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Nanoplasmonics

V V Klimov

Advances in the production and visualization of nano-sized
clusters and other metal nanoparticles (Fig. 1) have given rise
to nanoplasmonics, an important and fast-developing area of
nanotechnology and nanooptics. Aimed at designing com-
plex optical nanodevices, nanoplasmonics studies phenom-
ena related to oscillations of conduction electrons in metal
nanostructures and nanoparticles and how these oscillations
interact with light, atoms, and molecules. Plasmon oscilla-
tions in nanoparticles differ considerably from surface
plasmons [1] and are therefore called localized plasmons.
What is most special about nanoplasmonic phenomena is
that the strong spatial localization of the electronic oscilla-
tions is combined with their high frequencies varying from
UV to IR ranges. The strong localization, in turn, leads to a
huge strengthening of local optical and electric fields. Finally,
the properties of localized plasmons are critically dependent
on the nanoparticle shape, enabling their resonance systems
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Figure 1. Examples of nanoparticles amenable to efficient synthesis
techniques.

to be tuned so as to effectively interact with light or with
elementary quantum systems like molecules and quantum
dots.

These most important properties of plasmon nanoparti-
cles have already allowed a range of new effects to be detected.
First and foremost, the huge local fields that arise near
nanoparticles lead to an increase of 10—14 orders of
magnitude in the Raman scattering cross section, conceiva-
bly making individual molecule detection possible [2, 3]. The
presence of local fields can be exploited to design marker-free
techniques for determining the structure of DNA [4]. Using
the complex spectral structure of plasmon nanoparticles, it
proves possible to simultaneously enhance their light absorp-
tion and light emission properties, giving rise to high-
performance fluorophores and nano-sized light sources [5].
Also, there are suggestions to use plasmon nanoparticles in
the SPASER (Surface Plasmon Amplification by Stimulated
Emission of Radiation) context [6]. Other than the above
novel applications — ones that rely on plasmon nanoparticle
physics — achievements in the field of nanoplasmonics can be
used to improve the performance-to-cost ratio of, for
example, solar batteries and LEDs. Furthermore, the small
size of metal nanostructures combined with optically fast
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processes occurring in them gives nanoplasmonics good
promise for developing a new component base for computers
and data processing devices [7].

Exactly how a localized plasmon should be defined is as
yet an unsettled question, but a widely held view is that this
is simply a resonance peak in the nanoparticle’s light-
scattering or light-absorption cross sections. This is often
misleading though, because far from all localized plasmons
can be readily detected or described as such (‘dark’ plasmons
with zero dipole polarizability being an example). In our
view, the term ‘a localized plasmon’ should be applied to the
solutions of the problem covering free quasistatic oscilla-
tions in nanoparticles (the term ‘free’ meaning the absence of
exciting fields), which reduces to the following Laplace
equation boundary value problem:
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where @M and ¢9" are the electric potentials of the plasmon
eigenfunctions inside and outside of the particle, respectively,
and 0¢,,/On|¢ denotes the normal derivative at the boundary
of the particle. The last of equations (1) ensures the fulfilment
of a continuity condition of normal induction components.
The mathematical complexity of the seemingly simple system
(1) is enormous, as is the range of physical problems it
encompasses.

It is the eigenfunctions e, = —V¢, and eigenvalues ¢, of
the permittivity that determine a localized plasmon oscilla-
tion. For finite-sized nanoparticles, the eigenvalues ¢, assume
only negative (with zero imaginary part) discrete values,
making localized plasmons very similar in this respect to
ordinary atoms and molecules. What is extremely important
here is that the eigenvalues ¢, are of no relevance to the
permittivity of the real material the nanoparticles are made of.

Numerical studies of localized plasmons are conveniently
carried out by using Eqn (1) in its integral form:
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where o (r) is the surface charge, n(r) is the outer normal to the
particle’s surface, and the integration is taken over the surface
of the particle.

Once the solution of quasistatic problem (1) or (2) has
been found, the solution of the actual problem with given
exciting fields E°(r) can be expressed in terms of the
eigenfunctions and eigenvalues of the permittivity of loca-
lized plasmons as follows:
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where the integration is taken over the volume ¥ of the
particle, and ¢(w) is the frequency-dependent permittivity of
the actual material of the nanoparticle. At those frequencies
w, for which some of the denominators is close to zero,
en ~ ¢(wy), a plasmon resonance occurs, which can, in
principle, be observed. In the case of the Drude dispersion,
the resonance plasmon frequencies can be found from the
relationship

Wp
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where wy, is the plasmon frequency of the metal. From Eqn (3),
in turn, the polarizabilities, scattering and absorption cross
sections, spontaneous emission rates of the atoms, etc. can be
found.

