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Multichannel propagation and scattering
of phonons and photons in low-dimension
nanostructures
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1. Introduction

Recent major achievements in the research and development
of technologically and functionally advanced materials have
markedly increased research interest in the generation and
propagation of coherent acoustic phonons in quasi-one-
dimensional superstructures (including those with `acoustic
nanocavities' [1]), nanowires, and nanorods [2]. Of much
importance in terms of potential applications is the study of
phonon heat transfer in low-dimension systemsÐ for exam-
ple, through a solid ± solid microcontact [3]. The search for
technologically feasible materials for thermoelectric transdu-
cers lent very topical significance to the recent experimental
finding that silicon nanowires with rough surfaces have a
much lower thermal conductivity than their smooth-surface
counterparts and bulk silicon [4 ± 6]. Furthermore, the
phonon contribution to the thermal conductivity of single-
crystal silicon nanowires with a diameter of less than 50 nm
approaches the limiting value found for amorphous silicon,
something which current theories cannot explain [5]. Also,
the molecular dynamics modeling of the thermal conductiv-
ity of diamond nanorods whose surfaces are coated with
hydrogen with attached phenyl groups has shown that the
thermal conductivity of nanorods is much less than that of
bulk crystals [7].

This talk describes and discusses several examples of the
so-called multichannel propagation and scattering of pho-
nons and photons, two processes which can contribute to the
phonon and photon characteristics, both dynamic and
kinetic, of low-dimension systems.

The important thing about the multichannel propagation
of phonons or photons is that there are several `parallel' paths
along which propagation is effected, between which both
constructive and destructive interference can take place.
Path-to-path interference occurring during multichannel
propagation in a low-dimension system results in the
transmission, reflection, and/or absorption coefficients gen-
erally having an asymmetric (non-Lorentzian) line shape as a
function of the phonon (photon) frequency.

An asymmetric absorption line shape was first described
by Fano [8] in his study of inelastic autoionization resonances
in atoms and has been interpreted as due to discrete
resonances interfering with the surrounding continuum of

`background' states. Although Fano type asymmetric absorp-
tion profiles have been discovered in many atomic systems
(see, for example, Ref. [9]), they are not exclusive to them
alone and have also been detected in doped semiconductor
materials (the absorption [10] and Raman scattering [11]
spectra taken from impurities), as well as in bulk intrinsic
semiconductor GaAs and semiconductor superlattices [12,
13], and in quantum wells [14]. In the context of electron
transport, conductivity as a function of applied voltage or
gate voltage has been observed to exhibit asymmetric peaks in
quantum dots with few electron levels [15, 16], crossed carbon
nanotubes [17], and quantum wires with an attached `lateral'
quantum dot [18, 19]. The electron Fano effect in a quantum
dot on one arm of an Aharonov ±Bohm interferometer can
interact with the Aharonov ±Bohm effect [20, 21] and with
Kondo correlations in the quantum dot [22]. For photons, the
clearest manifestation of the Fano effect is the asymmetrically
shaped line of the photon transmission coefficient through a
two-dimensional system of local (plasmonic or optical-
phonon) resonances [23, 24] or through a layer of a
transparent material with a periodic arrangement (two-
dimensional lattice) of holes [25, 26].

The phonon analogue of the Fano effect was first
described in Ref. [27] and Ref. [28] independently. Reference
[27] studied, in particular, the passage of a long acoustic wave
(acoustic phonon) through a crystal two-dimensional (2D)
defect with a complex structure. A peculiarity in considering
such a 2D defect in crystal consisted in accounting for not
only the interaction between the neighboring atomic layers
closest to the defect but also the direct interaction of the
lattice matrix rims through the defect monolayer. In an
atomic model of the 2D defect this corresponds to the
interaction between nonclosest neighbors. Reference [27]
predicted that this essentially monolayer defect characterized
byweak local force bondings of both nearest andmore distant
neighbors can fully reflect in a resonant manner acoustic
phonons with wavelengths much larger than the physical
thickness of the defect. From the viewpoint of the Fano effect
interpretation, the reason for the anomalously strong reflec-
tion of an acoustic wave is the destructive interference
between two phonon wave paths: through a local oscillator
(or through the local bondings of the nearest neighbors) and
through the local force bondings of the nonclosest neighbors,
bypassing around the local oscillator. A further prediction of
Ref. [27] was that a phonon undergoes total resonant
absorption (total nonreflection and total nontransmission)
at the boundary of a crystal 2D defect with a complex
structure. As noted in Ref. [27], a normally incident, long-
wave acoustic phonon cannot suffer anomalously strong
resonant reflection (or absorption) by a laterally uniform
layer of the material (see, for example, the well-known
monograph [29]); this can only happen in the acoustics of
composite materials. What a laterally uniform layer can only
do is resonantly increase the phonon transmission coefficient
under Fabry ± Perot resonance conditions, thus demonstrat-
ing the phonon analogue of the resonant bleaching effect. The
interaction of thematrix rims directly through the defect layer
is equivalent to the lateral nonuniformity of a two-dimen-
sional defect. Introducing this additional local interaction can
also be regarded as effectively taking into account that
impurities do not always fill the entire surface of a crystal
2D defect, i.e., impurity atoms can alternate in the plane of
the defect with matrix atoms or, alternatively, there may be
two or more types of impurities in a 2D defect (Fig. 1).
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Reference [28] drew an analogy between the scattering of
electrons and the scattering of phonons and calculated
numerically the phonon transmission coefficients with an
asymmetric line shape for a quasi-one-dimensional multi-
channel waveguide consisting of a strip of oscillator chains
connected in parallel. However, the oscillatory phenomena
occurring in quasi-one-dimensional systems of oscillator
chains were not generalized to the case of phonons propagat-
ing and undergoing a scattering in real 3D systems [28], such
as that considered in Ref. [27] 2D defect of complex structure
in a 3D crystal.

The later work [30] was the first to study experimentally
the acoustic properties of a so-called `locally resonant'
material, a 3D lattice of rubber-coated steel balls embedded
in a solid epoxy resin matrix. It was shown that at frequencies
close to the natural frequency of a steel ball in a solidmatrix, a
`monolayer' of such composite material is capable of
essentially totally reflecting, in a resonant manner, the
acoustic wave with a wavelength nearly two orders of
magnitude larger than the physical thickness of the layer. It
was shown, further, that the anomalously strong resonance
reflection of an acoustic phonon from a composite layer is
essentially unaffected by the irregular (not strictly 2D period-
ical) distribution of identical elastic-wave scatterers in the
solid matrix. Both the material used and the resonance
phenomenon observed in Ref. [30] can be given an immediate
interpretation in terms of the model posed in Ref. [27] if the
layer of steel balls in a solid matrix is regarded as a crystal 2D
defect formed by `weakly coupled' impurities, and the
material of the matrix between `local resonators' as a force
bonding through the composite layer, bypassing around the
resonators (Fig. 1a). It is significant that in both Ref. [27] and
Ref. [30] the above effects were given a correct theoretical
description and experimentally studied without using any
analogies with the Fano effect. That acoustic phenomena in
locally resonant materials can be interpreted in terms of a
phonon analogue of the Fano effect was first brought to
attention in Refs [31, 32] (note that, however, the analogy
itself added nothing either to the theoretical description or to
the experimental investigation of the acoustic phenomena in
question). A two-dimensional system of thin-walled elastic
hollow cylinders is, as shown in Ref. [33], another example
where the peculiarities of the resonant propagation of
acoustic waves are most naturally explained using an
analogy with the Fano effect.

