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A scientific session of the Physical Sciences Division of the
Russian Academy of Sciences (RAS) was held on 26 March
2008 at the conference hall of the P N Lebedev Physical
Institute, RAS. The following reports were presented at the
session:

(1) Klimov V V (P N Lebedev Physical Institute, RAS,
Moscow) “Nanoplasmonics”’;

(2) Istomin Ya N (P N Lebedev Physical Institute, RAS,
Moscow) “Electron—positron plasma generation in the
magnetospheres of neutron stars”;

(3) Kosevich Yu A (N N Semenov Institute of Chemical
Physics, RAS, Moscow) “Multichannel propagation and
scattering of phonons and photons in low-dimension nano-
structures”.

An abridged version of these reports is given below.
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Nanoplasmonics

V V Klimov

Advances in the production and visualization of nano-sized
clusters and other metal nanoparticles (Fig. 1) have given rise
to nanoplasmonics, an important and fast-developing area of
nanotechnology and nanooptics. Aimed at designing com-
plex optical nanodevices, nanoplasmonics studies phenom-
ena related to oscillations of conduction electrons in metal
nanostructures and nanoparticles and how these oscillations
interact with light, atoms, and molecules. Plasmon oscilla-
tions in nanoparticles differ considerably from surface
plasmons [1] and are therefore called localized plasmons.
What is most special about nanoplasmonic phenomena is
that the strong spatial localization of the electronic oscilla-
tions is combined with their high frequencies varying from
UV to IR ranges. The strong localization, in turn, leads to a
huge strengthening of local optical and electric fields. Finally,
the properties of localized plasmons are critically dependent
on the nanoparticle shape, enabling their resonance systems
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Figure 1. Examples of nanoparticles amenable to efficient synthesis
techniques.

to be tuned so as to effectively interact with light or with
elementary quantum systems like molecules and quantum
dots.

These most important properties of plasmon nanoparti-
cles have already allowed a range of new effects to be detected.
First and foremost, the huge local fields that arise near
nanoparticles lead to an increase of 10—14 orders of
magnitude in the Raman scattering cross section, conceiva-
bly making individual molecule detection possible [2, 3]. The
presence of local fields can be exploited to design marker-free
techniques for determining the structure of DNA [4]. Using
the complex spectral structure of plasmon nanoparticles, it
proves possible to simultaneously enhance their light absorp-
tion and light emission properties, giving rise to high-
performance fluorophores and nano-sized light sources [5].
Also, there are suggestions to use plasmon nanoparticles in
the SPASER (Surface Plasmon Amplification by Stimulated
Emission of Radiation) context [6]. Other than the above
novel applications — ones that rely on plasmon nanoparticle
physics — achievements in the field of nanoplasmonics can be
used to improve the performance-to-cost ratio of, for
example, solar batteries and LEDs. Furthermore, the small
size of metal nanostructures combined with optically fast
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processes occurring in them gives nanoplasmonics good
promise for developing a new component base for computers
and data processing devices [7].

Exactly how a localized plasmon should be defined is as
yet an unsettled question, but a widely held view is that this
is simply a resonance peak in the nanoparticle’s light-
scattering or light-absorption cross sections. This is often
misleading though, because far from all localized plasmons
can be readily detected or described as such (‘dark’ plasmons
with zero dipole polarizability being an example). In our
view, the term ‘a localized plasmon’ should be applied to the
solutions of the problem covering free quasistatic oscilla-
tions in nanoparticles (the term ‘free’ meaning the absence of
exciting fields), which reduces to the following Laplace
equation boundary value problem:
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where @M and ¢9" are the electric potentials of the plasmon
eigenfunctions inside and outside of the particle, respectively,
and 0¢,,/On|¢ denotes the normal derivative at the boundary
of the particle. The last of equations (1) ensures the fulfilment
of a continuity condition of normal induction components.
The mathematical complexity of the seemingly simple system
(1) is enormous, as is the range of physical problems it
encompasses.

It is the eigenfunctions e, = —V¢, and eigenvalues ¢, of
the permittivity that determine a localized plasmon oscilla-
tion. For finite-sized nanoparticles, the eigenvalues ¢, assume
only negative (with zero imaginary part) discrete values,
making localized plasmons very similar in this respect to
ordinary atoms and molecules. What is extremely important
here is that the eigenvalues ¢, are of no relevance to the
permittivity of the real material the nanoparticles are made of.

