- Мартыненко Ю В "Эффекты дальнодействия при ионной имплантации", в сб. Итоги науки и техники (Сер. Пучки заряженных частиц и твердое тело) Т. 7 (М.: ВИНИТИ, 1993) с. 82
- Кирсанов В В, Суворов А Л, Трушин Ю В Процессы радиационного дефектообразования в металлах (М.: Энергоатомиздат, 1985)
- 6. Ибрагимов Ш Ш, Кирсанов В В, Пятилетов Ю С *Радиационные* повреждения металлов и сплавов (М.: Энергоатомиздат, 1985)
- 7. Wolfer W Los Alamos Sci. 26 227 (2000)
- Диденко А Н и др. Эффекты дальнодействия в ионно-имплантированных металлических материалах (Отв. ред. Ю Р Колобов) (Томск: Изд-во НТЛ, 2004)
- Ryssel H, Ruge I Ionenimplantation (Stuttgart: Teubner, 1978) [Translated into English: Ion Implantation (Chichester: Wiley, 1986)] [Риссел Х, Руге И Ионная имплантация (М.: Наука, 1983)]
- Tompson M W Defects and Radiation Damage in Metals (London: Cambridge Univ. Press, 1969) [Томпсон М Дефекты и радиационные повреждения в металлах (М.: Мир, 1971)]
- 11. Biersack J P, Haggmark L G Nucl. Instrum. Methods 174 257 (1980)
- Poate J M, Foti G, Jacobson D C (Eds) Surface Modification and Alloying by Laser, Ion, and Electron Beams (New York: Plenum Press, 1983) [Поут Дж, Фоти Г, Джекобсон Д К (Ред.) Модифицирование и легирование поверхности лазерными, ионными и электронными пучками (М.: Машиностроение, 1987)]
- Chudinov V G, Cotterill R M J, Andreev V V Phys. Status Solidi A 122 111 (1990)
- Левин В М, Чернозатонский Л А, в кн. Физическая энциклопедия (Гл. ред. А М Прохоров) (М.: Советская энциклопедия, 1990) с. 507
- 15. Nordlung K et al. Nature 398 49 (1999)
- Козлов А В и др. Вопросы атомной науки и техники 66 (1) 47 (2006)
- 17. Дидык A Ю и др. *ЖТФ* **59** (5) (1989) [Didyk A Yu et al. *Sov. Phys. Tech. Phys.* **34** XXX (1989)]
- Behrisch R et al. Sputtering by Particle Bombardment Vol. 3 Characteristics of Sputtering Particles, Technical Applications (Topics in Applied Physics, Vol. 64, Ed. R Behrisch) (Berlin: Springler-Verlag, 1991) [Бериш Р и др. Характеристики распыленных частиц, применения в технике (Распыление под действием бомбардировки частицами, Вып. III) (М.: Мир, 1998)]
- Овчинников В В и др., в сб. Труды XV Междунар. совещ. "Радиационная физика твердого тела" (Севастополь, 4–9 июля 2005 г.) (Под ред. Г Г Бондаренко) (М.: НИИ ПМТ МГИЭМ (ТУ), 2005) с. 199
- Диденко А Н, Лигачев А Е, Куракин И Б Воздействие пучков заряженных частиц на поверхность металлов и сплавов (М.: Энергоатомиздат, 1987)
- 21. Ovchinnikov V V et al. Appl. Phys. A 83 83 (2006)
- 22. Жуков В П, Болдин А А *Атомная энергия* **63** 375 (1987) [Zhukov V P, Boldin A A *At. Energy* **63** 884 (1984)]
- Zhukov V P, Ryabenko A V Radiation Effects Defects Solids 82 85 (1984)
- Жуков В П, Демидов А В Атомная энергия 59 (1) 29 (1985) [Zhukov V P, Demidov A V At. Energy 59 568 (1985)]
- 25. Thompson D A Radiation Effects Defects Solids 56 105 (1981)
- Блейхер Г А, Кривобоков В П, Пащенко О В Тепломассоперенос в твердом теле под воздействием мощных пучков заряженных частии (Новосибирск: Наука, 1999)
- 27. Ovchinnikov V V, Chernoborodov V I, Ignatenko Yu G Nucl. Instrum. Meth. Phys. Res. B 103 313 (1995)
- Псахье С Г и др. Письма в ЖТФ 25 (6) 7 (1999) [Psakh'e S G et al. Sov. Tech. Phys. Lett. 25 209 (1999)]
- 29. Ovchinnikov V V Proc. SPIE 2259 605 (1994)
- Овчинников В В, Эркабаев М А, в сб. Труды VII Межнац. совещ. "Радиационная физика твердого тела" (Севастополь, 30 июня – 5 июля 1997 г.) (Под ред. Г Г Бондаренко) (М.: НИИ ПМТ при МГИЭМ (ТУ), 1997) с. 22
- 31. Бородин С Н и др. *Письма в ЖТФ* **15** (17) 51 (1989) [Borodin S N et al. *Sov. Tech. Phys. Lett.* **15** XXX (1989)]
- Крейндель Ю Е, Овчинников В В Физика и химия обработки материалов (3) 14 (1991)

