
Abstract. We summarize a number of recent developments in
the study of layered superconductors using the electron±phonon
Eliashberg theory. The critical temperature of layered super-
conductors is calculated using the Eliashberg theory. The influ-
ence of nonadiabaticity effects on the critical temperature in
layered superconductors is considered. The influence of Cou-
lomb repulsion on the critical temperature is investigated in the
case of an arbitrary thicknesses of conducting layers. Bardeen±
Cooper±Schrieffer (BCS) equations for layered superconduc-
tors are used for the calculation of a specific heat jump, which is
smaller than in the case of an isotropic BCS theory. The
plasmon spectrum of layered superconductors with an arbi-
trary thicknesses of conducting layers is calculated. The influ-
ence of fluctuations in the order parameter phase on the critical
temperature of layered superconductors is studied using the
Ginzburg±Landau functional for the free energy. The results
are shown to be in qualitative agreement with some experimen-
tal data for cuprate superconductors and recently discovered
MgB2.

1. Introduction

Twenty-three years after their discovery, cuprate high-
temperature superconductors (HTSCs) [1] are still central
topics of interest in physics. The mechanism of superconduc-
tivity is under lively debate [2, 3]. In [4], the isotope effect in
the Y1ÿxPrxBaCu3O7ÿd compound [4] in all phases (super-
conducting, spin glass, and antiferromagnetic) was reported.
For the high-Tc superconductors that have been of interest
during the last decade, the experimental data in [5] suggests
that the Fermi energy ranges between EF � 0:1ÿ0:3 eV and
that the Debye phonon energy is of the order of
oD � 0:08ÿ0:16 eV, making the ratio oD=EF not negligible.
Although somewhat debatable, there is experimental evi-
dence [6] that electron±phonon interactions can be used to
explain the fundamental mechanism operating in high-Tc

superconductors. The existence of a strong electron±phonon
interaction in cuprate superconductors was confirmed by the
observation of a subgap structure in tunnel Josephson
junction experiments [7]. As discussed in [8], similar phenom-
ena occur due to the interaction of a Josephson current with
phonons. As shown very recently in [9, 10], the electron±
phonon mechanism explains many features of the low-energy
relaxation process in cuprate superconductors, including the
high values of the critical temperature. The structural element
of HTSC compounds related to the location of mobile charge
carriers is stacks of a certain number �n � 1; 2; 3; . . .� of CuO2

layers [11, 12]; there have been recent developments in
growing SC/dielectric superlattices in which the thicknesses
of the planes vary within a wide range. Variations in
superlattice parameters, such as the thickness and the
material of the layers, strongly influence the critical tempera-
ture.

The recent discovery of superconductivity in MgB2 [13]
has attracted a considerable attention. The magnesium
diboride MgB2 structure consists of an alternative stacking
of the boron layer and the magnesium layer [14]. The
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new materials are metallic and hence are promising as
regards their application in various fields [15]. Several
experiments indicate a phonon-mediated superconductivity
mechanism in MgB2 [16, 17]. The mass anisotropy parameter
g � �mc=mab�1=2 ofMgB2 in the literature ranges from 1.2 to 9
in polycrystalline samples [14], and 4.31 to 4.6 in single
crystals [18, 19]. It is well known that high-Tc superconduc-
tors evince a layered structure, related to CuO2 layers or
CuO2 bilayers. The magnesium diboride MgB2 is quite
similar to cuprate superconductors, but with moderate
anisotropy effects [18]. It is widely accepted that boron
planes are conducting planes like the CuO2 planes in cuprate
superconductors [20].

The relatively high Tc value has motivated many
studies, as has the observation that the detailed super-
conducting properties of MgB2 significantly deviate from
those calculated using the standard Bardeen±Cooper±
Schrieffer (BCS) model. The two-band BCS theory taking
the van Hove singularity of density of states into account
was recently developed in [21]. It is well known that low-
temperature superconductors are well described by the
isotropic Eliashberg theory, with an isotropic electron±
phonon spectral density a 2F�o� for the average interaction
over the Fermi surface. This function is accurately known
from inversion of tunneling data. In many cases, a 2F�o�
has also been calculated from first-principle electronic
band structure calculations extended to include the
electron±phonon interaction, sometimes with the phonons
taken directly from inelastic neutron scattering measure-
ments. In many cases, such results agree very well with the
corresponding tunneling data. In principle, the electron±
phonon spectral density for the various electrons on the
Fermi surface is anisotropic, leading to the energy gap
anisotropy [22].

Theoretical calculations show that the MgB2 Fermi
surface has several pieces and is very anisotropic [23]. The
electron±phonon interaction varies greatly on the Fermi
surface [24, 25]. In [26], the superconducting transition
temperature in MgB2 was calculated using the ab initio
pseudopotential density functional method in the framework
of Eliashberg equations [27, 28]. Fully anisotropic Eliashberg
equations in a strong-coupling regime were used in [26]. In
contrast to previous works, the approach presented here is
analytic, and we take the layered character of anisotropy in
MgB2 into account. The corresponding matrix elements for
the electron±phonon and Coulomb interactions are taken
from [29]. In recent works, the heat capacity anomaly at the
transition to superconductivity of the layered superconductor
MgB2 has been compared to first-principle calculations with
the Coulomb repulsion taken into account. The results
obtained in the approach presented here also show that the
conventional phonon-mediated electron pairing theory invol-
ving anisotropy effects can explain the origin of high Tc in
magnesium diboride, MgB2.

In this paper, we summarize recent research using the
anisotropic Eliashberg theory and use it to determine the
critical temperature of layered superconductors. The paper is
organized as follows. In Section 2, we present the Eliashberg
equations for layered superconductors, modified by taking
nonadiabaticity effects into account. The specific heat jump
of layered superconductors is calculated in the BCS model.
At the end of that section, we study Coulomb effects and the
plasmon spectrum of layered superconductors. The influence
of order parameter fluctuations on the critical temperature is

also considered in Section 2. Section 3 is devoted to results
and their discussion. In Section 4, conclusions are made.