The most important feature of quasistatic description (1)
is that it narrows the problem to plasmon oscillations alone.
Other particle’s modes (whispering gallery modes) do not
arise in this picture and so do not hamper obtaining and
interpreting the results.

In fact, the above theory applies only to nanoparticles,
i.e., when retardation effects are negligible. If the nanoparti-
cles are considered to be finite in comparison with the
wavelength, the eigenvalues ¢, acquire negative imaginary
parts which are related to the emission of the plasmons and
are given by
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In the simplest case of spherical nanoparticles of radius
Ry, the problem for the eigenfunctions and eigenvalues of the
permittivity has the solution

o= "L (ka)? = 2i(ka) o + ...,
n

n=1273,..., (6)
12 5 56

Alf ?7 A2 _m» AS*_M7 ey

P n o, RO n+1 .
Pin = F Yn (qu)) y QPout = | — Yn (0,@) ) (7)
0 r

where r is the radius, and Y denotes spherical harmonics. The
most important electron oscillation mode is the dipole mode,
withn =1,and ¢ = —2.

For more composite and less symmetric nanoparticles, the
resonance plasmon frequencies and the potentials of plasmon
atoms have a more intricate form. For example, in the case of
a metal nanoparticle in the form of a three-axis ellipsoid with
half-axes a; > a» > a3, the plasmon frequencies will be given

by [8]
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where E" and F)' are the internal and external Lamé
functions, and the prime denotes the derivative of a function
with respect to its argument.

The nanoparticles of most practical importance are those
having the shape of a cube—or rather being close to this
shape, because the edges and tips of such nanoparticles are
rounded off in the growth process [9] (see Fig. 1). Localized
plasmons in this kind of nanoparticles are conveniently
discussed by representing their surface parametrically in the
form

Xy =at 9)

Here, n = 2 and n = oo correspond to a sphere and a cube,
respectively.

The dependences of the resonance values of the permittiv-
ity on the parameter n are depicted in Fig. 2. It is seen how the
permittivity eigenvalues split and gradually transform into
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Figure 2. Spectrum of plasmon oscillations as a function of the shape of
nanoparticles with cubic morphology.

those of a cube as the symmetry alters. Remarkably, at n=2.5
the plasmon spectrum branches with ¢ > —1 form, which are
characteristic of a cube but not of a sphere. In fact, the
plasmon spectra experience a phase transition at n = 2.5. A
similar transition often occurs in other complex-shaped
nanoparticles, as well. The spectra obtained are very
important in providing pure spectroscopic means with
which the shape-changing processes of nanoparticle crystal-
lization or melting can be controlled.

Plasmon oscillations in a cluster comprising two spherical
nanoparticles provide another impressive example of loca-
lized plasmons [10—12].

The full spectrum of plasmon oscillations we obtained for
this system is depicted in Fig. 3. The region o < w,/ V2
(¢ < —1) exhibits only symmetric and antisymmetric hybrid
states which exist for any interparticle distances and which in
the limit of large distances between nanospheres change in a

1.4 1.5 1.6
R12/2Ry

Figure 3. Plasmon oscillation spectrum for a two-nanosphere cluster
versus the separation Ry, (m = 1) between the spheres.

continuous manner to the corresponding states of weakly
interacting localized plasmons with characteristics described
by formulas (6), (7). It is these hybrid states which were
studied in Refs [13—15].

In the region of w, > w > wp/\/i(O > ¢ > —1), however,
plasmon oscillations are only possible for small
[Ri2/(2Ry) < 1.2] distances between the nanoparticles. At
these distances, similar to nanoparticles of cubic morphol-
ogy, the plasmon spectra of a two-nanoparticle cluster also
show a phase transition.

In the region of small distances between nanospheres, the
new branch of localized plasmon oscillations (M modes or
plasmon molecules) has properties amenable to an analytical
description [10—12]:
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Large azimuthal numbers, m > 1, also allow simple
asymptotic expressions to be obtained for the plasmon
oscillation spectra of a two-sphere cluster, and the eigenfunc-
tions of localized plasmons can also be expressed analytically
in the small separation limit [10—12].

Figure 4 plots the spatial distribution in the xz plane of the
wave function (potential) of localized plasmons.