2. Multichannel scattering of acoustic phonons
from a crystal two-dimensional defect

To macroscopically describe the scattering of a long-wave
acoustic phonon from a crystal 2D defect requires that the
form (and number) of boundary conditions for surface bulk
strains (szi � lzilmulm) and elastic displacements (ui,
i � 1; 2; 3) be specified on the surface of the defect (z � 0
plane). If the interface between two solids is sharp, then all
that is needed is that these quantities be continuous (see
Ref. [34]). In the general case, both the surface strains and
elastic displacements exhibit discontinuities at the surface of a
crystal 2D defect (see Ref. [35]). Denoting byN the number of
types of atoms residing in the plane of the 2D defect, the
simplest generalization of the multichannel propagation
model posed in Ref. [27] reduces to the following dynamic
equations on the surface of the defect:

s�1�zi �
XN
l�1

A
�l �
ik �u�ls�k ÿ u

�1�
k � ÿ %

q2u �1�i

qt 2
; �1�

s�2�zi �
XN
l�1

A
�l �
ik �u �2�k ÿ u

�ls�
k � � %

q2u �2�i

qt2
; �2�

r �l �s

q2u �ls�i

qt 2
� A

�l �
ik �2u �ls�k ÿ u

�1�
k ÿ u

�2�
k � ; �3�

where the z-axis is directed frommedium 1 tomedium 2; u
�1;2�
i

and u
�ls�
i are the macroscopic (averaged) displacements of the

matrix rims and surface atoms of the l type; the symmetric
tensor A

�l �
ik describes the interaction of the matrix rims with

the surface atoms of the l type, while r�l �s and % are the surface
densities of l type atoms and of atoms in the near-surface
layers [the latter density should only be considered if it is large
compared to the average `bulk' density (see Fig. 4 below)].
ForN � 2 and r�2�s � 0 (or r�2�s 5 r�1�s ), equations (1) ± (3) are
reduced to those obtained in Ref. [27]:
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where u s
i �u

�1s�
i , rs�r �1�s , Aik�A

�1�
ik , and the tensor Bik�

�1=2�A �2�ik describes the `direct interaction' between the
matrix rims via the defect layer. When the normal to the
surface of the 2D defect coincides with a symmetry axis of the
crystal and when this is the only wave propagation direction
of interest, then in the simplest case of interaction between
only nearest neighboring atoms in the bulk of the crystal the
3D equations (1) ± (3) and (4) ± (6) can be reduced to 1D
oscillator chain models (Figs 1a and 1b for the case ofN � 2).
Notice that in the latter of these models (Fig. 1b) the local
force bondings near the defect correspond to the situation in
which both the nearest and more distant neighbors interact.
As can be seen by comparing Figs 1a and 1b, the latter force
bondings can indeed effectively take into account force
bondings through the matrix, bypassing around the defect
atom.

The long-wave approximation allows a direct corre-
spondence to be made between elasticity theory equations
(4) ± (6) (used, for example, to describe the interaction of a
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Figure 1. Three possible 1D lattice models describing the multichannel

propagation of phonons through a lattice region containing a local defect.
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z-propagating longitudinal phonon with a 2D defect) and
the 1D lattice model of this 2D defect, presented in Fig. 1b:

szz � lzzzz
quz
qz
! c�un�1 ÿ un�

a 2
; �7�

and between all the parameters in both descriptions: lzzzz !
c=a, A! c1=a

2, B! c2=a
2, %! m �=a 2, and rs ! m1=a

2,
where a is the 1D lattice spacing. Below we will use the simple
1D lattice models of Fig. 1 as an example to describe the most
interesting aspects of the multichannel propagation of
phonons through a crystal 2D defect.

For a 2D defect coinciding with the n � 0 plane, the
solution of the corresponding linear lattice equations for the
planes n4 ÿ 2 and n5 2 are assumed to be of the form

un�exp �ikanÿ iot� � r exp �ÿikanÿ iot� ; n4ÿ 2 ; �8�

un � t exp �ikanÿ iot� ; n5 2 ; �9�

where o and k are the frequency and wave number of the
incident acoustic phonon, and r and t are the amplitude
reflection and transmission coefficients, respectively. The
reflection (R) and transmission (T) coefficients are respec-
tively defined as R � jrj2 and T � jtj2. In the absence of
dissipation, the condition to be satisfied is the conservation
of energy for the incident acoustic phonon, T� R � 1, a
condition we always check when carrying out calculations.
Equations of motion for three planesÐ n � ÿ1, n � 0, and
n � 1Ðare determined either by the long-wave approxima-
tion equations (1) ± (3) [alternatively, (4) ± (6)] or by the
corresponding discrete lattice equations [due to the presence
of correspondence (7) in the long-wave limit]. The phonon
dispersion relation in the lattice under study is given by
o � omax sin�ka=2� (where omax � 2

���������
c=m

p
), which is usual

for a 1D monatomic model with the nearest neighbor
interaction.

For the fault of direct interaction between the defect rims,
c2 � 0, the presence of a weakly coupled defect, for example,
with c1 � 0:07c andm1 � m � � m, brings about the resonant
passage of the phonon through the system at o �
o0 �

���������������
2c1=m1

p
5omax against the background of its trans-

mission decreasing as a whole with increasing frequency [36]
(Fig. 2a). This transmission resonance is analogous to the
acoustic Fabry ± Perot resonance at a monolayer of a `soft'
laterally uniform material embedded in a more `rigid'
medium. Allowing for a second phonon propagation chan-
nel, one with c2 5 c1 (and with or without a matrix atom with
m2 � m or m2 � 0, see Fig. 1a), results in our obtaining,
instead of the total resonance transmission of the phonon, its
total resonance reflection at the same frequency o0 ����������������
2c1=m1

p
(Fig. 2c, corresponding to the model of Fig. 1a

with c2 � 0:9c, c1 � 0:07c, and m2 � m1 � m � � m). This
effect, first described in Ref. [27], provides the clearest
evidence for the influence of an additional channel on the
propagation and scattering of phonons in low-dimension
multichannel systems and nanostructures. Because for a
weakly coupled defect the resonance frequency is low,���������������
2c1=m1

p
5omax � 2

���������
c=m

p
, the wavelength of a totally

reflected phonon is much larger than the physical width
d � 2a of the nanodefect.