2. Basic equations
of the electron±phonon theory

2.1 Eliashberg equations for layered systems
It is well known that the Eliashberg equations, which are the
general equations of the electron±phonon theory, were first
presented for isotropic superconductors by Eliashberg in the
adiabatic limit [27]. In this limit, the nonadiabaticity para-
meter m � oD=EF 5 1 is negligible. The isotropic equations
can be written as

1ÿ Z�o� � ÿ 1

o

�1
0

do 0 l�o;o 0� ; �1�

Z�o�D�o�

�
�1
0

do 0

o 0
tanh

o 0

2Tc

�
l�o;o 0� ÿ my�EF ÿ o 0��ReD�o 0� ;

�2�
where Z�o� is the electron mass renormalization parameter
due to the electron±phonon interaction andD�o� is the energy
gap. The electron±phonon coupling parameter l�o;o 0� can
be expressed in terms of the electron±phonon spectral density
function a 2F�o� [28]. In Eqn (2), my�EF ÿ o 0� is the Coulomb
repulsion. In the case of layered systems, the strong aniso-
tropy of the order parameter in directions perpendicular to
the layers leads to the additional dependenceD�pz;o).We can
then write the Eliashberg equations as [28]

1ÿ Z� pz;o� � ÿ 1

o

�1
0

do 0
� p

ÿp

d�p 0zd �
2p

lpz; p 0z�o;o 0� ; �3�

Z� pz;o�D�pz;o� �
� p

ÿp

dp 0z
2p=d

�1
0

do 0

o 0
tanh

o 0

2Tc

� �lpz; p 0z�o;o 0� ÿ mpz; p 0zy�EF ÿ o 0��ReD� p 0z;o 0� ; �4�

where

lpz; p 0z�o;o 0� � 2

�1
0

a 2�o 00�Fpz; pz�o 00�K�o;o 0;o 00�o 00 do 00 ;
�5�

K�o;o 0;o 00� � 1

o� o 0 � o 00 � id
� 1

ÿo� o 0 � o 00 ÿ id
:

In a layered system, we also take the anisotropic character of
the Coulomb repulsion into account.

Because the magnesium diboride and cuprate compounds
of recent interest consist of layered structures, we assume a
dispersion relation appropriate for a layered system of the
form [30±32]

E�k� � �h 2�k 2
x � k 2

y �
2m

� 2t
�
1ÿ cos �kzd �

�
; �6�

where m is the in-plane effective mass, t is the transverse
interlayer transfer matrix element (or tunneling integral), and
d is the lattice constant in the z-direction. t characterizes the
intensity of electron tunneling between the layers and must
depend on the ratio d=b, t � F�d=b�, where b is a characteristic
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distance of the order of the unit cell size in SC layers. The
F�d=b� function rapidly decreases as the distance d increases.
It is possible, in principle, to obtain an explicit expression for
this function if the electron density distribution inside the
superconducting layers is known.

Such an energy spectrum of carriers was used in [33]
(also see the references therein) for the calculation of
various properties of layered superconductors. For E > 4t,
the Fermi surface is open and the density of states N�E� is
constant. The phonon spectrum of the layered crystals is
generally anisotropic. The dispersion relation for long-
itudinal oL�q; qz� and transverse oT�q; qz� phonons is
given by

o2
L�q; qz� � u 2

k �q 2
x � q 2

y � � 2
u 2
z

d

�
1ÿ cos �qzd �

�
; �7�

o2
T�q; qz� � u 2

z �q 2
x � q 2

y � � 2
u 2
T

d

�
1ÿ cos �qzd �

� �8�

(the sound velocities satisfy the condition uk4 uT; uz). As
mentioned in [34±36], the functions appearing in the
generalized Eliashberg equations are defined by averaging
over the Fermi surface. In the case of energy spectrum (6),
this procedure is equivalent to the integration� 2p

0

df . . . � 4

� 2p �
0

0

dq��2p �0 �2 ÿ q 2
�1=2 . . . ; �9�

where � p �0 �2 � p 2
0 ÿ 4mt�1ÿ cos � pzd �� and f denotes the

angle between p and p0, which is equal to p �0 . It is clear that
the region of phonon transfer momenta q � 2p �0 makes a
major contribution to the integrals. By virtue of the last
argument, the generalized Eliashberg equations for layered
systems can be obtained from [30, 31] with the Einstein
spectrum of the effective frequency o0, which is determined
by the expression (see Section 2.2 for the phonon modes in
layered systems)

o0 �
��������
o2

av

q
�
�
d

2p

� p=d

ÿp=d
dqz

2

p
N2D

� 2p �
0

0

dq��2p �0 �2 ÿ q 2
�1=2 o2

L�q; qz�
�1=2

�
�
d

2p

� p=d

ÿp=d
dqz

2

p
N2D

� 2p �
0

0

dq��2p �0 �2 ÿ q 2
�1=2 �ÿ1=2

�
�
2u 2
k � p 2

0 ÿ 4mt� � 2u 2
z

d 2

�1=2
: �10�

In the case of quasi-two-dimensional energy spectrum (6),
Fermi-surface harmonics can be represented by cos �npzd �
[28]. The anisotropic electron±phonon coupling parameter
l� pz; p 0z� is expanded as

lpz; p 0z�o;o 0� � l00�o;o 0� � l10�o;o 0� cos � pzd �

� l01�o;o 0� cos � p 0zd � � l11�o;o 0� cos � pzdÿ p 0zd � ; �11�

where li j�o;o 0� � li jI�o;o 0� � li j
�
do 00 K�o;o 0;o 00�.

As pointed out in [37, 38], the off-diagonal elements of
the electron±phonon interaction in layered systems with
electron spectrum (6) are proportional to t=EF. Within the
model of Fermi-surface harmonics, the order parameter

takes the form

D� pz;o� � D0�o� � D1�o� cos � pzd � : �12�

With Eqn (11) taken into account, the expression forZ� pz;o�
becomes

Z� pz;o� � 1� l00�o� � l10�o� cos � pzd �

� Z00�o� � l10�o� cos � pzd � : �13�

Substituting Eqns (12) and (13) in (3) and (4), we have the
system of coupled integral equations

Z00�o�D0�o� � l10�o�D0�o�
2

�
�1
0

do 0

o 0
tanh

o 0

2Tc
I�o;o 0�l00D0�o� ÿ K00

�
�1
0

do 0

o 0
tanh

o 0

2Tc
I�o;o 0�l10D1�o� ÿ K10 ; �14�

Z00�o�D1�o� � l01�o�D0�o�
2

�
�1
0

do 0

o 0
tanh

o 0

2Tc
I�o;o 0�l01D0�o� ÿ K01

�
�1
0

do 0

o 0
tanh

o 0

2Tc
I�o;o 0� l11

2
D1�o� ÿ K11 ; �15�

where we set

Ki j � mi j

� EF

0

do 0

o 0
tanh

o 0

2Tc
Dj�o� : �16�

Consequently, calculations of the critical temperature
lead to solving the system of singular integral equations.
Analytically solving the Eliashberg equations is impossible in
general. As shown in [28, 39, 40], in the weak electron±
phonon coupling approach l < 0:3, the Eliashberg equa-
tions are transformed into the BCS equations. The strong
electron±phonon coupling �l > 1� generally requires compu-
ter simulation [28] or the McMillan approximation [41]. For
intermediate values of the electron±phonon interaction
0:3 < li j < 1, the system of integral equations is solved by
an iteration procedure [39, 40]. However, due to the
logarithmic singularity of the kernel I�o;o 0� at o 0 � 0 and
o � o 00, the iteration procedure diverges. Here, we use the
Zubarev procedure of singularity removal [42]. Then system
of equations (14), (15) can be rewritten as

