
Abstract. Mass transport in a nonisothermal binary molecular
mixture is systematically discussed in terms of nonequilibrium
thermodynamics, which for the first time allows a consistent and
unambiguous description of the process. The thermodynamic
and hydrodynamic approaches are compared, revealing that
nonequilibrium thermodynamics and physicochemical hydrody-
namics yield essentially the same results for molecular systems.
The applicability limits for the proposed version of the thermo-
dynamic approach are determined for large particles.

1. Introduction

The aim of this paper is to more accurately define and to
extend the thermodynamic approach to mass transport in
liquid mixtures, and to compare its results with those
obtained in the hydrodynamic approach. For simplicity, we
consider a simple binary mixture of molecular size nonionic
particles, and then, whenever possible, extend our results to
multicomponent and polymer systems. We then calculate
equilibrium thermodynamic parameters using methods of
statistical physics and compare the results with those
obtained with the hydrodynamic approach for diluted
systems.

Thermodynamic equations for mass transport in liquids
are well known [1±3] and are based both on equilibrium
thermodynamic considerations (Gibbs and Gibbs±Duhem
equations) and on those of nonequilibrium thermodynamics
(equations for thermodynamic forces and fluxes). Underlying

the nonequilibrium thermodynamic approach is the entropy
production expression

s � JeH
�
1

T

�
ÿ J1H

�
m1
T

�
ÿ J2H

�
m2
T

�
; �1�

where Je is the energy flux, J1 and J2 are the component
mass fluxes, m1 and m2 are the component chemical
potentials, and T is the temperature. The energy flux and
the temperature distribution in the liquid are assumed to be
known, whereas the mass fluxes are determined by the
continuity equations [3, Ch. 16]

qni
qt
� ÿHJi ; �2�

where ni is the numerical concentration of the ith component
and t is time. Nonequilibrium thermodynamics defines the
mass flux as [1±3]

Ji � ÿniLiH
mi
T
ÿ niLiQH

1

T
; �3�

where Li and LiQ are kinetic coefficients of individual
molecules.

The second term in the right-hand side of Eqn (3)
represents the cross effects between the mass and thermal
energy fluxes.

The chemical potentials in Eqn (3) are usually expressed in
terms of component concentrations and other measurable
parameters of the system ([3, Ch. 16], [4, Ch. 6]):

Hmk �
X2
l� 1

qmk
qnl

Hnl ÿ �vkHP� qmk
qT

HT ; �4�

where P is the internal macroscopic pressure of the system
and �vk � qmk=qP is the partial molecular volume. 1 Substitut-
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1 We note that in the latest edition of Landau and Lifshitz's Hydro-

dynamics (Moscow: Fizmatlit, 2006, Ch. 6), the pressure gradient is

defined by the Gibbs±Duhem equation.



ing Eqn (4) in Eqn (3) results in

Ji � niLi

T

(
ÿ
X2
k� 1

qmi
qnk

Hnk � �viHP

�
��

mi
T
ÿ qmi

qT

�
ÿ LiQ

TLi

�
HT

)
: �5�

The expression in square brackets in the right-hand side of (5)
can be written in a quasithermodynamic form using the
parameters hi � mi ÿ T qmi=qT and qi � LiQ=Li, which are
respectively defined as the molecular enthalpy and molecular
heat of transport [1±3].Whereas themolecular enthalpy hi is a
thermodynamic parameter proper, the heat of transport qi is
simply a ratio of two kinetic coefficients (dynamic para-
meters). To our knowledge, no general proof has yet been
given of the purely thermodynamic nature of the heat of
transport (although in the particular case of an ideal gas
mixture, it is shown [2] that the heat of transport is a purely
thermodynamic parameter). Finding the relation between the
heat of transport and thermodynamic parameters is no doubt
of interest because the so-called Soret coefficient, the key
parameter characterizing the concentration distribution of
components in a nonuniform temperature field, is expressed
in terms of the heat of transport [1, 2, 5, 6]. A large number of
studies that offer different approaches to calculating the heat
of transport are cited in [6]. In Section 2 of this paper, we
discuss the relation between the heat of transport and
thermodynamic parameters in more detail.

Equations (2) and (5) must be complemented by an
equation for the macroscopic pressure gradient in the
system. The simplest possible approach, which is to consider
the pressure constant [1±4], is inadequate if the temperature
and concentration are nonuniform over the system. For
diluted systems, this follows from the thermodynamic
equation Pi � kTni for the partial osmotic pressure of the
mixture component. Another argument favoring the estab-
lishment of a pressure gradient in the system is the Gibbs±
Duhem equation [1±6]

HP �
X2
i� 1

ni

�X2
k� 1

qmi
qnk

Hnk � qmi
qT

HT
�
: �6�

Equation (6) ensures that the system is in mechanical
equilibrium and guarantees the potentiality of its thermo-
dynamic functions, whose values therefore depend only on
the initial and final values of the parameters of a reversible
process. In Ref. [6], the pressure gradient is taken to be zero.
An equation equivalent to Eqn (6) was derived in [7] and used
to calculate kinetic coefficientsÐ ignoring, however, the
mass flux equations in doing so. In Ref. [8], in which a mass
flux expression obtained from the Kramers equation is used
to calculate kinetic coefficients, the authors disregard the
pressure gradient, whose presence is necessary for a system to
be in mechanical equilibrium. Papers [8±10] also consider the
so-called thermophoretic force, which is due to the gradient in
the kinetic energy of an isolated particle in a liquid under a
temperature gradient. (We note that no consideration is given
to whether the molecules of the suspending liquid experience
this force and what the implications of this are.)

Gibbs±Duhem equation (6) is the condition of mechan-
ical equilibrium in the system. Bulk forces of different origins
are expressed in (6) in terms of the corresponding chemical
potential gradients [1±3] and can be related to the tempera-

ture, pressure, component concentrations, etc.Ð the deter-
mining parameters of the chemical potential. Equation (4),
similarly, is for the total force acting on the particle. The
bulk forces are balanced by the pressure gradient that is
established in the system, and this mechanical equilibrium
must establish both in the system as a whole and at the local
molecular level, when all the bulk forces around a chosen
particle must add up to zero for the particle to be in a
stationary state. The last condition must be satisfied at least
in an isothermal equilibrium system, in which all the
particles are at rest on average.

