
Abstract. Phase transitions to ordered states, which correspond
to the toroidal family of multipoles known in electrodynamics,
are discussed. The ordering of toroidal moments may either
occur simultaneously with their formation (as in superconduc-
tivity) or may follow it (at lower temperatures). In addition to
electrodynamic toroidal moments corresponding to either po-
loidal charge currents or a spin configuration, a toroidal state
corresponding to poloidal spin currents is possible.

1. Introduction

A review of theoretical works on spontaneous currents and
appropriate toroidal states is given for both the weak
electron±electron interaction with a nesting of Fermi sur-
faces (model of an excitonic insulator) and an extremely
strong interaction (Hubbard model). For the intermediate
case, a number of studies are considered in which states with
spontaneous currents have been obtained within the frame-
work of the Fermi-liquid theory.

The review describes the magnetoelectric properties of
the toroidal state which is characterized by anomalously
high values of magnetoelectric coefficients. It is mainly
this property that drew the attention of specialists in

magnetoelectricity and led to the detection of such a class
of systems.

Collective toroidal modes are characterized by the
proximity or even coincidence of resonance frequencies in
the dielectric and magnetic susceptibilities. As a result, a
region of frequencies exists in which the refractive index
becomes negative, i.e., the toroidal state belongs to the class
of metamaterials.

This review also describes the behavior of toroidal states
in a magnetic field. A homogeneous toroidal state has an
anomalous response near the point of phase transition to a
nonuniformmagnetic field or to an external current which is a
thermodynamically conjugate field with respect to it. As to an
anomalous diamagnetic response to a uniformmagnetic field,
it is exhibited by an inhomogeneous toroidal state, in
particular, antitoroidal.

Two different reasons for the appearance of a large
diamagnetism of inhomogeneous toroidal states are possible.

In the case of the predominance of the first spatial
derivatives of the toroidal moment, an effective magnetic
field arises in the system (even in the absence of an external
magnetic field, in contrast to the case of the fractional
quantum Hall effect). If the effective magnetic length
applicable to this field is less than the characteristic scale of
inhomogeneity, then the response to the external field
corresponds to the differential susceptibility of the de Haas±
van Alphen regime for a large effective magnetic field. In this
case, the response can correspond to ideal diamagnetism.

If the second derivatives are predominant, in which case
the effective magnetic length proves to be greater than the
characteristic scale of inhomogeneity, the response is deter-
mined by the precession of the current loops of a large
correlation radius, tightly nested into each other. In this
case, ideal diamagnetism is also possible at the point of the
phase transition.
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2. Groups of time reversal and space inversion

Phase transitions in crystals are characterized by a reduction
in the macroscopic symmetry with the appearance of an
appropriate order parameter.

Apart from the earlier known spatial operations of
symmetry, including the operation of space inversion,
r! ÿr, in 1932 Wigner [1] introduced the operation of time
reversal. The axial vectors of the magnetic field (H) and
magnetization (M) reverse their sign in the operation
t! ÿt, whereas the polar vectors of the electric field (E)
and polarization (P) do not change their signs. In 1957, in
connection with the parity-nonconservation reactions accom-
panyingweak interactions in nuclear physics,YaBZel'dovich
[2] introduced a classical image of a toroidal solenoid
(anapole), where the polar vector changes sign both as
t! ÿt and r! ÿr. In the physics of the condensed state,
Ascher [3, 4] suggested that it is the current density j that can
play the role of such a vector. Vectors of such a symmetry can
exist in crystals of 31 classes (out of 122 magnetic classes) of
the Shubnikov point group; in 13 classes out of these
31 classes, a vector M can also exist. Ascher also indicated
other possible vectors (momentum p, velocity v, etc.) with
such a symmetry. On the basis of closed loops of such
spontaneous currents, Ascher erroneously attempted to
explain the basic properties of superconductors. It should be
noted that earlier [5±8] it was supposed that the current j can
be used as the order parameter for superconductivity. The
existence of a uniform current for the ground state of an
equilibrium system contradicts the known Bloch theorem [9].
The situation with nonuniform currents that was considered
by Ascher [3, 4] contradicts the condition of the gauge
invariance, since a variation in the term j A (A is the vector
potential) in the expression for free energy with respect to the
order parameter j leads to the appearance in the induced
parameter and in the energy of a contribution proportional to
the vector potential, which has not to take place. As was
shown byGinzburg et al. [10], the role of this order parameter
can be played by the polar t-asymmetric vector T of the
toroidal moment. The existence of an appropriate multipole
in electrodynamics was discovered in the 1970s by the group
of V M Dubovik [11, 12]. The manifestation of the toroidal
moment in atomic physics was first investigated in Ref. [13].

Thus, for reasons of symmetry, four order parameters can
be introduced for the space±time inversion:

(1) a t- and r-even axial vector G. As examples, vectors
such as the vector n in liquid crystals [14], the order parameter
in spin nematics [15], the axial toroidal moment caused by
poloidal spin currents (see Section 4.2 and Ref. [16]), and the
vector of spontaneous mechanical stresses in ferroelastics can
serve;

(2) t-even and r-odd polar vector P of the electric
polarization, which describes a seignettoelectric (ferroelec-
tric) state. The role of a thermodynamically conjugate field is
played by an electric field E which aligns the domains in one
direction; the response to the electric field diverges at the
point of the phase transition;

(3) t-odd and r-even axial magnetization vector M. The
role of the thermodynamically conjugate field is played by the
magnetic field H which aligns the magnetic domains of the
ferromagnet; the response to themagnetic field diverges at the
point of the phase transition;

(4) t-odd and r-odd polar vector T which describes a
toroidal state. The role of the thermodynamically conjugate

field is played by an external current j which aligns toroidal
domains; the response to the current diverges at the point of
the corresponding phase transition.

3. Multipole expansions in classical
electrodynamics

Let us examine the problem of finding the time-averaged
magnetic field hH�R�i at the pointR in the case of a stationary
distribution of classical electric currents [18]

j �r� �
X
a

ea _ra d�rÿ ra�

of electrons moving with velocities _ra at the points ra.
For an electrodynamic vector potential hAi that satisfies

the conditions hHi � H� hAi and HhAi � 0, we obtain [17]

hA�R�i � 1

c

�
d3r

h j �r�i
jRÿ rj �

1

c

�X
a

ea _ra
jRÿ raj

�
; �1�

and its multipole expansion takes on the form

hA�R�i � 1

c

X1
n�0

�ÿ1�n
n!

�X
a

ea _ra �ra H�n 1
R

�
: �2�

We have

hAi0 � 1

c

�X
a

ea _ra

�
� 0 ;

since the average of the time derivative is equal to zero:

hAi�1� � ÿm� H
�

1

R

�
;

where

m � 1

2c

�X
a

�
ra � _ra

��

is the magnetic dipole moment of the system.
The second-order multipole expansion represents a sum

of a quadrupole (qi j) term

hAii�2�quad � ÿei j kqkl Hj Hl
1

R
;

where

qi j � 1

6c

�X
a

ea
ÿ�ra � _ra�i ra j � �ra � _ra� j ra i

��
; �3�

and a toroidal term

hAi�2�tor � H�tH� 1
R
� 4p t d�R� ;

t � 1

6c

�X
a

ea
ÿ
ra � �ra � _ra�

�� � ÿ 1

4c

�X
a

ear
2
a _ra

�

� ÿ 1

4c

��
d3rr 2 j �r�

�
: �4�

The following equivalent form is encountered more
frequently:

t � 1

10c

�X
a

ÿ
ra�ra ja� ÿ 2r 2a ja

��
: �5�
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For systems in which the magnetic fields are induced by
spins rather than by moving charges, the electric current (but
not the current of spins) is defined as the variational derivative
of the energy with respect to the vector potential:

j�r� � c
d
dA

n
ÿ gmB

�
d3rS�H�A�

o
; �6�

where g is the gyromagnetic ratio, mB is the Bohr magneton,
and S�r� is the spin density.

