
Abstract. The frequency dispersion of the dynamic conductivity
of graphene, of a multilayer graphene, and of IV ±VI semicon-
ductors is considered as a function of the temperature and
carrier density in the range of frequencies that are higher than
the carrier relaxation rate but are lower than the conduction
band width. A narrow gap and the linearity of the electron
spectrum, which are common features of these materials, are
responsible for a singularity of the dielectric function (loga-
rithmic in the real part and step-like in the imaginary part) at
the threshold of direct interband transitions and, accordingly,
for an anomalously large permittivity in IV ±VI semiconduc-
tors. The calculated and measured dielectric functions are in a
very good agreement. The graphene transmittance in the optical
range is frequency-independent and its departure from unity
yields the value of the fine structure constant. The difference
in dimensionality, which is equal to three for semiconductors
and to two for graphene, manifests itself in the different char-
acter of plasmons and of electromagnetic waves existing for
high doping (or in conditions of the field effect) near the absorp-
tion threshold.

1. Introduction

The boom raised by graphene (a monoatomic graphite layer;
see reviews [1 ± 4]) during the last two to three years suggests
also considering its three-dimensional analogue: IV ±VI
semiconductors, which have a narrow gap eg � 0:1 eV
between the conduction band and the valence band. (In
graphene, this gap is even narrower, however.) Because the
conduction band and the valence band are of opposite parity
here, the excitation spectrum is linear in a broad energy
interval, eg 5 e5 eat, where eat � 5 eV is on the atomic scale.
This leads to interesting features in different responses. In
particular, discussed and observed earlier were the singula-
rities of the magnetic susceptibility in PbTe [5, 6] as well as of
the permittivity [7] and magnetic susceptibility [8] in bismuth,
whose spectrum also exhibits a narrow gap. Of prime interest
is a comparison of the permittivities in graphene and narrow-
band semiconductors, whose permittivity, in contrast to the
graphene permittivity, 1 has been much studied experimen-
tally [9, 10]. This comparison allows verifying the validity of
the underlying approach to graphene as a system of `massless
Dirac fermions.'

In this paper, we discuss the permittivity features of
graphene and IV ±VI semiconductors. The zero-temperature
permittivity of narrow-gap semiconductors was previously
calculated in Ref. [11] using the isotropic model. For IV ±VI
semiconductors, it was considered in Ref. [12] in the frame-
work of the electronic spectrum theory, where the difference
of potentials of the atoms of lead and, for instance, Te (or Se
or S) was taken into account by means of the ionicity
parameter. In that case, the narrow gap did not enter the
final result at all. Computer calculations of the permittivity
(see Refs [13, 14]) were performed as follows. First, ab initio
calculations of the band structure of these semiconductors

L A Falkovsky Landau Institute for Theoretical Physics,

Russian Academy of Sciences,

ul. Kosygina 2, 119334 Moscow, Russian Federation

Tel. (7-495) 137 32 44, (7-495) 702 93 17. Fax (7-495) 938 20 77

E-mail: falk@itp.ac.ru

Vereshchagin Institute for High Pressure Physics,

Russian Academy of Sciences,

142190 Troitsk, Moscow region, Russian Federation

Received 31 March 2008

Uspekhi Fizicheskikh Nauk 178 (9) 923 ± 934 (2008)

DOI: 10.3367/UFNr.0178.200809b.0923

Translated by E N Ragozin; edited by A M Semikhatov

PHYSICS OF OUR DAYS PACS numbers: 71.20.Nr, 78.20.Bh, 78.20.Ci, 78.66.Tr

Optical properties of graphene and IV ±VI semiconductors

L A Falkovsky

DOI: 10.1070/PU2008v051n09ABEH006625

Contents

1. Introduction 887
2. Electron excitations with a linear spectrum 888
3. General expression for conductivity dispersion in a band metal 889
4. Dielectric function of IV ±VI semiconductors in the optical range 890
5. Dynamic conductivity of graphene 892
6. Electrodynamics of graphene layers 893

6.1 Optics of a monolayer; 6.2 Spectroscopy of graphene superlattices

7. Longitudinal plasmons 896
8. Conclusion 897

References 897

Physics ±Uspekhi 51 (9) 887 ± 897 (2008) # 2008 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

1 After this manuscript was submitted for publication, an observation
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were carried out. The Fermi golden rule was then used to
calculate the imaginary part of the permittivity as

E 00�o� �
�
jdvcj2d

�
ec�p� ÿ ev�p� ÿ �ho

� 2d3p

�2p�3 ; �1�

which involves the dipole matrix element dvc; next, the real
part was evaluated using the Kramers ±Kronig relation.
These calculations leave the physical features of the permit-
tivity obscure; furthermore, they are rather involved because
the integral for the real part contains singularities.We show in
what follows that simple analytic results for the frequencies
corresponding to the infrared and visible parts of the
spectrum can be obtained using the linearity of the electron
spectrum and the experimentally measured values of the gap
and the interband-momentum matrix element. The frequen-
cies under consideration are bounded above by a value of the
order of 1 eV, because the linear approximation of the
electron spectrum applies only to this domain.