The mechanical equilibrium condition for an isothermal
homogeneous system, as well as the use of Eqns (1)±(6) in
general, is closely related to the principle of local equilibrium
applied to nonequilibrium and inhomogeneous systems. As
argued in Refs [11, 12], local equilibrium is violated in
thermophoresis because the free energy change across a
particle is typically comparable to the thermal energy of the
particle. Calculations in Refs [11, 12] show that even for large
(micron size) particles, the change in question is nomore than
a few percent of kT. The authors provide no arguments to
support this statement, which is questionable because (if for
no other reason), given the same temperature gradient, local
equilibrium should be first violated for large rather than small
particles, because the temperature drop across the former is
larger. It is not easy to assume that with the conditions being
equal, local equilibrium can be fulfilled, for example, for
molecules but not for colloidal particles.

The conditions for the local equilibrium principle to hold
are in fact a well-researched subject and relate to the case
where physical properties change little over the molecular
length and the mean free path scale. A detailed discussion on
this topic and references to earlier works are given in [13]. In
summary, for the local equilibrium principle to hold, both the
relative change in temperature and the change in molecular
velocity must be small over themean free path (in comparison
to the speed of sound). For a gas, this corresponds to the
temperature gradient about 105 Kcmÿ1 according toRef. [13],
and for a liquid, with its heat conductivity and speed of sound
higher and mean free path shorter, this condition should be
more than fulfilled, noting that the experimental temperature
gradient does not exceed 104 K cmÿ1. We therefore assume
that the local equilibrium condition is satisfied in the
nonisothermal systems considered here.

Equations (2)±(6) are complemented by equations relat-
ing the fluxes or concentrations of the components,

v1J1 � v2J2 � J ; �7�
where J is the total mass flux through the system. In a closed
system, which cannot exchange particles with its environ-
ment, J � 0. Equation (7) can also be written as

f1 � f2 � 1 ; �8�
where f1 and f2 are the volume fractions of the correspond-
ing components. Because of Eqn (8), the component con-
centrations cannot be considered independent variables. The
term

P 2
l� 1 qmk=qnl Hnl in Eqns (4)±(6) can be represented as

the gradient of the composition function mk � mk�n2; n1�n2��.
Passing to more convenient volume fraction variables f2 � f
and f1 � 1ÿ f [see Eqn (8)], we find that

X2
l� 1

qmk
qnl

Hnl � qmk
qf2

Hf2 �
qmk
qf1

qf1

qf2

Hf2 � 2
qmk
qf

Hf ; �9�
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where we note that qmk=qf2 � ÿqmk=qf1 and qf1=qf2 � ÿ1,
as Eqn (8) suggests.

2. Thermodynamic expressions
for heats of transport. Closed stationary systems

Substituting Eqns (6) and (9) in the mass flux in Eqn (5), we
obtain the following two equations for the component mass
fluxes expressed in terms of the volume fraction of the second
component f:

J1 � L1

Tv1

�
f�1ÿ f�

�
2
qm �

qf
Hf� qm �

qT
HT
�

� �1ÿ f��m1 ÿ q1� HT
T

�
; �10�

J2 � L2

Tv1

�
ÿf�1ÿ f�

�
2
qm �

qf
Hf� qm �

qT
HT
�

� v1
v2

f�m2 ÿ q2� HT
T

�
: �11�

In deriving Eqns (10) and (11), it was assumed that the partial
molecular volumes �vk are equal to the specific molecular
volumes vk; this assumption introduces an error of no more
than a few tenths of a percent for a wide variety of substances.
Another important feature of the derivation is the introduc-
tion of the so-called combined chemical potential, defined as

m � � m2 ÿ
v2
v1

m1 : �12�

The concept of the combined chemical potential m � as a
characteristic parameter of a binary mixture was introduced
many years ago (Refs [1, 2]) and is in wide use today (see, e.g.,
Refs [5±7]. The authors of Ref. [4] introduce a similar
parameter but assume that one single kinetic parameter is
sufficient to characterize an isothermal binary mixture.
However, such a kinetic coefficient should take the form of
the well-known Stokes±Einstein expressions in both diluted
systems, which is impossible to achieve with only one kinetic
coefficient, and therefore it is preferable to retain different
and a priori unequal kinetic coefficients in Eqns (10) and (11).
We note that, as is to be shown in Section 3, the diffusion
coefficient can be calculated for any concentration if the
viscosity and hydrodynamic radii of the component are
known.

It is clearly seen from Eqn (12) that the chemical potential
of the solvent becomes the prevailing factor for large
molecules, for which v2=v1 4 1. The mass diffusion and
thermal diffusion of such particles are at first sight indepen-
dent of the particle properties (except its volume) and depend
only on the properties of the solvent, which leads to the
conclusion (see review [14]) that expressions involving
combined chemical potential (12) produce results that are
not physical in nature. However, it is shown in Refs [7, 15]
that the combined chemical potential is in any case simply a
parameter proportional to the osmotic pressure in the system.
We show in Section 4 that a more detailed microscopic
treatment using statistical perturbation theory gives a
different picture, and that the proposed approach is
obviously valid if the interacting molecules or their interact-
ing fragments are of a size comparable to the scale of change
of their interaction potential. The case of larger particles, for
which the interaction potential varies on a definitely smaller
scale than their size, needs a separate study.

In Ref. [15], the mass transport problem for colloidal
particles is approached using equilibrium thermodynamics
and ignoring the production of entropy and the associated
fluxes.

Having discussed dynamic arguments, we next consider
the purely thermodynamic aspects of describing a system,
which is the most important topic at this point because it is
probably in order to overcome the difficulties arising here
that the integrated diffusion coefficient was introduced in
Ref. [4].