Substituting j�r� defined by formula (6) into Eqn (5), we
obtain

t � gmB
2

D �
d3r
�
r� S�r��E :

The interaction ofHint with the magnetic fieldH�r� at the
point r � 0 is described as follows [17]:

Hint � ÿmH�0� ÿ t �H�H� r�0 ÿ qi j�qiHj � qjHi�r�0 : �7�

Thus, the interaction of the toroidal moment occurs with
rotH, i.e., it is nonzero only in the presence of an electric
current. Just as for the electric polarization, there are some
subtle details in the determination of the toroidal moment of
periodic systems, as well [17].

In the case of an inhomogeneous toroidal moment T�r�,
the spontaneous macroscopic current has the form [12]

j�r� � rot rotT�r� : �8�

In the conclusive part of the article [12], a review is given of
works (as of 1990) devoted to the manifestation of toroidal
moments in atomic and nuclear physics, and the physics of
elementary particles, including leptons and quarks, and Z and
W bosons.

4. Microscopic models of toroidal ordering

4.1 Model of an excitonic insulator
The question of the appearance of ordered current states was
first examined in Ref. [19] on the basis of a two-band model,
with the Fermi surfaces of electrons and holes coinciding in
themomentum space (nesting of Fermi surfaces)Ð themodel
of an excitonic insulator [20].

A specific feature of this model is the fact that at
temperatures lower than a certain critical point (Tc), pairs
consisting of an electron and a hole are formed simulta-
neously with Bose condensation, which leads to the formation
of an insulating (semiconducting) state and the appearance of
an insulator gap D as the order parameter. In the case of ideal
nesting, this solution appears even in the presence of an
infinitely weak Coulomb interaction and is asymptotically
exact. Formally, this solution is analogous to that obtained in
the Bardeen±Cooper±Schrieffer (BCS) theory [21] for super-
conducting electron±electron (Cooper) pairing due to the
electron±phonon (rather than Coulomb) interaction, but
hindered by the Coulomb interaction weakened by Tolma-
chev's logarithm [22].

In addition, there are some other fundamental distinc-
tions compared to Cooper superconductive pairing:

(1) since the behavior of an electron relative to a hole does
not obey the Pauli exclusion principle, there is a degeneracy
relative to singlet and triplet pairings;

(2) since pairing occurs between states from different
bands and, generally speaking, with Bloch functions of
different symmetries, the physical properties of the resultant
insulating state will depend on the relative symmetry of the
wave functions of these bands or, to be more exact, on the
type of nonzero interband matrix elements;

(3) the interband matrix elements (hybridization) can fix
the phase of the insulating order parameter [23], thereby
affecting the physical properties of the system.

Notice that in the case of superconducting pairing the
phase of the order parameter remains arbitrary (which, by the
way, is of primary importance for the manifestation of the
superconducting properties), and the gradient of the phase
manifests itself, which determines the magnitude of super-
conducting current.

As a result, the order parameter can be represented in the
form of a matrix D̂ in spin space:

D̂ � Ds
Re � iDs

Im � r�Dt
Re � iDt

Im� ;

where r is a vector constructed from Pauli matrices, D s
Re; Im

are the singlet real and imaginary components of the order
parameter, and D t

Re; Im are the triplet real and imaginary
components.

Let us note once again that the physical properties of the
system will depend not only on which of these four
parameters or their combination corresponds to the ground
state, but also on the type of nonzero interband matrix
elements. It was emphasized in Ref. [19] that Ds

Im and Dt
Im

can be connected with current states, but the nature of these
current states and the structure of the matrix elements have
not been investigated.

Which of these four components of the order parameter or
their combination will be realized depends on the relationship
between the intraband and interband Coulomb and electron±
phonon interactions [24, 25], scattering by impurities [26],
spin±orbit interaction [27], violation of the condition of ideal
nesting, for example, due to doping [28], and the structure of
domain walls in a ferroelectric [29±31].

The issue of the structure of current states in the case of a
nonzero interband matrix element of the momentum p12 was
examined in Ref. [32]. In that study, the expression for the
current took into account only interband components (this
seemed natural, since the order parameter is determined by
interband electron±hole pairing), which led to the presence of
a uniform current component.

This result, on the one hand, was like a microscopic
confirmation of the phenomenological results obtained in
Refs [3±8], where the current (in this case, through the
combination p12Ds

Im) was identified with the order parameter
Ds
Im. But, on the other hand, this result contradicts (as was

noted above) both the Bloch theorem and the condition of
gauge invariance. There even arose a certain discussion [33±
35] concerning the elimination of the uniform current. In
Ref. [33], a procedure was proposed for redefining the
operator of current at the expense of the exchange energy. It
was shown in Ref. [28] that the exchange correction does not
contribute to the average current.

The authors of Ref. [35] used a model differing from that
employed in Ref. [32] for eliminating the uniform current, in
which the interband momentum operator reverses sign while
moving over the Brillouin zone.

In reality, the compensation for the uniform interband
component obtained in Ref. [32] occurs depending on the

November 2009 Toroidal ordering in crystals 1113



magnitude of the intraband current components [36] which
appear as a result of the `skew' nature of the electron spectrum
containing a momentum-asymmetrical component p12pD

s
Im,

which was overlooked in Ref. [32].
The spectrum of electronic excitations in the insulating

phase takes the following form (see Fig. 1):

E�p� � �
�������������������������������������������������
e 2 � �� i p12 pÿ Ds

Im�T �
��2q
; �9�

where e1� p� � ÿe2� p� � e� p�.
In Ref. [36], an expression was obtained for the current

with the availability of an inhomogeneous order parameter
Ds
Im�r�:
j�r� � rot rot p12D

s
Im : �10�

One can readily see from a comparison of the expression
for the current (10) with expression (8) that it is precisely the
combination p12D

s
Im that takes the part of the toroidal order

parameter (this was first inferred by V L Ginzburg):

T � p12
Ds
Im

m0
: �11�

A more general proof of the absence of a uniform current in
the state with T�r� � const was given in Ref. [28]. It was
shown that for the gauge-invariant local Hamiltonian with an
interaction that depends only on the difference in the
coordinates, all three methods of determining the operator
of current ĵ, i.e.,
� from the equation of motion for the coordinate

operator r̂:

_̂r � i�Ĥ; r̂� ; �12�

� from the continuity equation for the charge-density
operator en̂�r�:

qen̂�r�
qt
� i
�
Ĥ; en̂�r�� � ÿdiv ĵ ; �13�

� and from the variation of Ĥ over the vector potential Â:

ĵ � c
dĤ

dÂ
; �14�

lead to one and the same result (10).
It was shown that in the case of doping a contribution to

the current also appears from the real part Ds
Re of the order

parameter, which is antisymmetric with respect to the electron
momentum.

Until now, we have been considering the case where the
wave functions of the electron (subscript 1) and hole
(subscript 2) zones have the opposite parity and the inter-
band matrix element p12 of the momentum is nonzero.

However, in the case of zones with identical parity, we
have p12 � 0, and the interbandmatrix element of the angular
momentum operator is nonzero.

In this situation, the electron spectrum proves to be
symmetric in momentum, the intraband components of
current are j11 � j22 � 0, and the expression for the current
has the form [37]

j � j12 � j21 � rotM�r� ; �15�

M � 2IDs
Im

1

g s
Im

; �16�

I � 1

2
mB
X
n 6�1;2

�
1

E1 ÿ En
� 1

E2 ÿ En

� �p1n � pn2�
m0

; �17�

where m0 is the mass of free electron; E1 is the position of the
point of the minimum of band 1; E2 is the position of the
maximumof band 2; p1n and pn2 are thematrix elements of the
momentum operator of bands 1 and 2, respectively, with
other bands n, and g s

Im is the effective coupling constant
corresponding to the parameter D s

Im.
Thus, a ferromagnetic state of the wholly filled band then

appears in the insulating phase.

4.2 Structure of the spin current state
In the case of the imaginary triplet order parameter D t

Im,
nonzero interband matrix elements p12, and D � irD t

Im, the
spectrum of the excited electronic states for p12jj0ZjjD t

Im takes
the following form [38] (see Fig. 2):

E 2
�� p� � e 2� p� �

�
1

m0
p12 pz � D t

Im

�2

; �18�

where the plus and minus signs correspond to opposite spin
orientations.