As noted earlier and as is clear from the properties of the
systems discussed, a phonon incident normal to a 2D defect
can only suffer total reflection from a laterally nonuniform
and `locally resonant' composite layer. For an intermediately

strong force bonding relevant to the direct interaction
between lattice matrix rims, the frequency dependence of the
transmission coefficient acquires asymmetric form, as is
characteristic of the Fano effect (Fig. 2b, corresponding to
the Fig. 1a model with c2 � 4c1 � 0:28c, m1 � m � � m,
m2 � 0 or to the Fig. 1b model with c2 � 2c1 � 0:14c,
m1 � m � � m). In this case, the phonon transmission coeffi-
cient takes both zero and unity values at frequencies close to
o0.

The same features are seen in the passage of phonons
through a nanodefect in a quasi-one-dimensional waveguide
with a `lateral' oscillator (or a chain thereof) attached to it to
serve as a `phonon lead' (Fig. 1c). For a given weak force
bonding in the phonon lead, cl 5 c, the transmission coeffi-
cient for a given weak force of the `longitudinal bonding' of
the defect, cd 5 c, has one or several transmission resonances
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Figure 2. Energy transmission coefficients as functions of the normalized

frequency o=omax for phonons passing through a lattice 2D defect. The

one-dimensional projection of the defect corresponds to the model shown

in Fig. 1a with m1 � m � � m and (a) c1 � 0:07c, c2 � 0, (b) c2 �
4c1 � 0:28c, m2 � 0, and (c) c1 � 0:07c, c2 � 0:9c, m2 � m.
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of the Fabry ± Perot type. For a relatively strong longitudinal
bonding of the defect, cd � c4 cl, the transmission coeffi-
cient has one or several reflection resonances in the low
frequency range against the background of almost total
transmission for the rest of the frequencies. In particular, if
a phonon lead with one, two, or three series-connected,
identical, weakly coupled links for each of which ml � m
and cl 5 c is attached to one site of the 1D lattice withmd � m
and cd � c, then the propagation of a long-wave phonon
through such a defect is characterized by the presence of one,
two, or three resonance frequencies, respectively, at which
total reflection occurs (see Fig. 3 for the case of cl � 0:1c). For
each such resonance, the second phonon propagation
channel, whose destructive interference with the channel
along the 1D crystal results in the complete suppression of

transmission, is one of the natural vibrational modes of the
phonon lead, the total number of the modes being determined
by the number of links in the lead. The 1D crystal model with
phonons lead will be used in what follows to simulate the
phonon thermal conductivity of nanowires with dynamically
rough surfaces.

Multiple phonon transmission zeros are also found in a
1D lattice (or a crystal 2D defect) with several parallel
propagation channels similar to those in Fig. 1a. In the
general case, N transmission channels can produce Nÿ 1
total reflection resonances.

The large mass m � of near-surface atoms and the
correspondingly large near-surface density % in Eqns (1) ± (6)
are further crucial factors for the resonant transmission of a
phonon through 2D defects of the crystal whose 1D lattice
models are shown in Fig. 1 [27]. In particular, the simplest 1D
model depicted in Fig. 1b accounts for the presence of one or
two resonance transmission peaks through two or three layers
of strongly bounded `heavy' impurity atoms, when c1 � 0,
c2 � c, m � � 5m and c1 � c, c2 � 0, m � � m1 � 5m, respec-
tively (Figs 4a and b). In other words, N strongly coupled
dense layers produce Nÿ 1 Fabry ± Perot type phonon
transmission resonances with a characteristic frequency (or
interfrequency interval) ohl �

��������������
2c=m �

p
[unlike N weakly

coupled layers leading to N phonon transmission resonances
of the Fabry ± Perot type (Fig. 2a)]. As far as electron
transport in the strongly coupled 1D lattice model is
concerned, the reader is referred to papers [37, 38] for a
discussion of the resonance transparency of a pair of equal-
energy sites (dimer) and how this transparency influences the
delocalization of electron states in random dimer lattices and,
in particular, in conducting polymers.

An additional resonance in transmission through the
vibrating `dimer' of strongly coupled dense layers can
produce a `double' transmission resonance (double Fano
type resonance), in which the natural frequencies of two
strongly coupled dense outer layers coincide with those of a
weakly coupled inner layer (Fig. 1b). In this case, a narrow
reflection resonance (a transmission minimum) is observed
against a background of transmission resonance (Fig. 4c).
However, a particularly pronounced effect can be observed in
the case of natural vibrations undergoing finite dissipation
under double-resonance conditions; this is the total surface
absorption of an incident phonon by a lattice 2D defect [27],
an effect in which the transmission and reflection coefficients
simultaneously tend to zero and the surface absorption
As � 1ÿ Tÿ R approaches unity (Fig. 4d). Phenomenologi-
cally, the dissipation of vibrations can be introduced through
the imaginary parts of the constants of local force bondings c1
and c2, which are assumed to be proportional to the frequency
and small compared to the real parts of the corresponding
force constants. For total surface absorption, As � 1, the
following conditions must be satisfied [27]:

o0 �
������������������������
2c1 � c 21 =c2

m1

s
�

�����������������
c1 � 2c2

m �

r
; �10�

m �

m1
� c2

c1
; Im �c1 � 2c2� � 2c

o0

omax
: �11�

Figure 4d displays the transmission, reflection, and surface
absorption coefficients which are calculated for the following
parameters of a 2D defect as modelled by Fig. 1b:
c1�c�0:2ÿ i0:0165o=omax�, c2�c�1ÿ io=omax�, m � � 5m,
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Figure 3. Energy transmission coefficients versus frequency for phonons

passing through a 1D waveguide containing a lateral chain depicted in

Fig. 1c with one (a), two (b), and three (c) identical links for the case of

md � ml � m, cd � c, and cl � 0:1c.
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m1 � m, and which agree with the analytical prediction
following from formulas (10) and (11).

Based on the effect of the total absorption of an acoustic
phonon by a double resonance layerÐan effect similar to the
total absorption of a flux of photons by resonant atoms in
opticsÐ it is, in principle, possible to build a phonon laser
working by amplifying a radiation-stimulated (with jAsj4 1)
phonon field propagating through a preliminary excited
double resonance layer. (This amplification mechanism is
different from the mechanism studied in Ref. [39], by which
acoustic phonons are resonantly emitted from a weakly
coupled semiconductor superlattice.)