2. Electron excitations with a linear spectrum

Figure 1 shows the typical electron spectrum of a IV ±VI
semiconductor for the principal directions in the Brillouin
zone. In the vicinity of point L, two nearest-neighbor bands
can be found using the effective Hamiltonian [15]

H � eg H1

H�1 ÿeg

� �
; H1 � v` pz vt pÿ

vt p� ÿv` pz
� �

; �2�

where p� � px � ipy, and vt and v` are the interband-
momentum matrix elements, assumed to be constants. The
values of these constants are almost unchanged in passing
from one IV ±VI semiconductor to another [16, 17]:

v` � 3:8� 107 cm sÿ1 ; vt � 5:1� 107 cm sÿ1 : �3�

Terms quadratic in pj can be written in the main diagonal of
H in (2), but we do not do this because the contribution of
these terms to the permittivity is small in the parameter eg=eat.

The Hamiltonian eigenvalues

e1; 2�p� � �
�
e 2g � v 2` p 2

z � v 2t p 2
?
�1=2 �4�

are doubly degenerate in spin.We need thematrix elements of
the velocity v � qH=qp in the representation where the
Hamiltonian is diagonal. It is easy to find the corresponding
unitary transformation

U �

kz
n1

kÿ
n1

kz
n2

kÿ
n2

k�
n1

ÿ kz
n1

k�
n2

ÿ kz
n2

a1 0 ÿa2 0

0 a1 0 ÿa2

0BBBBBBB@

1CCCCCCCA ;

where kz � v` pz, k� � vt p�, n1; 2 �
������������������������
2e1�e1 � eg�

p
, a1; 2 ����������������������������e1 � eg�=2e1

p
, and the velocity matrix in this representa-

tions

Uÿ1vU �
v11 0 v13 v14
0 v11 ÿv �14 v �13
v �13 ÿv14 ÿv11 0

v �14 v13 0 ÿv11

0BB@
1CCA ;

where

v11 � qe1
qp

;

v13 � ÿ
2
�
eg
�
v 2` pzez� v 2t � pxex� pyey�

�� iegv 2t � pxeyÿ pyex�
	

n1n2
;

v14 � 2v`vte1� pÿez ÿ pzeÿ�
n1n2

; �5�

and ej are the unit vectors aligned with the coordinate axes of
point L.

The electron spectrum of graphene [18] is shown in Fig. 2.
In graphene, the gap has the spin ± orbit origin and does not
exceed 0.1 K. We neglect it from the very beginning and
consider two bands degenerate in spin, described by the
Hamiltonian

H�p� � v0 0 ip�
ÿip� 0

� �
�6�

in the neighborhood of K points of the Brillouin zone. The
Hamiltonian eigenvalues are e1; 2 � �v0 p and the velocity
matrix in the representation diagonalizing the Hamiltonian is
given by

v � v0
p

expx � eypy i�expy ÿ eypx�
ÿi�expy ÿ eypx� ÿexpx ÿ eypy

� �
; �7�

where p � � p 2
x � p 2

y �1=2. The value of v0 has been measured:
v0 � 108 cm sÿ1.
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Figure 1. Electron spectrum of PbS [14]. GGA is the generalized gradient

approximation.
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We note that the form of Hamiltonians (2) and (6) is
imposed by the C3v symmetry of points L and K and is
therefore unrelated to any model assumptions.

3. General expression for conductivity dispersion
in a band metal

The general expression for the electron conductivity in a
metal can be obtained by writing the current operator

ji�x� � e ~c��x 0�v i
x 0x

~c�x� ÿ e 2

c
~c��x 0��mÿ1�i jx 0x ~c�x�Aj ; �8�

where x 0 ! x, and the velocity v i
x 0x and effective mass

�mÿ1�i jx 0x operators emerge in expanding the Hamiltonian
in terms of the vector potential Aj of the applied electric
field. The tilde in the notation for the operator ~c signifies
that it should be taken in the interaction representation with
the perturbation

V � ÿ e

c

�
c��x 0�v ix 0xc�x�Ai�x� dd�1x ; �9�

where the dimensionality d of integration is equal to 2 for
graphene and to 3 for IV ±VI semiconductors. By expanding
the first term in expression (8) in terms of interaction (9), we
standardly obtain the retarded correlator of fourc-operators.
At finite temperatures, the Fourier component of this
correlator (in the coordinate difference and imaginary time
variables)

P�ol; k� � T
X
pon

Tr
�
v iG� p�� v jG� pÿ�

	
is expressed in terms of the temperature Green's function

G� p� � �ion ÿH�p��ÿ1 ;

where we use the notation p� � �on � ol=2; p� k=2�, the
summation is performed over the fermionic frequencies
on � 2pT n� 1=2� �, and the trace is taken over the Hamilto-
nian band index. For instance, for graphene, this trace is
given by

Tr
�
v iGv jG	 � v i

11G11v j
11G11 � v i

22G22v j
22G22

� v i12G22v j
21G11 � v i21G11v j

12G22

in the representation diagonalizing the Hamiltonian and
hence the Green's function. The summation over the
frequencies on is now easy to perform. For instance, for the
product of the Green's functions with distinct band indices,
we find

T
X
on

G11� p��G22� pÿ� �
f
�
e1�pÿ�

�ÿ f
�
e2�p��

�
iol ÿ e2�p�� � e1�pÿ�

;

where f �e� is the Fermi function with the chemical
potential m. Passing to the real frequency of the external
field is achieved, as usual, by analytic continuation from the
discreet set of frequencies ol � 2plT, which can be done in
this case by the simple replacement iol ! o� id, where d is
an infinitely small positive quantity.

