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Critical properties of frustrated spin
systems on a stacked triangular lattice

A K Murtazaev

1. Introduction

One of the fundamental problems in statistical physics is the
study of phase transitions and critical phenomena in fru-
strated spin systems. Despite the achievements in this area of
research, the question of building a rigorous and consistent
microscopic theory remains central to the modern condensed
matter physics [1]. The modern theory of phase transitions
and critical phenomena is based mainly on the ideas put
forward in the hypothesis of scaling and universality and in
the renormalization group theory [1 ± 4]. Analysis of the
results obtained from studies of frustrated systems and spin
systems with quenched nonmagnetic disorder has shown that
many of these results go far beyond the modern theory of
phase transitions and critical phenomena [3, 5, 6].

Most of the traditional theoretic and experimental
studies of frustrated systems encounter serious difficulties
in attempts to calculate the critical parameters and to
determine the features, nature, and mechanisms of critical
behavior [7, 8]. Therefore, phase transitions and critical
phenomena are currently studied by Monte Carlo methods
[7 ± 13]. Only lately did the study of the immediate vicinity
of the critical point by Monte Carlo methods become
possible. The achievements in this field are not only due to
the sharp increase in computing power but also a result of
new ideas and methods being developed. In particular,
special algorithms, known as replica algorithms, for Monte
Carlo calculations have been developed to study frustrated
systems.

Currently, the magnetic, thermal, and critical properties
of frustrated spin systems are being carefully studied [12, 13,
15 ± 20], and the reason is that frustrated systems have
remarkable magnetic properties and a rich variety of phases
and phase transitions caused by strong degeneracy and a high
susceptibility of such systems to various perturbing interac-
tions [21, 22]. Moreover, it is still unclear whether frustrated
spin systems belong to a new universality class of critical
behavior and its dependence on various factors, such as the
type and magnitude of the interlayer exchange coupling, the
next-nearest-neighbor interaction, anisotropy, and external
magnetic field.

In this report, we consider the results of a Monte Carlo
investigation of the critical properties of the model of a 3D
Heisenberg antiferromagnet on a triangular lattice.

The interest in this model stems from the fact that
antiferromagnets on a triangular lattice constitute an exam-
ple of frustrated systems. By studying this model, we may
hope to resolve the question of whether frustrated systems
belong to a new universality class of critical behavior, which is
still open for discussion [6 ± 13]. Furthermore, many impor-
tant physical properties of frustrated systems strongly depend
on the lattice geometry (on the degree of frustration). These
features may narrow the possible universality classes of
critical behavior, but there is still much to be done in this
respect.

The question of the dependence of the critical properties
of frustrated systems on the magnitude of the interlayer
exchange coupling is especially interesting. The critical
exponents, which are highly sensitive parameters, may serve
as indicators of the spatial crossover from the 3D critical
behavior to the 2D one (and back). The data that are
currently at our disposal are not sufficient to uniquely
determine how the critical behavior of frustrated systems
depends on the interlayer exchange coupling parameter, and
the problem has yet to be solved [8, 9, 12, 13].

In addition, the dependence of the critical properties of
frustrated systems on the type andmagnitude of the interlayer
exchange coupling is not described in the available literature.

In this review, within a single method, and using a reliable
scheme based on a special algorithm for the Monte Carlo
methods (the replica algorithm), we attempt to determine the
values of the critical parameters of models of frustrated 3D
Heisenberg antiferromagnets on a triangular lattice with the
highest possible accuracy.

2. The model and the method

The Hamiltonian of a 3D Heisenberg antiferromagnet on a
triangular lattice can be written as [3]

H � ÿJ
X
hi ji

Si Sj ÿ J 0
X
hi ji

Si Sj ; �1�

where Si � �Sx
i ;S

y
i ;S

z
i � is a three-component unit vector, and

J and J 0 are the exchange coupling constants. Summation is
over the nearest neighbors. The lattice consists of 2D
triangular layers packed along the orthogonal axis. The first
term in the right-hand side of Eqn (1) accounts for the
intralayer exchange coupling J and the second term accounts
for the interlayer coupling J 0.