In the axisymmetric (m = 0) case there is a qualitative
correspondence between the spatial structure of the antisym-
metric (L modes) and symmetric (T modes) plasmon oscilla-
tions and that of the wave functions of isolated spherical
nanoparticles, namely, the positive charge resides on one
semisphere, whereas a negative charge of the same amount
(note the sphere electroneutrality requirement) locates at the
opposite part of the sphere. In this case, interactions between
plasmon atoms simply boil down to a certain redistribution of
charge over opposite semispheres.

In the case of symmetric M modes appearing due to the
phase transition, the situation is directly opposite and the
charges concentrate in a small region close to the gap between
the nanospheres. At those points on the spheres that are
distant from the gap, the wave functions of plasmon
molecules (M modes) become essentially zero.

As the distance between the nanospheres increases, the
symmetric M modes become less localized —to eventually
disappear at a critical distance, whereas the antisymmetric (L)
and symmetric (T) modes remain unchanged as far as their
localization is concerned.

The difference in localization between symmetric M
modes, on the one hand, and the antisymmetric L modes
and symmetric T modes, on the other, results in the former
and the latter responding fundamentally differently to
exciting fields. The L and T modes have a polarizability of
the order of the nanosphere volume, o ~ Rg, and interact
effectively with uniform external fields of proper orientation
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Figure 4. Spatial distribution of electric potential for (a) L modes, (b) M modes, and (¢) T modes (L, M, T = 1) in the xz plane [m = 0, Rj2/(2Ro) = 1.05].

and symmetry. M modes (plasmon molecules), in contrast,
possess relatively low polarizability o ~ 4%, where 4 is the gap
between the spheres, so their excitation by uniform optical
fields is weak compared to the L and T modes. On the other
hand, M modes interact effectively with strongly nonuniform
fields that are localized near the sphere —sphere gap and arise
due to the emission of atoms and molecules resided near the
gap.

The discussion above was concerned with localized
plasmons in a cluster comprising two identical nanospheres.
The same localized plasmons also exist in clusters of two
different nanospheres or two different bubbles in metal. For
example, the spectrum of plasmon oscillations for two
different spheres a small distance apart can be described by
the expression
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where the parameter 1, — 1, can be found from the relation-
ship
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and ¢, &, & are the permittivities of the first sphere, the
second sphere, and the region in-between, respectively.

The strong localization of M modes suggests that what
mainly determines their properties is the radii of curvature of
the two almost touching surfaces and the distance between
their centers. Therefore, for any smooth nonspherical
particles the properties of M modes that form in the gap
between them can be estimated by considering M modes in
two spheres approximating the nonspherical particles at their
point of contact.

Two closely spaced semi-infinite bodies give rise to a more
complex situation because in this case some of the charges can
move arbitrarily far from the region of contact and the
spectrum becomes continuous— with the result that loca-
lized plasmons do not, strictly speaking, exist in such systems.
However, stable plasmon oscillations similar to antisym-

metric L modes and symmetric M modes exist in this case,
as well [12].

As already noted, the unique properties of localized
plasmons —nanolocalization, optical frequencies, shape-
tuned resonances — are of interest for many applications.

Also, the strong localization of M modes appears to show
promise for a range of applications, especially those relying
on the effective interaction of nanolocalized light sources
(molecules and nanocrystalline quantum dots) with nanopar-
ticles and nanostructures, and for nanoelectromechanical
devices [16] where van der Waals forces are of importance.

As is known, van der Waals forces relate to the spatial
dependence of vacuum-fluctuation energy density. In the case
of closely spaced plasmon nanoparticles, the van der Waals
energy is dominated by contributions from the zero-point
oscillations of localized plasmons.

For two identical plasmon nanospheres, the van der
Waals energy consists of contributions from the zero-point
oscillations of antisymmetric L modes and symmetric T and
M modes:

Uvaw Zg(z oo+ ZwLo +Zwro)
M=1 L=1 T=1
+h< i me"’ i (/)Lm"' i me) . (14)
M, m=1 1

L,m=1 T,m=

Although the contributions from different modes are
given by formally identical expressions, the physical con-
sequences they produce are totally different. It is seen from
Fig. 3 that the energies (frequencies) of antisymmetric states
(L modes) increase with intersphere distance, leading to
attraction between the particles. In contrast, the energy of
M modes decreases with distance, making the nanospheres
repel. Symmetric T modes also give rise to a very weak
repulsion.