Formula (8) also contains the second, `diamagnetic' term.
Instead of calculating it, we use the fact that the current must
vanishwhen the vector potential is constant in time and space.
In the present case, in the absence of a permanent magnetic
field, this implies that the current must vanish at the zero
frequency. Therefore, to determine the total current, we can
simply subtract from the first expression its value ato � 0. As
a result, we find the conductivity

si j�o; k�

� 2ie 2
X�

v i11v
j
11

�
f
�
ea�pÿ�

�ÿ f
�
ea�p��

�	�
ea�p�� ÿ ea�pÿ�

��
oÿ ea�p�� � ea�pÿ�

�
� 2o

v i1av
j
a1

�
f
�
e1�pÿ�

�ÿ f
�
e2�p��

�	�
e2�p�� ÿ e1�pÿ�

���o� id�2 ÿ �e2�p�� ÿ e1�pÿ�
�2	� ;
�10�

where summation (integration) is performed with respect to
the two-dimensional quasimomentum p for graphene and
with respect to the three-dimensional quasimomentum for
IV ±VI semiconductors, and, in addition, with respect to the
band index a (summation over the spin has led to the factor 2
in front of the sum).

The first term in formula (10) is the intraband contribu-
tion; all quantities in it refer to the same energy band. In the
semiclassical limit kv5 �T; m�, it coincides with the ordinary
Drude ±Boltzmann expression; it is well known that taking
the collision frequency into account then amounts to
replacing the infinitesimal quantity d with the collision
frequency tÿ1, i.e., to the substitution o! o� itÿ1. The
second term in formula (10) describes interband transitions,
and a 6� 1 in this term. The sum of the squares of the matrix
elements involved here is the squared dipole moment and is
found with the help of expressions (5) and (7).

We emphasize that formula (10) is quite general in
character because no specific expressions for the electron
spectrum were used in its derivation [19].
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Figure 2. Electron spectrum of graphene.
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4. Dielectric function of IV ±VI semiconductors
in the optical range

In the optical range, the spatial dispersion of the conductivity
is insignificant and we can take k! 0 in formula (10). With
the aid of formulas (5), we then express the squared matrix
elements in (10) as

�v x11�2 �
v 4
t p

2
x

e 21
;

v x
13v

x
31 � vx14v x

41 � v 2t
�
1ÿ v

2
t p

2
x

e 21

�
:

Integration in formula (10) is conveniently performed by
introducing polar angles and the energy variable e in
accordance with (4):

pz �
���������������
e 2 ÿ e 2g

q cos y
v`

;

px �
���������������
e 2 ÿ e 2g

q sin y cosj
vt

;

py �
���������������
e 2 ÿ e 2g

q sin y sinj
vt

:

In integrating over the angles, the nondiagonal elements of
the conductivity tensor vanish, as they must in the case of the
C3v symmetry of the L point. We thus obtain the intraband
conductivity

s intra
xx �o� �

ÿie 2
3p2v`o

� eat

eg

�
f 0�e� � f 0�ÿe���e 2 ÿ e 2g �3=2

de
e

�11�

and the interband conductivity

s inter
xx �o� �

2ie 2o
3p2v`

�
� eat

eg

�
f �ÿe� ÿ f �e�� �e 2 ÿ e 2g �1=2

�o� id�2 ÿ 4e 2

�
1� e 2g

2e 2

�
de : �12�

The last integral diverges at the upper limit, where the linear
spectrum expansion cannot be used. But the leading con-
tribution to the integral originates from the domain
eg 5 e5 eat, and we therefore cut off the integral at e � eat
with logarithmic accuracy. From Fig. 1, which shows the
electron spectrum of the semiconductors under considera-
tion, we can see that the cut-off parameter eat should be equal
to about 8 eV.

There are four L points in the Brillouin zone, and their
contributions should be summed. It must then be taken into
account that the conductivity component szz referred to the
axes related to point L is different from sxx in that v` is
replaced by v 2

t =v`. By rotating the coordinate axes at each
L point to the common axes and summing over these points,
we find the total conductivity. Only the diagonal, and equal,
conductivity components s�o� are nonzero. They can be
obtained by the replacement

1

v`
! 8

3v`
� 4v`
3v 2t
� 1

v

in formulas (11) and (12). From themeasured values in (3), we
calculate the quantity v � 1:12� 107 cm sÿ1 common to all

semiconductors. Finally, the permittivity E�o� is related to the
conductivity as

E�o� � E0 � 4pis�o�
o

; �13�

where E0 is the lattice (phonon) contribution.
In the limit case �T; eg� � 0, we obtain a very simple result,

E�o� � E0 � e 2

3p�hv

�
ÿ 4m 2

o2
� ln

4e 2at
jo2 ÿ 4m 2j � ipy�oÿ 2m�

�
:

�14�

The first term in square brackets is the Drude ±Boltzmann
intraband contribution and the other two (the logarithm and
the y function) result from interband transitions. At the
absorption threshold o � 2m, the real part of the permittivity
has a logarithmic singularity. It is cut off by the temperature.
Calculations show that the following change should be made
at low but finite temperatures:

o2 ÿ 4m 2 ! jo2 ÿ 4m 2j � 4oT :

If the carrier collision frequency n plays a greater role than the
temperature, but is low in comparison with the chemical
potential, the corresponding change is of the form

o2 ÿ 4m 2 ! ��o2 ÿ 4m 2�2 � �2on�2�1=2 ;
y�oÿ 2m� ! 1

2
� 1

p
arctan

�
oÿ 2m

n

�
:

Simple formulas are also obtained for pure semiconduc-
tors at zero temperature, when the conduction band is empty
and the valence band is filled. The imaginary part of the
permittivity is nonzero for o > 2eg:

E 00�o� � e 2

3�hvo3
�o2 � 2e 2g �

������������������
o2 ÿ 4e 2g

q
: �15�

A similar expression was obtained in Ref. [11]. It is clear from
formulas (14) and (15) that the imaginary part of the
permittivity approaches the constant value E 000 � e 2=3�hv for
o > 2max �m; eg�. Using the value of v given above, we find
E 000 � 6:5 for all semiconductors under discussion.