We use three models, called D1, D2, and D3, to establish
the effect of the type andmagnitude of the interlayer exchange
coupling on the nature of the critical behavior:

model D1: J < 0, J 0 > 0, jJ j � jJ 0j;
model D2: J < 0, J 0 < 0, jJ j � jJ 0j;
model D3: J < 0, J 0 > 0, jJ j 6� jJ 0j.
Frustrated spin systems are complicated objects, even for

studies by Monte Carlo methods. As is known, near a critical
point, Monte Carlo methods encounter what is known as the
critical-slowing-down problem; this problem is even more
acute with frustrated systems [7]. Moreover, a characteristic
feature of frustrated systems is the problem ofmultiple valleys
of local energy minima. Ordinary Monte Carlo methods are
usually ill suited for solving this problem. Hence, many new
variants of these methods have recently been developed that
focus on studies of frustrated systems. Among these, the
replica algorithms have proved to be the most powerful and
effective in the studies of critical phenomena in frustrated
systems [14].

In our investigation, we used the highly effective replica
algorithm [14] of the following type:

(i) Two replicas X and X 0 with different temperatures T
and T 0 are modeled simultaneously.

(ii) After one hundred Monte Carlo steps per spin have
been completed, the replicas exchange data in accordance
with the Metropolis scheme with the probability

w�X! X 0� � 1 ; D4 0 ;
exp �ÿD� ; D > 0 ;

�
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where D � �Tÿ T 0��UÿU 0�, with U and U 0 being the
respective internal energies of the first and second replicas.

In the replica exchange algorithm, a random walk along
the `temperature interval' is implemented for each replica,
with each random walk stimulating a random walk in the
potential energy field. This facilitates the solution of the
problem of the system `sticking' in many states with local
energy minima.

The calculations were carried out for systems with
periodic boundary conditions and with linear dimensions
L� L� L � N, where L � 9ÿ30 for the D1 and D3 models
andL � 12ÿ42 for theD2 model. For theD3 model, the ratio
of the interlayer to intralayer exchanges varied in the interval
R � jJ 0=J j � 0:01ÿ1:0. To take the system out of the state of
thermodynamic equilibrium, a section of t0 � 4:0� 105

Monte Carlo steps per spin, which is several times longer
than the nonequilibrium section, was cut out. The thermo-
dynamic quantities were averaged along a Markov chain
t � 25t0 long. To increase the accuracy, the data obtained
from ten different initial configurations were averaged.

3. Simulation results

Tomonitor the temperature behavior of the heat capacity and
susceptibility, we used the expressions [1, 23 ± 25]

C � NK 2
ÿhU 2i ÿ hU i2� ; �2�

w � NK
ÿhm 2i ÿ hmi2� ; T < TN ;

NK hm 2i ; T5TN ;

(
�3�

wch �
NK

ÿhm 2
chi ÿ hmchi2

�
; T < Tch ;

NK hm 2
chi ; T5Tch ;

(
�4�

where K � jJ j=kBT, N is the number of particles, m is the
magnetic order parameter, mch is the chiral order parameter,
and wch is the chiral susceptibility.

The order parameter m of the system is given by [9]

m � 3

N

���������������������������������������
hM 2

A �M 2
B �M 2

Ci
3

s
; �5�

where MA, MB, and MC are the magnetization of the
sublattices A, B, and C.

The magnetization of a sublattice is given by [9]
jMrj
� � D ����������������������������

S 2
x � S 2

y � S 2
z

q E
; r � A;B;C : �6�

To calculate the chiral order parametermch of the system,
we use the expressions [10, 11]

mchp � 2

3
���
3
p
Xp
hi ji
�Si � Sj�z ; �7�

mch � 1

N

X
p

mchp ; �8�

where the subscript p labels the triangular plaquettes.
Figures 1 and 2 show the temperature dependence of the

heat capacity C and the susceptibility w for models D1 and
D2. Here and in what follows, the errors in the data do not
exceed the size of the symbols in the figures. We note the
distinct maxima in the critical region for both models, with

the maxima occurring at the same temperature (within
error).

To determine the critical temperatureTN more accurately,
we use the method of fourth-order Binder cumulants UL,
which are [26]

UL � 1ÿ hm
4iL

3hm 2i2L
: �9�

According to the finite-size scaling theory, the critical point
is the point where all the temperature curves UL�T �
intersect [25].

Figure 3 depicts the characteristic temperature depen-
dence ofUL for model D2. The inset shows the accuracy with
which the critical temperature was determined. Clearly, the
critical temperature at R � 1 is TN � 0:957�1� (here and in
what follows, the temperature is given in units of jJ j=kB). In
determining the chiral critical temperature Tch, we used the
cumulant crossing method, which is considered more accu-
rate and reliable [11 ± 13, 26, 27]. Similar calculations were
done for models D1 and D3.