Z00�o�D0�o� � l10�o�D0�o�
2

�
�1
0

do 0

o 0
tanh

o 0

2Tc

�
I�o;o 0� ÿ I�o; 0�I�0;o 0��l00D00�o�

ÿ K00 � I�o; 0��D0�0� � K00
�

�
�1
0

do 0

o 0
tanh

o 0

2Tc
I�o;o 0�l10D1�o� ÿ K10

� I�o; 0�ÿD10�0� � K10
�
; �17�
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Z00�o�D1�o� � l01�o�D0�o�
2

�
�1
0

do 0

o 0
tanh

o 0

2Tc

�
I�o;o 0� ÿ I�o; 0�I�0;o 0��l01D01�o�

ÿ K01 � I�o; 0�ÿD1�0� � K01
�

�
�1
0

do 0

o 0
tanh

o 0

2Tc
I�o;o 0� l11

2
D1�o� ÿ K11

� I�o; 0�ÿD11�0� � K11
�
; �18�

where

Di j�0� � I�o; 0� � Ki j
ÿ
I�o; 0� ÿ 1

�
:

The last system of integral equations has no singularities
and as a result the iteration procedure converges. System of
integral equations (17), (18) gives the critical temperature.
Calculating the integrals, we obtain the system of algebraic
equations�
Z00ÿ �l00 ÿ m �00�x

�
D0�

�
l10
2
ÿ
�
l10
2
ÿ m �10

2

�
x

�
D1 � 0 ; �19�

�
l01ÿ �l01 ÿ m �01�x

�
D0�

�
Z00 ÿ

�
l11
2
ÿ m �11

2

�
x

�
D1 � 0 ; �20�

where

x � ln
1:13oln

Tc
; �21�

and oln is defined as

oln � exp hlnoi � exp

��
doS�o�=o lno�

doS�o�=o
�
; �22�

m �i j �
mi j

1� mi j ln �EF=oln� : �23�

From the vanishing of the determinant of system of
equations (19), (20), we obtain the following explicit expres-
sion for the critical temperature:

Tc � 1:134oln exp �ÿxmin� ; �24�

where

xmin � 1

�l00 ÿ m �00��l11 ÿ m �11� ÿ �l10 ÿ m �10��l01 ÿ m �01�

�
�
Z00�l00 ÿ m �00� �

Z00�l11 ÿ m �11�
2

ÿ 1

2

��l01 ÿ m �01�l10 � �l10 ÿ m �10�l01
�ÿ F 1=2

�
; �25�

F �
�
Z00�l00 ÿ m �00� �

Z00�l11 ÿ m �11�
2

ÿ 1

2

��l01 ÿ m �01�l10 � �l10 ÿ m �10�l01
��2

ÿ 2
��l00 ÿ m �00��l11 ÿ m �11� ÿ �l10 ÿ m �10��l01 ÿ m �01�

�
�
�
Z 2

00 ÿ
l10l01

2

�
: �26�

2.2 Nonadibaticity effects in layered systems
In the case of nonadiabatic anisotropic superconductors
�m4 1�, the generalized Eliashberg equations describing
pairing in systems with a cylindrical symmetry have the
form [30, 31]

Z� pz;on�D� pz;on� � pTc

� p

ÿp

d� p 0zd �
2p

�
X
m

lD� pz; p 0z;on;om;Qc;o0;E �
�on ÿ om�2 � o2

0

o2
0

D� p 0z;om�
jomj

� 2

p
arctan

E

2Z� p 0z;om�jomj ; �27�

Z� pz;on� � 1� pTc

on

� p

ÿp

d� p 0zd �
2p

�
X
m

lz� pz; p 0z;on;om;Qc;o0;E �
�on ÿ om�2 � o2

0

o2
0

om

jomj

� 2

p
arctan

E

2Z� p 0z;om�jomj ; �28�

where Z� pz;on� is a renormalization parameter, D� pz;on� is
the energy gap, and E is the total bandwidth, with the energy
defined in the interval ÿE=2 < E < E=2, Qc is the cut-off
parameter for the phonon momentum transfer Qc � qc=2kF,
and om � �2mÿ 1�pkBTc are the Matsubara frequencies
�m � 0; �1; �2; . . . �. We use the following standard nota-
tion for the effective couplings:

lD� pz; p 0z;on;om;Qc;o0;E � � l� pz; p 0z�
� �1� 2l� pz; p 0z�Pv� pz; p 0z;on;om;Qc;o0;E �
� l� pz; p 0z�Pc� pz; p 0z;on;om;Qc;o0;E �

�
; �29�

lz� pz; p 0z;on;om;Qc;o0;E � � l� pz; p 0z�
� �1� l� pz; p 0z�Pv� pz; p 0z;on;om;Qc;o0;E �

�
: �30�

The general expressions for the so-called vertex and cross
functions Pv and Pc were given in [34±36]. The vertex and
cross functions are expanded in terms of Fermi-surface
harmonics [28], which form a complete, orthonormal set of
functions on the Fermi surface. For our model energy
spectrum [Eqn (6)], Fermi-surface harmonics can be repre-
sented by cos �npzd �. The anisotropic electron±phonon
coupling parameter l�pz; p 0z� without the corrections in
Eqns (29) and (30) is expanded as in (11) with l01 � l10. As
noted in [37, 38], the off-diagonal elements of the electron±
phonon interaction in layered systems with the electron
spectrum in Eqn (6) and quasi-two-dimensional phonon
spectra [Eqns (7) and (8)] are proportional to t=EF. As
shown in [43, 44], layered systems are characterized by low-
frequency optical phonons, which correspond to the oscilla-
tions of planes as rigid molecules with respect to one another.
As noted in [45±47], low-frequency phonons play a significant
role in superconductors with a weak electron±phonon
coupling. In the opposite case, i.e., in the strong-coupling
limit, the critical temperature Tc is determined by the high-
frequency peculiarities in the phonon spectrum.With this
argument in mind, we take the interaction of electrons with
acoustic in-plane phonons (7), (8) into account.

For layered systems, the above condition implies that
l11 5 l01 < l00, which suggests that we can neglect terms of
the order l11=l01 and l11=l00 in subsequent calculations. For
the calculation of l00 and l01, we use the expression for the
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electron±phonon interaction without the vertex correction in
Eqn (29). In a more general situation, we have the following
expressions for the vertex-corrected interaction [for conve-
nience, other arguments are omitted in (29) and (30)]:

lD� pz; p 0z� � l� pz; p 0z�

�
�
1� 2

X
kz

l�kz ÿ pz�G�kz�G� p 0z ÿ pz � kz�
�

� l� pz; p 0z�
X
kz

l�kz ÿ pz�G�kz�G�kz ÿ pz ÿ p 0z� ; �31�

lz� pz; p 0z� � l� pz; p 0z�

�
�
1�

X
kz

l�kz ÿ pz�G�kz�G�kz ÿ pz � p 0z�
�
: �32�

For a small parameter t=Tc 5 1, and at temperatures close
to Tc, the Green's functions of electrons can be expressed as