The flux of spins is described by the second-rank tensor

J s
a � hsa ĵ i ; �19�

where sa is the Pauli matrix (a � x; y; z), and ĵ is the current-
density operator.

The macroscopic symmetry of a state with spin flux
density is characterized by the symmetry of the spatial
distribution of the tensor J s

a in the unit cell of the crystal
rather than by its local magnitude. The magnitude of J s

a is
invariant (in contrast to the current of charges) relative to
time reversal. However, the complete symmetry group here is
not the ordinary space group of symmetry, but a `color' group
which additionally includes the operations of rotation and

E

E�

Eÿ

k

Figure 1.
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reflection in spin space. If the spin component of the tensor J s
a

is coordinate-independent (i.e., the spins of all the particles
that make contributions to the spin flux are parallel), then the
symmetry of a state with J s

a 6� 0 is described especially simply.
Let the spin axes be directed along the symmetry axis of the
crystal. Then, an additional symmetry operation is rotation in
the spin space through an angle p. This operation is
completely equivalent to the inversion of coordinates in
usual space. The spin flux can be conveniently represented
in the form of two equal-in-magnitude fluxes of particles with
the same sign of charge, but with the opposite spin, which
flow toward each other. Therefore, as in the case of the above-
examined current of charges, it is easy to ascertain that the
expression for the uniform current of spins reduces to the
integral of the total derivative in the momentum space. Thus,
the uniform spin current is equal to zero.

For a nonuniform spin current, just as for the current of
charges, it is convenient to isolate the toroidal and poloidal
components. The poloidal configuration is associated with
the symmetry group of a pseudoscalar rT (where T is the
time-odd polar vector of the toroidal magnetic moment).

Thus, the toroidal momentTs of spin currents is expressed
through D t

Im as follows [see formula (11)]:

Ts � rT � p12
m0

D t
Im : �20�

Consequently, Ts, due to the order parameter D t
Im, is one

additional example of the axial vector G examined in
Section 2.

In Ref. [38], it was shown that in this state in the presence
of an electric current I a momentum asymmetry arises in the
distribution of carriers, which leads to the appearance of a
total magnetization M � Ip12D t

Im Ða manifestation of the
current-magnetic effect (an analog of the magnetoelectric
effect for the toroids with a current of charges, considered in
Section 5).

The case of a real singlet parameter D s
Re for p12 6� 0

corresponds to the appearance of an electric polarization,
i.e., to ferroelectricity [39].

In the case of noncoincident (differing by q in momentum
space) electron (subscript 1) and hole (subscript 2) bands at
e1�p� � ÿe2�p� q� or in the one-band scheme at e�p� �
ÿe�p� q�, the order parameter D s

Re is associated with the
initiation of a charge-density wave (CDW), and the para-
meter D t

Re, with the initiation of a spin-density wave (SDW),
the latter being responsible for spin antiferromagnetism.
Chromium and its alloys are the examples of such a state.

Numerous examples of the realization of CDWs in quasi-
one-dimensional and layered systems are well known.

The coexistence of CDWs and SDWs [40] ensures the
realization of a ferromagnetic spin state, which is exemplified
by hexaborides [42].

An explanation of the nature of these ferromagnets, based
on the model described in Ref. [40], was given in Refs [43, 44].
There are grounds to believe that in such systems the toroidal
state can compete with the ferromagnetic one.

The above examples of the realization of electron±hole
pairing in the case of real order parameters D s

Re and D t
Re can

prove to be useful in searching for systems with toroidal
orderings, keeping in mind the conditions mentioned in
Section 4.1, which are favorable to the realization of current
states. In this connection, a recent article [41] should be noted,
which reports on the discovery of an excitonic insulator state
in TiSe2. In Ref. [45], for explaining the pseudogap state of
cuprates, a model was suggested with spontaneous currents in
the one-band scheme with e� p� � ÿe� p� q� and with an
insulator parameter of the d type (d-density wave, DDW),
with a doubling of the period.

With the same purpose, a similar model with spontaneous
currents flowing over adjacent bonds without a change in the
lattice periodwas examined inRefs [46, 47]. Experiments exist
which confirm this point of view [48, 49].

The authors of Ref. [50] indicated the magnetic classes in
which toroidal states appear as a result of electron±hole
pairing in the two-band model against the background of an
antiferromagnetic state caused by localized spins. The
appropriate examination against the background of a
ferromagnetic ordering of localized spins was carried out in
Ref. [51].

Kopayev et al. [52] gave a classification of magnetic
materials that allow toroidal ordering near the crystal sur-
face. An example of such an ordering is chromium in which
the asymmetry of the electron spectrum, E�k� 6� E�ÿk�,
characteristic of the toroidal state was observed in experi-
ments on the angle-resolved photoemission [53].

The occurrence of toroidal ordering near the surfaces of
ferromagnets Fe and EuO follows from the asymmetry of the
spectrum of spin waves, which was observed in optical
experiments on Mandelstam±Brillouin scattering [54].

4.3 Hubbard model
In the limiting case of strong interaction, which is opposite to
the above-considered model of an excitonic insulator, the
problem of obtaining an exact solution is substantially more
complicated. However, in the last 20 years huge efforts have
been undertaken in the development of different methods,
both analytical and numerical, of describing the ground state
and the basic physical properties of systems in the limiting
case of strong interaction. These efforts arose due to the need
to understand the nature of both the superconductivity of
cuprates and the magnetic properties of manganates which
possess colossal magnetoresistance.

E

k

Figure 2.
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A solution with spontaneous currents (flux phase) was
first obtained in the Hubbard model by Affleck and Marston
[55]. Later, there was suggested a whole series of methods,
mainly in terms of separation of charge and spin degrees of
freedom, the solutions in which were nonuniform currents of
charges and spins. The appropriate literature can be found in
the review [56].

Notice specially the work by Bulaevskii et al. [57], in
which the authors obtained a solution for a Mott insulator
with spontaneous currents circulating over nearest chemical
bonds. In contrast to other work with spontaneous currents,
a structure which allows an exact solution was suggested for
the Mott insulator. Systems have been considered based on
a triangular structure with a nonzero average scalar
chirality:

hw123i �

�S1 � S2�S3

�
; �21�

where 1, 2, 3 are the order numbers of the sites of this
triangular structure, and Si is the operator of spin on the ith
site.

In Ref. [57], one can find references to articles in which the
presence of such an average leads to the emergence of
spontaneous currents in another (not-Hubbard) subsystem
with conduction electrons, which by itself is of interest in
connection with the problem under consideration. In the
same work, the scalar chirality and orbital currents are
caused by one and the same electrons.

If we introduce an operator of spin at the ith site as

S
Z
i �

X
mn

C�ims
Z
mnCin ; �22�

where Z � fx; y; zg, sZ
mn are the Pauli matrices, andC��C � are

the operators of the creation (annihilation) of an electron,
then theHamiltonian in such a representation (one electron at
a site, and the degree of freedom only in spin) will take the
form

H �
X
i j

Ji j

�
Si Sj ÿ 1

4

�
; �23�

where Ji j � 4t 2i j=U, ti j is the integral of hopping between the
ith and jth sites, andU is the electron±electron interaction at a
site.

Then, the operator of the current flowing between sites i
and jmay be represented in the form

Îi j �
�������ÿ1p

eti jri j
pri j

X
s

�C�jsCis ÿ C�isCjs� ; �24�

and we obtain the following expression for the contribution
from the bond 1±2 to the current over the triangle 1±2±3:

~̂I123 � r1224et12t23t31
r12�hU 2

�S1 � S2�S3 : �25�

Equation (25) shows that the presence of spin chirality on
a triangular structure provides orbital current. This current
results in a nonzero magnetic moment Lz directed perpendi-
cularly to the plane of the triangle, with the average moment
hLzi being proportional to the angle formed by vectors hS1i,
hS2i, and hS3i. Note that this state arises even at an arbitrarily
small parameter ti j=U.