Numerical studies of localized plasmons are conveniently
carried out by using Eqn (1) in its integral form:
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where o (r) is the surface charge, n(r) is the outer normal to the
particle’s surface, and the integration is taken over the surface
of the particle.

Once the solution of quasistatic problem (1) or (2) has
been found, the solution of the actual problem with given
exciting fields E°(r) can be expressed in terms of the
eigenfunctions and eigenvalues of the permittivity of loca-
lized plasmons as follows:
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where the integration is taken over the volume ¥ of the
particle, and ¢(w) is the frequency-dependent permittivity of
the actual material of the nanoparticle. At those frequencies
w, for which some of the denominators is close to zero,
en ~ ¢(wy), a plasmon resonance occurs, which can, in
principle, be observed. In the case of the Drude dispersion,
the resonance plasmon frequencies can be found from the
relationship
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where wy, is the plasmon frequency of the metal. From Eqn (3),
in turn, the polarizabilities, scattering and absorption cross
sections, spontaneous emission rates of the atoms, etc. can be
found.

The most important feature of quasistatic description (1)
is that it narrows the problem to plasmon oscillations alone.
Other particle’s modes (whispering gallery modes) do not
arise in this picture and so do not hamper obtaining and
interpreting the results.

In fact, the above theory applies only to nanoparticles,
i.e., when retardation effects are negligible. If the nanoparti-
cles are considered to be finite in comparison with the
wavelength, the eigenvalues ¢, acquire negative imaginary
parts which are related to the emission of the plasmons and
are given by
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In the simplest case of spherical nanoparticles of radius
Ry, the problem for the eigenfunctions and eigenvalues of the
permittivity has the solution
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where r is the radius, and Y denotes spherical harmonics. The
most important electron oscillation mode is the dipole mode,
withn =1,and ¢ = —2.

For more composite and less symmetric nanoparticles, the
resonance plasmon frequencies and the potentials of plasmon
atoms have a more intricate form. For example, in the case of
a metal nanoparticle in the form of a three-axis ellipsoid with
half-axes a; > a» > a3, the plasmon frequencies will be given

by [8]
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where E" and F)' are the internal and external Lamé
functions, and the prime denotes the derivative of a function
with respect to its argument.

The nanoparticles of most practical importance are those
having the shape of a cube—or rather being close to this
shape, because the edges and tips of such nanoparticles are
rounded off in the growth process [9] (see Fig. 1). Localized
plasmons in this kind of nanoparticles are conveniently
discussed by representing their surface parametrically in the
form

Xy =at 9)

Here, n = 2 and n = oo correspond to a sphere and a cube,
respectively.

The dependences of the resonance values of the permittiv-
ity on the parameter n are depicted in Fig. 2. It is seen how the
permittivity eigenvalues split and gradually transform into
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Figure 2. Spectrum of plasmon oscillations as a function of the shape of
nanoparticles with cubic morphology.

those of a cube as the symmetry alters. Remarkably, at n=2.5
the plasmon spectrum branches with ¢ > —1 form, which are
characteristic of a cube but not of a sphere. In fact, the
plasmon spectra experience a phase transition at n = 2.5. A
similar transition often occurs in other complex-shaped
nanoparticles, as well. The spectra obtained are very
important in providing pure spectroscopic means with
which the shape-changing processes of nanoparticle crystal-
lization or melting can be controlled.

Plasmon oscillations in a cluster comprising two spherical
nanoparticles provide another impressive example of loca-
lized plasmons [10—12].

The full spectrum of plasmon oscillations we obtained for
this system is depicted in Fig. 3. The region o < w,/ V2
(¢ < —1) exhibits only symmetric and antisymmetric hybrid
states which exist for any interparticle distances and which in
the limit of large distances between nanospheres change in a

1.4 1.5 1.6
R12/2Ry

Figure 3. Plasmon oscillation spectrum for a two-nanosphere cluster
versus the separation Ry, (m = 1) between the spheres.

continuous manner to the corresponding states of weakly
interacting localized plasmons with characteristics described
by formulas (6), (7). It is these hybrid states which were
studied in Refs [13—15].

In the region of w, > w > wp/\/i(O > ¢ > —1), however,
plasmon oscillations are only possible for small
[Ri2/(2Ry) < 1.2] distances between the nanoparticles. At
these distances, similar to nanoparticles of cubic morphol-
ogy, the plasmon spectra of a two-nanoparticle cluster also
show a phase transition.