In the case where there are no carriers and m � 0, the
expression for the real part of the permittivity can be written,
with logarithmic accuracy in the parameter 1= ln �eat=eg�, as

E 0�o� � E0 � 2e 2

3p�hv
ln

eat
max feg;o=2g : �16�

This formula and Eqn (14) imply that the real part of the
dielectric function contains a large logarithm in comparison
with the imaginary part. Furthermore, unlike the imaginary
part, the real part depends on the specific material via eg and
decreases for o > 2max �m; eg�. When the frequency o is low
in comparison with the energy gap 2eg, the expression

E1 � E0 � e 2

3p�hv

�
2 ln

2eat
eg
ÿ 5

3

�
�17�

can be derived for the real part; up to the terms 2 ln 2ÿ 5=3,
i.e., with logarithmic accuracy, it coincides with expres-
sion (16) for those frequencies.
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The phonon frequencies in IV ±VI semiconductors are of
the order of 100 K, i.e., 10ÿ2 eV, while the gap 2eg � 0:15 eV.
By E1, in accordance with the notation, we must therefore

mean the high-frequency permittivity and set E0 � 1 in this
case. Formula (17) with eg � 0:075 eV, eat � 8 eV, and
v � 1:12� 107 cm sÿ1 yields E1 � 19:8.

Figure 3 shows the dispersion of the dielectric function in
the infrared range, plotted using the above formulas for a
typical value eg � 0:1 eV. The plots can be compared with the
numerical simulation data in Ref. [14] and the available
measurement data given in Fig. 4. It follows that the value
E 000 � 6:5 and the maximal value E 0max ' 20ÿ25 of the real part
obtained with the help of expression (12) in the interval
between the frequency 2eg ' 0:15 eV of the transition under
consideration and the next transition frequency ' 1:2 eV are
quite well reproduced both by numerical simulations and by
extrapolation of the measured values from the higher-
frequency side, � 0:5ÿ0:8 eV, where E 00�o� saturates at a
plateau. Furthermore, we can see that the real part E 0�o�
decreases, in agreement with expression (16), when the
frequency exceeds the threshold value 2eg.

It is generally assumed that one of the most reliable ways
to determine the gap in the energy spectrum is by its
measurement from the optical absorption threshold. The
resultant data are interpreted, in particular, as a 10%
reduction of the gap in IV ±VI semiconductors with increas-
ing the temperature from liquid helium to room temperature.
The calculations made here permit estimating the effect of
carriers on these data. It is seen from Fig. 5 that the presence
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of a moderate number of carriers, � 1018 cmÿ3, can imitate
the temperature variation of the gap.

The reflectivity at normal radiation incidence

R �
����
���������
E�o�p ÿ 1���������
E�o�p � 1

����2
calculated by our formulas is plotted in Fig. 6. At low
frequencies, the reflectivity is determined by the carriers
present in the sample. The reflectivity rapidly changes (from
unity to zero) in the neighborhood of the frequencyopl, which
is approximately determined by the equation

E0 ÿ 2e 2

3p�hv

�
2m 2

o2
pl

ÿ ln
eat
m

�
� 0 :

In this range, an essential role is played by the large logarithm,
which owes it origin to interband transitions. Next, the
reflectivity value � 0:4 is determined primarily by the
interband contribution. At the very threshold o � 2m �
2982 K, which corresponds to the carrier density 1019 cmÿ3,
the narrow reflectivity peak, which should be observable at
low temperatures and low carrier relaxation frequencies,
replicates the form of the real part of the permittivity. Its
observation conditions may be quantified: the temperature
T � 10 K, the carrier mean free time t > 10ÿ13 s, and the
carrier density 1018ÿ1019 cmÿ3. At higher frequencies, the
interband absorption (the imaginary part of the permittivity)
is responsible for a certain decrease in reflectivity.

5. Dynamic conductivity of graphene

In the Brillouin zone of graphene, there are two K points at
which the conduction and valence bands intersect. We sum
the contributions of these points, integrate over the angle of
the two-dimensional vector p, and pass to the variable e � v0p
to obtain the conductivity [19, 21]

s�o� � e 2o
ip�h

� � �1
ÿ1

de
jej
o2

df �e�
de
ÿ
� �1
0

de
f �ÿe� ÿ f �e�
�o� id�2 ÿ 4e 2

�
:

�18�
The first, intraband, term can be integrated:

s intra�o� � 2ie 2T

p�h�o� itÿ1� ln
�
2 cosh

�
m
2T

��
; �19�

where we wrote o� itÿ1 instead of o to include the effect of
electron damping. In this form, the intraband term coincides
with the classical Drude ± Boltzmann expression for the
conductivity. At low temperatures, m4T, when the carriers
are degenerate, the intraband term is of the form

s intra�o� � ie 2jmj
p�h�o� itÿ1� : �20�

In pure graphene, the chemical potential m � 0, and high-
frequency conductivity (19) is proportional to the tempera-
ture. The carrier density can be changed either by doping or
with the help of a constant electric field (the field effect); the
chemical potential (Fig. 7) is then found from the condition

n0 � 2

p��hv0�2
� �1
0

e
�
f �eÿ m� ÿ f �e� m��de ; �21�

where n0 �ÿn0� is the density of electrons (holes). For a low
temperature, the optical conductivity, as is evident from
formula (19), is proportional to the square root of the density
because m � �hv0

�������
pn0
p

(hereinafter, we restrict ourselves to the
case m > 0 for simplicity of writing).