- 33. Kreindel Yu E, Ovchinnikov V V Vacuum 42 (1-2) 81 (1991)
- 34. Ovchinnikov V V et al. Surf. Coating Technol. 64 1 (1994)
- 35. Овчинников В В Изв. РАН. Металлы (6) 104 (1996)
- Мельников Л А, Соколов Б К, Стрегулин А И ФММ 15 (3) 357 (1963)
- Гущина Н и др., в сб. Труды XII Междунар. конф. "Радиационно-термические эффекты и процессы в неорганических материалах" (Под ред. А П Суржикова) (Томск: Изд-во Томск. политехн. ун-та, 2003) с. 192
- Овчинников В В и др., в сб. Труды XIII Междунар. совещ. "Радиационная физика твердого тела" (Под ред. Г Г Бондаренко) (М.: НИИ ПМТ МГИЭМ (ТУ), 2003) с. 587
- Чемеринская Л С и др., в сб. Труды XV Междунар. совещ. "Радиационная физика твердого тела" (Севастополь, 4–9 июля 2005) (Под ред. Г Г Бондаренко) (М.: НИИ ПМТ МГИЭМ (ТУ), 2005) с. 461
- Чемеринская Л С и др., в сб. Труды IV Междунар. научной конф. "Радиационно-термические эффекты и процессы в неорганических материалах" (Под ред. А П Суржикова) (Томск: Изд-во Томск. политехн. ун-та, 2004) с. 278
- Goloborodsky B Yu, Ovchinnikov V V, Semenkin V A Fusion Sci. Technol. 39 1217 (2001)
- 42. Бородин С Н и др. *Письма в ЖТФ* **15** 13 87 (1989) [Borodin S N et al. *Sov. Tech. Phys. Lett.* **15** XXX (1989)]
- 43. Ovchinnikov V V et al. *Изв. вузов. Сер. Физ.* (8, Приложение) 350 (2006)
- 44. Овчинников В В и др. *Изв. вузов. Сер. Физ.* (2) 73 (2007) [Ovchinnikov V V et al. *Russ. Phys. J.* **50** 177 (2007)]
- Овчинников В В и др. ΦMM 105 404 (2008) [Ovchinnikov V V et al. *Phys. Met. Metallogr.* 105 375 (2008)]
- Овчинников В В и др., в сб. Труды VII Междунар. конф. "Взаимодействие излучений с твердым телом", Минск, Беларусь, 26–28 сентября 2007 г., с. 143
- 47. Соколов Б К и др. Ф*MM* **89** (4) 32 (2000) [Sokolov B K et al. *Phys. Met. Metallogr.* **89** 348 (2000)]
- Драгошанский Ю Н, Губернаторов В В, Соколов Б К, Овчинников В В Докл. PAH 383 761 (2002) [Dragoshanskii Yu N, Gubernatorov V V, Sokolov B K, Ovchinnikov V V Dokl. Phys. 47 302 (2002)]
- Губернаторов В В и др. Докл. РАН 410 194 (2006) [Gubernatorov V V et al. Dokl. Phys. 51 493 (2006)]
- Губернаторов В В и др. "Способ термомагнитной обработки магнитомягких материалов", Патент РФ на изобретение № 2321644 от 03.08.2006
- 51. Школьников А Р и др. Изв. Томск. политехн. ун-та **308** (7) 58 (2005)
- 52. Gavrilov N V et al. J. Vac. Sci. Technol. A 14 1050 (1996)
- Gavrilov N V, Emlin D R, Bureev O A Изв. вузов. Сер. Физ. (8, Приложение) 92 (2006)

PACS numbers: 05.10.Ln, **64.60.-i**, **75.40.-s** DOI: 10.3367/UFNr.0178.200809g.1001

Критические свойства фрустрированных спиновых систем на слоистой треугольной решетке

А.К. Муртазаев

1. Введение

Проблема исследования фазовых переходов (ФП) и критических явлений (КЯ) во фрустрированных спиновых системах является одной из фундаментальных проблем статистической физики. Несмотря на значительные успехи, достигнутые в этой области, вопрос о построении строгой и последовательной микроскопической теории фазовых переходов и критических явлений остается одним из центральных в современной физике конденсированного состояния [1]. Современная теория $\Phi\Pi$ и КЯ в основном базируется на идеях, заложенных в гипотезе скейлинга, универсальности и в теории ренормализационной группы [1–4]. Анализ результатов, полученных при исследовании фрустрированных систем (Φ C), а также спиновых систем с вмороженным немагнитным беспорядком, показывает, что многие из этих результатов далеко выходят за рамки современной теории $\Phi\Pi$ и КЯ [3, 5, 6].