Because stimulated radiation corresponds to the case of a
`negatively absorbed' phonon field, values of jAsj4 1 can be
reached by changing the sign of the imaginary parts of the
force bonding constants c1 and c2. Figure 4e exhibits the
resonant value of energy amplification coefficient
As � 2� 1011, which is achieved at a double resonance layer
(Fig. 1b model) with c1 � c�0:2� i0:0168o=omax�, c2 �
c�1� i0:92850o=omax�, m��5m, and m1 � 0:88m. With this

large numerical value of the amplification coefficient, it is
hopeful that a system of appropriate double vibrational layers
will indeed be able to produce a strengthened phonon field in
the sample.

3. Acoustic phonon scattering
in a quasi-one-dimensional waveguide
with surface phonon leads

This section will discuss a phonon scattering model by a
system of surface phonon leads in a quasi-one-dimensional
waveguide. In this model it is assumed that an (infinitely) long
oscillator chain with a small dimensionless coupling coeffi-
cient f5 1 is attached to each atom in the 1D crystal (phonon
waveguide), when cl � fc, ml � fm (Fig. 5). Phonon propa-
gating along the waveguide excites vibrations in a lead, which
propagate along the lead and, most importantly, do not
return to the waveguide as a coherent phonon. We will
apply this model to describe phonon scattering by a
`dynamic roughness' on the surface of a quasi-one-dimen-
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Figure 4.Energy transmission coefficients versus frequency for phonons passing through a 2D lattice defect containing two (a), (c) ± (e) and three (b) high-

density atomic layers and corresponding to the one-dimensionalmodel of Fig. 1bwith (a)m � � 5m, c1 � 0, c2 � c, (b)m � � m1 � 5m, c1 � c, c2 � 0, and

(c) c1 � 0:2c, c2 � c,m � � 5m,m1 � m. (d) Energy transmission (T), reflection (R), and surface absorption (As � 1ÿ Tÿ R) coefficients as functions of

frequency for a 2D defect with c1�c�0:2ÿ i0:0165o=omax�, c2�c�1ÿ io=omax�, m � � 5m, and m1 � m. (e) Energy amplification coefficient

As � T� Rÿ 1 as a function of frequency for a 2D defect with c1 � c�0:2� i0:0168o=omax�, c2 � c�1� i0:92850o=omax�, m � � 5m, and m1 � 0:88m.

(f) Energy loss coefficient Al � 1ÿ Rl ÿ Tl as a function of frequency for a 1D waveguide for reflection from a single phonon lead (Fig. 1c) with an

effective mass (18) and the dimensionless coupling parameter f � cl=c � ml=m � 0:1.
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sional waveguide and how this scattering influences the
phonon thermal conductivity of nanowires. In the layer of a
dynamic roughness there occur random intersections and
contacts between different phonon leads, which, in turn,
results in a phonon suffering random scatterings in its travel
along a lead and, correspondingly, not returning to the
waveguide as a coherent wave (in-phase with the generating
phonon in the waveguide). In the dynamic lattice model, a
dynamic roughness can be described by a random arrange-
ment of vacancies and vacancy clusters in the lattice layer of
atoms, which surrounds the waveguide. The dimensionless
coupling coefficient f < 1, a characteristic of dynamic
coupling between the `single-crystal' waveguide and the
disordered waveguide in the surface layer, can be related to
the dimensionless vacancy `filling factor' in this layer.

As seen from Fig. 3, with increasing N (the number of
links in a lead), the minimum total reflection frequency
decreases (as oN �

�����������
cl=ml

p
p=N for N4 1), the total reflec-

tion frequencies condensing in the low-frequency region. For
N4 1, this is equivalent to the formation of an effective
quasigap in the low-frequency vibrational spectrum of such a
quasi-one-dimensional system: in the quasigap, vibrations
become strongly damped and their passage through a finite
length system is hindered, correspondingly decreasing the
phonon thermal conductivity of the system.

We assume that displacements in the n-th phonon lead
take the form of a wave outgoing from the waveguide and
carrying its vibrational energy away:

um; n � A1; n exp
�ÿ iot� ik?a�mÿ 1�� ; �12�

wherem � 1; 2; . . . are the atomic numbers in the link counted
in the direction away from the waveguide, and k? is the wave
number along the waveguide, which is related to the wave
frequency by the relationshipo � 2

�����������
cl=ml

p
sin�k?a=2�. In the

low-frequency and long-wave limit k?a5 1, we find
k?a � o

�����������
ml=cl

p
. Using formula (12), we obtain�

mo2ÿ4c sin
�
kka
2

�2�h
mlo2ÿ cl � cl

ÿ
exp �ik?a� ÿ 1

�i
� cl

h
mlo2 � cl

ÿ
exp �ik?a� ÿ 1

�i �13�

for the dispersion of a phonon with the wave number kk along
a quasi-one-dimensional waveguide with surface leads. From
this, passing to the low-frequency (long-wave) limit
�kk; k?� a5 1, when k?a � o

�����������
ml=cl

p
, we arrive at the

equation for the complex wave number kk of a damping
phonon:

k 2
k a

2 � o2 m�ml

c
� io

���������
mlcl
p

c
: �14�

This equation implies that in the frequency range
o4o � � ���������

mlcl
p

=�m�ml� phonons are weakly damped (the
imaginary part of the phonon wave vector is small and
frequency-independent) and propagate ballistically:

kka � o

���������������
m�ml

c

r
� i

2

���������������������
mlcl

�m�ml� c
r

: �15�

In the low-frequency limit, o5o �, phonons are strongly
damped:

kka � 1� i���
2
p ����

o
p �mlcl�1=4���

c
p ; �16�

and propagate diffusively in accordance with the equation
io � Dphk

2
k comprising the diffusion coefficient

Dph � ca 2���������
mlcl
p � Vphlph ; �17�

where Vph � a
���������
c=m

p
is the velocity of long-wave phonons,

and lph � a
�����������������
mc=mlcl

p � a=f is the phonon mean free path.
This latter is also defined as half the inverse imaginary part
of the ballistic phonon wave vector as given by formula (15).
In conformity with the definition of the absorption coeffi-
cient of an acoustic phonon [34], twice the imaginary part of
the wave vector defines the absorption coefficient of phonon
energy. Consideration of the energy loss coefficient
Al � 1ÿ Rl ÿ Tl of a phonon on a single phonon lead
yields a similar estimate for the phonon mean free path.
The presence of a phonon lead is tantamount to the
renormalization of the mass ml in a waveguide with a
single lateral oscillator (Fig. 1c). In this case, the mass ml

is replaced by a complex effective mass

m eff
l � ml � cl

o2

�
exp �ik?a� ÿ 1

�
� f

�
m� c

o2

ÿ
exp �ik?a� ÿ 1

��
: �18�

Figure 4f presents the frequency dependence of the energy
loss coefficient Al in a one-dimensional waveguide for
reflection from a single `lateral defect' with the effective
mass (18) for the case of f � 0:1. It is seen that Al � f over a
very wide frequency range, including low frequencies. There-
fore, if such scatterers are arranged in the waveguide with a
spatial period a, the mean free path of a phonon in respect to
energy is estimated to be lph � a=f, which is in line with
formula (17).