The interband term in expression (18) for the conductivity
contains both the real part, which results from going around a
pole, and the imaginary part. At zero temperature, the
corresponding integral in expression (18) is easily taken:

s inter�o� � e 2

4�h

�
y�oÿ 2m� ÿ i

2p
ln
�o� 2m�2
�oÿ 2m�2

�
; �22�

where the y function expresses the condition of interband
electron transitions with the threshold at o � 2m. The
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logarithmic singularity is cut off by the temperature (or the
carrier relaxation), and the change

y�oÿ 2m� ! 1

2
� 1

p
arctan

�
oÿ 2m
2T

�
;

�23�
�oÿ 2m�2 ! �oÿ 2m�2 � �2T �2

should bemade in expression (22) for a finite temperature that
is low in comparison with the chemical potential

For nondegenerate carriers, m5T, the interband con-
ductivity is

s inter
2 �o� � ÿ 2ie 2

p�h

T

o

�
ln 2� 6z�3�

�
T

o

�2�
; o4 4T ;

o
16T

ln

�
4T

o

�
; o5 4T ;

8>>><>>>:
where z�3� � 1:20.

For numerical calculations of the interband conductivity
at finite temperatures, it is useful to introduce the notation

G�e� � f �ÿe� ÿ f �e� �
y�eÿ m� ; m4T ;

tanh

�
e
2T

�
; m5T

8<: �24�

for the difference of the Fermi functions in the integrand in
expression (18). Subtracting G�o=2� from and adding it to
the numerator in the integrand, we note that the principal
value of the resultant integral with G�o=2� is equal to zero
and then arrive at the integral of a singularity-free
function:

s inter�o� � e 2

4�h

�
G

�
o
2

�
ÿ 4o

ip

� �1
0

de
G�e� ÿ G�o=2�

o2 ÿ 4e 2

�
: �25�

Two main conclusions may be drawn from the results
obtained (Fig. 8). First, at high frequencies, o4 �T; m�, the
conductivity is mostly real and independent of any para-
meters:

s�o� � e 2

4�h
:

This universal value is different from the value, also
universal, obtained for the direct-current conductivity [22,
23]. Second, when there are degenerate carriers in graphene,
at sufficiently low temperatures, the imaginary part of the
conductivity contains a logarithmic singularity at the inter-
band absorption threshold o � 2m, where the real part
experiences a finite jump. This singularity smooths out with
increasing the temperature, as well as due to the finiteness of
the carrier mean free path. For the singularity to be
observable, the collision frequency should not exceed the
temperature, i.e., should be equal to 10 ± 40 K in energy
units. As we see in what follows, the occurrence of the
singularity gives rise to special electromagnetic excitations
near the absorption threshold.

6. Electrodynamics of graphene layers

To calculate the experimentally measured optical character-
isticsÐ the reflection and transmission coefficientsÐ for
three-dimensional semiconductors, it suffices to substitute
the expressions for the permittivity given in Section 4 in the
well-known Fresnel formulas. But the situation with two-
dimensional films of the graphene type is more complicated.
We proceed from the Maxwell equations

H�H � E� ÿ H 2E � E0
o2

c 2
E� 4pio

c 2
j ; �26�

where j is the conductivity current and E0 is the lattice
contribution to the permittivity. We first consider a single
graphene layer [19, 24] and then a stack [20] of parallel
graphene layers (Fig. 7b).

6.1 Optics of a monolayer
Let the light polarized in the xz plane (the plane of incidence)
be incident from a vacuum on a graphene layer at z � 0 on a
substrate �z > 0� with a permittivity E0 � Es. The current in
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the layer can be written as

jx � s�o�d�z�Ex : �27�

After the Fourier transformation with respect to the x coordi-
nate, the Maxwell equations for two field components
become

ikx
dEz

dz
ÿ d2Ex

dz 2
ÿ E0

o2

c 2
Ex � 4pio

c 2
jx ;

�28�
ikx

dEx

dz
�
�
k 2
x ÿ E0

o2

c 2

�
Ez � 0 :

The condition for the jump of the normal component of the
induction gives

EsEz

��
z��0ÿEz

��
z�ÿ0 � 4p

� �0
ÿ0

r�o; kx; z� dz : �29�

The charge density is related to current density (27) by the
continuity equation

r�o; kx; z� � jx�o; kx; z� kxo :

We substitute Ez from the second equation in (28) into
expression (29) to find the boundary condition

Es
k 2
s

dEx

dz

����
z��0

ÿ 1

�k i
z�2

dEx

dz

����
z�ÿ0

� 4ps�o�
io

Ex

��
z� 0

; �30�

where

ks �
���������������������������
Es

�
o
c

�2

ÿ k 2
x

s
; k i

z �
�������������������������
o
c

�2

ÿ k 2
x

s
:

This condition, in combination with the continuity condition
of the field component Ex, permits calculating [20] the
reflected �r� and transmitted �t� wave amplitudes

r � 1ÿ C

1� C
; t � 2

1� C
; �31�

where C � k i
z

�
4ps�o�=o� �Es=ks�

�
.