Большинство традиционных теоретических и экспериментальных методов исследования фрустрированных систем сталкиваются с серьезными трудностями при попытке вычислить критические параметры, определить особенности, характер и механизмы критического поведения [7, 8]. Поэтому сегодня $\Phi\Pi$ и КЯ в Φ С интенсивно изучаются методами Монте-Карло (МК) [7–13]. Исследование непосредственно самой окрестности критической точки методами МК стало возможным только в последние годы. Подобные успехи достигнуты не только за счет увеличения вычислительных мощностей современных компьютеров, но и в результате привлечения дополнительных идей и методов. В частности, для исследования Φ С разработаны специальные, так называемые репличные, алгоритмы метода MK [14].

Сейчас продолжаются интенсивные исследования магнитных, тепловых и критических свойств фрустрированных спиновых систем [12, 13, 15–20]. Это связано с тем, что ФС обладают необычными магнитными свойствами, имеют богатое разнообразие фаз и ФП, обусловленное сильным вырождением и высокой чувствительностью таких систем к различного рода возмущающим взаимодействиям [21, 22]. Кроме того, остается открытым вопрос о принадлежности фрустрированных спиновых систем к новому классу универсальности критического поведения и его зависимости от различных факторов, таких как тип и величина межслойного обменного взаимодействия, учет взаимодействия вторых ближайших соседей, анизотропии, внешнего магнитного поля и др.

В данном докладе рассматриваются результаты нашего исследования методом МК критических свойств трехмерной (3D) антиферромагнитной модели Гейзенберга на треугольной решетке.

Интерес к этой модели обусловлен тем, что антиферромагнетики на треугольной решетке являются примером фрустрированных систем. Изучение этой модели может позволить получить ответ на вопрос о принадлежности фрустрированных систем к новому киральному классу универсальности, который до сих пор является дискуссионным [6–13]. Кроме того, многие важные физические свойства ФС сильно зависят от геометрии решетки (от степени фрустрации). Указанные особенности могут привести к сужению классов универсальности критического поведения, и этот вопрос до сих пор еще недостаточно полно изучен.

Особый интерес представляет вопрос о зависимости критических свойств фрустрированных систем от величины межслойного обменного взаимодействия. Критические индексы, которые являются высокочувствительными параметрами, могут служить индикаторами пространственного кроссовера от трехмерного критического поведения к двумерному (и обратно). Из полученных на сегодня данных нельзя однозначно определить закономерности изменения критического поведения ФС в зависимости от параметра межслойного обменного взаимодействия, и этот вопрос до сих пор остается открытым [8, 9, 12, 13].

Кроме того, в литературе не встречаются описания исследований зависимости критических свойств фрустрированных систем от типа и величины межслойного обменного взаимодействия.

В данном докладе нами предпринята попытка по возможности с максимальной точностью, с соблюдением единой методики и использованием надежной и проверенной схемы на основе специального алгоритма метода Монте-Карло (репличный алгоритм) определить значения критических параметров 3D-фрустрированных антиферромагнитных моделей Гейзенберга на треугольной решетке.

2. Модель и метод исследования

Гамильтониан антиферромагнитной 3D-модели Гейзенберга на треугольной решетке может быть представлен в следующем виде [9]:

$$\mathbf{H} = -J \sum_{\langle ij \rangle} \mathbf{S}_i \mathbf{S}_j - J' \sum_{\langle ij \rangle} \mathbf{S}_i \mathbf{S}_j, \qquad (1)$$

где S_i — трехкомпонентный единичный вектор $S_i = (S_i^x, S_i^y, S_i^z), J и J'$ — константы обменного взаимодействия. Суммирование производится по ближайшим соседям. Решетка состоит из двумерных треугольных слоев, сложенных по ортогональной оси. Первый член в формуле (1) учитывает внутриплоскостное обменное взаимодействие J, а второй — межплоскостное взаимодействие J'.

