock

solved the problem of a harmonic oscillator in a magnetic field [55]. In

1930, independently of Landau, the solution of the SchroÈ dinger equation

for a nonrelativistic charged particle in a magnetic field was found by

Frenkel' and Bronshtein [56]. However, in none of these papers, the

number of states on a magnetic level was found, and no linkage between

quantization and diamagnetism and oscillations was established. This

seemingly was the reason why the levels got Landau's name.
3 A friend and coauthor of Landau, Rudolf Peierls, participated in writing

this Appendix (see Shoenberg's book [61] and the historical review by

M I Kaganov [62]).
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discovery and explanation of the fractional quantum Hall
effect Tsui, StoÈ rmer, and Laughlin were awarded the Nobel
Prize in Physics 1998.

Recently, K S Novoselov and A K Geim with colleagues
have learned how to produce isolated crystalline sheets of
graphite called graphene [72]. This material has opened new
horizons in the study and use of Landau levels. Graphene is
an ideal semimetal whose Fermi level resides at the boundary
between two bands touching each other. Near the intersection
point, the electron dispersion possesses an ultrarelativistic
form: e � vpwith the velocity v � 108 cm sÿ1, which plays the
role of the speed of light. The Landau energy levels of the
ultrarelativistic electrons are equal to

en � v
���������������
2nm�ho
p

:

For small n, these levels are on the order of the geometric
mean of the atomic and cyclotron frequencies. For fields of
several Tesla, this energy falls in the range of several hundred
kelvins. This means that the QHE and oscillatory effects can
be observed at room temperature, whereas in usual metals
these effects are observed only at helium temperatures.
Indeed, the QHE at room temperature has been examined
experimentally [73].

4. Landau±Zener transitions

4.1 History and formulation of the results
In 1932, Landau formulated and solved one of the most
important dynamic problems of quantum mechanics [74].
Independently from him in the same year, although a bit later,
this problem was also solved by three outstanding theorists:
C Zener [75], EGG StuÈ ckelberg [76], and EMajorana [77]. In
the literature it is known as the Landau±Zener problem.
Below we formulate the problem and its solution in modern
terms and definitions. The problem is as follows. The
Hamiltonian of a system H depends on the number of
parameters R. The discrete energy levels En�R� and vectors
of the state (wave functions)

��Cn�R�
�
corresponding to them

continuously depend on these parameters. If the parameters
R vary with time t, the energy is not conserved and also
depends on time. However, if the parameters vary slowly, the
vector of state is equal to

��Cn

ÿ
R�t��� in the leading

approximation, i.e., the system follows the continuous
change of parameters with time without making a transition
to other states. This is the so-called adiabatic approximation.
It is not valid if some of the levels cross. Near the crossing
point of the levels there are intensive transitions between the
corresponding states. In the Landau±Zener theory it is
assumed that only two levels cross, and all other levels are
far away. In this approximation, the problem reduces to
finding the states of a two-level system, i.e., to the problem
of spin-1=2 motion in a time-dependent magnetic field. Using
the fact that the time interval for the transitions is narrow, one
can assume the time dependence of the distance between the
approaching levels to be linear. Therefore, one can represent
the transition frequency O as a linear function of time:
O�t� � _Ot. The matrix element D of the transition between
the two initial (so-called diabatic) states is considered to be
independent of time. In this approximation, the spin
Hamiltonian takes the simple form

H � �h _Otsz � Dsx ;

where sx and sz are the Pauli matrices. The time-dependent
SchroÈ dinger equation is reduced to an exactly solvable
equation for a parabolic cylinder. This is exactly how Zener
solved this problem. Instead of this, Landau went around the
crossing point in the complex time plane, which allowed him
to avoid using the functions of the parabolic cylinder. The
transition matrix calculated by Landau and Zener has the
diagonal matrix element (amplitude of survival)

a � exp �ÿpg� ;

and the off-diagonal element

b � ÿ
������
2p
p

exp

�
ÿ pg

2
� ip

4

�� ���
g
p

G�ÿig��ÿ1
(calculated by Zener), where g � D2=

ÿ
�h 2j _Oj� is the dimen-

sionless Landau±Zener parameter. The large values of g
correspond to the adiabatic regime when the system resides
on one of the two adiabatic levels which are separated by the
energy gap D, and performs the transition from one diabatic
level to the other. The small values of g correspond to the fast
(anti-adiabatic) regime and to small transition probabilities.
The Landau±Zener formula gives values of transition
amplitudes beyond the limits of applicability of perturbation
theory. The transition takes time tLZ � D=

ÿ
�hj _Oj� (the

Landau±Zener time).