Very simple results are obtained for free graphene in a
vacuum. In this case, Es � 1 and ks � k i

z, and the coefficientC
takes values close to unity:

C � 1� 4p
c

s�o� cos y ; �32�

where y is the angle between the normal and the propagation
direction of the incident wave. The reflected and transmitted
wave amplitudes follow from Eqn (31) as

r � ÿ 2p
c

s�o� cos y ; t � 1ÿ 2p
c

s�o� cos y : �33�

The normal-incidence transmittance jtj2 calculated with
the aid of Eqns (19), (25), and (31) for graphene with carrier
densities 1010 and 1011 cmÿ2 is plotted in Fig. 9 as a function
of frequency for different temperatures. Significant at low
frequencies is the intraband conductivity, which decreases
with frequency. Then, at frequencies o > 2m, the transmit-
tance saturates at a value determined by interband transitions
and differs from unity by a value of the order of the fine

structure constant e 2=�hc:

jtj2 � 1ÿ 4p
c

Re s�o� � 1ÿ p
e 2

�hc
; �34�

where the term with a logarithmic singularity is omitted
because it is proportional to the square of the fine structure
constant. The effect linear in the fine structure constant was
recently measured in Ref. [27] in the optical domain. The
measured transmittance (Fig. 10) is in good agreement with
theoretical value (34) and is independent of the frequency in a
broad interval of the visible range, as predicted by the theory.
Systems consisting of two [25] or more parallel planar
graphene layers are presently being grown, and for them,
like for three-dimensional semiconductors, the special fea-
tures of interband absorption are much easier to observe.
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6.2 Spectroscopy of graphene superlattices
It is evident that the problem of several graphene layers may
be solved analytically either when the number of layers is
small, by considering the scattering by each layer separately,
or in the opposite limit case of a large number of layers. In the
latter case, it is possible to begin with an infinite layer
sequence and then solve the problem for a film with finitely
many layers, imposing the corresponding electrodynamic
boundary conditions on its boundaries.

We therefore consider an unbounded system of graphene
layers with a spacing d between them (Fig. 7b). This system
can be regarded as a model of graphite in which d � 3:35 A

�
is

significantly greater than the interatomic distance in the layer,
and the interaction between layers emerges only due to
currents flowing in the layers. This interaction is described
by Maxwell equations (26). For the Ex field component, they
reduce to the equation�

d2

dz 2
� k 2

g � 2kgD
X
n

d�zÿ nd �
�
Ex � 0 ; �35�

where D � 2ips�o�kg=Ego and kg �
�����������������������������
Eg�o=c�2 ÿ k 2

x

q
.

Because we neglect the electron hopping between the layers,
the quantity Eg ' 2:5 is the lattice contribution to the
permittivity of the graphene layers.

For a infinite medium, Eqn (35) has two independent
solutions in the form of Bloch functions:

e1; 2�z� � exp ��ikznd �
n
sin kg�zÿ nd � ÿ exp ��ikzd �

� sin kg
�
zÿ �n� 1�d �o ; nd < z < �n� 1�d ;

where the quasimomentum kz is defined by the dispersion
equation

cos kzd � cos kgdÿD sin kgd : �36�
These solutions are nothing but electromagnetic waves in an
anisotropic periodic medium.

The solution of the problem is simplified in the long-
wavelength limit, kz; kg 5 1=d. In this case, it is possible to
introduce the permittivity not only in the direction perpendi-
cular to the layers, Ezz � Eg ' 2:5, but also in the parallel
direction, Exx � Eg � 4pis�o�=od, where s�o� is the conduc-
tivity of a single layer (18).

For a sample with graphene layers, we seek the solution,
as usual, in the form of transmitted and reflected waves,
E / exp �ikxx� ikzz�; instead of Eqn (36), we then obtain the
dispersion equation

k 2
x Exx � k 2

z Ezz �
�
o
c

�2

ExxEzz : �37�

It follows from this equation that undamped solutions at
normal incidence �kx � 0� are possible only if the real part of
Exx is positive and exceeds the imaginary part. Also, it follows
from Eqns (20) and (22) that the imaginary part of the
conductivity must be negative and greater than the real part.
This condition is fulfilled somewhat below the absorption
threshold, as can be seen in Fig. 11.

The tangential projections of the electric and magnetic
fields should obey the continuity conditions at the boundaries
of a film of thickness l. By solving the ordinary electrody-
namic problem, for instance, for the reflection and transmis-
sion of a p-polarized wave, we find the amplitudes of the

reflected wave and the wave transmitted through the film:

r � ÿ1� 2kz
�kz � k i

z� fÿ �kz ÿ k i
z� f ÿ1

�kz � k i
z�2fÿ �kz ÿ k i

z�2f ÿ1
;

�38�
t � 4kzk

i
z

�kz � k i
z�2fÿ �kz ÿ k i

z�2f ÿ1
;

where f � exp �ÿikgl �, k i
z � �o=c� cos y, and kz is defined by

dispersion equation (37) with kx � �o=c� sin y. Figure 12
shows the calculated transmission and reflection coefficients
of a graphene layer superlattice as functions of the frequency
for different temperatures. The carrier density is determined
either by doping or with the aid of a permanent electric field.