Let us now estimate the dimensionless dynamic coupling
coefficient f5 1 between a phonon lead and awaveguide. For
a rod with a circular or rectangular cross section, this
parameter can be estimated as the ratio of the number of
force atomic bonds in the rough surface layer to that in the
undistorted portion of the waveguide, i.e., as f � d=D, where
d � �����

�h 2
p

is the root-mean-square roughness height, and D is
the nanowire diameter. The phonon mean free path is then
estimated to be

lph � a

f
� a

d
D5D : �19�

From formulas (17) and (19) we obtain the following
estimate for the phonon thermal conductivity Kph of a

m m m
c c

mm

m1

m
cc

c1

c
m

c

Figure 5. Schematic of the one-dimensional waveguide with identical

phonon leads attached to each site as an extension of the one-dimensional

model of Fig. 1c with a single lead defect.
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nanowire with a dynamically rough surface:

Kph � CphDph � CphVph
a

d
D ; �20�

where Cph is the phonon specific heat.
Thus, phonon scattering from dynamic roughnesses in

nanowires decreases the phonon mean free path (and hence
the phonon contribution to thermal conductivity) as the
parameter a=d decreases. Because a � 0:54 nm in silicon and
the root-mean-square roughness height varied in the range
1 ± 5 nm [5], the parameter d=a falls within the range 2 ± 10.
This ratio of the phonon mean free paths (and thermal
conductivity) in smooth and rough surface nanowires (with
d � a and d4 a, respectively) is consistent with the experi-
mental value of 5 ± 8 for the corresponding factor [5].

What seems contradictory about estimate (19) is that
because of scattering from the surface the phonon mean free
path turns out to be less than the diameter of the sample: it is
usually considered that lph � D is the minimum mean free
path for such scattering (see, for example, Refs [5, 40]).
However, this contradiction is resolved if it is remembered
that estimate (19) refers primarily to the phonons traveling
along the axis of the waveguide, whereas the restriction
lph � D refers to those traveling at arbitrary (including
large) angles to the axis. But it is exactly the axially traveling
longitudinal phonons that make the most contribution to the
nanowire thermal conductivity due to the largest projection
of the group velocity Vph z on the axis of the quasi-one-
dimensional sample [see formula (20)]. Applying estimate
(19) primarily to the axially propagating phonons also
removes the `quasi-one-dimensionality' restriction on nano-
wire phonons, i.e., the requirement kphD < 1 (where kph is the
wave number of a thermal phonon) which is met only at very
low temperatures, even in nanowires with an average
diameter of 100 nm (� 200a) [5]. On the other hand, when
the parameter a=d becomes very small with increasing root-
mean-square roughness height, it should be remembered that
the phonon mean free path (19) cannot be less than half the
phonon wavelength lph=2 (see Ref. [41]). Therefore, in
nanowires with small enough diameters and rough surfaces
the phonon mean free path can tend to lph=2, while the
phonon thermal conductivity to the lower limit of thermal
conductivity for an amorphous solid. The fact that the
thermal conductivity of nanowires made of single-crystal
silicon tends to the limiting value of the thermal conductivity
of amorphous silicon as the diameter of a rough surface
nanowire decreases was also discovered (but not explained)
in Ref. [5].

To summarize, the proposed mechanism of nonresonant
phonon scattering from surface phonon leads that model the
dynamic surface roughness of a phonon waveguide allowed
us to explain, qualitatively and in part quantitatively, the
significantly (almost by an order of magnitude) reduced
thermal conductivity of rough-surface, compared to
smooth-surface, nanowires, as well as to suggest the reason
why nanowires of single-crystal materials achieve the lower
limit of thermal conductivity found in an amorphous solid.
The important point here is that the `parallel dynamic
connection' of an ideal heat conductor (crystalline phonon
waveguide) with a poor heat conductor (disordered surface
lattice layer) leads to a marked reduction in the thermal
conductivity of the composite as a wholeÐunlike the
electric conductivity of parallel-connected ideal (for exam-
ple, superconducting) and resistive electric conductors.

4. Multichannel photon scattering from
two-dimensional nanostructures

The idea of multichannel propagation may find another
application to the scattering of photons from two-dimen-
sional systems. Similarly to acoustic phonons, an additional
propagation channel can result in a photon being totally
reflected from a two-dimensional system with a physical
thickness much smaller than the incident wavelength.
Reference [23] gives examples of various anisotropic and/or
gyrotropic 2D systems that scatter a photon such that it
undergoes total reflection or total polarization conversion.
The simplest system of this type is a thin layer of a polar, cubic
GaAs type semiconductor whose characteristic frequency
dispersion of the dielectric constant, eik � edik, is due to
optical phonons [42]:

e � e1 � e0 ÿ e1
1ÿ o 2=o 2

TO ÿ iGo=o 2
TO

; �21�

where e0 and e1 < e0 are the static and optical dielectric
constants, and oTO and G are the frequency and the
attenuation constant of a long-wave transverse optical
phonon. It is a simple matter to see [see formulas (22) and
(23) and Fig. 6] that close to the frequency oTO, at which
e!1, a resonant increase occurs in the reflection coefficient
from a thin layer at the interface between two media
(including the case in which such a layer resides in a
vacuum). In this case, the reflection curve is generally
asymmetric as a function of frequency (see Fig. 6). The
increase in the reflection coefficient at resonance is greater,
the higher the quality factor [which is described by the
parameter oTO=G in formula (21)] of the optical phonon is.
However, if the thin semiconductor layer is at the interface of
two identical media (for example, in a vacuum), then for
e�o� � 1, o > oTO the photon undergoes total transmission
through the layer. The asymmetric shape of the transmission
coefficient through a thin layer of a polar semiconductor can
be related to the interference of two photon paths: through a
resonance with an optical phonon, and through the surround-
ing medium with dielectric constant e1, i.e., with the Fano
effect for photons.
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Figure 6. Energy reflection coefficient as a function of normalized

frequency for a photon incident on a 100-nm-thick layer of polar GaAs

semiconductor at the vacuum± glass interface; oTO is the frequency of a

transverse optical phonon. The remaining layer parameters are given in

the text.
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Another photon analogue of the Fano effect is presented
by the interaction of photons with a two-dimensional metal ±
dielectric type nanostructure consisting, for example, of single
or double strips of 2D electron gas on a substrate of a GaAs
type semiconductor [43], or of resonant metallic elements like
split double [44, 45] or single [46] ring cavities on glass
substrates. Resonantly enhanced photon reflection from
such structured (laterally nonuniform) 2D electronic systems
is observed in the far infrared [43, 44] and in the optical range
with n � 100 THz [45, 46]. Common to all of these structured
two-dimensional electronic systems (STDESs) is the fact that
photons interact with local electronic nanostructures
(LENSs) located at a certain concentration on a transparent
substrate and exhibiting local electron ± plasmon resonances.
This suggests that a resonant reflection enhancement can be
related to the destructive interference of two photon paths:
through a local electron ± plasmon resonance, and through
the transparent substrate surrounding the resonator.