Для выяснения влияния типа и величины межплоскостного обменного взаимодействия на характер критического поведения рассматривались три модели — D₁, D₂ и D₃:

модель
$$\mathbf{D}_1 - J < 0, \ J' > 0, \ |J| = |J'|;$$

модель $\mathbf{D}_2 - J < 0, \ J' < 0, \ |J| = |J'|;$
модель $\mathbf{D}_3 - J < 0, \ J' > 0, \ |J| \neq |J'|.$

Фрустрированные спиновые системы являются довольно сложными объектами для исследования даже методами МК. Как известно, вблизи критической точки метод МК сталкивается с проблемой "критического замедления", а в ФС эта проблема становится еще более актуальной [7]. Кроме того, для ФС характерна проблема многочисленных долин локальных минимумов энергии. Обычные методы МК плохо справляются с решением этих проблем. Поэтому в последнее время разработано много новых вариантов метода МК, специально ориентированных на исследования ФС. Из них наиболее мощными и эффективными в исследовании КЯ в ФС оказались репличные алгоритмы метода МК [14].

В данном исследовании нами использовался высокоэффективный репличный обменный алгоритм метода Монте-Карло [14] следующего типа.

1. Одновременно моделируются две реплики X и X' с разными температурами T и T'.

2. После выполнения 100 МК-шагов на спин эти реплики обмениваются данными в соответствии со схемой Метрополиса с вероятностью

$$w(X \to X') = \begin{cases} 1, & \Delta \leq 0, \\ \exp(-\Delta), & \Delta > 0, \end{cases}$$

где $\Delta = (T - T')(U - U')$, U и U' — внутренняя энергия первой и второй реплики соответственно.

В репличном обменном алгоритме для каждой реплики реализуется случайное блуждание по "температурному интервалу", которое, в свою очередь, стимулирует случайное блуждание в поле потенциальной энергии. Это облегчает решение проблемы "застревания" системы в многочисленных состояниях с локальной минимальной энергией.

Расчеты проводились для систем с периодическими граничными условиями (ПГУ) и с линейными размерами $L \times L \times L = N$, L = 9-30 для модели D_1 и D_3 и L = 12-42 для модели D_2 . Для модели D_3 соотношение межслойного и внутрислойного обменов изменялось в интервале R = |J'/J| = 0,01-1,0. Для вывода системы в состояние термодинамического равновесия отсекался участок длиной $\tau_0 = 4,0 \times 10^5$ МК-шагов на спин, что в несколько раз больше длины неравновесного участка. Усреднение термодинамических величин проводилось вдоль марковской цепи длиной $\tau = 25\tau_0$. Для повышения точности производилось усреднение по данным, полученным из десяти различных начальных конфигураций.

3. Результаты моделирования

Для наблюдения за температурным ходом поведения теплоемкости и восприимчивости нами использовались выражения [11, 23–25]:

$$C = NK^{2} (\langle U^{2} \rangle - \langle U \rangle^{2}), \qquad (2)$$

$$\chi = \begin{cases} NK \left(\langle m^2 \rangle - \langle m \rangle^2 \right), & T < T_{\rm N}, \\ NK \langle m^2 \rangle, & T \ge T_{\rm N}, \end{cases}$$
(3)

$$\chi_{\mathbf{k}} = \begin{cases} NK \left(\langle m_{\mathbf{k}}^2 \rangle - \langle m_{\mathbf{k}} \rangle^2 \right), & T < T_{\mathbf{k}}, \\ NK \langle m_{\mathbf{k}}^2 \rangle, & T \ge T_{\mathbf{k}}, \end{cases}$$
(4)

где $K = |J|/k_{\rm B}T$, N — число частиц, m — магнитный параметр порядка, $m_{\rm k}$ — киральный параметр порядка, $\chi_{\rm k}$ — киральная восприимчивость.

Параметр порядка системы *т* вычислялся по формуле [9]

$$m = \frac{3}{N} \sqrt{\frac{\langle M_{\rm A}^2 + M_{\rm B}^2 + M_{\rm C}^2 \rangle}{3}},$$
 (5)

где M_A , M_B и M_C — намагниченности подрешеток A, B и C соответственно.

Намагниченность подрешетки определялась следующим образом [9]:

$$\langle |\mathbf{M}_r| \rangle = \left\langle \sqrt{S_x^2 + S_y^2 + S_z^2} \right\rangle, \quad r = \mathbf{A}, \mathbf{B}, \mathbf{C}.$$
 (6)

Для вычисления кирального параметра порядка системы *m*_k использовались следующие выражения [10, 11]:

$$m_{\mathbf{k}p} = \frac{2}{3\sqrt{3}} \sum_{\langle ij \rangle}^{p} [\mathbf{S}_{i} \times \mathbf{S}_{j}]_{z}, \qquad (7)$$

$$m_{\mathbf{k}} = \frac{1}{N} \sum_{p} m_{\mathbf{k}p} \,, \tag{8}$$

где р нумерует треугольные плакеты.