In the region of small distances between nanospheres, the
new branch of localized plasmon oscillations (M modes or
plasmon molecules) has properties amenable to an analytical
description [10—12]:
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Large azimuthal numbers, m > 1, also allow simple
asymptotic expressions to be obtained for the plasmon
oscillation spectra of a two-sphere cluster, and the eigenfunc-
tions of localized plasmons can also be expressed analytically
in the small separation limit [10—12].

Figure 4 plots the spatial distribution in the xz plane of the
wave function (potential) of localized plasmons.

In the axisymmetric (m = 0) case there is a qualitative
correspondence between the spatial structure of the antisym-
metric (L modes) and symmetric (T modes) plasmon oscilla-
tions and that of the wave functions of isolated spherical
nanoparticles, namely, the positive charge resides on one
semisphere, whereas a negative charge of the same amount
(note the sphere electroneutrality requirement) locates at the
opposite part of the sphere. In this case, interactions between
plasmon atoms simply boil down to a certain redistribution of
charge over opposite semispheres.

In the case of symmetric M modes appearing due to the
phase transition, the situation is directly opposite and the
charges concentrate in a small region close to the gap between
the nanospheres. At those points on the spheres that are
distant from the gap, the wave functions of plasmon
molecules (M modes) become essentially zero.

As the distance between the nanospheres increases, the
symmetric M modes become less localized —to eventually
disappear at a critical distance, whereas the antisymmetric (L)
and symmetric (T) modes remain unchanged as far as their
localization is concerned.

The difference in localization between symmetric M
modes, on the one hand, and the antisymmetric L modes
and symmetric T modes, on the other, results in the former
and the latter responding fundamentally differently to
exciting fields. The L and T modes have a polarizability of
the order of the nanosphere volume, o ~ Rg, and interact
effectively with uniform external fields of proper orientation
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Figure 4. Spatial distribution of electric potential for (a) L modes, (b) M modes, and (¢) T modes (L, M, T = 1) in the xz plane [m = 0, Rj2/(2Ro) = 1.05].

and symmetry. M modes (plasmon molecules), in contrast,
possess relatively low polarizability o ~ 4%, where 4 is the gap
between the spheres, so their excitation by uniform optical
fields is weak compared to the L and T modes. On the other
hand, M modes interact effectively with strongly nonuniform
fields that are localized near the sphere —sphere gap and arise
due to the emission of atoms and molecules resided near the
gap.

The discussion above was concerned with localized
plasmons in a cluster comprising two identical nanospheres.
The same localized plasmons also exist in clusters of two
different nanospheres or two different bubbles in metal. For
example, the spectrum of plasmon oscillations for two
different spheres a small distance apart can be described by
the expression
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where the parameter 1, — 1, can be found from the relation-
ship
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and ¢, &, & are the permittivities of the first sphere, the
second sphere, and the region in-between, respectively.

The strong localization of M modes suggests that what
mainly determines their properties is the radii of curvature of
the two almost touching surfaces and the distance between
their centers. Therefore, for any smooth nonspherical
particles the properties of M modes that form in the gap
between them can be estimated by considering M modes in
two spheres approximating the nonspherical particles at their
point of contact.

Two closely spaced semi-infinite bodies give rise to a more
complex situation because in this case some of the charges can
move arbitrarily far from the region of contact and the
spectrum becomes continuous— with the result that loca-
lized plasmons do not, strictly speaking, exist in such systems.
However, stable plasmon oscillations similar to antisym-

metric L modes and symmetric M modes exist in this case,
as well [12].

As already noted, the unique properties of localized
plasmons —nanolocalization, optical frequencies, shape-
tuned resonances — are of interest for many applications.

Also, the strong localization of M modes appears to show
promise for a range of applications, especially those relying
on the effective interaction of nanolocalized light sources
(molecules and nanocrystalline quantum dots) with nanopar-
ticles and nanostructures, and for nanoelectromechanical
devices [16] where van der Waals forces are of importance.

As is known, van der Waals forces relate to the spatial
dependence of vacuum-fluctuation energy density. In the case
of closely spaced plasmon nanoparticles, the van der Waals
energy is dominated by contributions from the zero-point
oscillations of localized plasmons.