The above conditions are like an analog of the nesting
condition in the model of an excitonic insulator at a nonzero
interband matrix element of the angular momentum opera-

tor, which leads to the emergence of magnetization in the
opposite limiting case of arbitrarily weak interaction for
D s
Im 6� 0 and L12 6� 0 [37].
It has been recently shown [17] that a linear combination

with a complex coefficient of states with opposite scalar spin
chiralities results in the appearance of a toroidal moment. The
phase transition to an ordered state with a toroidal moment
will differ from the phase transition considered in Section 4.1
in themodel of an excitonic insulator forD s

Im 6� 0 and p12 6� 0,
where the formation of toroidal moments and their ordering
(Bose condensation) should occur simultaneously at the point
of the phase transition.

In Ref. [57], it was also shown that for another spin
structure in the triangle there can arise a seignettoelectric
(ferroelectric) state in the limit of an infinitely small t=U.

If we introduce an operator dni � ni ÿ 1 of the deviation
of the number of electrons at a site from unity (notice that this
deviation is usually assumed to be zero in the limit of
t=U5 1), we obtain, for example, for i � 1 that

dn1 � n1 ÿ 1 � 8
t12t23t31
U 3

�
S1�S2 � S3 ÿ 2S2 S3�

�
: �26�

Thus, if the average of the expression in brackets differs from
zero, then at some sites there will be hnii > 1, and at some
others hnji < 1 (certainly, under the condition thatP3

i�1 dni � 0).
Then, an electric polarization originates in the structure,

the ordering in which leads to a phase transition to a
ferroelectric state. It should be noted that in the model of an
excitonic insulator this state appears for D s

Re 6� 0 and p12 6� 0.
In Ref. [58], a mechanism for the emergence of a spin

nondissipative current (spin supercurrent) in a spin noncol-
linear magnet was suggested.

A possible analogy between the magnetic and super-
conducting orderings has been demonstrated. As is known,
the operators of the number of particles ni and of the
Josephson phase ji are canonically conjugate for super-
conductors: �ni;jj� �

�������ÿ1p
di j, where i, j are the indices of

sites.
A similar relationship also exists for spin operators:

�Sz
i ;Yj� �

�������ÿ1p
di j, where Sz is the z-component of the spin

operator, andY is the angle of the vector (Sx;Sy). This leads
to a connection between the XY spin model and the super-
conductivity.

The Hamiltonian in the XYmodel assumes the form

HXY �
X
h i j i

J?i j
2
�S�i Sÿj � Sÿi S�j � : �27�

From the expression

qSz
i

qt
� 1�������ÿ1p

�h
�Sz

i ;HXY� � ÿ
X
j

j sji �28�

we obtain the following expression for the spin current j si j:

j si j �
�������
ÿ1
p

J?i j�S�i Sÿj ÿ Sÿi S
�
j � : �29�

By expressing �Sx
j ;S

y
j � � S�cosYj; sinYj�, we arrive at

j si j � Ji j S
2 sin�Yi ÿYj� : �30�

Equation (30) represents an analog of the Josephson
equation for the superconducting current flowing between
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two superconductors with a fixed phase difference. The
quantity J?S 2 plays the role of spin stiffness. In this case, an
electric polarization emerges, as well. In an applied electric
field, a magnetization appears. Thus, the system constitutes a
magnetoelectric.

4.4 Theory of a Fermi liquid
It was shown in Sections 4.1 and 4.3 that states with spin
currents and toroidal ordered states can occur both within the
framework of an extremely weak interaction with a special
form (nesting) of the electron spectrum and in the reverse
limit of strong interaction. With strengthening interaction,
the requirements for the special form of the electron spectrum
become less and less rigid. Therefore, it is clear that in the
intermediate situation such ordered states remain possible.

This is supported by the results of a number of studies
where similar states were obtained within the framework of
the Landau theory of a Fermi liquid. Pomeranchuk's work
[59] proved to be at the center of attention; this work was
devoted to phenomena now called Landau±Pomeranchuk
instabilities of Fermi surfaces, caused by the violation of the
symmetries of rotation in electronic liquid-crystal states,
which were connected with the `hidden' ordering in systems
with heavy fermions. Within this approach, Varma [60] has
demonstrated the transition to an insulating state with an
anisotropic gap. One type of instability or another and the
corresponding type of ordered state are determined by the
exceeding of the critical value of a certain coefficient in the
Fermi-liquid theory. It should be noted that the appropriate
coefficients in the electron±hole scattering channel under the
condition of nesting of the Fermi surface diverge, even at an
arbitrarily weak interaction. An analogous situation takes
place in the superconducting channel of scattering with a zero
momentum of the electron±hole pairs for an arbitrary shape
of the Fermi surface, and in the case of a finite momentum of
superconducting pairs, upon fulfillment of the condition of a
mirror nesting of the Fermi-surface segments [61].

All types of the ordered states examined in Section 4.1 can
naturally be obtained within the framework of the Fermi-
liquid theory. In connection with the manifestations of the
Landau±Pomeranchuk instabilities, let us single out Ref. [62]
in which, in particular, an ordered state was obtained in a
triplet channel with an angular momentum equal to unity, the
state which corresponds to the violation of a `spin-orbit
symmetry', when the spin±orbit interaction appears as a
result of electron±electron correlations already in the non-
relativistic limit, rather than as a relativistic effect. Previously,
such a state was known only in the theory of superfluidity of
3He.

The operator of spin current in this case assumes the
following form (cf. formula (19) in Section 4.2):

Q ma�r� � C�a �r� sm
ab�ÿiĤ a�Cb�r� ; �31�

where the indices a, b, and m indicate the direction in the spin
space, and the index a, in the orbital space.

The Hamiltonian in the channel Fa
1 with l � 1 has the

form

H �
�
d3rC�a �r�

ÿ
e�H� ÿ m

�
Ca�r� � hmaQ

ma�r�

� 1

2

�
d3r d3r 0f a

1 �rÿ r 0�Q ma�r�Q ma�r 0� ; �32�

where m is the chemical potential, e�H� is the operator of
kinetic energy, and hma is the external (spin-orbital) field
thermodynamically conjugate to the spin current Qma, i.e.,
as if an infinitely small `external' relativistic interaction
induces a large nonrelativistic spin±orbit interaction at the
point Tc of the corresponding phase transition.

A similar role belongs to the magnetic field in the case of
ferromagnets, to the electric field in ferroelectrics, and to the
electric current (as was noted in Section 4.1) in the toroidal
magnetic state.

For a further discussion, it is important to retain in the
dispersion relation e�k� not only the linear term, but also the
cubic term:

e�k� � vFDk
�
1� b

�
Dk
kF

�2�
;

where Dk � kÿ kF, and kF and vF are the momentum and
velocity of an electron on the Fermi surface, respectively.

The Fourier component f a
1 �q� of the function f a

1 �r� takes
the form

f a
1 �q� �

f a
1

1� wj f a
1 j q 2

; �33�

the dimensionless Landau parameter Fa
1 � Nf a

1 , and N is the
density of states at the Fermi level.

Let us define the spin-orbital susceptibility

wma; nb �
hQmai
hnb

in the limit of hnb ! 0 as a diagonal part:

wma; nb � w0dmadnb :

Then, the Fermi-liquid correction wFL assumes the form

wFL � w0
m �

m0

1

1� Fa
1 =3

:

The susceptibility wFL diverges at Fa
1 � ÿ3.

If we introduce the order parameter as

n ma�r� � ÿ
�
d3r 0 f a

1 �rÿ r 0�
Qma�r 0�� ; �34�

we obtain, at hma � 0, a mean-field Hamiltonian HMF in the
following form

HMF �
�
d3rC��r�ÿe�H� ÿ n masm�ÿiH a� ÿ m

�
C�r�

� Vnma n ma

2j f a
1 j
; �35�

and the equation for the self-consistent order parameter then
takes on the form

n ma � j f a
1 j
�

d3k

�2p�3


C��k� smk̂ aC�k�� : �36�

The last equation has two solutions:

n ma � �nd̂mê for the a-phase ;
�nDma for the b-phase ;

�
�37�
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where d̂ and ê are the unit vectors in the spin and orbital
spaces, respectively; Dma is the SO(3) matrix of rotation [62],
and �n is a real number.