G�ion; p; pz� � 1

ion ÿ x� p; pz�

� 1

ion ÿ x� p�
�
1� t cos � pzd �

ion ÿ x� p�
�
; �33�

where x�p; pz� � E�p; pz� ÿ m and m is the chemical potential.
With Eqns (10)±(12), we obtain the final expression for the
vertex-corrected electron±phonon interaction:

lD � l00 � l200�2Pv � Pc�
� l01

�
1� 2l00�2Pv � Pc�

�
cos � pzd �

� l10
�
1� l00�2Pv � Pc�

�
cos � p 0zd �

� l00l10�2Pv � Pc� cos � pzdÿ p 0zd � ; �34�
lz � l00 � l200Pv : �35�

In the model of Fermi-surface harmonics, the order
parameter takes form (12). As shown in [34], the critical
temperature Tc can be obtained from the generalized
Eliashberg equations by an analytic approach. The final
expression for Tc beyond the adiabatic limit in s-wave
isotropic superconductors for an arbitrary momentum
transfer is given by [34±36]

Tc � 1:13o0

�1�m�e1=2 exp
m

2� 2m
exp

�
ÿ 1� lz=�1�m�

lD

�
: �36�

Substituting Eqns (34), (35), and (12) in (27) and (28), and
using the McMillan approximation [41], we have the system
of algebraic equations�

1� l00z
1�m

ÿ l11D x

�
D0 � l10D xD1 � 0 ; �37�

l10D xD0 �
�
1� l00z

1�m
ÿ l11D x

�
D1 � 0 ; �38�

where

x � ln
1:13o0

Tc
ÿ ln �1�m� ÿ 1ÿm=�1�m�

2
; �39�

l00z � l00 � l200Pv ; �40�
l00D � l00 � l200�2Pv � Pc� ; �41�
l01D � l01 � 2l00l01�2Pv � Pc� ; �42�
l11D � l00l11�2Pv � Pc� : �43�

From the vanishing of the determinant of system (37), (38)
and the condition t=EF 5 1, we obtain the explicit formula for
the critical temperature

Tc

Tc0
� exp

�
k
�
l01
l00

�2�
; �44�

where Tc0 is the critical temperature without the vertex
corrections and

k � 1

2

1� l00�1� l00Pv�=�1�m�
l00
�
1� l00�2Pv � Pc�

� �1� l00Pv�=�1�m�
l00
�
1� l00�2Pv � Pc�

� :
�45�

The coefficient k embodies the effects of vertex correc-
tions and anisotropy in determining Tc. The explicit forms of
the vertex correction Pv and the cross correction Pc in the
two-dimensional case are given in [48].

2.3 Effect of Coulomb repulsion
in layered superconductors
To obtain the average value m of the screened Coulomb
potential ~V�k; kz� over a quasi-two-dimensional Fermi sur-
face, we use the formula [32]

m � D

2p

� p=D

ÿp=D
dkz

2N2D�0�
p

� 2p �
F

0

dk��2p �F�2 ÿ k 2
�1=2 ~V�k; kz� ;

�46�
where N2D�0� is the two-dimensional density of states on
the Fermi surface and p �F is given by �2p �F�2 �
�2pF�2 ÿ 4mt�1ÿ cos � pzd ��, D � a� d, where d is the thick-
ness of the conducting layer and a is the distance between
them.

To calculate m, we use the expression for the bare
Coulomb potential V�k; kz� rewritten for a superlattice with
different dielectric constants. Such a potential was obtained
in Ref. [49] and has the form

V
ÿ
n�a� d �; k� � 2pe

E1k
exp �ÿnk0� �1� g1��1ÿ g2�

g1 ÿ g2
; �47�

where

g1 �
exp �ka� ÿ exp k0

�
a exp �ÿkd � � b exp �kd ��

exp �ÿka� ÿ exp k0
�
b exp �ÿkd � � a exp �kd �� ; �48�

g2 can be obtained from the expression for g1 by changing the
sign of k0, and k0 is given as

k0 � arcosh

�
cosh

�
k�aÿ d ��� 2a 2

2aÿ 1
sinh �ka� sinh �kd �

�
:

�49�

The other dimensionless parameters are a � �1� Z�=2,
b � �1ÿ Z�=2, and Z � E1=E, where E and E1 are respectively
the static dielectric constants of the metal and the dielectric.
Using the expression for the Fourier transform [50]X

n

exp �ÿnk0� exp
�ÿinkz�a� d ��

� sinh k0

cosh k0 ÿ cos
�
kz�a� d �� ; �50�
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we finally obtain

V�k; kz� � 2pe
Ek

� a sinh
�
k�a� d ��� b sinh

�
k�aÿ d ��

a 2 cosh
�
k�a� d ��ÿ b 2 cosh

�
k�aÿ d ��ÿ Z cos

�
kz�a� d �� :

�51�

In the case where a4 d, we obtain the expression for the
Coulomb potential for a layered system filled by a medium
with a static dielectric constant E1:

V�k; kz� � 2pe
E1k

sinh �ka�
cosh �ka� ÿ cos �kza� : �52�

For a5 d, substitutions E1 ! E and a! d must be made in
Eqn (52).

The screened Coulomb potential ~V�q; qz;o� can be
expressed in terms of the electron polarization operator
P�q; qz;o� as

~V�q; qz;o� � V�q; qz�
1� V�q; qz�P�q; qz;o� : �53�

The polarization operatorP�q; qz;o� is given by [51]

P�q; qz;o� � 2
X
p; pz

n
ÿ
x�p� q; pz � qz�

�ÿ n
ÿ
x�p; pz�

�
x�p; pz� ÿ x�p� q; pz � qz� � io

; �54�

where n�. . .� is the Fermi distribution. In the case of the
energy spectrum in Eqn (6) at zero frequency, we obtain

P�q; qz; 0�
P�0� � 1ÿ 1

q 2

� p=�a�d �

ÿp=�a�d �

dpz
2p

� �A2 ÿ �2qq ��2�1=2 v�A2 ÿ �2qq ��2� sgnA ; �55�

where

P�0� � m

p�h 2
; A � q 2 � 4mt sin

qz�a� d �
2

sin
�
pz�a� d �� ;

q � �
�
q 2
F ÿ 2mt

�
1ÿ cos

�
pz ÿ qz

2

�
�a� d �

��1=2

:

For the functions v�x� and sgn �x�, v�x� � 1 for x > 0,
v�x� � 0 for x < 0, sgn �x� � 1 for x > 0, and sgn �x� � ÿ1
for x < 0. From the last expression, the polarization operator
P�q; qz; 0� remains constant over a wide range of q, and there
are corrections in the vicinity of 2pF.