D1

D2
3

2

1

0

C=kB

0.5 1.0 1.5 2.0
kBT=jJj

Figure 1. The heat capacityC=kB as a function of the temperature kBT=jJ j
for models D1 and D2.
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Figure 2. The susceptibility w as a function of the temperature kBT=jJ j for
models D1 and D2.
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To calculate the static chiral and magnetic critical
exponents of the heat capacity �a�, of the susceptibilities (g
and gch), of the magnetizations (b and bch), and of the
correlation radii (n and nch), we used formulas from the
finite-size scaling theory [24, 26 ± 29].

It follows from the KPC relations that the following
relations hold in a system with the dimensions L� L� L at
T � TN for sufficiently large L [11, 24, 28 ± 31]:

m / Lÿb=n ; �10�
mch / Lÿbch=nch ; �11�
w / L g=n ; �12�
wch / L gch=nch ; �13�
Vn � L1=ngVn

; �14�
Vchn � L1=nchgVn

; �15�

where gVn
is a constant and Vn and Vchn can be taken as

Vi � hm
iE i
hmii ÿ hE i ; i � 1; 2; 3; 4 ; �16�

Vchi � hm
i
chE i
hmi

chi
ÿ hE i ; i � 1; 2; 3; 4 : �17�

These relations were used to determine b, bch, g, gch, n, and nch.
In approximating the temperature dependence of the heat
capacity on L, we used the expression [9 ± 11, 32]

Cmax�L� � A1 ÿ A2L
a=n ; �18�

where A1 and A2 are some coefficients.
Figure 4 shows the characteristic curves representing the

dependence of the parameters Vi for i � 1; 2; 3 on the lattice
size L for model D2 in the log-log scale. Clearly, points in the
diagrams land on straight lines (within error). The diagrams
in Fig. 4 obtained by the method of least squares are parallel
straight lines, and their slopes determine the value of 1=n.
The value of n calculated in this manner was used to
determine the critical exponents of the heat capacity �a�,
susceptibility �g�, and magnetization �b�. The chiral critical

exponents were also determined through this scheme. Similar
calculations were carried out for models D1 and D3.

All the values of the exponents thus obtained are listed in
Table 1. The data in Refs [6, 7, 9 ± 11] are also listed for
comparison.

Of special interest is the procedure that was used to
determine the Fisher exponent Z. Starting from the relation
between the susceptibility w and the correlation radius x [33],

w / xg=n ; �19�

and using the relation Z � 2ÿ g=n between the exponents Z
and n, we obtain

ln
w

x 2
� cÿ Z ln x ; �20�

where c is a constant. For a finite-size system at T � TN, we
have x � L. This yields

ln
w
L2
� cÿ Z lnL : �21�

Using this formula, we determined the Fisher exponent Z.
The same approach was used to determine the magnetic and
chiral critical Fisher exponents for models D1 and D2, which
are also listed in Table 1.

The values of the magnetic and chiral critical tempera-
tures for models D1 and D2 coincide, to within error, with
each other and with those obtained in [9 ± 11]. A comparison
of the values of the critical exponents for model D1 and the
results for a similar model in [9, 11] shows that our data are
close to those in the more recent paper [11]. Some of the
critical parameters for model D2 coincide, to within error,
with the results for the same model in Ref. [10]. Table 1 shows
that our data for model D1 are closer to the experimental
results (see the references in [6]) for the antiferromagnet
CsMnBr3 with a triangular lattice than to the data for model
D2. We note that this is the first time that the values of the
Fisher exponents Z and Zch for models D1 and D2 have been
calculated.

Table 1 clearly shows that our results are in good
agreement with the data from laboratory experiments and
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Figure 3. The Binder cumulant UL as a function of the temperature

kBT=jJ j for model D2.
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Figure 4. Dependence of the parameter Vi on the linear size L at T � TN

for model D2.
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with most results of numerical experiments by other research-
ers, but differ from the results for a nonfrustrated 3D
Heisenberg antiferromagnet (see the references in [7]). This
suggests that the 3D Heisenberg frustrated antiferromagnet
on a stacked triangular lattice (model D1) constitutes a new
universality class of critical behavior.