Macroscopically, the interaction of a photon with a 2D
system is described in the general case in terms of the effective
dynamic conductivity sab�o�, a; b � 1; 2 of the 2D system,
which relates the surface (dynamic) current to the electric field
component tangent to the surface (see, for example, Refs [23,
47]. For a photon normally incident from medium 1 to
medium 2 with respective refraction indices n1 and n2, the
following expressions can be obtained for the amplitude
coefficients of reflection (r �x; y�) and transmission (t �x; y�) for
the photon electric field polarized along the x- or y-axis,
respectively, in the plane of the 2D system:

r �x; y� �
n1 ÿ n2 ÿ �4p=c� sxx; yy �

��4p=c� sxy�2
n1 � n2 � �4p=c� syy;xx

n1 � n2 � �4p=c� sxx; yy ÿ
��4p=c� sxy�2

n1 � n2 � �4p=c� syy;xx

;

t �x; y� � 1� r �x; y� ; �22�

where c is the speed of light in vacuum. Equation (22) also
describes the possible anisotropy and/or gyrotropy of the
2D electronic system, which in the general case are
introduced through the different diagonal (sxx and syy)
and the off-diagonal (sxy) components of the 2D conductiv-
ity tensor sab. The dynamic 2D conductivity tensor sab�o�
can, in the general case, be related to the `excess' local
dielectric susceptibility tensors �eab�o� ÿ e �1�dab�=4p in the
thin layer of thickness d and average dielectric susceptibility
tensor at the interface of two (isotropic) media 1 and 2,
��eÿ e �1�� dab=4p, �e � �e �1� � e �2��=2, with respect to the
susceptibility of medium 1 (with lower dielectric constant,
e �1�4e �2�):

4psab � ÿiod
�
eab �

�
e �2�

2
ÿ 3

2
e �1�
�
dab

�
; �23�

where it is assumed that od=c5 1.
Figure 6 depicts the frequency dependence of the energy

reflection coefficient of a photon (incident normally from a
vacuum) from a GaAs layer of thickness d � 100 nm located
at a vacuum± glass interface. The calculations performed
used formulas (21) ± (23) with the following values of GaAs
parameters: e0 � 12:9, e1 � 10:9, oTO � 2p� 8 THz,
G � 0:77� 1012 sÿ1, and with e �2� � 2:25 for glass. As seen
from the figure, at resonancewith a transverse optical phonon

a large increase from 4% to 33% indeed occurs in the
reflection coefficient of a T-photon from a nano-thickness
layer of a polar semiconductor (the photon wavelength in
vacuum is 375 times the film thickness!). For a photon
reflected from the same GaAs layer in a vacuum, the energy
reflection coefficient varies from essentially zero out of
resonance to 28% at resonance (o � oTO). It should be
noted that calculations based on formulas (21) ± (23) agree
to a high accuracy with those using expressions for R and T
known from the optics of layered media (see Ref. [29]), with
the same GaAs layer parameters.

For an STDES at the interface of two media, in the
presence of a perpendicular magnetic field B, the following
expressions can be obtained for the components of the 2D
conductivity tensor [23]:

sxx; yy � i

�
nse

2o
m �xx; yy�o 2 ÿ o �2c �

ÿ 1

4p
��eÿ e �1��od �

�
; �24�

sxy � ÿsyx � nse
2o �c���������������

m �xxm �yy
p �o 2 ÿ o �2c �

; �25�

m �xx; yy � m �
�
1ÿ o 2

0x; y

o 2
� ig
o

�
; �26�

o 2
0x; y �

2p2~nse
2

�em �Wx; y
; ns � ndsNd � nds~nsWxWy ; �27�

o �c �
eB

c
���������������
m �xxm �yy

p ; �28�

where o0x; y are the frequencies of local electron ± plasmon
resonances, g is the electron scattering rate in an LENS, o �c
is the effective cyclotron frequency, m � is the effective
carrier mass in an LENS, ns is the average electron surface
density in the two-dimensional structure, nds is the number
of LENSs per unit area, Nd � ~nsWxWy and ~ns are the
number of electrons and the average electron number
density in one LENS, respectively, Wx; y are the character-
istic sizes of a (rectangular) LENS, and d � is the effective
thickness of the two-dimensional system (in the case of a
bilayer LENS [43, 45]).

Because the two-dimensional dynamic conductivity of an
STDES, formula (24) withB � 0, has a frequency dependence
similar to that of the two-dimensional layer of a polar
semiconductor, Eqns (21) and (23), it follows from formulas
(22) ± (27) that in the absence of an external magnetic field the
resonant reflection from an STDES similar to that shown in
Fig. 6 should be observed near each of the local electron ±
plasmon resonances. The spectral position, depth, and width
of such a resonance are determined by the values of the
parameters o0x; y and g, and also by the average electron
surface density ns which determines the effective `oscillator
strength' of the resonance. In particular, the two-dimensional
concentration of LENSs influences only the depth and width,
but not the spectral positions of transmission minima
(reflection maxima) [46]Ða fact which Eqns (22) ± (27) do
incorporate because reducing the two-dimensional concen-
tration of LENSs results in decreasing the oscillator strength
ns virtually without changing its resonance frequency o0x; y

and the damping parameter g. In the limit of zero damping of
optical phonons (or electrons) in the local structure, the
conditions r �x; y� � ÿ1, t �x; y� � 0 should be satisfied at a
reflection resonance for the arbitrarily small (down to
monatomic) physical thickness d (or d �) of the 2D system
(23) or (24).
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On the other hand, formulas (22) suggest that in the case
of sxx; yy � 0 (and sxy � 0,B � 0) an STDES at the boundary
of dissimilar media with e �1� < e �2� becomes optically trans-
parent for a photon with appropriate polarization. The
photon transmission and reflection coefficients are the same
as at the interface of media 1 and 2 without a 2D electronic
system. Reference [48] described the total transmission of a
photon through a thin semiconductor layer made of high-
permittivity material and containing a two-dimensional
electron gas. In the recent paper [49], a similar phenomenon
of a `totally transparent structured film' was discovered
experimentally in the optical range in a two-dimensional
square lattice fabricated from pairs of cylindrical gold posts
� 80 nm in height placed on a glass substrate. Within the
framework of Eqns (22) ± (28) and expression (24) for sxx; yy,
this phenomenon can be described, for example, by taking
sxx � 0, d � � 80 nm, �eÿ e �1� � 0:63 (vacuum± glass inter-
face), m � � me, B � 0, and the corresponding values of the
electron ± plasmon resonance frequency o0x, electron scatter-
ing parameter g, and the average electron surface density ns.