Equations (8), (10), and (11) determine mass fluxes in a
binary system. Formally, the problem with these equations is
that their number is larger than that of the unknowns: there
are two equations for fluxes and there is one unknown, the
volume fraction of the second component. For an isothermal
mixture, this problem is overcome by using the L1 � L2

assumption in Ref. [4] (see above), thus making Eqns (10)
and (11) equivalent. This approach, however, does not work
for a system with a temperature gradient. Of greater use is the
approach in [1±3, 5, 6], in which one of the components is
considered the solvent and the other the solute, their
respective concentration distributions being described by
Eqns (7), (8) and by one of Eqns (10), (11) (that is, one of
the mass flux equations is simply ignored). Both flux
equations (and hence the production of entropy in a none-
quilibrium system) were ignored in [7], where the correspond-
ing form of the Gibbs±Duhem equation was used to calculate
the concentration distribution (or chemical potential) in the
solvent. All the other studies known to us use one ofEqns (10),
(11) for the solute and then use Eqn (7) to calculate the flux of
the solvent.

Admittedly, such approaches are intuitively applicable to
diluted solutions, with their clear distinction between the
solvent and the solute. But in high-concentration solutions,
with components comparable in concentration, it is a totally
arbitrary choice as to which of them is the solvent and which
the solute. As a result, we have equally valid approaches to
describe a mixture: two for a binary system, three for a
ternary, etc. From our standpoint, this means that we need a
different solution to this problem, one that would make flux
equations (10) and (11) compatible with Eqn (7).

A closer look at Eqns (10) and (11) reveals a further
problem. The flux terms proportional to HT=T in Eqns (10)
and (11) describe the mass transport of pure components in a
nonisothermal system, the process having no relation whatso-
ever to the corresponding thermal osmosis or to whether the
system have walls. The present authors are not aware of any
reason for this phenomenon, nor has it ever been observed
experimentally, which naturally suggests the elimination of
these terms from the mass flux equations. This is most easily
done by assuming the following general relations between the
heat of transport and the corresponding chemical potential of
a component:

m1 � q1 ; �13�
m2 � q2 : �14�

Equations (13) and (14) define heats of transport as
thermodynamic parameters, with the consequence that the
mass flux caused by the temperature gradient and producing a
concentration gradient in a homogeneous mixture can be
expressed as a quantity proportional to �qm �=qT �HT. Recal-
ling that the specific molecular entropy of a component is
defined as s1; 2 � qm1; 2=qT, such mass transport (traditionally
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associated with thermal diffusion) can be assumed to have a
purely entropic origin. Thus, eliminating `extra' terms from
the mass transport equations allows the heat of transport to
be defined in thermodynamic terms and the thermal diffusion
to be defined as a purely entropic process.

Equations (13) and (14) alone do not guarantee that
Eqns (10) and (11) are compatible in all cases, and should be
complemented by the conditions

J1 � J2 � 0 �15�

which express the stationary and closed nature of the system.
It is only under these conditions that Eqns (7), (10), and

(11) become compatible, and hence only a closed stationary
system allows an unambiguous thermodynamic description
of mass transport in a binary mixture with a temperature
gradient. Nonequilibrium thermodynamics, as it is currently
formulated, fails to unambiguously predict the behavior of
open and/or nonstationary systems (for more on this, see
Section 3).

We now use one of equations (7) and (8) (which are now
compatible) to obtain the following expression for the Soret
coefficient ST, the key physical parameter that characterizes
the stationary nonuniform concentration distribution result-
ing from the balance between the thermal diffusion flux and
the diffusion flux:

ST � ÿ Hf
f�1ÿ f�HT � ÿ

qm �=qT
2f�1ÿ f� qm �=qf : �16�

Using Eqn (16) allows calculating the Soret coefficient for
systems in which component chemical potentials vary with
concentration and temperature in a known way. Tradition-
ally, the Soret coefficient is considered positive if the colder
region of a mixture is enriched with the component under
consideration. For the highly diluted systems �f5 1� studied
in the experiments in Ref. [16], expression (16) becomes

ST � ÿ qm 0
2 =qTÿ �v2=v1��qm 0

1 =qT �
2kT

; �17�

where m 0
1 is the chemical potential of the pure solvent and m 0

2 is
that of an isolated particle in the solvent. The derivation of
Eqn (17) assumes that the ratio v2=v1 is essentially unchanged
with temperature because both molecular volumes in a
diluted system have their temperature dependence deter-
mined by processes in the solvent that are due to the thermal
motion of the solvent molecules.

3. Open and nonstationary systems
and the dynamic pressure gradient

In an open system, the mass flux of a component may be
nonzero because there is a flux of mass across the system
boundary. In a nonstationary closed system, the component
mass fluxes J1 and J2 are nonzero even though the total mass
flux in the system, J, is zero. As a result, the Gibbs±Duhem
equation can no longer determine the pressure in the system;
hence, some other approach should be found for the purpose.

In previous works [17, 18], we combined the purely kinetic
approach with the Fokker±Planck equations to obtain mass
transport equations in which dynamic parameters, cross-
diffusion coefficients, and thermal diffusion coefficients
were calculated using the equations of hydrodynamics. The

macroscopic pressure gradient was calculated from continu-
ity equations of type (2) and from Eqn (8). The same
approach can be used to solve the flux equations of non-
equilibrium thermodynamics.

In this case, the continuity equations become

qf
qt
� H

�
L1�1ÿ f�

T

�
2
qm1
qf

Hfÿ v1HP� qm1
qT

HT
��

; �18�

ÿ qf
qt
� H

�
L2f
T

�
2
qm2
qf

Hfÿ v2HP� qm2
qT

HT
��

: �19�

In Eqns (18) and (19), the heat of transport is taken to be
defined in accordance with Eqns (13) and (14). Solving the set
of equations (18) and (19) for f and HP using Eqn (8) yields

HP � 1

v2
��v1=v2��1ÿ f� � �L2=L1�f

�
�
(
ÿ J

L1
� 2

�
�1ÿ f� qm1

qf
� L2

L1
f
qm2
qf

�
Hf

�
�
�1ÿ f� qm1

qT
� L2

L1
f
qm2
qT

�
HT

)
; �20�

qf
qt
� L2

T

� H
�
f�1ÿ f�ÿ2�qm �=qf�Hf� �qm �=qT �HT �ÿ fJ=L1

1ÿ f� L2v2=�L1v1�f
�
:

�21�

A comparison of Eqn (21) with Eqn (14) for a stationary
mixture shows that Eqn (21) contains an additional drift term
fJ=L1 proportional to the mass flux through the open
system. The term ÿJ=L1 in Eqn (20) describes the corre-
sponding pressure gradient component. The additional mass
flux component is due to barodiffusion driven by the dynamic
pressure gradient associated with viscous dissipation in the
system. The parameter J is independent of position in the
system but is determined by mass transport across the system
boundaries and may vary with time. Mathematically, the
parameter J is determined by the boundary conditions for
Eqn (19).