Moreover, most of the critical exponents of model D1

differ significantly from the critical exponents of model D2.
This suggests that the type of interlayer exchange coupling
plays an important role in the formation of universality
classes of such systems. It is obvious that models D1 and D2

belong to different universality classes and each has its own
set of critical exponents.

The question of the dependence of the critical exponents
on R is also of considerable interest. Furthermore, for the
majority of real materials, the values of J and J 0 do not
coincide [15 ± 17, 20]. This question was studied for different
values of R. Using a relation from the finite-size scaling
theory and the above procedure, we were able to calculate
all the main static chiral and magnetic critical exponents for
J < 0 and J 0 > 0 with R ranging from 0.01 to 1.0. The values
of the exponents obtained in this way are listed in Tables 2
and 3.

The data in Tables 2 and 3 show that for the values
R5 0:075, the exponents coincide (within error) and scaling
relations between the critical exponents hold with high
accuracy. When R4 0:05, the critical exponents vary sub-
stantially and scaling relations are no longer valid. Appar-
ently, R � 0:075 is the limit beyond which a crossover from
the 3D critical behavior to the 2D critical behavior occurs.

4. Conclusion

The study of the critical properties of the 3D Heisenberg
frustrated antiferromagnet on a stacked triangular lattice,
whose results are presented in this report, has been done using
the highly effective Monte Carlo replica algorithm. We have
calculated the main static chiral and magnetic critical
exponents. The critical exponents of heat capacity �a�,
susceptibilities (g and gch), order parameters (b and bch),
Fisher exponents Z and Zch, and correlation radii (n and nch)
were calculated using relations from the finite-size scaling
theory within a single method and a single investigation. The
values of the Fisher exponents Z and Zch for this model were
calculated for the first time. Our results suggest that the 3D
frustrated Heisenberg model antiferromagnet on a stacked
triangular lattice belongs to a new universality class. The
results of our investigation imply that the universality class of
the critical behavior of the Heisenberg antiferromagnet on a
triangular lattice depends on the type and magnitude of the
interlayer exchange coupling.

This work was supported by the Russian Foundation for
Basic Research (grant 07-02-00194 and the South Russia
grant 06±02-96602) and the Russian Science Support Foun-
dation.

References

1. Patashinskii A Z, Pokrovskii V L Fluktuatsionnaya Teoriya Fazo-

vykh Perekhodov (Fluctuation Theory of Phase Transitions) 2nd ed.

(Moscow: Nauka, 1982) [Translated into English (Oxford: Perga-

mon Press, 1979)]

Table 1. Values of the critical parameters for a 3D Heisenberg antiferromagnet on a stacked triangular lattice.

Critical
parameter

Our data Monte Carlo method Experiment
(see references in [6])

Pure model
(see references in [7])

D1 D2 [9] [10] [11]

TN 0.956(1) 0.957(1) 0.954(2) 0.955(2) 0.9577(2) ì 1.443

Tch 0.956(2) 0.957(2) ì 0.958(2) 0.9577(2) ì ì

n 0.59(1) 0.64(1) 0.53(3) 0.59(2) 0.586(8) 0.57(3) 0.706(9)

a 0.26(2) 0.05(2) 0.4(1) 0.24(8) ì 0.40(5) ÿ0.117(2)
b 0.26(1) 0.30(1) 0.25(2) 0.30(2) 0.285(11) 0.25(1) 0.364(7)

g 1.23(2) 1.36(2) 1.1(1) 1.17(7) 1.185(3) 1.10(5) 1.390(23)

nch 0.59(2) 0.64(2) ì 0.60(2) 0.60(2) ì ì

bch 0.43(2) 0.52(2) ì 0.55(2) 0.50(2) 0.44(2) ì

gch 0.87(3) 0.93(3) ì 0.72(2) 0.82(2) 0.84(7) ì

Z ÿ0.09(3) ÿ0.06(3) ì ì ì ì 0.031(7)

Zch 0.50(4) 0.63(4) ì ì ì ì ì

Table 2. Values of the magnetic critical parameters for model D3.