Thus, the expression



Qma�r�Q nb�r 0��! dmndab

�n 2

j f a
1 j2

d̂mêa in the a-phase,
Dma in the b-phase,

�
�38�

for jrÿ r 0j ! 1 determines the off-diagonal long-range
order.

At �n ma � �ndmzdaz, we have the following dispersion
relation

EA�k�12 � e�k� ÿ m� �n cosY ; �39�

where Y is the angle between the vector k and the z-axis.
Expression (39) formally coincides with the above expres-

sion (18) for the dispersion law in the case of the toroid of spin
currents, which was obtained for a triplet imaginary order
with l � 0, but now for p12 6� 0 [38]. This solution also
coincides with the spin-split state [63] which was sufficiently
reasonably used for explaining the specific features of the
phase transition in chromium at the N�eel temperature
TN � 311 K instead of a transition that is usually treated as
a phase transition to the spin-wave state for the real triplet
order parameter D t

Re.
It should be also noted that Hirsch's assertion [63] about

the presence of a uniform spin current in this state due to a
`skew' spectrum (39) is incorrect. The proof to this assertion
consists, as in the case withD s

Im for p12 6� 0 (see Section 4.1), in
reducing the expression for the current of each spin
component to the integral of the total derivative. A similar
situation arose in the problem of 3He.

The solution for the b-phase is completely new.
In this state, neither spatial inversion, nor time reversal,

nor rotational symmetry are broken. For the case of
nma � �ndma, the expression for the mean-field Hamiltonian
HMF is reduced to the following:

HMF �
X

�k

C��k�ÿe�k� ÿ mÿ �n r k̂�C�k� : �40�

The dispersion law EB
12�k� for the eigenstates �1 of the

scalar chirality of the operator r k̂ assumes the form

EB
12�k� � e�k� ÿ m� �n : �41�

Similar to the state of the B-phase of 3He, the dispersion
law is isotropic. In Fig. 3, the dashed line depicts the Fermi
contour of the normal phase (�n � 0) in accordance with
expression (41). For the state with kF2, the direction of the
electron spin coincides with the direction of the momentum
(positive chirality), while for the state with kF1, these
directions are opposite (negative chirality). In spite of an
outward similarity to the ferromagnetic state, the total spin
for both cases (kF1 and kF2) is equal to zero.

The last term in expression (40) for HMF corresponds to
spin±orbit interaction; it is determined only by electron±
electron correlations and is in no way connected with the
relativity. Therefore, it can be large, especially near the
corresponding transition temperature.

The a-phase is realized for the coefficient b < 1=3 in the
bare dispersion law (i.e., at b � 0, as well).

The b-phase can be realized for b > 1=3, i.e., at a
significant deviation of the bare dispersion law from a linear
one.

Naturally, this state can be obtained at an arbitrarily weak
interaction in the model of an excitonic insulator for the
triplet imaginary order parameter with an angular momen-
tum l � 1. The problem of the competition with other states
requires detailed study. However, this problem also exists in
the framework of the Fermi-liquid theory.

5. Magnetoelectric properties of the toroidal
state

The family ofmagnetoelectrics comprises substances in which
the application of a magnetic field H results in an electric
polarization P, and the electric field E generates magnetiza-
tionM (see the review [64]).

It follows from the expression for the free energy F �E;H�,
namely

F �E;H� � F0 ÿ ei jEiEj

8p
ÿ mi jHiHj

8p
ÿ ai jEiHj ; �42�

that

Pi � w e
i jEj � ai jHj ; �43�

Mi � ai jEj � wm
i j Hj ;

where w e
i j � �ei j ÿ di j�=4p and wm

i j � �mi j ÿ di j�=4p are the
dielectric and magnetic susceptibility tensors, respectively,
and ai j is the magnetoelectric tensor. The term magnetoelec-
tricity was introduced by P Debye [65]. The symmetry-based
classification of crystals from the viewpoint of magnetoelec-
tricity was performed by P Curie [66]. The tensor ai j 6� 0 is
nonzero for 58 out of 122 magnetic classes.

In 1959, Dzyaloshinskii [67] predicted the possibility of
the occurrence of magnetoelectricity in crystalline Cr2O3; in
the next year, Astrov [68] revealed this effect experimentally.

From the symmetry perspective, the magnetoelectricity
must exist in the toroidal state:

P � �ÿT�H �; M � �T� E � ; �44�

r

r

kx

ky

kF1

kF2

k

k

Figure 3.
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i.e., the off-diagonal component of themagnetoelectric tensor
must be nonzero and antisymmetric (ai j � ÿaj i) [69].

The physical nature of the occurrence of amagnetoelectric
effect in the toroidal state, as well as the antisymmetry and the
off-diagonal nature (transversity) of the magnetoelectric
effect [70], are illustrated in Fig. 4.

Figure 4a illustrates a uniform distribution of the
poloidal-current rings in the absence of a magnetic field.
Figure 4b corresponds to the switching-on of a magnetic field
H in the plane of the torus. For topological reasons, the
rotation of poloidal rings with a magnetic moment oriented
against the field H must be accompanied by their flowing
from right to left.

As a result of the existence of an excess of electrons on the
left-hand side, electric polarization P emerges. Its emergence
limits the paramagnetic component of the magnetic suscept-
ibility in the response to the field H; this problem will be
discussed in Section 6 devoted to an analysis of the
diamagnetism of the toroidal state.

From the condition for thermodynamic stability [17], we
obtain the following upper bound on the magnitude of ai j:

ai j 4
�����������
w e
iiw

m
jj

q
: �45�

An increase in ai j should be expected near the temperature of
phase transitions to the ferroelectric and (or) ferromagnetic
state, where the quantities w e

ii and wm
jj diverge, respectively.

The same refers to the temperature range near the point of
transition to the toroidal state, which is observed in boracites
[71].

All the above results to an equal extent relate to toroidal
states caused by an appropriate spin ordering.

The components of the vector T and, consequently, the
components of the magnetoelectric tensor are transformed
[72] according to:

(a) one of the one-dimensional irreducible representa-
tions, if the vector T is directed along the principal symmetry
axis;

(b) a two-dimensional irreducible representation, if the
vector T lies in the plane perpendicular to the principal axis,
and

(c) a three-dimensional irreducible representation, for
example, in cubic crystals.

In Ref. [69], it was shown that in the presence of
dissipation the vector �E�H�, which in the absence of
dissipation is the source (together with current j) for the
toroidal order parameter, responsible for the magnetoelectric
effect, serves also as a source for electric polarization and,
consequently, for the ferroelectric order parameter.

At the same time, the vector E, which in the absence of
dissipation is a source of electric polarization P, in the
presence of dissipation serves, because of a change in the
electron distribution function, as a source of the toroidal

order parameter T. As a result, we have a diverging
photoconductivity at the point of the phase transition to
the toroidal state. In the nonlinear response to an electric
field, there appears a term in the conductivity s, which is
linear in E (instead of the usual quadratic term). Some other
anomalous nonlinear effects have also been considered in
Ref. [69].

In Refs [73, 74], it was shown that a sufficiently large
magnetoelectric effect can occur in asymmetric semiconduc-
tor heterostructures. A review of experimental work in this
field is given in Ref. [75].

6. Diamagnetic anomalies in an inhomogeneous
toroidal state

As far back as 1952, V L Ginzburg [76] posed the question of
the possible existence of states which possess the properties of
an ideal diamagnet (superdiamagnetism) similar to super-
conductors, but having normal resistance.

It should be noted that as long ago as before the creation
of themicroscopic theory of superconductivity [21] there were
attempts to explain the nature of the superconductive state by
the introduction of a current j as an order parameter.
Precession of macroscopic loops with current in a magnetic
field could be considered to be responsible for strong
diamagnetism; however, this requires a hardness of wave
functions, which would exclude the paramagnetic compo-
nent. As is known, this is precisely the case that takes place in
superconductors.