2.4 Plasmon spectrum of layered superconductors
Plasmon modes can be found as poles of the Dyson
equation for the Coulomb potential, which has the form of
expression (53). To calculate the plasmon spectrum, we use
the expression for the bare Coulomb interaction V�q; qz� [49]
of charged particles in a periodic layered system consisting of
alternating layers with different values of the dielectric
constant in the long-wavelength approximation. It is clear
that as the thickness of the conducting layer increases, the
Coulomb repulsion decreases. Using Eqns (53) ± (55), we can
obtain the final expression for the plasmon spectrum in
layered superconductors as

o2�q; qz� �
�
v 2Fq

2 � 8t 2 sin2
qzD

2

�
P�0�V�q; qz� ; �56�

where vF is the velocity of electrons on the Fermi surface. For
t � 0, qz ! 0, and qD4 1, we obtain the spectrum of two-
dimensional plasmons in the long-wavelength approxima-
tion:

o�q� � vF
�
2q

aB

�1=2

; �57�

where aB � 1=�me 2� is the Bohr radius for a free electron. For
qD5 1 and qzD5 1, the plasma frequency depends on the
direction of the wave vector:

o�q; qz� �
�

2

aBD

�1=2�
v 2F � �t 2D 2 ÿ v 2

F� cos2 y
�1=2

; �58�

where y is the angle between the wave vector and the vector
normal to the layer. As follows fromEqn (58), the spectrum of
plasmons is strongly anisotropic. The frequency of plasma
oscillations with the wave vector perpendicular to the layer is
vF=�tD�4 1 times smaller than the plasma frequency in the
layer [52].

2.5 Specific heat jump of layered superconductors
In the case of a weak electron±phonon coupling, Eliashberg
equations (3) and (4) are transformed into the BCS
equation [40]

Z�o� � 1 ; �59�

D� pz� �
� p

ÿp

dp 0z
2p=d

�1
0

d2p

�2p�2

� tanh
��
x 2� pÿp 0; pzÿp 0z� � D2� pÿp 0; pzÿp 0z�

�1=2
=�2T �	�

x 2� pÿp 0; pzÿp 0z� � D2� pÿp 0; pzÿp 0z�
�1=2

� Vpz; p 0z D� p 0z� ; �60�

where x is energy spectrum (6) referenced to the chemical
potential m, and the pairing potential V� pz; p 0z� can be
expressed similarly to (11). In Eqn (60), we neglect the
Coulomb potential. The solution of the linearized BCS
equation at Tc is given by (12). In the vicinity of the critical
temperature Tc, the value of Di can be expanded into a
series in the small parameter t 1=2 � �1ÿ T=Tc�1=2, Di �
cit

1=2 � c 0i t
3=2 � . . . : It then follows from Eqn (60) that

�xl00 ÿ 1�c0 � l01xc1
2
� 0 ; �61��

xl11
2
ÿ 1

�
c1 � l01xc0 � 0 ; �62�

where li j � N 2D�0�Vi j, and N 2D�0� represents the two-
dimensional density of states. These equations determine the
critical temperature Tc and the ratio of order parameters
c0=c1. In what follows, we introduce the ratio of order
parameters at a temperature close to Tc:

w � D0

D1

����
T�Tc

� c0
c1
� �l01=2�x

1ÿ l00x
� 1ÿ �l11=2�x

l01x
; �63�

where x � ln �o0=Tc� and o0 is the Debye frequency. The
behavior of the order parameters D0 and D1 at tempera-
tures close to the critical temperature can be calculated
from Eqn (60) and then rewritten using the Matsubara
technique. Expanding the right-hand side in powers of
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D2
0=T

2
c , we have [51]

D� pz� � T
X
n

� p

ÿp

dp 0z
2p=d

� o0

ÿo0

dx l� pz; p 0z�D� p 0z�

�
�

1

o2
n � x 2

ÿ D2� p 0z�
�o2

n � x 2�2
�
; �64�

where on � �2nÿ 1�pkT (with n � 0;�1;�2; . . .) are the
Matsubara frequencies. Substituting the expression for
D� pz� in the last equation and then calculating the integrals
and equating the coefficients at the same harmonics, we have

D0 � ln
o0

T

�
l00D0 � l01

2
D1

�
ÿ 7z�3�
8p2T 2

c

�
l00

�
D3
0�

3

2
D0D2

1

�
� l10

2

�
3D2

0D1� 4

3
D3
1

��
; �65�

D1 � ln
o0

T

�
l01D0 � l11

2
D1

�

ÿ 7z�3�
8p2T 2

c

�
l01

�
D3
0�

3

2
D0D2

1

�
� l11

2

�
3D2

0D1� 4

3
D3
1

��
; �66�

where z�x� is the Riemann zeta function. Using that
ln �o0=T � � x� ln �1� t� � x� t, after a series of transfor-
mations, we obtain following expression for c0:

c 20 �
8p2T 2

c

7z�3�
8w 4 � 4w 2

8w 4 � 24w 2 � 3
: �67�

To calculate the specific heat jump of layered super-
conductors at the critical temperature, we use the expres-
sion [53]

CS ÿ CN � b 3
c

X
p; pz

qD2� pz�
qb

����
b�bc

exp
ÿ
be� p; pz�

�ÿ
1� exp �be� p; pz�

��2 ;
�68�

where b � 1=T. Passing from summation to the integration
over momenta with quasi-two-dimensional spectrum (6) for
t=m5 1, we arrive at

CS ÿ CN � N 2D�0� 8p
2T 2

c

7z�3�
8w 4 � 8w 2 � 2

8w 4 � 24w 2 � 3
: �69�

Using the expression for the specific heat in the normal
case [54], we finally obtain the normalized specific heat jump
in layered superconductors as [55]

CS ÿ CN

CN
� 1:43

8w 4 � 8w 2 � 2

8w 4 � 24w 2 � 3
: �70�

2.6 Fluctuation effects on the critical temperature
in layered superconductors
To study the effects of the order parameter phase fluctuations
on the critical temperature Tc, we start from the Lawrence±
Doniach free energy functional F�f� for quasi-two-dimen-
sional superconductors [56]:

F �f� � N 2D
S

X
j

�
d2r

�
�h 2

8m

�
qfj

qr

�2

�
X
g��1

W?
�
1ÿ cos

ÿ
fj�r� ÿ fj�g�r�

���
; �71�

where fj�r� is the phase of the order parameter
Dj � jDjj exp

ÿ
ifj�r�

�
in the plane j with coordinates

r � �x; y�, W? � t 2=m is the Josephson energy, and N 2D
S �T �

is the surface concentration of superconducting electrons
defined as

N 2D
S �T � � N 2D

S �0�
�
1ÿ T

T 2D
c0

�
� p 2

F

2�h 2

�
1ÿ T

T 2D
c0

�
: �72�

In (71), the contribution of the modulus of the order
parameter is neglected. The mean value of the order
parameter is defined by

hcosfji �
�
Df cosfj exp

ÿÿFst�f�=�kT �
��

Df exp �ÿFst�f�=�kT �
� : �73�

Exact calculation of integral (73) with free energy
functional (71) is not possible. At T � Tc, Eqn (73) with free
energy functional (71) has a nonzero solution, which may
define the transition temperature Tc. To calculate integral
(73), we use the mean field approximation by replacing free
energy functional (71) with