Two features of the reflection coefficient must be noted.
First, there is a dip in the vicinity of the interband transition
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threshold o � 2m (for 859 K in Fig. 12). With increasing the
temperature (or increasing the carrier relaxation frequency),
this dip is smeared out, because it exists only for a sufficiently
large value of the logarithm in the imaginary part of
conductivity (22). Therefore, the sharp dip in reflectivity is
related to the excitation of electromagnetic waves in the
superlattice. Their spectrum is given by Eqns (36) and (37).
We emphasize that these excitations are different both from
ordinary longitudinal plasmons in three-dimensional systems
with a quadratic spectrum and a gap, and from zero-gap
plasmons in two-dimensional systems, which are excited only
under the conditions of total internal reflection. They
resemble the waves that show up, for instance, in the
neighborhood of the cyclotron resonance.

Second, after a large decrease, the reflectivity becomes
substantially lower than its pre-threshold value. This is a
direct result of interband absorption, i.e., of the y-like
singularity (24) in the real part of the conductivity. It is
noteworthy that the features under discussion are governed
by functions rapidly varying in the neighborhood of o � 2m,
but unlike in the monolayer case, they are multiplied by the
dimensionless factor e 2=�hEgod, which may be of the order of
unity. A comparison with the monolayer in Fig. 9b shows this
difference. An observation of low-temperature features in
samples with a low carrier relaxation frequency is the direct
way to measure the carrier mobility and density.

7. Longitudinal plasmons

Ordinary longitudinal plasmons can exist in the electron
plasma of IV ±VI semiconductors, as well as of graphene. In
three-dimensional semiconductors, their spectrum exhibits a
gap and a quadratic dispersion; in two-dimensional graphene,
they are zero-gap excitations with a square-root dependence
o / ���

k
p

. However, in narrow-gap materials, their frequency
depends on the carrier density in an unusual way due to a
significant contribution of interband transitions to the
dielectric function; the expressions for the dielectric function
were given in different limit cases in Section 4. We write the
expression for the dielectric function for T � 0 in the range
o < 2m, where there is no absorption caused by interband
transitions.

For IV ±VI semiconductors with degenerate carriers, the
dielectric function defined by Eqns (11) and (12) has the form
(Fig. 13)

E�o� � E0 � e 2

3p�hv

�
ÿ�m

2 ÿ e 2g �3=2
mb 2

� 2 ln
2eat

m�
����������������
m 2 ÿ e 2g

q
� e 4g =mb

2

m�
����������������
m 2 ÿ e 2g

q � F�o�
�
; �39�

where

F�o� � 2b 4 ÿ e 2g b
2 ÿ e 4g

b 3je 2g ÿ b 2j1=2

�
arcsin

b

eg
ÿ arcsin

b
����������������
m 2 ÿ e 2g

q
eg

����������������
m 2 ÿ b 2

p ; b < eg ;

ln
b
����������������
m 2 ÿ e 2g

q
� m

����������������
b 2 ÿ e 2g

q
ÿ
b�

����������������
b 2 ÿ e 2g

q � ����������������
m 2 ÿ b 2

p ; b > eg ;

8>>>>>>><>>>>>>>:
�40�

b � o=2. This expression coincides with formula (14) for
eg � 0; as o! 0, it gives

E�o! 0�

� E0 � e 2

3p�hv

"
ÿ4 �m

2 ÿ e 2g �3=2
mo2

� 2 ln
2eat

m�
����������������
m 2 ÿ e 2g

q

� 1

3

�
1ÿ �m

2 ÿ e 2g �3=2
m 3

�
ÿ 2

 
1ÿ

����������������
m 2 ÿ e 2g

q
m

!#
: �41�

With the aid of the condition E�o� � 0 and the equation
for the carrier density,

n0 �
4�m 2 ÿ e 2g �3=2
3p2�h 3v`v 2t

;

we find the plasma wave frequency as a function of the
carrier density (Fig. 14). The intraband contribution to the
dielectric function is proportional to m 2 for values of the
chemical potential greater than the gap, as is clear from
formula (39). The plasma frequency is, roughly speaking,
proportional to the square root of the charge carrier density,
opl � �����

n0
p

, as in ordinary plasmas. However, owing to the
frequency dependence of the interband contribution, the
plasma frequency is substantially higher (solid curve) than
the value obtained when this frequency dispersion is
neglected (dashed curve).

For graphene, the spectrum of longitudinal plasmons is
found [19, 26] with the help of Eqn (35). Outside the z 6� 0
layer, the solutions decreasing at�1 are sought, respectively,
as Ex � C exp ��kz�, where k � ikg. We substitute this in the
condition

E 0x
��
z��0ÿE 0x

��
z�ÿ0 � ÿ2ikDEx

��
z� 0

; �42�
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Figure 13. Frequency dependence of the real part of the dielectric function

(in units of the chemical potential) for T � 0 for a IV ±VI semiconductor

with a gap 2eg � 870 K. The carrier densities are indicated by the curves,

the corresponding values of m are 1112 and 3327 K.
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which follows directly from Eqn (35), and thus find the
spectrum of two-dimensional plasmons:

ÿ2piks�o� � o : �43�

This equation has a real solution for o and k, as can be seen
from expressions (19) and (22), in the low-frequency range,
where the intraband conduction plays the leading role. We
keep only the intraband term to obtain

o2 � 8e 2Tk
�h

ln

�
2 cosh

�
m
2T

��
:

The time delay, i.e., the term with o2=c 2, can normally be
neglected in the expression for k, and hence k � jkxj. We
emphasize this unusual dependence of the plasma frequency
on the carrier density, o / n

1=4
0 , at low temperatures.