The very existence of a current j (including a nonuniform
one) as an order parameter contradicts (as was already
mentioned in Section 2) the condition of gauge invariance.
In Section 5, it was shown that the poloidal configuration of
current loops in the unit cell of the toroidal state [see formula
(5)] leads to a weakening of the paramagnetic component
because of the emergence of electric polarization (see Fig. 4).
Simultaneously, an elementary but physically transparent
analysis [10] shows that, because of a quadratic dependence
of the toroidal moment [see formula (5)] on r under the
summation sign instead of a linear dependence on r in the
expression for the magnetic moment, a twofold increase is
observed in the diamagnetic component.

6.1 Suppression of the paramagnetic component
in the response to a magnetic field
For a loop with a current density I and an area S, the
magnetization equals M � AIS, where A is a dimensionless
constant. The paramagnetic component of the response to a
magnetic field, dMs � AIdS, is connected with a change in the
projection of the loop onto the direction perpendicular to the
magnetic field. The diamagnetic component dMI � ASdI is
caused by a change in the current flowing in the loop. In the
case of the magnetic moment M � � j r d3r or the inhomoge-
neous ferromagnetic state, when I � rotM�r�, the current
density can be expressed through the characteristic dimension
of the loop: I �M=r.

Then, dMI � ÿAMdr and dMs � 2AMdr (dr is the
change in the characteristic dimension under the effect of
the field). The total variation in magnetization is given by
dM � dMI � dMs � AMdr, i.e., the response of the loop is
paramagnetic.

In the case of the toroidal moment [see formula (5)] or
inhomogeneous toroidal ordering, when I � rot rotT�r�, the
current density I is expressed through the characteristic

ÂT Ã

P

H

Figure 4.
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dimension of the loop as I � T=r 2. In this case, we arrive at

dMI � ÿ 2AT

r
dr ; dMs � 2AT

r
dr ;

i.e., dM � dMI � dMs � 0.
Although the above discussion also touched on an

inhomogeneous toroidal state, the estimation performed
corresponds in fact to the homogeneous state T�r� � const,
since the characteristic dimension r and themagnitude ofT in
the above estimates were considered independent of the
coordinate. In this case, the anomalous susceptibility near
the point of the phase transition to the toroidal state is
observed only in the response to the external current, just as
to the external field thermodynamically conjugate to the
toroidal ordering.

This also refers to rotB � j , i.e., an anomalous response
exists only in the case of a nonuniform magnetic field.

The effect of a weakening of the paramagnetic component
because of the emerging electric polarization, which was
neglected in our estimates, must lead to the predominance of
the diamagnetic component. A rigorous treatment of this
problem on the basis of the balance of forces near the phase
transition temperature and on the basis of the excitonic
insulator model at a zero temperature (see Section 6.2)
confirms this conclusion.

Notice first of all that the macroscopic model with the
observance of gauge invariance confirmed that the response
of a homogeneous toroidal state to a nonuniform magnetic
field exhibits an anomalous behavior of the paramagnetic
sign [77].

6.2 Current precession of inhomogeneous toroidal states
(condition of the balance of forces)
Let us now turn to a strict study of the problem of the
response of an inhomogeneous toroidal state T�r� with a
macroscopic current I�rot rotT�r� to a uniform magnetic
field.

The procedure of minimization of the functional of free
energy, used in Ref. [77], correctly describes the response of a
toroidal state to a nonuniform magnetic field. In fact, it has a
static nature and ignores the dynamic effects of the magnetic
field on the current loops and current lines as the whole
entities. Correspondingly, the precession in the loop and
related diamagnetic component dMI of the response are also
neglected in the classical sense. From the formal viewpoint,
the absence of reaction to a uniform field is connected with
the necessity of integration-by-parts of the gradient terms
from T�r� upon minimization of the functional. In this
procedure, the surface contribution is rejected, which in fact
contains information about the response of the system to the
external uniform field. This follows from the expression

dFa � ÿ
�
d3rB rotT

for the interaction with the field, which at B � const is the
total derivative and is reduced to the integral over the
surface. The scheme of balance of forces was suggested in
Ref. [78]. It makes it possible to locally and explicitly
consider boundary conditions. The basic idea of the
approach proposed is the description of the interaction of
the system with the field in terms of force, rather than the
usually employed energy, characteristics. The switch-on of a

field leads to the appearance of an external force. The
equilibrium value of the order parameter is determined
from the condition of the balance of external and internal
forces. The latter arise as a result of deformation of the
system, i.e., of the appearance of an induced component Tind

in the order parameter. Both the external and internal forces
arise only through the derivatives of the order parameter
T�r� with respect to the coordinate.

In the expression for the free energy F�R� in the absence of
a field, we restrict ourselves to only first-order derivatives
HT�R�:

F�R� � F
ÿ
T�R�;HT�R�� :

For describing the reaction of the system to external force,
it is necessary to exclude the energy fint of the internal stresses
from the free energy. These stresses exist in the absence of
external force as well; they are caused by one of the reasons
for the spatial inhomogeneity of T�R�:

fint�R� � HF�R� : �46�

The minimum of F�R� is determined from the Euler
equation

qF
qT
ÿ d

dx

qF
qHT

� 0 : �47�
By determining F�R� from equation (47) and then fint

from formula (46), we obtain the equilibrium condition in the
absence of an external force:

U�R� � Fÿ HT
�

qF
qHT

�
� const : �48�

Equality (48) means that the free-energy density minus the
energy of the inhomogeneity is invariant with respect to R.

It is convenient to represent Eqn (48) in the form

HU�R� � 0 : �49�

The allowance for an external force leads to the replacement
of expression (49) by the following one:

HU�R� � fext ; �50�

which is the basic relationship for the scheme of the balance of
forces.

For the case we are interested in, Eqn (50) takes the form

dU

dR
� e

m0

~g �B rot rotT� ; �51�

where the coefficient ~g is determined by the fine details of the
microscopic model.

The left-hand side of equation (51) involves the force that
appears as a result of a displacement of the internal
coordinates by dR in the direction of the external force, i.e.,
in the direction in which the work is done over the body. The
right-hand side of equation (51) represents the Lorentz force
which supplies no work. The apparent contradiction is
resolved by the fact that in the element of volume moving
during the displacement of internal coordinates under the
action of the Lorentz force an electric field E � �V� B�
(where V � qR=qt is the velocity of motion) is induced,
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which in time dt delivers work [79]

dA � E j dt � ÿ� j� B� dR :

It is this fact that explains the above-mentioned manifes-
tation of dynamic effects. The system with a current is
reconstructed until the Lorentz force is balanced by the
internal stresses (excluding the internal stresses that existed
in the system because of the inhomogeneity of T�r� in the
absence of the external force). Thus, condition (51) describes
the situation that was established as a result of the dynamic
effect, i.e., a reconstruction of current loops, which is reduced
to the emergence of diamagnetic surface current in the system.

The authors of Ref. [78] considered, on the basis of the
above approach, three types of inhomogeneities of T�R� near
the temperature of the phase transition to the toroidal state.

The first case corresponds to the inhomogeneities con-
nected with the antisymmetric boundary conditions along the
direction x for the equilibrium parameter: T0�ÿ1� �
ÿT0�1�.

The solution to equation (47) in this case takes on the form

T0�x� � T0 tanh

�
x

xtor
���
2
p
�
; x 2

tor � ÿ
g
a
; T 2

0 � ÿ
a
2b

:

�52�

The coefficients a, b, and g define the expression for the
free-energy density without an external field:

F�T;HT� � ajTj2 � bjTj4 � gjHTj2 : �53�

A domain wall corresponds to solution (52); the sponta-
neous current and the Lorentz force that acts on this current
are equal to zero at �1 in this case.

The first integral of equation (51) has the form

g�HT �2 ÿ
�

e

m0

�
~gBHTÿ b�T 2

0 ÿ T 2� � 0 : �54�

Hence, we obtain the following implicit expression for
T�x�:

x � 2g
�T
0

dT

�
~g

e

m0
B

ÿ
�
e 2

m 2
0

~g 2B 2 � 4bg�T 2
0 ÿ T 2�2

�1=2�ÿ1=2
:

For the contribution T1�x� which is linear in B, we have
T1��1� � 0, T1�x� � ÿT1�ÿx�, and T�0� � 0.