F^ �f� � N 2D
S

X
j

�
d2r

�
�h 2

8m

�
qfj

qr

�2

�W?hcosfi cosf
�

� F0 ÿN 2D
S W?hcosfi

�
d2r cosf�r� ; �74�

where F0�f� is the free energy functional of a two-dimensional
superconductor and W? �

P
g W?�g�. In the vicinity of Tc,

the order parameter tends to zero. Therefore, the second part
of the free energy potential F^ �f� may be chosen as a small
parameter. Substituting (74) instead of Fst�f� in (73) and
performing transformations, we obtain the following equa-
tion for Tc:

1 � N 2D
S �T �W?
kTc

�
d2r


cosf�0� cosf�r��

0
; �75�

where h. . .i0 indicates averaging with the free energy func-
tional F0�f� for a single superconducting layer. The correlator
hcosf�0� cosf�r�i0 has been calculated in [57] and has the
form


cosf�0� cosf�r��
0

�

�
x2D
r

��1=p� kT= EF�1ÿT=T 2D
c0
�� �� �

if r > x2D ;

exp

�
ÿ 1

p
kT

EF�1ÿ T=T 2D
c0 �

�
r

x2D

�2�
if r < x2D ;

8>>>><>>>>:
�76�

where x2D � �hvF=�pD�0�� is the correlation length inside
the superconducting plane. Equation (75) may be solved
for Tc with correlator (76) if the following condition is
satisfied:

1

2p
kTc

EF�1ÿ Tc=T 2D
c0 �

< 1 : �77�

This means that

T �c < T < T 2D
c0 ; �78�
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where T �c , defined as

1

kT �c
� 1

kT 2D
c0

� 1

2pEF
; �79�

is the temperature above which the interlayer phase coherence
is destroyed, and T 2D

c0 is the critical temperature of an
individual layer. Substituting (76) in (75) under condition
(77), we obtain the following expression for the critical
temperature Tc:

1

Tc
� 1

T 2D
c0

ÿ 1

2px 2
2DN

2D�0�W?

�
"
1ÿ

�
1� 2x 2

2DN
2D�0�W?
EF

�1=2
#
: �80�

For small values of the tunneling integralW? < �h 2=�2mx 2
2D�,

the last equation becomes

Tc � T �c

�
1ÿ T �c

2p
2mx 2

2D

�h 2

�
t

EF

�2�ÿ1
: �81�

In the opposite case W? > �h 2=�2mx 2
2D�, the critical tempera-

ture is given by [58]

Tc � T 2D
c0

1� T 2D
c =�pkFx2Dt�

: �82�

3. Results and discussions

3.1 Tc of layered superconductors: the case of MgB2

Using full anisotropic Eliashberg equations (24) ± (26), we
have calculated the critical temperature of MgB2 [59] . The
matrix elements taken from [29] are l00 � 1:017, l11 � 0:448,
l01 � 0:212, and l10 � 0:115. For the Coulomb pseudopo-
tentials m �i j, the Golubov values were used: m �00 � 0:21,
m �11 � 0:172, m �01 � 0:095, and m �10 � 0:069. The logarithmi-
cally averaged value of the phonon frequency oln was taken
from [60]: oln � 480 K. For these parameters, the result is
Tc � 42:92 K. Very recently, Mitrovich [61] used the follow-
ing Coulomb pseudopotentials for calculations: m �00 �
m �11 � 0:139, m �01 � m �10 � 0:027. The electron±phonon inter-
action parameters are the same as in [29]. With this set of
parameters and for the logarithmically averaged value of the
phonon frequency oln � 767ÿ806 K [62], we find from the
above expressions that the critical temperature is in the range
45:83ÿ50:5 K. It is clear that our results overestimate the
critical temperature of magnesium diboride. In our opinion,
this is because we neglected the effects of nonadiabaticity in
MgB2. The high phonon frequency of the boron atoms
(oph � 0:1 eV) indicates that MgB2 could be in the non-
adiabatic regime of the electron±phonon interaction (with the
Fermi level EF � 0:5 eV) [63]. In our opinion, inclusion of
nonadiabatic effects in this analysis would improve our
results. The expression for the critical temperature of layered
nonadiabatic superconductors was obtained in [30, 31].
However, the obtained results pertain to the case
l11 5 l01 < l00. Our case differs from this and is the subject
of other investigations.

The Eliashberg equations for isotropic two-band and
anisotropic superconductors have been given by numerous
authors studying MgB2 [26, 29, 61]. In all cases, numerical

simulation of the system of integral equations was performed.
In contrast to those works, we presented an analytic approach
and a formula for the calculation of the critical temperature
Tc for the intermediate electron±phonon coupling. In the
calculations, first-principle data was used for the electron±
phonon interaction parameter and the Coulomb repulsion.
Another interesting issue is the study of the pressure
dependence of the critical temperature Tc in MgB2 and
other parameters using the Eliashberg theory [64 ± 66].

3.2 Effects of nonadiabaticity
Our main result for the effects of anisotropy on the critical
temperature in layered nonadiabatic superconductors is given
by Eqns (44) and (45). In Fig. 1, to assess these effects more
quantitatively, we show Tc=Tc0 as a function of l01=l00 for
different values ofQc (whereQc is the cut-off parameter of the
phonon momentum transfer). The explicit expressions for l00
and l01 with the energy spectrum in Eqn (6) were presented in
[37]. These expressions involve microscopic parameters that
may be obtained from the experimental data (for example, uk,
uz, uT, and EF). But our final expression for the critical
temperature Tc in Eqn (44) contains only the ratio of the
parameters l01=l00. In the case of two-dimensional super-
conductors, we take l00 � 0:5.

In Fig. 1, the dashed curve shows the behavior of Tc

without the vertex corrections. The solid curves correspond
to different Qc values in the range 0.1±0.9, from top down.
We observe that the nonadiabatic corrections become more
prominent for small values of Qc. We note that k increases
as Qc decreases. For values Qc � 0:9, the coefficient k
becomes lower than in the adiabatic case. Therefore, the
vertex corrections have a similar behavior in the aniso-
tropic and isotropic superconductors when Qc is small. The
critical temperature in the nonadiabatic case is enhanced
compared to the solution without the vertex and cross
corrections.

The dependence of k on the nonadiabaticity parameter m
is displayed in Fig. 2 for two different values: Qc � 0:1 and
Qc � 0:9. As can be seen in the figure, k decreases with an
increase in m in both cases. Corrections become more
significant at small m and are reduced as m increases. The
behavior of k for other values ofQc is similar to that shown in
Fig. 2. Our results seem interesting and relevant in connection
with cuprate compounds such as layered nonadiabatic super-
conductors.