If a system is open but stationary, molecules entering it
through one of its boundary surfaces can leave it through
another, thus creating a molecular drift that is independent of
whether the temperature or pressure have a gradient. This
drift is determined by the conditions at the boundaries and is
independent of any force applied to the system. For example,
the system may have a source of some molecular species at
one boundary and a sink at another. As molecules of a given
species move between the two, they experience viscous
friction, which creates a dynamic pressure gradient, with the
result that both this and the other molecular species are
involved in barodiffusion. This additional pressure gradient,
due to viscous friction, is not taken into account in theGibbs±
Duhem force balance equation.

Equations (6) and (10), (11) describe a system in
hydrostatic equilibrium without viscous friction caused by
the material flux due to material exchange with the environ-
ment. Unlike the Gibbs±Duhem equation, Eqn (20), which is
also a force balance type equation, accounts for viscous
friction forces and their compensating dynamic pressure
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gradient in closed and nonstationary systems. For a closed
stationary system, in which J � 0, qf=qt � 0, Eqn (21)
transforms into

f�1ÿ f�
�
2
qm �

qf
Hf� qm �

qT
HT
�
� 0 ; �22�

to which Eqns (10), (11) also reduce if the proposed heat of
transport expressions (13) and (14) are taken into account.

The interaction of system components with the walls also
develops a dynamic pressure gradient in the system. Absorp-
tion on the walls causes the molecules to leave the system,
whereas their desorption causes their influx: the two fluxes of
course disappear when the adsorption±desorption process
reaches equilibrium.

There are thermal diffusion experiments, however, in
which the system experiences periodic temperature changes,
as is the case, for example, with the method in [19], where
thermal diffusion was observed by recording a dynamic
temperature lattice in a liquid using a pulsed infrared laser.
Because this involves changing the wall temperature and
thereby changing the equilibrium adsorption constant,
material fluxes vary with time, resulting in an influx/outflux
periodicity. Preliminary analysis shows that material fluxes to
and from the walls have relaxation times about a few
microseconds until equilibrium is attained, and such nonsta-
tionary material fluxes, due to changes in the wall tempera-
ture, can be observed using dynamic temperature lattices.

For a diluted isothermal system, Eqn (21) should reduce
to the standard diffusion equation. We must therefore define
the kinetic coefficients as Li � Di�f�=�2k�, where Di is the
Stokes±Einstein diffusion coefficient corresponding to the
real hydrodynamic radius of the molecule under considera-
tion and to the value of viscosity of a real liquid mixture at the
given concentration. We note that the ratio L2v2=�L1v1� is
independent of the concentration if the hydrodynamic radii of
the components do not change. In experiments using optical
methods to study the dynamics of fluctuations, the effective
diffusion coefficient is determined from the fluctuation decay
rate. According to Eqn (21), the effective diffusion coefficient
depends on the concentration as

Deff � D2�f�
kT

f�1ÿ f� qm �=qf
1ÿ f�D2v2=�D1v1�f : �23�

The diffusion coefficient thus defined can be calculated for a
system of miscible solvents using solubility parameters [20,
21].

At temperatures well above the critical separation
temperature, solutions can be considered ideal, which allows
using the well-known expressions

m1�f� � m 0
1 � kT ln �1ÿ f� ; �24�

m2�f� � m 0
2 � kT lnf : �25�

For such systems, the effective diffusion coefficient takes the
form

Deff � D2�f� 1� �v2=v1 ÿ 1�f
1ÿ f�D2v2=�D1v1�f : �26�

The diffusion coefficient given by Eqn (26) is valid for all
concentrations if the solution can be considered ideal. For
diluted systems, the dynamic barodiffusion factor

�1ÿ f�D2v2=�D1v1�f�ÿ1 becomes unity, and the diffusion
coefficient in (23) transforms into the well-known Stokes±
Einstein expression for an isolated molecule in the corre-
sponding component in pure form. If there is no such factor,
as in the model in Ref. [7] or in Ref. [4], the limiting process is
possible only for one diluted solution of the two possible, even
in ideal solutions.

In semidiluted solutions, the second virial coefficient is
typically used to describe the concentration dependence of the
effective diffusion coefficient [22]. This approach is based on
representing the combined chemical potential in terms of the
osmotic pressure P (see, e.g., Refs [7, 9]). In this approxima-
tion, the isothermal diffusion coefficient is usually written as

Deff � D2�f � 0� v2
kT

qP=qf
1� �5=2�f ; �27�

where the osmotic pressure is expressed in terms of the second
virial coefficient B as [22]

P � kT
f
v2

�
1� B

f
v2

�
: �28�

Equation (27) contains the well-known expression for the
viscosity of a diluted liquid mixture

Z�f� � Z0

�
1� 5

2
f
�
;

where Z0 is the viscosity of an infinitely diluted liquid [4].
Equation (23) then becomes

Deff � D2

kT

f�1ÿ f� qm �=qfÿ
1ÿ f�D2v2=�D1v1�f

�ÿ
1� �5=2�f�

� D2�f � 0�
�
1ÿ

�
2B

v2
ÿD2v2
D1v1

ÿ 3

2

�
f
�
: �29�

With the effects of the dynamic pressure gradient and of its
associated barodiffusion neglected, the concentration depen-
dence of the effective diffusion coefficient becomes [22]

Deff � D2�f � 0�
�
1ÿ

�
2B

v2
ÿ 5

2

�
f
�
: �30�

Using Eqn (30) to calculate the second virial coefficient is
a standard practice, for example, in polymer physics [22]. The
second virial coefficient is used as an intermolecular interac-
tion parameter. For noninteracting particles, the second virial
coefficient B takes the value 8v2, where 8v2 is the volume that
the molecule under consideration makes inaccessible to other
particles. Using this parameter, the relative contribution of
dynamic barodiffusion to the second virial coefficient is
estimated as �2=27�jD2v2=�D1v1� ÿ 1j. For a mixture of
methanol and ethanol with the respective molar volumes
41 cm3 and 58 cm3 and with essentially equal radii, the
contribution of dynamic barodiffusion is about 3%. For a
mixture of methanol/n and propanol with v1=v2 � 41=75, the
contribution is about 6%.