The essential point is that to explain the experimental
results of Ref. [49] in terms of Eqns (22) ± (28) and using the
photon analogy of the Fano effect, there is no need to
introduce (as in Ref. [49]) negative permeabilities m�o� in the
optical frequency range. In Ref. [49] and also in Refs [44 ± 46],
the negative values of permeability in the optical frequency
range were used to explain the resonant enhancement in
photon reflection from STDESs. (In this connection, inter-
estingly, earlier references on the reflection of electromagnetic
waves from STDESs [43] did not use negative permeabilities
of the system to explain experiments.) Indeed, Eqns (22) ± (28)
assume that the permeability of a nonmagnetic STDES
(including when in an external magnetic field) is identically
equal to unity. These equations can also be used to describe
the resonant enhancement in photon reflection from an
STDES (see Fig. 6). (According to formulas (23), (24), and
(27), coating a 2D system of pairs of nanoposts with a thin
layer of glycerine of thickness d �3� � d � and with e �3� > 1 [49]
increases the average effective dielectric constant �e at the
interface and lowers the frequency o0x of the reflection
resonance from an STDESÐwhich is exactly what the
experiments in Ref. [49] showed.) Moreover, in accordance
with the estimates given by Landau and Lifshitz [50] and
discussed in Ref. [49], taking into account the deviation of
m�o� from unity in the optical and higher-frequency ranges is
``clear excess of accuracy''. Therefore, an important conclu-
sion of this section is that the resonant enhancement in
photon reflection from STDESs found experimentally in the
optical frequency range can be explained by and reproduced
with equations like (22) ± (28) under the assumption of the
permeability of the system being identically equal to unity,
m�o� � 1, which is fully consistent with the statement in
Ref. [50] concerning the permeability of materials in the
optical (and higher) frequency range.

Interest in media with negative permeability m�o� was
sparked by the predictionmade byVeselago [51] that isotropic
material with both negative e and m should have a negative
refraction index n � �����

em
p

, the underlying reason being that in
such a material the Poynting vector P � �c=4p�E�H is
antiparallel to the photon wave vector k. Additional interest
in these unusual materials was created by the suggestion put
forward inRef. [52] that thematerials with negative refraction
indices could be used to fabricate `perfect lenses'Ð lenses
whose resolving power is not limited by the wavelength of the

photon and which are therefore of much interest. Because
materials with such properties do not exist in natureÐnot as
far as optical wavelengths are concernedÐextensive efforts
have beenmade to produce artificial materials with both e and
m being negative [53]. But, as noted above when mentioning
the estimate and statement in the book [50], the predicted
existence of materials with negative m in the optical (and
higher) frequency range is theoretically inconsistent. On the
other hand, no known theoretical framework is at odds with
the existence of anisotropic materials in which the Poynting
vector is not along (or is even antiparallel to) the photon wave
vector in a certain frequency range (and in a certain interval of
directions) (see, for example, Ref. 54]). Understanding the
refraction of waves in such media can be greatly enhanced by
analyzing the geometry of the `isofrequency surface' of
elementary excitations propagating in an anisotropic med-
ium. One example is given in Ref. [55], in which the amplitude
damping of an elastic surface wave in the bulk of an
anisotropic crystal is related to the presence of nonconvex
portions at the isofrequency surface of crystal phonons with
appropriate polarization. Section 5 below briefly describes a
simple periodic, anisotropic, acoustic system negatively
refracting for a certain acoustic frequency range and suggests
some simple experiments in which this property can be
observed. The essential point here is that such a periodic
anisotropic system can be fabricated either frommacroscopic
or nanoscale structural elements.

5. Negative refraction of phonons in periodic
anisotropic media and the acoustic analogue
of the Fano effect

Let us consider a simple two-component acoustic superlattice
consisting of plane layers of materials A and B. The
propagation of phonons in a periodic medium can be
described on the basis of the Bloch waves, in which a wave is
characterized by the Bloch wave vector k, frequency o and
group velocityVph. In the quasiclassical approximation, these
wave characteristics can change adiabatically in time and
space, and in doing so obeying the following equations (see,
for example, Ref. [56]):

_k � ÿHo ; Vph � qo
qk

; �29�
where the frequency o determines the phonon energy
Eph � �ho and is therefore assumed to be positive.

As follows from equations (29), the directions of the
phonon group velocity and the corresponding Poynting
vector are determined by the direction of the (outer) normal
to the phonon isofrequency surface o � const. Using the
results of Ref. [57] on the propagation of waves at an arbitrary
angle to an axis of an acoustic superlattice, it is possible to
prove that in a two-component acoustic superlattice formed
by layers of thicknesses dA and dB of materials with very
different acoustic impedances (rAcA 5 rBcB, where rA;B and
cA;B are the density and velocity of the sound of the
appropriate polarization in layers A and B), in the case of
cA=dA � cB=2dB the secondminiband has a small width and a
negative group velocity along the Z-axis of the superlattice:

o 2�c 2Ak
2
x �

�
p
cA
dA
� 2

cA
dA

rAcA
rBcB

cos�kZd �
�2
; d � dA�dB ;

�30�
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VphZ � ÿ2cA d

dA

rAcA
rBcB

sin�kZd � : �31�

Such a relatively narrow miniband is found, for example,
in a simple acoustic superlattice formed by Plexiglass layers
periodically arranged in water (in which case A and B in
formulas (30) ± (31) stand for water and Plexiglass, respec-
tively). In a perturbed acoustic Plexiglass ±water superlattice,
temporal acoustic Bloch oscillations in the ultrasound trans-
mission coefficient through the superlattice layer were
observed for the first time, similar to electron Bloch
oscillations found in a semiconductor superlattice in an
external electric field [58]. The perturbation of the acoustic
superlattice was achieved by a water layer thickness gradi-
entÐ leading, in accordance with Eqns (29) and (31), to
temporal oscillations in the group velocity (and hence in the
acoustic Poynting vector) along the superlattice axis:

VphZ � 2cA
d

dA

rAcA
rBcB

sin�oBt� ; �32�

where the frequency oB � jd qocav=qZj � jp�cA=d 2
A� qdA=qzj

of acoustic Bloch oscillations is determined by a small
gradient of central resonance frequencies of `water cavities'
between neighboring Plexiglass layers, ocav � pcA=dA [see
formula (30)].

Because an unperturbed anisotropic periodic system has a
frequency interval for waves with negative group velocity
along the superlattice axisÐ the length of the interval being
equal to the width 2D � 4rAc

2
A=�rBcBdA� of the acoustic

miniband (30) near the central resonance frequency ocav Ð
this simple system makes it possible for ultrasonic acoustic
waves to undergo negative refraction and to have a negative
refraction index. Some aspects of negative refraction of
acoustic waves have been studied in acoustical crystals that
are more difficult to make, consisting of a two-dimensional
lattice of solid cylinders in the air (see Ref. [59] and references
cited therein).