R TN n a b g a� 2b� g � 2

1
0.8
0.7
0.6
0.4
0.3
0.1
0.075
0.05
0.01

0.956(1)
0.872
0.829
0.783
0.677
0.619
0.468
0.442
0.413
0.353

0.59(2)
0.60
0.61
0.59
0.60
0.60
0.59
0.55
0.55
0.48

0.26(3)
0.24
0.22
0.22
0.24
0.26
0.24
0.26
0.15
0.09

0.26(2)
0.26
0.28
0.29
0.27
0.29
0.28
0.24
0.22
0.27

1.23(4)
1.26
1.29
1.22
1.27
1.23
1.17
1.23
1.11
0.82

2.02
2.02
2.07
2.02
2.05
2.07
1.97
1.97
1.70
1.45

Table 3. Values of the chiral critical parameters for model D3.

R Tch nch a bch gch a� 2bch � gch � 2

1
0.8
0.7
0.6
0.4
0.3
0.1
0.075
0.05
0.01

0.956(2)
0.872
0.829
0.783
0.677
0.619
0.468
0.442
0.413
0.353

0.59(2)
0.60
0.61
0.59
0.60
0.60
0.59
0.55
0.55
0.48

0.26(3)
0.24
0.22
0.22
0.24
0.26
0.24
0.26
0.15
0.09

0.43(2)
0.42
0.48
0.46
0.43
0.48
0.47
0.42
0.31
0.40

0.87(5)
0.96
0.96
0.85
0.90
0.81
0.82
0.87
0.60
0.52

1.99
2.04
2.14
1.99
2

2.03
2

1.97
1.37
1.41

968 Conferences and symposia Physics ±Uspekhi 51 (9)



2. Ma Sh Modern Theory of Critical Phenomena (Reading, Mass.:

W.A. Benjamin, 1976) [Translated into Russian (Moscow: Mir,

1980)]

3. Dotsenko Vik S Usp. Fiz. Nauk 165 481 (1995) [Phys. Usp. 38 457

(1995)]

4. Korshunov S E Usp. Fiz. Nauk 176 233 (2006) [Phys. Usp. 49 225

(2006)]

5. Murtazaev A KUsp. Fiz. Nauk 176 1119 (2006) [Phys. Usp. 49 1092

(2006)]

6. Maleev S VUsp. Fiz. Nauk 172 617 (2002) [Phys. Usp. 45 569 (2002)]

7. Kamilov I K, Murtazaev A K, Aliev Kh K Usp. Fiz. Nauk 169 773

(1999) [Phys. Usp. 42 689 (1999)]

8. LoisonD et al.Pis'maZh. Eksp. Teor. Fiz. 72 487 (2000) [JETPLett.

72 337 (2000)]

9. Kawamura H J. Phys. Soc. Jpn. 56 474 (1987)

10. Kawamura H J. Phys. Soc. Jpn. 61 1299 (1992)

11. Mailhot A, Plumer M L, Caille A Phys. Rev. B 50 6854 (1994)

12. Murtazaev AK, RamazanovMK, BadievMKZh. Eksp. Teor. Fiz.

132 1152 (2007) [JETP 105 1011 (2007)]

13. Murtazaev A K, Ramazanov M K Phys. Rev. B 76 174421 (2007)

14. Mitsutake A, Sugita Y, Okamoto Y Biopolymers 60 96 (2001)

15. Svistov L E et al. Phys. Rev. B 67 094434 (2003)

16. Svistov L E et al. Pis'ma Zh. Eksp. Teor. Fiz. 80 231 (2004) [JETP

Lett. 80 204 (2004)]

17. Svistov L E et al. Pis'ma Zh. Eksp. Teor. Fiz. 81 133 (2005) [JETP

Lett. 81 102 (2005)]

18. Pelissetto A, Rossi P, Vicari E Phys. Rev. B 65 020403 (2001)

19. Peles A, Southern B W Phys. Rev. B 67 184407 (2003)

20. Smirnov A I et al. Phys. Rev. B 75 134412 (2007)

21. Gekht R S Zh. Eksp. Teor. Fiz. 102 1968 (1992) [JETP 75 1058

(1992)]

22. Gekht R S Usp. Fiz. Nauk 159 2 (1989) [Sov. Phys. Usp. 32 871

(1989)]

23. Binder K, Wang J-Sh J. Stat. Phys. 55 87 (1989)

24. Peczak P, Ferrenberg AM, LandauD PPhys. Rev. B 43 6087 (1991)

25. Binder K, Heermann D W Monte Carlo Simulation in Statistical

Physics (Berlih: Springer-Verlag, 1988) [Translated into Russian

(Moscow: Nauka, 1995)]