We note that the second virial coefficients themselves for
such mixtures should, if expressed in terms of B=v2, be
virtually identical because such systems differ very little in
terms of molecular interaction. Such effects in the concentra-
tion dependence of the effective diffusion coefficient are quite
measurable using standard optical methods. For macromol-
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ecules, these effects should be even more pronounced. Thus,
dynamic barodiffusion should necessarily be taken into
account when measuring the second virial coefficient derived
from the concentration dependence of the effective diffusion
coefficient.

For processes involving macromolecules, dynamic baro-
diffusion should be even more important because the
parameter D2v2=�D1v1� that determines its contribution is
much larger than that for low-molecular compounds. The
thermal diffusion of DNA molecules, which are 50 to 50,000
base pairs in length, was observed in [16] at concentrations
1 pM to 1 mM; a decrease in the DNA diffusion coefficient
with increasing the chain length was reported. The theoretical
explanation of this result is still lacking. According to the
currently accepted theory, the thermal diffusion coefficient
(also known as the thermophoretic mobility or the velocity of
motion under a unit temperature gradient) of macromole-
cules and colloidal particles is independent of their `macro-
scopic' size and is determined solely by the size of `micro-
scopic' monomer-type inhomogeneities (see, e.g., review [14]
or the original work by de Gennes [25]). For a polymer, this is
about the size of a monomer unit. The data in Ref. [16] can at
least qualitatively be explained based on the results in the
present paper.

It follows from Eqn (21) that the expression for the
thermal diffusion coefficient is

DT � D2

2kT

�1ÿ f� qm �=qT
1ÿ f�D2v2=�D1v1�f : �31�

According to Eqn (31), the thermal diffusion coefficient
vanishes for f � 1. For a diluted solution, with f5 1, the
numerator in Eqn (31) takes a form consistent with
Eqn (17). Unfortunately, the temperature derivative of the
combined chemical potential is unknown for an isolated
molecule. As far as the calculation of this derivative is
concerned, the methods of statistical physics (see Section 4)
compare well with the hydrodynamic approach, allowing
the use of the latter for estimates [17, 18]. According to
hydrodynamic calculations (and in agreement with a much
earlier estimate in [25]), D2 qm �=qT is proportional to the
square of the size of a `dissolved' molecule (monomer). But
this is only true forD2v2=�D1v1�f5 1. For large molecules or
monomers, this condition can even fail for thermodynami-
cally dilute �f5 1� mixtures. For D2v2=�D1v1�f5 1, the
thermal diffusion coefficient of a dilute solution is

DT � D1

2kT

v1 qm �=qT
v2f

: �32�

It follows from Eqn (32) that the thermal diffusion coefficient
is inversely proportional to the molecular volume of the
particle if the concentration of these particles is sufficiently
high. We thus see that in the theory under discussion, the
decrease in the thermal diffusion coefficient with the DNA
molecular mass is qualitatively explained as a barodiffusion-
induced concentration effect. It has been estimated that the
condition D2v2=�D1v1�f5 1 is satisfied for at least some of
the concentrations and DNA sizes from the ranges investi-
gated in Ref. [16]. Importantly, the conclusions above can
only hold for molecules in a compact conformation. For
random-coil molecules, there is much experimental evidence
that the volume of a monomer unit serves as a molecular
volume v2.

Thus, in addition to the standard thermodynamic defini-
tion of a dilute solution �f5 1�, the theory under discussion
provides the dynamic dilution criterion

D2v2
D1v1

f5 1 :

This criterion implies that the contribution of the dynamic
barodiffusion is small and allows a thermodynamic descrip-
tion based on the Gibbs±Duhem equation.

4. Calculating qql�=qqT: a microscopic approach

In this section, we calculate the parameter qm �=qT and
compare our results with those obtained previously using
the hydrodynamic approach. In the hydrodynamic approach,
the local pressure distribution around a particle is calculated
and the Navier±Stokes equations are solved, yielding the
liquid flux velocity profile and the hydrodynamic stress field
around the particle [14, 17, 18]. This is followed by calculating
either the velocity of the particle in the presence of a
temperature gradient or the thermal diffusion coefficient.
Comparing the thermodynamic and hydrodynamic
approaches to the theory of thermophoresis is important as
a means to check the results of the proposed approach and to
discuss a number of problems that arise in the hydrodynamic
approach. No less important, this comparison also yields the
range of applicability of the proposed method.

The parameter qm �=qT is most conveniently calculated
using a microscopic treatment. We confine ourselves here to
the case of limiting dilution, in which the property to be
calculated is the temperature derivative of the chemical
potential of an isolated particle. In this case, we can use the
thermodynamic perturbation theory [26, 27] and write the
chemical potential of an isolated `dissolved' particle as

m 0
2 �r� �

�X
i

F12�rÿ r1i� � p2

2m2
� d
�
1

2

X
i; j

F11�r1j ÿ r1i�
��

;

�33�

in agreement with its basic definition as the change in the free
energy of the system due to the addition of this particle. Here,
F11 and F12 are the respective intermolecular interaction
potentials of the particle±solvent and solvent±solvent sys-
tems and p2=�2m2� is the kinetic energy of a particle of
momentum p and mass m2. The last term in the right-hand
side is the change in the interaction energy between solvent
molecules due to the presence of the particle. The angular
brackets denote averaging in the usual sense of statistical
thermodynamics, assuming the Hamiltonian of the system to
be unperturbed by the particle under consideration.