Negative refraction in the three-dimensional layered
system under consideration can be conveniently explained
by constructing the isofrequency surface of acoustic oscilla-
tions using Eqn (30). Figure 7 displays the cross section of this
surface by the kxkz plane for the parameters of the water ±
Plexiglass superlattice that were used in the experiments:
d � 2dA, rAcA=�rBcB� � 0:47, and o � 1:15ocav [58]. (A
miniband with such an isofrequency surface occurs for
o > ocav ÿ D, and for o > ocav � D the isofrequency sur-
faces shown in Fig. 7 transform into a single open surface in
the form of a kz-aligned `corrugated cylinder'Ða Fermi
surface shape known from the theory of metals [60].) In
accordance with the laws of radiation, the group velocity of
an acoustic wave incident normally to the layers should be
directed inward with regard to the superlattice, whereas its
wave vector will, according to Eqn (31) and Fig. 7, be directed
oppositely, i.e., away from the superlattice. Therefore, if the
second edge of the superlattice is cut, making it wedge-
shaped, then the acoustic wave going out from the opposite
side will be refracted at a negative angle to the external
medium. The same phenomenon of negative refraction of
electromagnetic waves in microwave range (10 to 12GHz)
was studied in Refs [61, 62] in much more complex wedge-
shaped structures with a `high density of wires'. The discovery
and study of negative acoustic refraction in simple layered

water ± solid systems is potentially of both fundamental and
applied interest. It is essential that a composite medium for
the study of acoustic Bloch oscillations and negative refrac-
tion can be made both of macroscopic elements (like layers of
a solidmaterial in water) and of nanoscale structural elements
(like the semiconductor superlattice with `acoustic nanocav-
ities' designed in Ref. [1]).

Negative group velocity of waves propagating along an
axis of superlattice (31) in miniband (30) will also be
encountered in studying acoustic Bloch oscillations in a
perturbed superlattice similar to that considered in Ref. [58]
but for a different arrangement of the experiment. What
needs to be monitored in this new arrangement is the
transverse oscillations of a Gaussian beam (with a finite
width across layers) propagating along the layers of a
perturbed superlattice. A similar arrangement of the experi-
ment was used, for example, in Ref. [63], which studied the
transverse Bloch oscillations of an optical Gaussian beam in a
two-dimensional system of parallel waveguides with a
transverse gradient of refraction indices of individual wave-
guides (the gradient being due to a transverse gradient in
temperature). In the experiments of Ref. [63], a Gaussian
beam excited by a laser at the ends of several waveguides
periodically shifted to the region of a higher index of
refraction as it propagated, the reason being that optical
excitations have a positive group velocity along the axis of the
unperturbed superlattice. However, in the case of miniband
(30) with a negative group velocity (31) along the axis of the
unperturbed acoustic superlattice, a Gaussian beam of
ultrasound waves which is excited at the ends of several
layers will, as it propagates, shift periodically to the region
of a lower index of refraction, i.e., to that region of a
perturbed superstructure where water layers between Plex-
iglass layers are thinner. The Bloch oscillations of the
transverse shift of the ultrasound Gaussian beam can be
visualized.

A further possible source of a narrow acoustic miniband
with a negative group velocity along an axis of a superlattice is
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Figure 7. Isofrequency surface of longitudinal ultrasound waves in an

acoustic water ± Plexiglass superlattice. The frequency and normalized

parameters of the superlattice are given in the text.
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an analogue of the Fano effect for acoustic waves in the case
in which relatively thin layers of a solid material have holes
(with a diameter of about the thickness of the layer) forming
identical two-dimensional lattices, square or rectangular, in
all the layers of the water ± solid superlattice. If the lattice
constant a of the two-dimensional lattice of holes exceeds the
thickness of the solid material layer, then there is a possibility
for a normally incident longitudinal wave to be resonantly
reflected from an individual thin layer due to the destructive
interference of two acoustic paths: through the resonant
oscillations of standing bending waves in a perforated layer
(with in-layer wave number � p=a), and through the
`averaged' solid material layer. Resonant reflection from a
relatively thin perforated layer of a solid material in water will
have a line shape similar to that shown in Fig. 6. But if solid
material layers with identical two-dimensional lattices of
holes form a superlattice and if the narrow transmission
resonance falls within the first forbidden band of the super-
structure (this position of the resonance of acoustic waves
with the bending oscillations of the cylinder shape is
investigated in Ref. [33] for a two-dimensional lattice of
thin-walled cylinders in a gas or a liquid), then such a
resonance can produce in the superlattice a narrow miniband
for wave propagation with negative dispersion of the group
velocity along a superlattice axis (because such a miniband
will be the closest to the acoustic band with the positive
dispersion). In this case, the acoustic waves that enter into
resonance with the narrow miniband undergo negative
refraction when passing through a wedge-shaped sample of
such acoustic `metamaterial'. The resonant reflection effect
was first discovered in a study of photon propagation through
layers of a transparent material with a two-dimensional
lattice of holes [25, 26]. By analyzing the isofrequency surface
of phonons or photons in anisotropic periodic systems whose
structural elements show the Fano effect, it is possible to
explain the origin of negative acoustic or electromagnetic
wave refraction in such media.

6. Conclusion

Let us summarize the main points of this report. (1) A
description is given for a theory developed for the phonon
analogue of the Fano effect, which is predicted for the first
time and is observed in low-dimension multichannel systems,
in particular, in `locally resonant' media. (2)A simplemodel is
proposed for an additional channel of transmission of long-
wavelength phonons through a crystal two-dimensional
defect or a quasi-one-dimensional phonon nanowaveguide.
How and when an additional transmission channel for
acoustic phonons can lead to the total resonant reflection or
absorption of phonons is analyzed. (3) It is shown that the
nonresonant interaction of acoustic phonons with the
dynamically rough surface of a nanowaveguide markedly
reduces the mean free path of phonons in such low-
dimension structures. The predicted reduction in phonon
mean free path and phonon thermal conductivity of nano-
wires is in agreement with experimental data on thermal
conductivity of silicon nanowires with smooth and rough
surfaces. (4) It is shown that the multichannel propagation
and scattering of photons can lead to an observed enhance-
ment in reflection from thin layers of polar semiconductors
and two-dimensional structured electronic systems on a
transparent substrate. Introducing the multichannel scatter-
ing of photons in a two-dimensional structured electronic

system makes it possible in some of the cases studied to avoid
using the negative permeability at optical frequencies. (5) It is
shown that analysis of phonon or photon isofrequency
surfaces in macroscopically or nanoscale periodic structures
makes it possible to explain the origin of the negative
refraction of acoustic and electromagnetic waves in such
media and to predict new observable effects.
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