For two identical plasmon nanospheres, the van der
Waals energy consists of contributions from the zero-point
oscillations of antisymmetric L modes and symmetric T and
M modes:

Uvaw Zg(z oo+ ZwLo +Zwro)
M=1 L=1 T=1
+h< i me"’ i (/)Lm"' i me) . (14)
M, m=1 1

L,m=1 T,m=

Although the contributions from different modes are
given by formally identical expressions, the physical con-
sequences they produce are totally different. It is seen from
Fig. 3 that the energies (frequencies) of antisymmetric states
(L modes) increase with intersphere distance, leading to
attraction between the particles. In contrast, the energy of
M modes decreases with distance, making the nanospheres
repel. Symmetric T modes also give rise to a very weak
repulsion.

The plot in Fig. 5, obtained in Ref. [17] by directly
summing all the modes in Eqn (14), shows the way in which
contributions from various plasmonic states to the
van der Waals energy vary with the separation between the
spheres. As expected, the symmetric and longitudinal anti-
symmetric modes lead, respectively, to the repulsion and
attraction of nanoparticles. It turned out unexpected that
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Figure 5. Van der Waals energy due to various plasmonic states as a
function of separation between the spheres.

the repulsive contribution due to M modes is nearly equal to
the attractive contribution caused by L modes. As a result, the
total van der Waals energy increases with separation between
the spheres — which reveals its attractive nature — but is an
order of magnitude smaller than would be obtained by
ignoring the M modes we discovered.

The direct measurement of van der Waals forces between
plasmon nanoparticles provides a basis for experimentally
verifying the existence of plasmon molecules (M modes).

The fact that M modes very effectively interact with
strongly nonuniform fields suggests that optical interaction
between molecules and M modes can be used in developing
various single-molecule detectors or quantum dots. Figure 6
depicts the emission wavelength dependence of the radiative
spontaneous decay rate of various kinds of molecules residing
in the gap between two nanospheres. The nanospheres are
taken to be made either of Na atoms with plasmon resonances
in the optical region (Fig. 6a) or of SiC with phonon-—
polariton resonances in the infrared region (Fig. 6b). The
peaks on the right-hand side of Fig. 6 correspond to the
interaction of an ordinary molecule with T modes, whereas
those on the left correspond to the interaction of localized
plasmons with M modes.

Inspection of Fig. 6 shows that, similarly to the case of the
van der Waals energy, the interaction with M modes is of
more significance than that with symmetric T modes. Itis also
of extreme importance that a uniform external field is
inefficient for exciting M modes (plasmon molecules), mean-
ing that efficient single-molecule nanodetectors can be
developed by using two-, or more, nanosphere clusters with
geometry allowing excitation of plasmon molecules with a
fixed frequency. These nanodetectors cannot practically be
excited by external fields having the oscillation frequency of
the M modes and will therefore have a high signal-to-noise
ratio.

On the other hand, the effective interaction of plasmon
molecules with ordinary atoms and molecules can be
employed to develop SPASER and nanolaser type devices
for operating singly or in a lattice.
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Figure 6. Relative radiative spontaneous decay rate of a molecule residing
in the gap between two nanospheres as a function of the molecule’s
emission wavelength for (a) an Na nanosphere [18], and (b) an SiC
nanosphere [19]. In either case, Rj»/(2Ry) = 1.5. The dipole moment of
the atom is directed as shown by the arrow.

To summarize, this report presents the general theory and
the results of investigation of plasmon oscillations in separate
nanoparticles and nanoparticle clusters. It was demonstrated
that changing the shape of nanoparticles causes radical
changes — specifically, plasmon phase transitions—in the
spectra of localized plasmons. It was shown that the localized
plasmons discussed in this report are an important concept
for describing nanoelectromechanical systems and single-
molecule nanodetectors, as well as for spectroscopically
monitoring the shape of nanoparticles in the process of their
synthesis.

Whereas this report was concerned with localized
plasmons in nanoparticles of ordinary materials with
¢ < 0, much recent attention has been focused on metama-
terials with both permittivity and permeability being
negative [20]. Localized plasmons in nanoparticles pro-
duced from such materials have important differences
from those discussed here [21] and can therefore naturally
be called metaplasmons.
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Electron — positron plasma generation
in the magnetospheres of neutron stars

Ya N Istomin

1. Introduction

In this report we discuss the processes of the generation of
relativistic electron—positron plasma in magnetospheres of
rotating magnetized neutron stars. Both not very strong
magnetic fields, B ~ 10'> G, typical for radio pulsars, and
superstrong magnetic fields, B ~ 104 —10' G, typical for so-
called magnetars, are considered. It is shown that superstrong
magnetic fields do not suppress particle production. Intervals
of neutron star parameters, first of all rotation periods and
magnetic field strengths, allowing effective plasma generation
have been found.