Рис. 1. Зависимость теплоемкости $C/k_{\rm B}$ от температуры $k_{\rm B}T/|J|$ для моделей D₁ и D₂.

Рис. 2. Зависимость восприимчивости χ от температуры $k_{\rm B}T/|J|$ для моделей D1 и D2.

На рисунках 1 и 2 представлены температурные зависимости теплоемкости C и восприимчивости χ для моделей D_1 и D_2 . Здесь и далее погрешность данных не превышает размеров символов на рисунках. Отметим хорошо выраженные максимумы в критической области для обеих моделей, причем эти максимумы в пределах погрешности приходятся на одно и то же значение температуры.

Для более точного определения критической температуры $T_{\rm N}$ нами использовался метод кумулянтов Биндера U_L четвертого порядка, который имеет вид [26]

$$U_L = 1 - \frac{\langle m^4 \rangle_L}{3 \langle m^2 \rangle_L^2} \,. \tag{9}$$

Согласно теории конечноразмерного скейлинга (КРС) точка пересечения всех кривых температурной зависимости $U_L(T)$ является критической точкой [25].

На рисунке 3 представлена характерная зависимость U_L от температуры для модели D_2 . Вставка на рисунке демонстрирует точность определения критической температуры. Из графика видно, что критическая темпера-

8*

Рис. 3. Зависимость кумулянта Биндера U_L от температуры $k_{\rm B}T/|J|$ для модели D₂.

тура для R = 1 равна $T_{\rm N} = 0.957(1)$ (здесь и далее температура дана в единицах $|J|/k_{\rm B}$). При определении киральной критической температуры $T_{\rm k}$ нами применялся метод пересечения кумулянтов (cumulant crossing), который считается более точным и надежным [11–13, 26, 27]. Аналогичные расчеты были выполнены и для моделей D₁ и D₃.

Для расчета статических киральных и магнитных критических индексов теплоемкости α , восприимчивостей γ , γ_k , намагниченностей β , β_k и радиусов корреляции v, v_k использовались соотношения теории конечноразмерного скейлинга [24, 26–29].

Из соотношений КРС следует, что в системе с размерами $L \times L \times L$ при $T = T_N$ и достаточно больших L выполняются следующие соотношения [11, 24, 28–31]:

$$m \propto L^{-\beta/\nu}$$
, (10)

$$m_{\rm k} \propto L^{-\beta_{\rm k}/\nu_{\rm k}}$$
, (11)

$$\chi \propto L^{\gamma/\nu} \,, \tag{12}$$

$$\chi_{\rm k} \propto L^{\gamma_{\rm k}/\nu_{\rm k}} \,, \tag{13}$$

$$V_n = L^{1/\nu} g_{V_n} \,, \tag{14}$$

$$V_{kn} = L^{1/\nu_k} g_{V_n},$$
 (15)

где g_{V_n} — некоторая постоянная, а в качестве V_n и V_{kn} могут выступать

$$V_i = \frac{\langle m^i E \rangle}{\langle m^i \rangle} - \langle E \rangle, \quad i = 1, 2, 3, 4,$$
(16)

$$V_{ki} = \frac{\langle m_k^i E \rangle}{\langle m_k^i \rangle} - \langle E \rangle, \quad i = 1, 2, 3, 4.$$
(17)

Эти соотношения нами использовались для определения β , β_k , γ , γ_k , ν и ν_k . При аппроксимации температурной зависимости теплоемкости от L использовалось выражение [9–11, 32]

$$C_{\max}(L) = A_1 - A_2 L^{\alpha/\nu},$$
(18)

где *A*₁ и *A*₂ — некоторые коэффициенты.

На рисунке 4 в двойном логарифмическом масштабе представлены характерные зависимости параметров V_i

Рис. 4. Зависимость параметра V_i от линейных размеров системы L при $T = T_N$ для модели D_2 .

при i = 1, 2, 3 от линейных размеров решетки L для модели D_2 . Как видно из рисунка, все точки на графиках в пределах погрешности хорошо ложатся на прямую. Зависимости на рисунке, полученные методом наименьших квадратов, параллельны друг другу. Угол наклона прямой определяет значение 1/v. Вычисленное таким образом значение v использовалось для определения критических индексов теплоемкости α , восприимчивости γ и параметра порядка β . По этой схеме были определены и киральные критические индексы. Аналогичные расчеты выполнены также для моделей D_1 и D_3 .

Все значения индексов, полученные таким образом, представлены в табл. 1. Здесь же для сравнения приведены данные из работ [6, 7, 9–11].