0.20 0.4 0.6 0.8
l01=l00

2

Tc=Tc0

1

3

Figure 1. Critical temperature versus l01=l00. The dashed curve denotes

the behavior of Tc without the vertex corrections. Solid curves correspond

to differentQc values in the range 0.1±0.9, from top down asQc increases.
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Another popular layered superconductor is Sr2RuO4,
which has a rather low critical temperature Tc � 1 K [67].
The layered structure of the system leads to a nearly
cylindrical Fermi surface that is open along the c-axis.
However, there are various indications that strong correla-
tion effects and nonadiabaticity effects are absent in Sr2RuO4

compounds. Therefore, in isotropic single-band s-wave
nonadiabatic superconductors, vertex corrections are
strongly dependent on the momentum transfer, and small
values of Qc lead to an enhancement of the critical
temperature Tc [34±36].

3.3 Coulomb effects
For the Coulomb potential m [see (46)], we can obtain analytic
expressions in the different asymptotic cases. For a > d, the
value of the Coulomb potential m averaged over the Fermi
surface is

m�a; t� � 2a0
p

�
1�

2pFaa0�2E1 � 2pFaa0�
�1=2

� 1

E1
ln

a0 � E1
a0 � E1=2pFa

� 1

E1 � a0
� 4a0

pE1

�t=EF�1=2
E1 � a0

�
; �83�

where a0 � e 2=��hvF� is the ratio of the average Coulomb
potential to the kinetic energy of an electron on the Fermi
surface; usually, a0 5 1. In the opposite asymptotic case
a < d, the replacements E1 ! E and a! d must be used.
Equation (83) shows that m decreases as the thickness d of
the superconducting layers increases. Such a result seems
attractive for explaining the empirical Chu rule (see Ref. [11]
and the references therein). According to this rule, the critical
temperature of HTSCs can be calculated as

Tc�n� � 40 n �K� ;

where n is the number of CuO2 planes. But the dependence
Tc�n� saturates for n > 5. In our model, the thickness of the
conducting layer increases as the number of CuO2 planes
increases. Our results are in good agreement with those
obtained from Leggett's calculations [68, 69]. As shown in
Ref. [68], the difference between the transition temperatureTc

for a homologous series of n layers and the single-layer value
is given by DTc � const �1ÿ 1=n�. This is because the
Coulomb energy in an n-layer structure is proportional to
the number of acoustic modes (nÿ 1 acoustic modes for n

layers). Consequently, the saved energy per layer can be
calculated as �nÿ 1�=n � �1ÿ 1=n� [68]. It is useful to note
that Leggett's calculations are completely independent of any
`model' or of the fundamental superconductivity mechanism
in cuprates. Our approximation is related to straightforward
calculations in the framework of theMcMillan approach and
takes the `hard' phonon spectrum of an HTSC into account.
In both calculations, Tc saturates as the number of CuO2

planes (or the ratio d=a of the conducting layer thickness to
the thickness of the dielectric) increases.

The values of a and d for different homologous cuprate
series are presented in [70]. Using these data, we plot the ratio
d=a as a function of the number n of CuO2 planes (Fig. 3). The
ratio d=a for HTSCs increases as n increases, which
corresponds to the region in Fig. 4 where the Coulomb
repulsion changes crucially, and this means that a consider-
able change in the critical temperature of layered SCs is
induced by changing the number of CuO2 planes. The value
d=a � 2:3 for n � 2 in Fig. 3 corresponds to the
Bi2Sr2CaCuO8 compound. For another two-layer super-
conductor YBaCuO, the ratio d=a � 1:73 [70]. As shown in
Refs [9, 10], the lattice static dielectric constant varies in the
range 6ÿ10 for all cuprates, and we have a value about 4 for
YBaCuO [70].

To estimate Z � E1=E, we use a value of E in the range
4ÿ10, while E1 can be taken to be about 1. Consequently, Z
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1.8
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k

1.6

1.2
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Qc � 0.1

Qc � 0.9

0.4 0.6 0.8 1.0
m

Figure 2.Dependence of k on the nonadiabacity parameter m.
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Figure 3. The ratio d=a as a function of the number n of CuO2.
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Figure 4. Coulomb repulsion as a function of d=a.
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ranges in 0:1ÿ0:25. As Fig. 3 shows, despite the different
values of d=a and Z for YBaCuO and Bi2Sr2CaCuO8 [70], the
Coulomb repulsion is the same for both compounds, and
therefore the critical temperatures of these compounds are
nearly the same.

As a concluding remark, it is interesting to note the newly
discovered superconductor magnesium diboride [13]. This
material also has a layered structure with boron atoms
forming layers of two-dimensional honeycomb lattices
(single layer). Our results can also be applied to MgB2 in the
limit as d=a tends to zero.

It is interesting to discuss the conditions under which
several atomic layers can be approximated by a continuum
dielectric medium. It is well known that at the contact region
of different layers in a superlattice, the crystal structure is
deformed, and therefore the dielectric constant in this region
is different from that in bulk material. Therefore, for our
purpose of finding the dependence of the plasmon frequency
on the thicknesses of the conducting and dielectric layers, the
dielectric constants E and E1 presented here can be considered
effective dielectric constants of the layers. In our opinion,
introducing a more realistic function for the change in the
dielectric constant (instead of the step function used in [49])
would change our results inconsiderably. Similar questions
were discussed in [71, 72] many years ago in relation to
exitonic superconductivity in `sandwich' structures.

3.4 Plasmon spectrum
The plasmon frequency for a superlattice is given by (56). For
long wavelengths �q; qz ! 0�, we have an optical plasmon
mode (bulk plasmon):

o2�0; 0� � 8EFe
2

E
a� Zd

a 2�a� d �2 ÿ b 2�aÿ d �2 : �84�

In the other limit qz � p=D, we obtain an acoustic
plasmon mode in the lower branch. For qz � p=D, D �
a� d, qD5 1, and t=EF 5 1, we obtain

o�q� � o�0; 0� a
2�a� d �2 ÿ b 2�aÿ d �2

2�a� Zd �Z q : �85�

The plasmon spectrum of a layered superconductor has a
rather complicated structure. The plasmon modes for
0 < qz < p=D form a band, as shown in Fig. 5. The size of
the band is determined by the parameter Z and the ratio a=d. It
is also important to note that in the limit qzD! p, the slope of
acoustic plasmons do=dq �qz � p=D� is greater than in the
case qzD � 0.

In Fig. 6, we plot the dependence of the normalized slope
of acoustic plasmon modes do=dq �qz � p=D� versus the
ratio d=a. It is clear that by increasing the thickness of the
conducting layer, the slope do=dq �qz � p=D� is increased.
Such a conclusion is in good agreement with the numerical
calculations in [73], where periodic stacks of planes were
considered.

We can see that increasing the thickness of the metallic
layer leads to a decrease in the plasmon frequency o�0; 0�.
These results can be useful for explaining the experimental
data for YBaCuO [o�0; 0� � 2:3 eV] [74] and Bi2Sr2CaCu2O8

[o�0; 0� � 1 eV] [75, 76]. It is well known that there are two
CuO2 planes in YBaCuO and three CuO2 planes in
Bi2Sr2CaCu2O8 and therefore the plasmon frequency
decreases. In our model, the thickness of the conducting

layer increases as the number of CuO2 planes increases. The
ratio d=a for an HTSC corresponds to the region in Fig. 4
where the Coulomb repulsion changes crucially.