Neutron stars are the smallest observed stars in the
Galaxy. Their radius R is around 10 km (for comparison,
the solar radius amounts to 7 x 10° km). So, the ratio of the
radius of a neutron star to that of ordinary stars is about 107>,
However, with such a small radius, neutron stars have a mass
M on the order of the solar one M., with the average
magnitude being 1.4M,. The mean density of the neutron
star matter is p =3M/4nR>=7x10" g cm~3, which exceeds
the standard nuclear density p, =2.8x10'% gcm™ by
several times (p ~ 2.5p,). Therefore, a neutron star can be
considered as a huge atomic nucleus with a radius of about
10 km. The matter density at the center of the star can exceed
the nuclear one by 10—20 times. At such densities in the
neutron star center, pion, hyperon, and kaon condensations

are made possible. The possibility of the appearance of
quarks, mostly strange, is also discussed. Such stars are
termed strange stars.

The body of a neutron star consists of outer and inner
crusts, where the neutronization of matter occurs, and of
outer and inner cores. The number of protons and electrons in
the inner crust and outer core is much smaller than the
number of neutrons, the ratio being of the order of several
percent. Neutrons and protons probably form superfluid and
superconducting pairs, so that neutron star matter possesses
superfluid and superconductive properties. It should also be
noted that the gravitational energy of a neutron star amounts
to a substantial fraction of its rest energy: E, = GM?/R ~
5% 10°* erg = 0.2M¢?, where G is the Newtonian constant of
gravitation.

The existence of neutron stars was predicted by Baade and
Zwicky [1]1in 1934, two years after the discovery of neutrons.
Despite their small size, neutron stars are among the most
active stars, radiating energy in the entire electromagnetic
spectral range from radio waves to ultra-high energy photons
beyond 1 TeV.

Neutron stars were discovered in 1967 by Bell and Hewish
[2] as sources of periodic radio emission —radio pulsars. In
1974, Hewish was awarded the Nobel Prize in Physics for his
decisive role in the discovery of pulsars.

Presently, more than 1500 radio pulsars are known. Their
pulse-repetition intervals, i.e., the periodicity of recurring
radio pulses, are very stable and span the range from 1.5 ms
to 8.5 s. The high stability and small intervals can only be
explained by the rotation of a small body with radius
R < 5 x 107 cm. Only neutron stars have such small radii. A
constant increase in the pulse-repetition intervals P of radio
pulsars with time is also observed, dP/dt~10""s s7!,
implying a loss in the rotational energy of a neutron star.
The measured energy loss dE/dr = (2r)*IP 3 dP/d1 for the
standard moment of inertia 7 = 10% g cm? of a neutron star is
on the order of dE/dt ~4x10% erg s~!. However, rapidly
rotating neutron stars actually lose much higher energy. For
example, the Crab Nebula pulsar emits 103 erg s~!, which is
by many orders higher than the solar luminosity. The energy
emitted in the radio frequency band amounts to only a tiny
fraction, 107>—107°, of the total energy losses. The most
powerful radio pulsars also radiate in other spectral ranges,
including the optical, X-ray, and gamma-ray ranges. The
emission power increases with frequency, but nevertheless
remains much smaller than the total energy losses. The
question arises as to what is mainly emitted by a rotating
neutron star?

In addition to being radio pulsars, neutron stars are also
the sources of

(a) powerful X-ray emission, both periodic (X-ray pul-
sars) and irregular. These are neutron stars in close binary
stellar systems in which the star-companion provides the
neutron star with matter accreting onto it. The energy
liberated during accretion amounts to ~ 0.2 of the rest
energy of the infalling flux of matter;

(b) gamma- and X-ray bursts. These are anomalous X-ray
pulsars (AXPs) and soft gamma repeaters (SGRs). Both these
groups are combined into one class of the so-called magne-
tars. They comprise neutron stars with ultrahigh surface
magnetic fields of 104 —10"° G;

(c) steady X-ray emission from central compact objects
(CCOs) in supernova remnants. These are neutron stars
formed during the core collapse of pre-supernova stars;
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