The plot in Fig. 5, obtained in Ref. [17] by directly
summing all the modes in Eqn (14), shows the way in which
contributions from various plasmonic states to the
van der Waals energy vary with the separation between the
spheres. As expected, the symmetric and longitudinal anti-
symmetric modes lead, respectively, to the repulsion and
attraction of nanoparticles. It turned out unexpected that
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Figure 5. Van der Waals energy due to various plasmonic states as a
function of separation between the spheres.

the repulsive contribution due to M modes is nearly equal to
the attractive contribution caused by L modes. As a result, the
total van der Waals energy increases with separation between
the spheres — which reveals its attractive nature — but is an
order of magnitude smaller than would be obtained by
ignoring the M modes we discovered.

The direct measurement of van der Waals forces between
plasmon nanoparticles provides a basis for experimentally
verifying the existence of plasmon molecules (M modes).

The fact that M modes very effectively interact with
strongly nonuniform fields suggests that optical interaction
between molecules and M modes can be used in developing
various single-molecule detectors or quantum dots. Figure 6
depicts the emission wavelength dependence of the radiative
spontaneous decay rate of various kinds of molecules residing
in the gap between two nanospheres. The nanospheres are
taken to be made either of Na atoms with plasmon resonances
in the optical region (Fig. 6a) or of SiC with phonon-—
polariton resonances in the infrared region (Fig. 6b). The
peaks on the right-hand side of Fig. 6 correspond to the
interaction of an ordinary molecule with T modes, whereas
those on the left correspond to the interaction of localized
plasmons with M modes.

Inspection of Fig. 6 shows that, similarly to the case of the
van der Waals energy, the interaction with M modes is of
more significance than that with symmetric T modes. Itis also
of extreme importance that a uniform external field is
inefficient for exciting M modes (plasmon molecules), mean-
ing that efficient single-molecule nanodetectors can be
developed by using two-, or more, nanosphere clusters with
geometry allowing excitation of plasmon molecules with a
fixed frequency. These nanodetectors cannot practically be
excited by external fields having the oscillation frequency of
the M modes and will therefore have a high signal-to-noise
ratio.

On the other hand, the effective interaction of plasmon
molecules with ordinary atoms and molecules can be
employed to develop SPASER and nanolaser type devices
for operating singly or in a lattice.
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Figure 6. Relative radiative spontaneous decay rate of a molecule residing
in the gap between two nanospheres as a function of the molecule’s
emission wavelength for (a) an Na nanosphere [18], and (b) an SiC
nanosphere [19]. In either case, Rj»/(2Ry) = 1.5. The dipole moment of
the atom is directed as shown by the arrow.

To summarize, this report presents the general theory and
the results of investigation of plasmon oscillations in separate
nanoparticles and nanoparticle clusters. It was demonstrated
that changing the shape of nanoparticles causes radical
changes — specifically, plasmon phase transitions—in the
spectra of localized plasmons. It was shown that the localized
plasmons discussed in this report are an important concept
for describing nanoelectromechanical systems and single-
molecule nanodetectors, as well as for spectroscopically
monitoring the shape of nanoparticles in the process of their
synthesis.

Whereas this report was concerned with localized
plasmons in nanoparticles of ordinary materials with
¢ < 0, much recent attention has been focused on metama-
terials with both permittivity and permeability being
negative [20]. Localized plasmons in nanoparticles pro-
duced from such materials have important differences
from those discussed here [21] and can therefore naturally
be called metaplasmons.
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Electron — positron plasma generation
in the magnetospheres of neutron stars

Ya N Istomin

1. Introduction

In this report we discuss the processes of the generation of
relativistic electron—positron plasma in magnetospheres of
rotating magnetized neutron stars. Both not very strong
magnetic fields, B ~ 10'> G, typical for radio pulsars, and
superstrong magnetic fields, B ~ 104 —10' G, typical for so-
called magnetars, are considered. It is shown that superstrong
magnetic fields do not suppress particle production. Intervals
of neutron star parameters, first of all rotation periods and
magnetic field strengths, allowing effective plasma generation
have been found.