Another interesting question is related to the influence of
low-energy plasmon modes on superconductivity in layered
systems. The consequences of the existence of plasmons for
superconductivity were discussed by [77]. As shown in this
work, low-energy plasmons can contribute constructively to
superconductivity. The simplest form [Eqn (56)] of the
Coulomb interaction in layered systems with zero-thickness
conducting planes was considered in [77] (see also [78, 79]).
The conducting sheets are stacked along the c-axis and
separated by spaces with the dielectric constant EM. The
electrons move within the superconducting sheets �t � 0�.
The purpose of [77] was to investigate the increasing influence
of the phonon±plasmon interaction on the electron pairing
mechanism in the framework the Eliashberg theory. The
plasmon contribution to superconductivity is shown to be
dominant in the newly discovered layered superconductor,
metal-intercalated halide nitrides [77].

Earlier, plasmon modes in layered superconductors with
zero-thickness conducting planes were studied in [80] using
kinetic equations for the Green's functions. It was shown that
in the vicinity of Tc, plasma oscillations transformed into the
Carlson±Goldman mode observed in [81]. Unlike in other
studies, the influence of the order parameter on the plasmon

0 1 q

1

2

3

4

o

qzD � p

qz � 0

o�q; qz�

Figure 5. The plasmon modes of layered superconductors for

0 < qz < p=D; D � a� d is the superlattice period.
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Figure 6 The dependence of the normalized slope of acoustic plasmon

modes do=dq �qz � p=D� versus the ratio d=a.
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spectrum was also discussed. In Ref. [73], it was shown that
plasmon modes that are expected in cuprate superconductors
should be characteristic of a superlattice based on several
metallic sheets. Numerical results were given for the super-
lattice plasmon dispersion relations for two and three sheets
per unit cell. The electron gas in metallic sheets was
considered two-dimensional. It was shown that if the spacing
of the sheets is small compared to the superlattice period, then
the low-frequency plasmon branches are essentially identical
to those of an isolated bilayer or trilayer.

In contrast to the approaches in [73, 78, 80], we have
developed a simple model with the thickness d of the
conducting sheets taken into account. The value of d and the
dielectric layer thickness a for different homologous cuprate
series are presented in [70]. The ratio d=a for HTSCs increases
as the number of CuO2 planes per unit cell increases, which
corresponds to the region in Fig. 4 where the Coulomb
repulsion changes crucially and means a considerable change
in the plasmon frequency of layered SCs induced by changing
the number of CuO2 planes. As noted above, the value
d=a � 2:3 corresponds to the Bi2Sr2CaCuO8 compound,
and d=a � 1:73 corresponds to another cuprate, supercon-
ductor YBaCuO.

Recent studies on the growth of single crystals [18, 19]
show an anisotropy of physical properties in MgB2. Our
results can also be applied toMgB2 in the limit as d=a tends to
zero. Calculations of the plasma frequency in MgB2 using
de Haas±van Alphen data were made in [82]. Another
peculiarity of plasmon modes in MgB2 is related to the two-
band nature of superconductivity in this compound. In this
case, the appearance of low-energy plasmon branches, so-
called `demons' [83], is the result of two overlapping bands.

3.5 Specific heat jump
It follows from (70) that A�w� is less than unity and therefore
the normalized specific heat jump in layered superconduc-
tors is smaller than in the isotropic case. This result is in
qualitative agreement with paper [84], where it was shown
that A�w� < 1 in the general case of anisotropic super-
conductors. However, the explicit expression for the specific
heat jump function was not obtained there. The detailed
behavior of the function A�w� is determined by the aniso-
tropy of the order parameter. In the case of layered
superconductors with pairing in neighboring planes, the
order parameter is D� pz� � D0 � D1 cos � pzd � and it is
convenient to introduce the anisotropy parameter

a � Dmax

Dmin
� D0 � D1

D0 ÿ D1
� w� 1

wÿ 1
: �86�

The behavior of the specific heat jump as a function of the
anisotropy parameter is shown in Fig. 7. The presented result
can be used for the calculation of the anisotropy parameter in
MgB2. The experimental value of the specific heat jump in
MgB2 is �CS ÿ CN�=CN � 1:18 [60]. Using (86), we find that
a1 � 0:5 �w � ÿ3� and a1 � 2 �w � 3�. The physical solution
corresponds to the case of the positive ratio of order
parameters w � 3. Similar results were obtained by computer
simulation in the strong electron±phonon coupling limit in
the framework of the Eliashberg theory [85] for a cylindrical
Fermi surface with energy spectrum (6). The calculations
show that the specific heat jump decreases with an increase in
the ratio l01=l00 [see Eqns (63) and (69)].We also note that the
anisotropy parameter w � 3 obtained from our analytic

calculations is close to the result of computer calculations
performed in [29] in the framework of the isotropic two-band
microscopic Eliashberg theory �Ds=Dp � 2:63�.

3.6 Order parameter fluctuations
As follows from Eqns (80)±(82), the critical temperature Tc

increases with an increase in the tunneling integral t, and
approaches T 2D

c in the interval T �c < Tc < T 2S
c . In the

absence of Josephson coupling between planes, fluctuations
of the order parameter phase would destroy the long-range
order [57]. Nevertheless, the existence of topological defects in
two-dimensional superconductors, such as `vortices' and
`antivortices' of a phase field, should result in a Berezinski±
Kosretlitz±Thouless phase transition atT < TKT [86, 87]. The
same defects give rise to a quasi-long-range order for
TKT < Tc < T 2D

c , where T 2D
c is the critical temperature

formally evaluated by the mean field theory for a single
superconducting plane.

4. Conclusions

We have summarized a number of recent investigations of
layered superconductors using the microscopic Eliashberg
theory. The critical temperature of layered superconductors
was calculated using this theory, and the influence of
nonadiabaticity effects on the critical temperature was
considered. In the calculation of the effect of Coulomb
repulsion on the critical temperature, arbitrary thicknesses
of conducting layers were also taken into account. In the same
approach, expression for the plasmon spectrum of layered
superconductors with arbitrary thicknesses of the conducting
layers was obtained. In addition, Bardeen±Cooper±Schrieffer
equations for layered superconductors were used for calculat-
ing the specific heat jump, which is smaller than in the
isotropic case. The influence of fluctuations of the order
parameter phase on the critical temperature of layered
superconductors was studied using the Ginzburg±Landau
functional for the free energy for layered superconductors.
The results are shown to be in qualitative agreement with
experimental data for cuprate superconductors and the
recently discovered MgB2 compound.

0 1 2

a � �w� 1�=�wÿ 1�
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Figure 7. The behavior of the specific heat jump as a function of the

anisotropy parameter a.
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