Особо следует отметить процедуру, примененную нами для определения индекса Фишера η . Учитывая отношение между восприимчивостью χ и радиусом корреляции ξ [33]

$$\chi \propto \xi^{\gamma/\nu} \,, \tag{19}$$

а также соотношение $\eta = 2 - \gamma/v$, связывающее индекс η и v, мы получим

$$\ln \frac{\chi}{\xi^2} = c - \eta \ln \xi \,, \tag{20}$$

где c — некоторая константа. Для систем с конечными размерами $\xi = L$ при $T = T_N$. Отсюда имеем

$$\ln \frac{\chi}{L^2} = c - \eta \ln L \,. \tag{21}$$

На основе выражения (21) было определено значение индекса Фишера η . По этой же схеме были рассчитаны значения магнитных и киральных критических индексов Фишера для моделей D_1 и D_2 , которые также представлены в табл. 1.

Для моделей D_1 и D_2 значения магнитной и киральной критической температуры в пределах погрешности совпадают между собой и с полученными в работах [9– 11]. Сравнение значений критических параметров для модели D_1 с результатами исследований аналогичной модели из работ [9, 11] показывает, что наши данные

Критический параметр	Данные, полученные нами			Метод МК	Эксперимент	Чистая модель	
	D_1	D2	[9]	[10]	[11]	(см. ссылки в [6])	(см. ссылки в [7])
$T_{\rm N}$	0,956(1)	0,957(1)	0,954(2)	0,955(2)	0,9577(2)		1,443
$T_{\rm k}$	0,956(2)	0,957(2)	—	0,958(2)	0,9577(2)		_
v	0,59(1)	0,64(1)	0,53(3)	0,59(2)	0,586(8)	0,57(3)	0,706(9)
α	0,26(2)	0,05(2)	0,4(1)	0,24(8)	—	0,40(5)	-0,117(2)
β	0,26(1)	0,30(1)	0,25(2)	0,30(2)	0,285(11)	0,25(1)	0,364(7)
γ	1,23(2)	1,36(2)	1,1(1)	1,17(7)	1,185(3)	1,10(5)	1,390(23)
v _k	0,59(2)	0,64(2)	—	0,60(2)	0,60(2)		_
$\beta_{\rm k}$	0,43(2)	0,52(2)	—	0,55(2)	0,50(2)	0,44(2)	_
γ_k	0,87(3)	0,93(3)	—	0,72(2)	0,82(2)	0,84(7)	—
η	-0,09(3)	-0,06(3)					0,031(7)
$\eta_{ m k}$	0,50(4)	0,63(4)	_		—	_	_

Таблица 1. Значения критических параметров для 3D-антиферромагнитной модели Гейзенберга на слоистой треугольной решетке

Таблица 2. Значения магнитных критических параметров для модели D_3

R	$T_{\rm N}$	v	α	β	γ	$\alpha+2\beta+\gamma=2$
1	0,956(1)	0,59(2)	0,26(3)	0,26(2)	1,23(4)	2,02
0,8	0,872	0,60	0,24	0,26	1,26	2,02
0,7	0,829	0,61	0,22	0,28	1,29	2,07
0,6	0,783	0,59	0,22	0,29	1,22	2,02
0,4	0,677	0,60	0,24	0,27	1,27	2,05
0,3	0,619	0,60	0,26	0,29	1,23	2,07
0,1	0,468	0,59	0,24	0,28	1,17	1,97
0,075	0,442	0,55	0,26	0,24	1,23	1,97
0,05	0,413	0,55	0,15	0,22	1,11	1,70
0,01	0,353	0,48	0,09	0,27	0,82	1,45

близки к данным более поздней работы [11]. Часть критических индексов для модели D_2 в пределах погрешности совпадают с результатами для такой же модели из [10]. Из таблицы 1 видно, что данные, полученные нами для модели D_1 , ближе к экспериментальным результатам (см. ссылки в [6]) для антиферромагнетика CsMnBr₃ с треугольной решеткой, чем данные для модели D_2 . Отметим, что значения индексов Фишера η и η_k для моделей D_1 и D_2 рассчитаны впервые.

Как видно из табл. 1, результаты нашего исследования хорошо согласуются как с данными лабораторного эксперимента, так и с большинством результатов численных экспериментов других авторов, но отличаются от результатов для нефрустрированной модели Гейзенберга (см. ссылки в [7]). Это позволяет нам говорить о том, что 3D-фрустрированная антиферромагнитная модель Гейзенберга на слоистой треугольной решетке (модель D_1) образует новый класс универсальности критического поведения.

Кроме того, большинство критических индексов модели D_1 сильно отличаются от индексов модели D_2 . Это свидетельствует о том, что тип межслойного обменного взаимодействия играет важную роль при образовании классов универсальности таких систем. Очевидно, что модели D_1 и D_2 относятся к разным классам универсальности и каждая из них имеет свой набор критических индексов.