From expression (54), we can obtain the following
asymptotics at zero point and at infinity:

T1�x! 0� � e~g
2gm0

xB ; maxT1�x4 xtor� � e~g

m0�ga�1=2
B :

�55�

Then, we arrive at the following estimate for the
susceptibility w 0:

w 0 � c

�
m �

m0

�2

jp12j2x 2
0 wL ; �56�

where c is the concentration of domain walls, g � x 2
0 , x0 is the

correlation length of the order parameter, wL �

ÿe 2kF=12p 2m0 is the Landau diamagnetic susceptibility,
and kF is the Fermi momentum.

If we introduce a characteristic scale ltor � x0jp12j=kF of
current correlations, then for w 0 we obtain the following
formula

w 0 � wL

�
ltor
ra

�2

; �57�

where ra is on the order of interatomic distance.
According to the well-known Langevin formula, the

diamagnetic susceptibility of an individual electron is propor-
tional to the area bounded by its orbit; however, the number
of orbits per unit area is, in turn, inversely proportional to the
area of orbits. Therefore, a large radius of an orbit cannot
ensure a high value of susceptibility per unit volume. In the
model under consideration (x0 4 ra), the situation is analo-
gous to the BCS theory [21], where there is an embedding of a
large number of electron±hole pairs into each other.

At the same time, the mutual induction effect also
suppresses an increase in the diamagnetism in the case of a
mechanical enclosure of one orbit into another. An anom-
alously large diamagnetism for ltor 4 ra, obtained for the
inhomogeneous toroidal state, corresponds to such an
embedding of orbits of radius ltor at which the electron±
electron correlations suppress the mutual induction effect.

As the second example in Ref. [78], a case was examined
where the inhomogeneous state of T�r� is connected with the
change in the sign of the coefficient g of the gradient term, i.e.,
near the Lifshitz point, rather than with the boundary
conditions. In the model of an excitonic insulator, this
situation is realized when the condition of nesting,
e1� p� � ÿe2� p�, is violated, for example, because of alloying
[80, 81].

The spatial scale of the corresponding inhomogeneity can
change over wide limits, beginning from the doubling of the
period. Such states are in fact antitoroidal: the toroidal
moment periodically reverses sign in them. The antitoroidal
states are just the examples of systems with anomalously
strong diamagnetism.

From the viewpoint of magnetoelectric properties, the
antitoroidal states are of no interest.

The expression for the susceptibility in this case coincides
with formula (57) to an accuracy of a numerical coefficient on
the order of unity, and c � 1. Special attention should be
given to the case with so-called embedded inhomogeneity,
when the scale of the inhomogeneity is specified rather than
found self-consistently, unlike both cases above.

In the case of an embedded inhomogeneity, we have ltor �
x�T �, where

x�T � � x0

�
Tc

Tc ÿ T

�1=2

�58�

and the current correlation length ltor diverges together with
x�T � as T approaches the critical temperature Tc, i.e., the
system becomes an ideal diamagnet near the phase transition
temperature.

There are grounds for hoping that it is precisely this
regime that can be realized in a periodically repeating
semiconductor heterostructure [70, 74, 75], i.e., such a system
will possess an antitoroidal ordering.

In LiCoPO4 crystals with toroidal ordering, a domain
structure is observed [82]. However, the proportion of
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domain walls that draw a spontaneous current and therefore
could be responsible for the anomalous diamagnetism is
sufficiently small for them to manifest themselves in the
total susceptibility.

Thus, the inhomogeneous toroidal, in particular, antitor-
oidal, state is an example of the realization of V L Ginzburg's
ideas of a situation where the anomalously large diamagnet-
ism (superdiamagnetism) has a collective but not super-
conductive nature. The above-given phenomenological
description of the diamagnetic susceptibility near Tc is
correct in the case of any of the above mechanisms of
formation of the toroidal state.

InRef. [78], the problem of themagnetic susceptibility in a
constant magnetic field at a zero temperature in the model of
an excitonic insulator has also been solved.

The nontriviality of the problem lies in the fact that to
strictly control the fulfillment of the condition of gauge
invariance, which guarantees the reliability of the result
obtained, the electron spectrum for the inhomogeneous
toroidal state should be known.

The results obtained for w 0 at a zero temperature agree
qualitatively with those obtained above for T4Tc [83].

6.3 De Haas±van Alphen oscillations in an effective
internal magnetic field Ð a diamagnetic giant differential
susceptibility in a weak external magnetic field
InRef. [84], another reasonwas analyzed for the anomalously
large diamagnetism caused by the manifestation in the
inhomogeneous toroidal state of the effective magnetic
(pseudomagnetic) field Beff determined by the first-order
derivatives of T�r� instead of the cases of current precession
(examined in Section 6.2), which are determined by the
second derivatives.

A quasi-two-dimensional two-band model with an aniso-
tropic interband hybridization Pk was presented. In the
dispersion law for each of the bands i � 1; 2, ei�k� �
ei�kxkz� � ei�ky�, the dispersion in ky is disregarded in
comparison with the dispersion of hybridization, which is
nonzero only in the direction ky: jei�ky�j5 jPkyj=m0.

In this case, the effective reduced Hamiltonian for the
singlet imaginary parameter D�r� has the form

Ĥred�
e1�k̂xk̂z� i

�
1

m0
Pk̂y � D�r�

�
ÿi
�

1

m0
Pk̂y � D�r�

�
e2�k̂x; k̂z�

0BB@
1CCA:�59�

The parameter D�r� enters into Ĥred quite analogously to
the case of the vector potential directed along the y-axis.

After the transformation

D�r� � Pe

m0c
Aeff ; Aeff � �0;Aeff; 0� ;

the Hamiltonian Ĥred coincides with the Hamiltonian of the
two-band model in the pseudomagnetic field Beff:

Beff � rotAeff �
�
ÿ cm0

eP
Hz D�r�; 0; cm0

eP
Hx D�r�

�
: �60�

In neglecting the dependence of Beff�r� on r (which corre-
sponds to the neglect of spontaneous currents
j � rot rotPD�r� which determine the diamagnetic suscept-
ibility (56)), one can use the methods of calculating macro-

scopic characteristics of a homogeneous system in a uniform
external magnetic field B. The true magnetic fieldB � rotA is
introduced into Hamiltonian (59) through the replacement
Aeff ! Aeff � A.

The magnetic susceptibility is determined by the com-
bined action of the true and pseudomagnetic field:
BS � Beff � B. The magnitude of the pseudomagnetic field
on the scale of the true magnetic field can be sufficiently large.

Then, the magnetic susceptibility of the system with an
inhomogeneous D�r� in a weak magnetic field coincides with
the differential susceptibility of a system with D � 0 placed in
a strong field Beff. In the case of a low temperature T, when
kBT5 mBBeff (kB is the Boltzmann constant, and mB is the
Bohr magneton), the system is under the conditions corre-
sponding to the de Haas±van Alphen effect. In this situation,
the differential susceptibility (equal to the sought-for suscept-
ibility w 0), as is known [85], can take arbitrarily large values in
modulus, both positive (paramagnetism) and negative
(diamagnetism). True, in contrast to the standard situation,
the field Beff, generally speaking, is nonuniform (in fact, it is
precisely its nonuniformity that corresponds to the existence
of a current and its precession). This resembles the situation
with the de Haas±van Alphen effect in the presence of
Shoenberg diamagnetic domains. However, there can exist a
situation where the nonuniformity of Beff can be neglected
[86]. For this to be possible, the scale of the nonuniformities
(in our case, this is the scale of changes in D�r�), three
examples of which were considered in Section 6.2, must be
large in comparison with the effective magnetic length of the
pseudomagnetic field:

l � ckF
eBeff

:

Then, if the condition

mBBeff

EF
5 1

is fulfilled, the oscillating (with changing Beff) part of the
susceptibility proves to bemuch greater than the smooth part,
and the response of the susceptibility w 0 (which is of interest
for us) to the external field B will be equal to the oscillating
component:

w 0 � a cos
EF

mBBeff
; a �

�
e

c

�1=2
E 2
Fm0

�2p5Beff�1=2
K

sin K
; �61�

where

K � 2p2T
mBBeff

:

It follows from expression (61) that for some values ofBeff

corresponding to the positive half-period of the cosine
function, the susceptibility is positive (paramagnetic), while
for other values of Beff which correspond to the negative half-
period, it is negative (diamagnetic). In the limit a!1, the
susceptibility w 0 approaches the susceptibility of an ideal
diamagnet: w 0 ! ÿ1 �w! 1=4p�.