Neutron stars are the smallest observed stars in the
Galaxy. Their radius R is around 10 km (for comparison,
the solar radius amounts to 7 x 10° km). So, the ratio of the
radius of a neutron star to that of ordinary stars is about 107>,
However, with such a small radius, neutron stars have a mass
M on the order of the solar one M., with the average
magnitude being 1.4M,. The mean density of the neutron
star matter is p =3M/4nR>=7x10" g cm~3, which exceeds
the standard nuclear density p, =2.8x10'% gcm™ by
several times (p ~ 2.5p,). Therefore, a neutron star can be
considered as a huge atomic nucleus with a radius of about
10 km. The matter density at the center of the star can exceed
the nuclear one by 10—20 times. At such densities in the
neutron star center, pion, hyperon, and kaon condensations

are made possible. The possibility of the appearance of
quarks, mostly strange, is also discussed. Such stars are
termed strange stars.

The body of a neutron star consists of outer and inner
crusts, where the neutronization of matter occurs, and of
outer and inner cores. The number of protons and electrons in
the inner crust and outer core is much smaller than the
number of neutrons, the ratio being of the order of several
percent. Neutrons and protons probably form superfluid and
superconducting pairs, so that neutron star matter possesses
superfluid and superconductive properties. It should also be
noted that the gravitational energy of a neutron star amounts
to a substantial fraction of its rest energy: E, = GM?/R ~
5% 10°* erg = 0.2M¢?, where G is the Newtonian constant of
gravitation.

The existence of neutron stars was predicted by Baade and
Zwicky [1]1in 1934, two years after the discovery of neutrons.
Despite their small size, neutron stars are among the most
active stars, radiating energy in the entire electromagnetic
spectral range from radio waves to ultra-high energy photons
beyond 1 TeV.

Neutron stars were discovered in 1967 by Bell and Hewish
[2] as sources of periodic radio emission —radio pulsars. In
1974, Hewish was awarded the Nobel Prize in Physics for his
decisive role in the discovery of pulsars.

Presently, more than 1500 radio pulsars are known. Their
pulse-repetition intervals, i.e., the periodicity of recurring
radio pulses, are very stable and span the range from 1.5 ms
to 8.5 s. The high stability and small intervals can only be
explained by the rotation of a small body with radius
R < 5 x 107 cm. Only neutron stars have such small radii. A
constant increase in the pulse-repetition intervals P of radio
pulsars with time is also observed, dP/dt~10""s s7!,
implying a loss in the rotational energy of a neutron star.
The measured energy loss dE/dr = (2r)*IP 3 dP/d1 for the
standard moment of inertia 7 = 10% g cm? of a neutron star is
on the order of dE/dt ~4x10% erg s~!. However, rapidly
rotating neutron stars actually lose much higher energy. For
example, the Crab Nebula pulsar emits 103 erg s~!, which is
by many orders higher than the solar luminosity. The energy
emitted in the radio frequency band amounts to only a tiny
fraction, 107>—107°, of the total energy losses. The most
powerful radio pulsars also radiate in other spectral ranges,
including the optical, X-ray, and gamma-ray ranges. The
emission power increases with frequency, but nevertheless
remains much smaller than the total energy losses. The
question arises as to what is mainly emitted by a rotating
neutron star?

In addition to being radio pulsars, neutron stars are also
the sources of

(a) powerful X-ray emission, both periodic (X-ray pul-
sars) and irregular. These are neutron stars in close binary
stellar systems in which the star-companion provides the
neutron star with matter accreting onto it. The energy
liberated during accretion amounts to ~ 0.2 of the rest
energy of the infalling flux of matter;

(b) gamma- and X-ray bursts. These are anomalous X-ray
pulsars (AXPs) and soft gamma repeaters (SGRs). Both these
groups are combined into one class of the so-called magne-
tars. They comprise neutron stars with ultrahigh surface
magnetic fields of 104 —10"° G;

(c) steady X-ray emission from central compact objects
(CCOs) in supernova remnants. These are neutron stars
formed during the core collapse of pre-supernova stars;
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(d) very faint optical emission. These are nearest radio-
quiet isolated neutron stars;

(e) sporadic radio bursts from rotating radio transients
(RRATSs). These are neutron stars which are not steady
working radio pulsars;

(f) unusual gamma- and X-ray emission from sources like
Geminga (Gemini gamma-ray source).

The study of neutron stars solves and provides the
possibility to solve a number of fundamental physical
problems. These include first of all the analysis of the
equation of state of superdense matter with p > p,. The
equation of state (up to now, more than ten different
equations of state have been proposed theoretically) deter-
mines the form of the dependence M(R) of the mass M of a
neutron star on its radius R. Masses of neutron stars are
measured with a good accuracy in binary systems, their radii
being inferred from intensity measurements of the emission
from the neutron star surface. Up to the present, however, the
accuracy of measurements of radii and masses of neutron
stars has been insufficient for the unique determination of the
equation of state of the superdense matter.