Значительный интерес представляет вопрос о зависимости критических индексов от *R*. Кроме того, значения

Таблица 3. Значения киральных критических параметров для модели D_3

R	$T_{\rm k}$	v _k	α	β_k	$\gamma_{\mathbf{k}}$	$\alpha+2\beta_k+\gamma_k=2$
1	0,956(2)	0,59(2)	0,26(3)	0,43(2)	0,87(5)	1,99
0,8	0,872	0,60	0,24	0,42	0,96	2,04
0,7	0,829	0,61	0,22	0,48	0,96	2,14
0,6	0,783	0,59	0,22	0,46	0,85	1,99
0,4	0,677	0,60	0,24	0,43	0,90	2
0,3	0,619	0,60	0,26	0,48	0,81	2,03
0,1	0,468	0,59	0,24	0,47	0,82	2
0,075	0,442	0,55	0,26	0,42	0,87	1,97
0,05	0,413	0,55	0,15	0,31	0,60	1,37
0,01	0,353	0,48	0,09	0,40	0,52	1,41

J и J' в большинстве реальных материалов не совпадают [15–17, 20]. Для изучения этого вопроса проведены исследования при различных значениях R. С использованием соотношения теории конечноразмерного скейлинга и вышеописанной процедуры были рассчитаны все основные статические киральные и магнитные критические индексы для случаев J < 0 и J' > 0 в интервале R = 0,01-1,0. Значения индексов, полученные таким образом, представлены в табл. 2 и 3.

Как видно из табл. 2 и 3, для всех значений $R \ge 0,075$ в пределах погрешности значения индексов совпадают и с достаточно высокой точностью выполняются скейлинговые соотношения между критическими индексами. При $R \le 0,05$ значения критических индексов существенно изменяются и скейлинговые соотношения между ними уже не выполняются. По-видимому, значение R = 0,075 можно считать границей, после которой в системе происходит кроссовер от 3D-критического поведения к 2D-критическому поведению.

4. Заключение

Исследования критических свойств 3D-фрустрированной антиферромагнитной модели Гейзенберга на слоистой треугольной решетке, результаты которых представлены в докладе, выполнены с использованием высокоэффективного репличного алгоритма метода Монте-Карло. Рассчитаны все основные статические магнитные и киральные критические индексы. Расчет критических индексов теплоемкости α , восприимчивостей γ , γ_k , параметров порядка β , β_k , индексов Фишера η , η_k и радиусов корреляции ν , ν_k выполнен на основе соотношений теории конечноразмерного скейлинга с соблюдением единой методики в рамках одного исследования. Значения индексов Фишера η и η_k для этой модели рассчитаны впервые. Полученные результаты свидетельствуют о принадлежности 3D-фрустрированной модели Гейзенберга на треугольной слоистой решетке к новому классу универсальности. Результаты данного исследования позволяют говорить о том, что класс универсальности критического поведения антиферромагнитной модели Гейзенберга на треугольной решетке зависит от типа и величины межслойного обменного взаимодействия.

Работа поддержана РФФИ (грант 07-02-00194 и грант "Юг России" 06-02-96602), Программой ведущих научных школ (грант НШ-5547.2006.2) и Фондом содействия отечественной науке.