4.2 Applications
The generality of the formulation has allowed applying the
Landau±Zener theory to a wide variety of phenomena.
Landau had in mind the description of a certain class of
molecular reactions called predissociation. Later on, the
Landau±Zener theory was applied widely in chemistry,
chemical physics, and biochemistry. In particular, it is
applied for the description of such an important process as
the transfer of charge along with its energy [78]. Landau±
Zener transitions play a significant role in photosynthesis
[79].

The Landau±Zener theory has also found multiple and
important applications in physics. At the earlier stage it was
applied to the theory of atomic and molecular collisions
accompanied by transitions between electron levels, in
particular, charge-exchange collisions. The theory of these
processes and their role in plasma physics was introduced by
BM Smirnov, E E Nikitin, and others and described in detail
in books by Smirnov [80], where one can also find experi-
mental data. An alternative approach to this problem was
described in the review by Solov'ev [81].

A P Kazantsev and colleagues showed [82, 83] that the
Landau±Zener transitions of atoms in a standing light field
lead to the appearance of a band structure in a spectrum of
atoms which interact resonantly with this field. If a slow field
amplitude depends periodically on time, the atomic states are
described by Floquet±Bloch wave functions and quasienergy
[84]. Similar phenomena also occur in highly excited
(Rydberg) atoms under the influence of a strong microwave
field [85].

It is interesting to note that the number of citations of
Landau's above-mentioned paper has increased significantly
in the last few years. This is related to the appearance of new
experimental objects whose dynamics is determined by the
Landau±Zener processes. Here, one should first mention
qubits, which are the elementary units of a quantum
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computer. They operate with quantum states instead of
binary numbers. Qubits have already been created experi-
mentally. One type of qubit consists of two small super-
conductors connected via a Josephson junction [86]. Here, the
role of diabatic states is played by the states of a Cooper pair
in one of the two superconductors. Another realization of the
qubit [87] is a so-called quantum dot, a tiny (several
nanometers in size) piece of a semiconductor from which,
with the use of a gate, almost all but a few electrons are pushed
out. The diabatic states in this system are the spin states of an
electron in an external magnetic field. In these and other
qubits, the controlled superpositions of two quantum states
are obtained by means of the Landau±Zener process.

In the last 10±15 years, molecular magnets have been
studied intensively. This is a family of molecules containing
100±200 atoms in which a ferromagnetic core (atoms of iron,
cobalt, ormanganese) is held together by organic bridges. The
most popular are the molecules abbreviated asMn12 and Fe8.
The former was investigated by an experimental group at the
City College of New York under the guidance ofM Sarachik,
while the latter was studied by the collaboration of French
experimentalists from Grenoble and Italian experimentalists
from Florence (B Barbara, W Wernsdorfer, D Gatteshi,
R Sessoli). Theoretical papers by E Chudnovsky, A Garg,
N Prokofiev, and J Villain played an important role. The
results of this research are presented in the book [88]. Both
Mn12 andFe8 molecules have spinS � 10 and really represent
nanometer-sized magnets. Experimentalists deal with mole-
cular single crystals but the ferromagnetic cores of their
molecules are so far away from each other that their
interaction is negligibly small. Therefore, the magnetic
properties of these systems are those of a single molecule.
When measuring magnetization as a function of the magnetic
field, the hysteresis curves were obtained in both substances,
which testified to a new phenomenon called molecular
hysteresis. At a temperature below 0.5 K, the hysteresis
curves stop changing, which proves the quantum character
of the hysteresis. In the hysteresis curves one can see steps at
particular values of the magnetic field. These steps were
attributed to Landau±Zener transitions appearing at the
crossing of terms with large spins, which are initially split by
the anisotropy of the molecular field and are controlled by a
time-dependent magnetic field. Thus, Landau±Zener transi-
tions are the real reason for the quantum hysteresis.

Several years ago experimentalists working with alkali
metal atoms cooled by a laser light to temperatures on the
order of 10ÿ8ÿ10ÿ7 K learned how to obtain diatomic
molecules at the so-called Feshbach resonance [89]. The
atoms were placed in an external magnetic field, and by
changing it they passed that magnitude at which the Zeeman
energy of a pair of atoms becomes equal to the binding energy
of a molecule. This is accompanied by the Landau±Zener
process, and the atoms turn into molecules. In many
theoretical papers, authors have attempted to apply directly
the Landau±Zener theory to this problem [90]. However, the
experiments were performed with degenerate Bose or Fermi
gases. The identification of pairs of atoms in this gas is
impossible because identical particles are quantum-mechani-
cally indistinguishable. This problem should be solved by the
methods of many-particle theory (see the next section).