Averaging the kinetic energy yields hp2=�2m2�i � 3kT=2
for both an isolated `dissolved' particle and all solvent
molecules, and therefore, in the presence of a temperature
gradient, a corresponding (uniform) force should act on all
particles in the system. This force cannot impart thermo-
phoretic motion to the particle under study and can only lead
to the motion of the liquid as a whole or to the appearance of
a pressure gradient in the system, which compensates the
force according to the Gibbs±Duhem equation. The logical
choice is the second option, and this casts doubt on the
approach in Refs [8±10] using a similar force related to the
change in the particle kinetic energy as the driving force of
thermophoresis. The change in the intermolecular interaction
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in the solvent due to the presence of the molecule under
discussion can also be described as a pressure gradient HP
around the particle. Below, we discuss a way to calculate this
change.

Under all the assumptions above, the chemical potential
corresponding to Eqn (33) has the gradient

qm 0
2 �r�
qr

� ÿ
�
V

qF12�rÿ r1�
qT

HT�r1� n1�r1� dV1

�
�
V

qP�r1�
qT

HT�r1� dV1 ; �34�

where n1�r1� is the local numerical concentration distribution
of solvent molecules, r and r1 are the corresponding radius
vectors, V is the volume of the system (except for the volume
of the isolated particle itself), and H � q=qr1. Expression (34)
takes into account that according to Newton's third law,
qF12�rÿ r1�=qr � ÿHF12�rÿ r1� and that the total force the
solvent molecules exert on the `dissolved' molecule is zero in
an isothermal system,�

V

�ÿHF12�rÿ r1� n1�r1� � HP�r1�
�
dV1 � 0 : �35�

Equation (35) can be interpreted as expressing the local
mechanical balance in the surroundings of a `dissolved'
particle:

HF12�rÿ r1� n1�r1� � HP�r1� ; �36�

where the bulk force HF12�rÿ r1� n1�r1� is compensated by
the pressure gradient HP�r1�. We note that except for a
difference in notation, the first term in square brackets in
Eqn (35) is identical to the expression obtained inRef. [8]. The
difference, however, is that the study in Ref. [8] neglects the
conditions for an isothermal system given by Eqns (35) and
(36) and ignores the changes caused by the presence of an
isolated molecule in the solvent.

Equation (36) can be interpreted as a local Gibbs±Duhem
relation and used to calculate the pressure distribution in the
system. According to the local equilibrium principle, the
temperature±pressure±particle distribution relation given by
Eqn (36) should also hold for a nonisothermal nonequili-
brium system. Although the local distribution n1�r1� is often
expressed in the literature in terms of the pair correlation
function [28], the extreme difficulties encountered in calculat-
ing liquid-state correlation functions make this approach
unsuitable for our purpose. Instead, we adopt some simple
assumptions on the concentration distribution that can
ensure good agreement with experiment. If the particle
under study interacts not with solvent molecules but only
with the molecules of a low-concentration surface-active
substance it dissolves, then

n1�r1� � n0 exp

�
ÿF12�r1�

kT

�
; �37�

where n0 is the concentration of surface-active molecules far
from the particle under study (located at r � 0). We note that
according to Eqn (36), the local pressure distribution takes
the form

P�r1� ÿP0 � n0kT

�
exp

�
ÿF12�r1�

kT

�
ÿ 1

�
: �38�

Expression (38), which is widely used in treating the
diffusiophoresis and thermophoresis of colloidal particles
[29], is just a usual distribution of osmotic pressure in the
potential field around an isolated particle.

Another extreme case occurs when the particle interacts
with all the solvent molecules but the concentration distribu-
tion cannot change to any noticeable extent simply because
there is no free volume for this around the particle. In this
case, a good approximation is given by

n1�r1� � 1

v1
; �39�

yielding the local pressure

P�r1� ÿP0 � F12�r1�
v1

: �40�

The quantity P0 in Eqns (38) and (40) is the macroscopic
pressure, which does not vary significantly on a molecular
scale, but is not necessarily uniform on a macroscopic scale.

Using Eqns (38) and (40), we can calculate the pressure
gradient in Eqn (34) and the force acting on the particle.

From Eqn (38), the pressure gradient is

HP�r1� �

� HP0 � n0k

�
exp

�
ÿF12�r1�

kT

��
1� F12�r1�

kT

�
ÿ 1

�
HT�r1�

ÿ n0 exp

�
ÿF12�r1�

kT

�
qF12�r1�

qT
HT�r1� ; �41�

and from Eqn (40), for the other extreme, the pressure
gradient is

HP�r1� � HP0 ÿ aT
F12�r1�
v1

HT�r1� � qF12�r1�=qT
v1

HT�r1� :
�42�

Expressions (41) and (42) correspond to the last term in the
right-hand side of Eqn (34). Substituting them in Eqn (34)
yields expressions for the chemical potential gradient of an
isolated particle,

qm 0
2 �r�
qr

� v2HP0 �
�
V

n0k

�
exp

�
ÿF12�r1�

kT

�
�
�
1� F12�r1�

kT

�
ÿ 1

�
HT�r1� dV1 ; �43�

qm 0
2 �r�
qr

� v2HP0 ÿ aT
v1

�
V

F12�r1�HT�r1� dV1 : �44�

That Eqns (43) and (44) do not contain terms with the
temperature derivatives of the intermolecular interaction
potential is a direct consequence of the local equilibrium
principle used in calculating the local pressure gradient in a
nonisothermal system. As shown in Ref. [18], the above
arguments are also valid for the concentration dependence
of the interaction potential. Expression (43) is readily
extended to the case of more than one species of molecular
or ionic surfactants, and Eqn (44) can also be extended to
molecular liquid mixtures.