8. Conclusion

It is evident that IV ±VI semiconductors and graphene have
much in common: a narrow gap and a broad linear region in
the electron spectrum. Despite the difference in their
dimensionality, this circumstance leads to similar singula-
rities in conductivity: a logarithmic singularity in the
imaginary part and a jump in the real part. These singula-
rities are smeared out with increasing the temperature or the
carrier relaxation rate. The static permittivity of the IV ±VI
semiconductors under consideration, as well as the transmit-
tance in the infrared range calculated with the use of this
simple model of the electron spectrum, are in excellent
agreement with numerical calculations and available experi-
mental data. The recently measured value of the transmit-
tance for graphene in the visible range equal to 1ÿ pe2=�hc is
consistent, to a high degree of accuracy, with the value
calculated in the framework of very simple ideas regarding
the nature of this unique material. Other interesting proper-
ties of graphene (in the infrared range and in the variation of
the carrier density or temperature) will undoubtedly attract
the attention of researchers.

Acknowledgments
This work was supported by the Russian Foundation for
Basic Research under Grant No. 07-02-00571.

References

1. Castro Neto A H et al., cond-mat 0709.1163

2. Ando T Phys. Rev. E (2008) (in press)

3. Geim A K, Novoselov K S Nature Mater. 6 183 (2007)

4. Avouris P, Chen Z, Perebeinos V Nature Nanotechnol. 2 605 (2007)

5. Falkovsky L A, Brodovoi A V, Lashkarev G V Zh. Eksp. Teor. Fiz.

80 334 (1981) [Sov. Phys. JETP 53 170 (1981)]

6. Volkov B A, Ruchaiskii O M Fiz. Tverd. Tela 40 57 (1998) [Phys.

Solid State 40 50 (1998)]

7. AbrikosovAAZh. Eksp. Teor. Fiz. 44 2039 (1963) [Sov. Phys. JETP

17 1372 (1963)]

8. Beneslavsky SD, Falkovsky LAZh. Eksp. Teor. Fiz. 69 1063 (1975)

[Sov. Phys. JETP 42 541 (1975)]; Brandt N B, Semenov M V,

Falkovsky L A J. Low Temp. Phys. 27 75 (1977)

9. Korn DM, Braunstein R Phys. Rev. B 5 4837 (1972)

10. Suzuki N, Sawai K, Adachi S J. Appl. Phys. 77 1249 (1995)

11. Vas'ko F T Fiz. Tekh. Poluprovodn. 9 1565 (1975)

12. Volkov B A, Kushnir V P, Pankratov O A Fiz. Tverd. Tela 24 415

(1982) [Sov. Phys. Solid State 24 235 (1982)]

13. Kohn S E et al. Phys. Rev. B 8 1477 (1973)

14. Albanesi E A, Peltzer y Blanca E L, Petukhov A G Comput. Mater.

Sci. 32 85 (2005)

15. Dalen R, in Solid State Physics: Advances in Research and Applica-

tions Vol. 26 (Eds F Seitz, D Turnbull, H Ehrenreich) (New York:

Academic Press, 1973) p. 179

16. Preier H Appl. Phys. 20 189 (1979)

17. Bauer G, in Narrow Gap Semiconductors, Physics and Applications
(Lecture Notes in Physics, Vol. 133, Ed. W Zawadzki) (Berlin:

Springer-Verlag, 1980)

18. Fretigny C, Saito R, Kamimura H J. Phys. Soc. Jpn. 58 2098 (1989)

19. Falkovsky L A, Varlamov A A Eur. Phys. J. B 56 281(2007)

20. Falkovsky L A, Pershoguba S S Phys. Rev. B 76 153410 (2007)

21. Gusynin V P, Sharapov S G, Carbotte J P Phys. Rev. B 75 165407

(2007)

22. Novoselov K S et al. Science 306 666 (2004); Nature 438 197 (2005)

23. Zhang Y et al. Phys. Rev. Lett. 94 176803 (2005); Nature 438 201

(2005)

24. Mikhailov S A, Ziegler K Phys. Rev. Lett. 99 016803 (2007)

25. Abergel D S L, Russell A, Fal'ko V I Appl. Phys. Lett. 91 063125

(2007); arXiv:0705.0091

26. Hwang E H, Das Sarma S Phys. Rev. B 75 205418 (2007)

27. Nair R R et al. Science 320 1308 (2008)

28. Suzuki N, Adachi S Jpn. J. Appl. Phys. 33 193 (1994)

29. Cardona M, Greenaway D L Phys. Rev. 133 A1685 (1964)

30. Moss T S Optical Properties of Semiconductors (London: Butter-

worths Sci. Publ., 1959) p. 189

o
p
l,
10

3
K

0

n0, 1018 cmÿ3
5 10

0.2

0.4

0.6

0.8

1.0

eg � 870 K

a

m,
10

3
K

0.8

n0, 1018 cmÿ3
50 10

1.0

1.2

1.4

1.6

1.8
b

Figure 14. (a)Dependence of the plasma frequency on the carrier density at

T � 0 for a IV ±VI semiconductor with eg � 870 K; the dashed curve was

plotted neglecting the frequency dependence of the permittivity.

(b) Dependence of the chemical potential on the carrier density.
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