26. Binder K Z. Phys. B 43 119 (1981)

27. Ferrenberg A M, Landau D P Phys. Rev. B 44 5081 (1991)

28. Ferdinand A E, Fisher M E Phys. Rev. 185 832 (1969)

29. Fisher M E, Barber M N Phys. Rev. Lett. 28 1516 (1972)

30. Landau D P Physica A 205 41 (1994)

31. Loison D Phys. Lett. A 257 83 (1999)

32. Murtazaev A K, Kamilov I K, Magomedov M A Zh. Eksp. Teor.

Fiz. 120 1535 (2001) [JETP 93 1330 (2001)]

33. Holm Ch, Janke W Phys. Rev. B 48 936 (1993)

PACS numbers: 42.55. ± f, 42.60.By, 42.65. ± k
DOI: 10.1070/PU2008v051n09ABEH006612

Petawatt lasers based
on optical parametric amplifiers:
their state and prospects

E A Khazanov, A M Sergeev

1. Introduction

A review of current state-of-the-art femtosecond lasers with
the currently record power of the order of 1 PW is presented.
Based on an analysis of the advantages and drawbacks of
parametric amplification in comparison with laser amplifica-
tion in a neodymium glass and sapphire crystal, it is shown
that the use of parametric amplifiers is a promising approach
to overcoming a petawatt barrier. Other concepts concerning
multipetawatt lasers, including those based on the unique
properties of laser ceramics, are also discussed.

Since the creation of the first laser, one of the main goals
of quantum electronics has been an increase in the peak power
of laser radiation. The term `high peak power' is continuously
changing, and we are currently speaking of a power about
1 PW (1015 W). The key milestone that allowed obtaining
such a power was the invention [1] of a fundamental principle,
the amplification of chirped (stretched in time, frequency-
modulated) pulses, CPA (chirped pulse amplification). The
idea (see Fig. 1) is that prior to amplification, a femtosecond
pulse is stretched to a duration of approximately 1 ns, which
reduces its power and allows amplifying it to high energy
without self-focusing and breakdown. Then the pulse is
compressed to the initial duration using diffraction gratings
with a high breakdown threshold, because light is only
reflected from the gratings, not passing inside a material
medium. The CPA principle is used without exception in all
lasers with the power 1 TW or greater.

Petawatt power was first obtained in 1996 on the basis of
CPA in neodymium glass [2]; the pulse duration was 440 fs
and the energy was 600 J. The invention of sapphire crystal
(corundum with titanium) [3] allowed obtaining considerably
shorter pulses and resulted in the creation of a petawatt laser
[4] with the much lower pulse energy of 28 J at the duration
33 fs. In Ref. [5], it was suggested to use the parametric
amplification (optical parametric chirped pulse amplifica-
tion, OPCPA) instead of the conventional laser amplifica-
tion. The first petawatt OPCPA laser was created [6] in 2006
on the basis of a nonlinear DKDP crystal (Deuterated
Potassium Dihydrogen Phosphate).

Thus, all existing petawatt lasers and those under
development can be divided into three groups by the
amplifying medium: (1) neodymium glass [2, 7 ± 14],
(2) sapphire (corundum with titanium) [4, 13, 15 ± 17], and
(3) parametric amplifiers on KDP (Potassium Dihydrogen
Phosphate) andDKDP crystals [6, 18 ± 25] (see Table 1). In all
the groups, energy (in the form of population inversion) is
stored in neodymium ions in a glass. In the first case, this
energy is directly converted to the energy of a chirped pulse,
which is then compressed. In the second and third cases, the
stored energy is converted into the energy of a narrow-band
nanosecond pulse, which is converted into a second harmonic
and serves to pump the chirped pulse amplifiers. This
pumping either provides the population inversion in a
sapphire crystal or decays parametrically into two chirped
pulses in a nonlinear crystal.

Several nanojoules,
tens of femtoseconds
(spectrally limited pulse)

0.01 ë 100 J,
tens of femtoseconds
(spectrally limited pulse)

0.01 ë 100 J,
about 1 ns
(chirped pulse)

Several nanojoules,
about 1 ns
(chirped pulse)

Femtosecond
pulse
generator

Stretcher

Compressor CPA or OPCPA
ampliéers

Figure 1.General drawing of powerful femtosecond lasers.
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