In contrast to the problem concerning the system placed in
a real strong magnetic field, in the case under consideration
the magnitude of Beff depends on the parameters of the
system, which determine the sign of the half-period and,
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therefore, the sign of the susceptibility. In principle, there can
exist a situation where a change in the temperature will
change the sign of w 0 as a result of a change in D�r�.

The conditions of the realization of anomalous diamag-
netism due to the pseudomagnetic field Beff [first spatial
derivatives of D�r� in expression (60)] appear to be more
hardly fulfilled in comparison with the manifestation of the
current precession [second spatial derivatives of D�r� in
expression (10)].

6.4 Co-existence of the toroidal and superconducting
states
An original manifestation of a toroidal state takes place in the
case of its co-existence with superconductivity [84]. This co-
existence can be strictly describedwithin the framework of the
samemodel of an excitonic insulator; this was first performed
for a real singlet electron±hole parameter D s

Re in Refs [87, 88].
The co-existence of superconductivity with an insulating
phase with spontaneous currents was studied in connection
with the superconductivity of cuprates [45±47, 55, 56, 61].

In Ref. [84], a number of specific features were revealed in
the interaction of the superconductive and toroidal states that
have not been previously studied.

In superconductors, the ordinary condition of gauge
invariance is known to be violated. The role of the gauge-
invariant quantity is played by the combination
Hjÿ �2e=c�A (where j is the phase of the superconducting
order parameter Dc), which can explicitly be present in
macroscopic relationships.

For the superconducting current j c, the following expres-
sion is obtained in this case:

j c � Z
�
Hjÿ 2e

c
Aÿ exT

�
; �62�

where the quantity Z � jDcj2 is proportional to the density of
the superconducting electrons, and x � 1=vF.

Therefore, the following term appears in the expression
for the free energy:

dF � iT

�
Dc

�
Hÿ i

2e

c
A

�
D �c ÿ c:c:

�
: �63�

Calculation in the model of an excitonic insulator with
P 6� 0 and D s

Im 6� 0 results in the following additional term in
the expression for the current:

j � 7

8
x�3� ekFjDcj2

p 4T 2
PD S

Im ; �64�

where x�3� is the Riemann zeta function.
From expression (62), we derive the following equation

for the phase:

H 2j�r� � ex divT : �65�

Then, an additional phase factor appears in Dc:

Dc�r� � jDc�r�j exp
�
ixe
�r
0

Tjj�r 0� dr 0
�
; �66�

whereTjj�r� is the vortex-free component of the toroidal order
parameter (rotTjj�r� � 0); at T�r� � const, one should
assume that Tjj � T.

In the open-loop system, this phase completely compen-
sates for the additional term in the expression for the current,
without changing the parameters of the Meissner effect.

For the closed loop, which consists of a usual super-
conductor and a superconductor with a coexisting toroidal
ordering, the following expression is obtained for the
magnetic flux through the loop:

F � F0

�
nÿ ex

2p

�
Tjj�r� dr

�
; �67�

where n is an integer.
If the second term in the curly brackets is not equal to n,

then, because of F 6� 0, a spontaneous current I � cLÿ1F
arises in the loop, where L is the loop inductance.

Of great interest is the manifestation of the vortex
component of the toroidal moment T with rotT 6� 0 in the
superconducting state.

If we apply a rot operation to expression (62) for the
current, we obtain a modified London equation

rotL 2j c � ÿcÿ1Bÿ
1

2
x rotT ; �68�

where L 2 � 2eZ, and wL � �Lc�=�4p�1=2.
The Maxwell equation takes the form

rotB � 4p
c

j c � 4p rot rotT : �69�

Then, from Eqns (68) and (69) we arrive at

ÿH 2j c ÿ
j c

l 2
L

� c

l 2
L

rot rotT� c 2x

l 2
L

rot rotT : �70�

The second term on the right-hand side of equation (70) is
due to the direct interaction of the superconducting and
toroidal order parameters; since cx � c=vF 4 1, its contribu-
tion substantially exceeds the first term, which is an analog of
the term with rotM in the case of the co-existence of
superconductivity and ferromagnetism [89].

If the temperatures of the superconducting (Tc) and
toroidal (Ttor) phase transitions are close, the linearized
equation for Dc takes on the form

1

2m �

�
ÿ iHÿ 2e

c
A�r� ÿ exT�r�

�2

Dc � ÿaDc ; �71�

where a � �Tÿ Tc�.
This leads to a specific structure of the penetration of the

magnetic field into the superconductor, and to a nonmono-
tonic temperature dependence of the second critical magnetic
field Hc2 [84].

7. Collective oscillations and optical properties
of toroidal states

To describe the interaction of toroidal states with an
electromagnetic field, it is necessary to investigate the
collective modes of toroidal oscillations, which was per-
formed at the phenomenological level in Refs [90, 91]. The
interaction with the magnetic component of the electromag-
netic wave being proportional to the term T rotB in the
expression for the free energy, then the interaction with the
electric component E is proportional to T dE=dt. This
corresponds to the emergence of electric polarization P
proportional to dT=dt. As a result, a resonance appears in
the expression for the dielectric polarization e�o�, which
corresponds to one of the modes of toroidal oscillations. In
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Refs [90, 91], we predicted a characteristic feature in the
temperature dependence of the absorption coefficient, which
is observed in the TlGaSe2 compound [92].

To the extent of interaction T rotB, the toroidal oscilla-
tions also manifest themselves in the frequency dependence of
the magnetic permeability m�o�. The authors of Ref. [93] have
studied the effect of toroidal oscillations on the angle of
rotation of the plane of polarization of an electromagnetic
wave (see also Ref. [94]). Similar problems were also studied
in the above-mentionedwork [57] on the basis of theHubbard
model.

Since e�o� and m�o� can have resonances that are close or
even coinciding in frequency, this circumstance, besides the
above-noted possibility of exhibiting a high value of the
magnetoelectric coefficient a, can lead to the existence of a
region of frequencies with a negative refractive index n�o�.
Thus, the toroidal states are of interest from the viewpoint of
the realization of metamaterials [95].

In the case of an inhomogeneous toroidal state
�rotT�r� 6� 0�, in the equation that describes the trajectory
of a light beam in the framework of geometric optics, there
appears a term proportional to rotT�r�, which leads to the
Hall effect for the light: the direction of the beam deflection
changes with a change in the beam direction [96].

Detailed information concerning substances with a tor-
oidal ordering and the experimental methods of their study
can be found in the reviews [17, 64]. Special attention should
be given to Ref. [97] in which toroidal ordering was observed
for the first time.

8. Conclusion

Thus, the anomalous diamagnetic component in the response
to a uniform magnetic field exists only in the region of the
inhomogeneity of the toroidal state, i.e., in the region of
domain walls. Although the latter (as was indicated above)
have been observed in the toroidal state [82], the domain walls
occupy only a small fraction of the sample volume and,
therefore, their contribution to the total susceptibility is
negligible. As to the antitoroidal state, in which large
diamagnetism must occur, it has not yet been revealed.

To date, we have proposed (and have started studying)
heterostructures analogous to those in which a toroidal state
with a large magnetoelectric effect was observed [74, 75], but
with a periodically repeating structure. In these structures, the
fraction of domain walls proves to be on the order of unity.
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states and in the study of their properties, I want to thank
V L Ginzburg for his active participation in the work and
stimulating support. I hope that Vitalii Lazarevich's dream
about the superdiamagnetism of a nonsuperconducting
nature will soon become a reality.
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