4.3 Development of the theory
A M Dykhne has proposed a modification of the theory for
the case where the crossing of the diabatic electron terms

takes place not on the real axis but somewhere else in the
complex plane of time [91]. This result was discussed with
Landau and was approved by him. It is known in the
literature as the Dykhne±Landau formula.4

At the crossing of electron terms of a molecule one has to
deal not with a single level but with the bands consisting of
vibrational and rotational sublevels. The problem of the
crossing of a band of parallel levels with a single level was
solved byDemkov andOsherov [92]. Some particular cases of
crossings of many levels have been found by Demkov and
Ostrovsky [93]. The transition probabilities in all these
solutions are given by a product of the probabilities of the
consecutive Landau±Zener transitions. Carroll and Hioe [94]
have found a solution to the problem of the motion of an
arbitrary spin in a magnetic field, when one of its components
�z� depends linearly on time, and another one �x� is a
constant. In this case, 2S� 1 diabatic levels cross simulta-
neously. The exact solution is possible due to SO(3) symmetry
and is given by the matrix of the Landau±Zener transition in
terms of Jacobi polynomials. The most general construction,
which allows finding a solution to a wide class of problems
with the crossing of many diabatic levels, was introduced by
N A Sinitsyn [95]. All exact solutions found earlier have
entered into this class as particular cases. As for the general
case of the crossing of many diabatic levels in different but
sufficiently close points at different angles, only the amplitude
of survival at the level with maximal or minimal slope is
known. It is equal to the product of the Landau±Zener
amplitudes of survival for the points of consecutive crossing
with other levels. This result was initially formulated as a
hypothesis byBrundobler andElser [96], and later was proven
analytically by Shytov [97], who generalized Landau's
method, and algebraically by Volkov and Ostrovsky [98]
and Dobrescu and Sinitsyn [99].

The application of the Landau±Zener theory to qubits
and molecular magnets has raised the question of the role of
noise. Noise is responsible for the decoherence and errors in
quantum calculations. The thermal noise in molecular
magnets leads to a significant narrowing of the molecular
hysteresis loop even at a temperature of 1 K. There are
longitudinal noise, which distorts adiabatic levels but does
not lead to transitions, and transverse noise, which causes
spontaneous transitions. Purely longitudinal noise has been
studied in a number of papers. The most detailed analysis was
given by Ao and Rammer [100], who considered a number of
limiting cases (in this article one can find a rather extensive
bibliography). Unfortunately, we cannot describe the results
obtained in Ref. [100] using simple physical patterns. The
situation is reversed in the case of transverse noise. The
pioneering work about fast transverse noise was introduced
by Kayanuma [101], but this paper is not transparent in terms
of physics, and a spectral composition of noise in it is taken
rather artificially. A significant simplification was reached in
the paper by Pokrovsky and Sinitsyn [102]. They showed that
noise-induced transitions accumulate during a time which is

4 I participated in a discussion where Landau found amistake in Dykhne's

initial solution. The same day Dykhne and Landau independently found

the correct method. Landau refused to be a coauthor of the study. Later

on, Landau's approach was published in the new edition of Quantum

Mechanics: Non-Relativistic Theory (Moscow: Nauka, 1963) which was

edited by him but published after his car accident, without citing Dykhne.

According to Pitaevskii's recollection, Landau told him that there was a

mistake in Dykhne's formula. However, by checking this formula one can

show that the results of both authors coincide apart of notations.
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much longer than the Landau±Zener time. Noise transitions
and Landau±Zener transitions turn out to be separated in
time, which allows solving this problem exactly. The noise
transitions, at a given instant of time, are caused by the
spectral component of the noise which is at resonancewith the
current frequency of the two-level system. This allows using
this frequency as the noise analyzer. A strong classical
transverse noise leads to the equal occupation of two levels
for any value of g. This conclusion becomes invalid in the case
of fast quantum noise, which was analyzed in paper [103].
Strong quantum noise brings a two-level system into equili-
briumwith noise or to a steady state if the noise is not thermal.
The interaction of transverse and longitudinal noise leads to a
change in the transitionmatrix elementD. If the noise is due to
phonons, this renormalization results in the isotopic effect.

The Landau±Zener transitions in degenerate atomic
Fermi gas with the creation of diatomic molecules have been
described in papers [104±106]. In the first of them, a
perturbation theory for the calculation of the number of
created molecules has been developed up to the second order
in the parameter d � g 2n=

ÿ
�h 2j _Oj� (g denotes the atom±

molecule coupling constant, and n is the gas density). It was
shown that Fermi repulsion reduces the probability of
molecule production in comparison with the same process in
a gas of independent atomic pairs. The consideration in paper
[105] is given beyond the perturbation theory at the expense of
a significant simplification of the model. A more general
analysis [106] confirms the reduction of molecule production
due to Fermi repulsion beyond the perturbation theory.
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