Список литературы

- Паташинский А З, Покровский В Л Флуктуационная теория фазовых переходов 2-е изд. (М.: Наука, 1982) [Translated into English: Patashinskii A Z, Pokrovskii V L Fluctuation Theory of Phase Transitions (Oxford: Pergamon Press, 1979)]
- Ma Sh Modern Theory of Critical Phenomena (Reading, Mass.: W.A. Benjamin, 1976) [Ма Ш Современная теория критических явлений (М.: Мир, 1980)]
- Доценко Вик С УФН 165 481 (1995) [Dotsenko Vik S Phys. Usp. 38 457 (1995)]
- Коршунов С Е УФН 176 233 (2006) [Korshunov S E Phys. Usp. 49 225 (2006)]
- MyprasaeB A K *Y*ΦH **176** 1119 (2006) [Murtazaev A K *Phys. Usp.* **49** 1092 (2006)]
- Maleeb C B *VΦH* 172 617 (2002) [Maleev S V Phys. Usp. 45 569 (2002)]
- Камилов И К, Муртазаев А К, Алиев Х К УФН 169 773 (1999) [Kamilov I K, Murtazaev A K, Aliev Kh K Phys. Usp. 42 689 (1999)]
- Loison D et al. Письма в ЖЭТФ 72 487 (2000) [JETP Lett. 72 337 (2000)]
- 9. Kawamura H J. Phys. Soc. Jpn. 56 474 (1987)
- 10. Kawamura H J. Phys. Soc. Jpn. 61 1299 (1992)
- 11. Mailhot A, Plumer M L, Caille A Phys. Rev. B 50 6854 (1994)
- Муртазаев А К, Рамазанов М К, Бадиев М К ЖЭТФ 132 1152 (2007) [Murtazaev A K, Ramazanov M K, Badiev M K JETP 105 1011 (2007)]
- 13. Murtazaev A K, Ramazanov M K Phys. Rev. B 76 174421 (2007)
- 14. Mitsutake A, Sugita Y, Okamoto Y *Biopolymers* **60** 96 (2001)
- 15. Svistov L E et al. Phys. Rev. B 67 094434 (2003)
- 16. Свистов Л Е и др. *Письма в ЖЭТФ* **80** 231 (2004) [Svistov L E et al.
- *JETP Lett.* **80** 204 (2004)] 17. Свистов Л Е и др. *Письма в ЖЭТФ* **81** 133 (2005) [Svistov L E et al. *JETP Lett.* **81** 102 (2005)]
- 18. Pelissetto A, Rossi P, Vicari E Phys. Rev. B 65 020403 (2001)
- 19. Peles A, Southern B W Phys. Rev. B 67 184407 (2003)
- 20. Smirnov A I et al. Phys. Rev. B 75 134412 (2007)
- 21. Гехт Р С ЖЭТФ 102 1968 (1992) [Gekht R S JETP 75 1058 (1992)]
- Fext P C VΦH 159 2 (1989) [Gekht R S Sov. Phys. Usp. 32 871 (1989)]
- 23. Binder K, Wang J-Sh J. Stat. Phys. 55 87 (1989)
- Peczak P, Ferrenberg A M, Landau D P Phys. Rev. B 43 6087 (1991)
 Binder K, Heermann D W Monte Carlo Simulation in Statistical Physics (Berlih: Springer-Verlag, 1988) [Биндер К, Хеерман Д В Моделирование методом Монте-Карло в статистической физике (М.: Наука, 1995)]
- 26. Binder K Z. Phys. B 43 119 (1981)
- 27. Ferrenberg A M, Landau D P Phys. Rev. B 44 5081 (1991)
- 28. Ferdinand A E, Fisher M E Phys. Rev. 185 832 (1969)
- 29. Fisher M E, Barber M N Phys. Rev. Lett. 28 1516 (1972)
- 30. Landau D P Physica A 205 41 (1994)
- 31. Loison D Phys. Lett. A 257 83 (1999)

- Муртазаев А К, Камилов И К, Магомедов М А ЖЭТФ 120 1535 (2001) [Murtazaev A K, Kamilov I K, Magomedov M A JETP 93 1330 (2001)]
- 33. Holm Ch, Janke W Phys. Rev. B 48 936 (1993)

PACS numbers: **42.55.** – **f**, 42.60.By, **42.65.** – **k** DOI: 10.3367/UFNr.0178.200809h.1006

Петаваттные лазеры на основе оптических параметрических усилителей: состояние и перспективы

Е.А. Хазанов, А.М. Сергеев

1. Введение

В докладе приведен обзор современного состояния фемтосекундных лазеров с рекордно высокой на сегодня мощностью — порядка 1 ПВт. На основе анализа преимуществ и недостатков параметрического усиления по сравнению с лазерным усилением в неодимовом стекле и кристалле сапфира показано, что использование параметрических усилителей является весьма перспективным путем для преодоления петаваттного барьера. Обсуждаются также и другие концепции мультипетаваттных лазеров, в том числе основанных на уникальных свойствах лазерной керамики.

С момента создания первого лазера одной из важнейших целей квантовой электроники было и остается увеличение пиковой мощности лазерного излучения. Само понятие "высокая пиковая мощность" постоянно меняется, и сегодня речь идет о мощности не менее 1 ПВт (10¹⁵ Вт). Ключевой вехой, позволившей достичь такой мощности, стало изобретение [1] в 1985 г. основополагающего принципа — усиления чирпированных (растянутых во времени, частотно-модулированных) импульсов — CPA (chirped pulse amplification). Идея (рис. 1) заключается в том, что перед усилением фемтосекундный импульс растягивается до длительности порядка 1 нс, что уменьшает его мощность и позволяет усилить его до большой энергии без самофокусировки и пробоя, а затем сжимается до исходной длительности с помощью дифракционных решеток, имеющих высокий порог пробоя, так как свет только отражается от них и не проходит

Рис. 1. Общая схема мощных фемтосекундных лазеров.