Thus, for a system in local equilibrium, the temperature
and concentration dependence of the intermolecular interac-
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tion potential cannot be regarded as the driving force of
thermophoresis (thermodiffusion) processes. This fact is
ignored in numerous original and review papers on thermo-
phoresis (see, e.g., Refs [7±9, 15, 30, 31]). The most common
approach in dealing with charged particles is to calculate the
thermodiffusion coefficient due to the temperature depen-
dence of the dielectric constant. In some studies, effects due to
the temperature dependence of the Debye length are
considered. These dependences are indeed strong enough to
cause a particle to move in the presence of a temperature
gradient, but their influence is compensated due to the
corresponding local pressure gradient, as shown above.

We cannot here consider the thermophoresis of ions (this
would require a somewhat different formulation of the
thermodynamic aspects of the problem) and limit ourselves
to considering unchargedmolecules and polymers. As shown,
for a small particle with a size of the order of the change scale
of the intermolecular interaction potential, the particle
thermodiffusion is essentially independent of the detailed
charge distribution around it [32], and it therefore follows
from Eqn (44) that

qm 0
2 �r�
qr

� v2HP0 ÿ aTHT1
v1

�
V

F12�r1� dV1 ; �45�

where HT1 is the `macroscopic' temperature gradient far
away from the particle. For nonionic molecules, the interac-
tion potential can be written as [17, 18, 33]

F12 � ÿe12
�
s12
r1

�6

; �46�

where e12 is the characteristic interaction energy and s12 is the
characteristic molecular size defined by the minimum separa-
tion between molecules in the liquid. Using Eqns (45) and
(46), we obtain

qm 0
2 �r�
qr

� v2HP0 � aTe12v12
v1

HT1 ; �47�

where v12 � 4ps 3
12=3.

The same calculations can be performed for a solvent
molecule, giving

qm 0
1 �r�
qr

� v1HP0 � aTe11v11
v1

HT1 : �48�

The notation in Eqn (48) is obviously derived from that in
expression (47). Because the mass transport of the solvent
itself is impossible in our picture of the thermophoresis of an
isolated particle, we must set qm 0

1 �r�=qr � 0. Physically, this
means that the bulk forces in a nonisothermal solvent are
compensated due to the macroscopic pressure gradient that
arises in it. With the corresponding expression for the
macroscopic pressure gradient, Eqn (47) assumes the closed
form

qm 0
2 �r�
qr

� aTe12
v12
v1

�
1ÿ v11v2e11

v12v1e12

�
HT1 : �49�

From Eqns (17) and (49), the Soret coefficient for a diluted
mixture can be written as

ST � ÿaT pe12
8kT

v12
v1

�
1ÿ v11v2e11

v12v1e12

�
: �50�

Expression (50) becomes identical to its hydrodynamic
analog obtained in Ref. [32} if we set e12 � �����������

e11e22
p

(as was
done there) and introduce the corresponding hydrodynamic
volumes vH

1; 2 � �4p=3�R 3
1; 2 expressed in terms of the hydro-

dynamic radii R1 and R2 (rather than v11 and v12). The
relation between the hydrodynamic and molecular volumes
must be vH1; 2 � �3p=32�v11; 12. This seems to be quite a natural
difference remembering that the hydrodynamic radii of the
molecules should be smaller than the corresponding mini-
mum separation, which (according to a model at least) is
simply the sum of the hydrodynamic radii of the interacting
particles. Expression (50) contains only microscopic para-
meters characterizing the equilibrium state of the system and
is therefore preferable to its hydrodynamic counterpart (see
Refs [17, 18, 32]). Using the Lennard-Jones model potential

F12 � 4e12

� 
s12
r1

�12

ÿ
�
s12
r1

�6
#6
; �51�

which is widely used in simulating the equilibrium and kinetic
properties of liquids, we express the Soret coefficient as

ST � ÿaT pe12
9kT

v12
v1

�
1ÿ v11v2e11

v12v1e12

�
�52�

where we can further substitute the parameters obtained by
numerical simulation.

We note that expressions (50) and (52) differ only by a
factor of 8=9, which means that our result for thermophoretic
parameters is not oversensitive to the form of the repulsion
core of potential (51).

The interaction potentials in (46) and (51) do not describe
cooperative effects due to the interaction between solvent
molecules. In [34], these effects were taken into account by
considering how the interaction of solvent molecules affects
the effective pair potential for an isolated particle and a
solvent molecule.

The effective pair potential is calculated using the simplest
possible form of the standard chain of equations for
correlation functions. It was believedÐand calculations
confirmedÐ that the cooperative interaction contributes
little to the effective pair interaction potential. The only case
where cooperative effects in the above sense contribute
significantly to the effects we consider is for the molecules of
surface-active substances, for which the original pair interac-
tion potential for an isolated particle and a solventmolecule is
an order of magnitude weaker than for surface-inactive
molecules in solutions. In these systems, such cooperative
effects are indeed very important and lead to a number of
interesting phenomena. For most systems used in experi-
ments, such an analysis leads to insignificantly small correc-
tions.

The thermodynamic approach and the hydrodynamic
approach predict qualitatively the same dynamic behavior
for an isolated molecule (or a polymer chain), and any
differences that may occur are attributed to the approxima-
tions adopted in calculations. For example, the direction of
thermophoretic motions is always determined by the inequal-
ities v11v2e11=�v12v1e12�>1 and v11v2e11=�v12v1e12�<1, the
parameter v11v2e11=�v12v1e12� being determined not by the
size but by the geometry and physical properties of the
molecules.

The Soret coefficient is proportional to the ratio v12=v1,
fully consistent with the scaling estimates obtained by de

1052 S N Semenov, M E Schimpf Physics ±Uspekhi 52 (10)



Gennes [25] using the hydrodynamic approach. It is shown in
Ref. [25] that the velocity UT of thermophoretic motion of a
polymer chain is proportional to the squared size of the
smallest hydrodynamic inhomogeneity in the system. In our
case, the velocity UT is calculated by equating the thermo-
phoretic force acting on a molecule or a monomer in
accordance with Eqns (47) and (48) to the hydrodynamic
resistance force ÿ6pZR2UT (Z is the viscosity of the liquid)
acting on the molecule or the monomer. We then obtain

UT � ÿaT 2e12s 3
12

9Zv1R2

�
1ÿ v11v2e11

v12v1e12

�
HT1 : �53�

For molecules having a simple shape, whose remainders do
not differ much in their physical and chemical properties, the
ratio s12=R2 of the `energy' or van der Waals size to the
hydrodynamic size should depend very weakly on the particle
size, and hence, in full agreement with the results in Ref. [25],
UT � s 2

12. We note that s12 is the characteristic change length
of the interaction potential and that (unlike the size of the
isolated particle itself) it is on a molecular scale. For
molecules larger than the molecular size, the thermophoretic
velocity ceases to be proportional to the particle size (it is, as
before, proportional to a certain, usually second, power of the
molecular-scale change length of the interaction potential)
and is virtually independent of the particle size. This is in
qualitative agreement both with the experimental data in [29]
and with theoretical results on the phoresis of colloidal
particles.

In general, the results obtained for molecules and
polymers cannot be directly translated to colloidal particles.
This is not only because of the difference between the physical
size of the particles and the change length of the interaction
potential, noted above, but also because of the existence of a
surface layer whose physical properties differ from those of
the liquid itself. This layer should be considered separately
when treatingmass transport thermodynamically, but this is a
topic for another study. An attempt at such a theory was
made in Ref. [15], but that analysis neglected a number of
important factors and should be improved to include
corrections of the kind made above.

The results obtained for molecules and polymers compare
well both qualitatively and quantitatively with other theore-
tical results and experimental data. In addition to the fact
(mentioned above) that UT � s 2

12, the Soret coefficient in
Eqns (50) and (52) is proportional to the thermal expansion
coefficient of the solvent aT. Such a dependence was observed
for a number of solvent±particle pairs in Ref. [35].

The behavior UT � aT obtained from theories using the
hydrodynamic and thermodynamic approaches is also pre-
dicted by the theory developed in Ref. [36] (see also numerous
self-citations in this work). Unfortunately, because of our
insufficient understanding of this theory, we are not in a
position to outline it here and instead confine ourselves to
discussing its conclusions. One of theseÐ that the velocity of
thermophoresis is independent of both the size and the
physicochemical properties of the particleÐ is incompatible
with the bulk of experimental data. According to Ref. [36],
thermophoresis can occur in the liquid in any region that can
be regarded as a kind of a solid particle located in the liquid.
But because the theory does not distinguish between the
physical properties of the particle and those of its surround-
ing liquid, it immediately follows that any molecule of the
liquid itself is in fact such a solid particle. The theory in

Ref. [36] therefore describes not only the thermophoresis of
isolated particles but also a certain motion of the liquid under
a temperature gradient, both processes occurring via the same
mechanism. With thermo-osmosis neglected, the `thermo-
phoretic' motion of a pure liquid is impossible according to
the laws of formal logic. However, eliminating this motion
also requires eliminating the thermophoresis of isolated
particles. Therefore, our results can be considered the only
explanation for the experimental UT � aT dependence.

A hydrodynamic expression for the Soret coefficientÐan
analog of Eqns (50) and (52)Ðwas compared with experi-
mental results more than once. For example, the hydrody-
namic approach was used in [32] to calculate the thermal
diffusion parameter of polysterene in cyclohexane, benzol,
toluene, methyl ethyl ketone, and ethyl acetate. In all cases, it
was found that average values correlate well with the
measured parameters, even though there exists a wide spread
due to the necessity of calculating the unknown hydrody-
namic radius of amonomer. The correspondence we obtained
here between the thermodynamic and hydrodynamic results
will allow avoiding this uncertainty. That diffusion para-
meters are proportional to the thermal expansion coeffi-
cientÐa fact that follows from our theoryÐhas been
confirmed experimentally for lysozyme, poly L-lysine, and
b-dodecylmaltoside in water [35]. Therefore, the approxima-
tion we use indirectly agrees quite well with experiment.

The results presented in this section suggest good
qualitative correspondence between the thermodynamic
approach and the hydrodynamic approach in the theory of
thermal diffusion of molecules and polymers. Also, both
theories fully account for the basic qualitative features of
thermophoresis for such objects.

5. Conclusions

Our analysis of the standard thermodynamic approach to
mass transport in nonisothermal binary liquid mixtures
revealed that the equations for mass fluxes are inconsistent
and that they predict a certain kind of mass transport in
nonisothermal pure liquid, unless it is assumed that the heat
of transport is equal to the chemical potential of the
corresponding component.

As a consequence, it is also confirmed that thermal
diffusion is entirely of an entropic nature.

Our analysis also shows that the standard approach using
the Gibbs±Duhem equation for the pressure gradient cannot
be applied to mass transport in open and nonstationary
systems. If the dynamic pressure gradient is calculated based
on the mass transport equations themselves using our
expressions for the heat of transport of the components,
then the resulting equations for the diffusion and thermal
diffusion coefficients demonstrate reasonable physical beha-
vior and exhibit good agreement with experiment over the
entire range of concentrations. This distinguishes them
favorably from their counterparts in previous thermody-
namic theories.

The difference between the statistical (Gibbs±Duhem)
and dynamic pressure gradients in a system is due to two
factors: the viscous friction and the corresponding energy
dissipation in the system. Even in an isothermal system, if at
least one of its components exchanges matter with the
environment, all the components of the mixture can undergo
transfer in the form of barodiffusion driven by the dynamic
pressure gradient. Owing to this dynamic barodiffusion, some
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mixtures can even be not diluted when analyzed in terms of
diffusion and barodiffusion, even though they are diluted in a
purely thermodynamic sense. This may be the reason for the
observation that the thermal diffusion coefficient of DNA
depends on its molecular mass. Using the proposed model to
find the second virial coefficient in semidiluted solutions
shows that barodiffusion should be taken into account in
interpreting experimental data.

Calculating the chemical potential of an isolated particle
microscopically allows using the obtained thermodynamic
results to describe thermophoresis in diluted systems. Results
obtained with this approach essentially coincide with those
obtained previously using the hydrodynamic approach.
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