The superfluidity of neutron matter can be examined by
measuring interruptions in the rotation period of a radio
pulsar during neutron star rotation braking (glitch). In some
cases, the interruption dynamics is explained well by the
unpinning of a superfluid vortex from the stellar core. The
evolution of the magnetic field ‘frozen’ in the star allows
conclusions about the superconductivity in the neutron star
core.

In strong magnetic fields B pertinent to neutron stars,
B > 10'? G, the structure of matter is unusual. In such fields,
the cyclotron radius of atomic electrons is smaller than the
Bohr radius, and the atoms are strongly compressed in the
direction perpendicular to the magnetic field and take the
form of a needle. The properties of matter formed by such
atoms can be judged from the interaction of the neutron star
surface, where the matter density reaches 10° g cm ™3, with its
magnetosphere.

Very importantly, observations of neutron stars as radio
pulsars allow the checking of General Relativity through
measurements of post-Newtonian corrections to the
dynamics of motion of two neutron stars in a close binary
system. For example, a measured decrease in the orbital
period of the pulsar PSR B 1913+ 16 amounted to
dP,/dt = —2.4086x107!2 s s~!, which corresponds to a
decrease in the binding energy of the stars due to their
emission of gravitational waves. In 1993, R A Hulse and
J H Taylor, Jr. were awarded the Nobel Prize in Physics for
the discovery of a new type of pulsar, a discovery that has
opened up new possibilities for the study of gravitation. The
timing, i.e., the precise measurement of the time of arrival of
individual pulses, is now so accurate that several of the most
stable radio pulsars can be used to construct a frequency
standard more stable than current atomic clocks. Measure-
ments of the retardation of a radio signal at different
frequencies and its polarization are used to determine the
parameters of interstellar medium: the electron number
density, the magnetic field strength, and inhomogeneities.
By this is meant that it is also possible to probe the nearby
environments of radio pulsars. The timing of radio pulsars
allows studies of the cosmic background of gravitational
waves.

Finally, observations of active neutron stars enable us to
investigate electrodynamic processes in superstrong magnetic

fields B > 10'> G typical for neutron stars. Here, we will
consider the processes of plasma generation in magneto-
spheres of rotating magnetized neutron stars.

2. The magnetic field of neutron stars

Observations revealed that the energy lost by a rotating
neutron star as radio pulsar is mainly spent on the formation
of the flux of relativistic particles called the pulsar wind. Thus,
it is precisely these relativistic particles that feed the entire
Crab Nebula. The flux of such particles is about 1040 particles
per second. Observations of the unique binary system
consisting of two radio pulsars J0737-30039 A, B allow one
to show how the pulsar wind from the more powerful pulsar
compresses the magnetosphere of the star-companion several
dozen-fold. The heating of the star-companion to the
millisecond pulsar 1957+20 at orbital phases where the
companion side turned toward the pulsar has also been
observed.

However, for a long time the activity of a rotating neutron
star was thought to be connected not with the wind emission
but with the emission of the so-called magneto-dipole wave,
an electromagnetic wave generated by the rotating magnetic
dipole frozen in the star. The emission power of the magneto-
dipole radiation, dE/dr=2Q*%sin® y/3¢3, was matched
with the rotational energy losses of the neutron star. Here,
Q =2n/P is the rotation frequency of the star, u is its
magnetic moment, and y is the angle between the rotation
axis and the magnetic dipole axis. The derived estimate of the
surface magnetic field intensity B=(PdP/dr_5)"? x 1012 G
exactly matched the expected values. (The notation dP/dz_;s
means the rotational braking in units of 10~1> s s~!).

The idea that the activity of rotating neutron stars is
related to the presence of a strong magnetic field B ~ 10> G
was put forward by V L Ginzburg almost immediately after
the discovery of radio pulsars. Indeed, assuming magnetic
flux freezing, during the fast compression of the pre-super-
nova star by 10° times the magnetic field intensity increases by
10'° times. So, from the 100-G magnetic fields of ordinary
stars we arrive at the above estimate of neutron star magnetic
fields. Moreover, during the cooling of a neutron star after a
supernova explosion, the magnetic field can be generated in
the stellar core by the current of electrons carrying the heat
flux. Observations of absorption cyclotron lines in the spectra
of some X-ray sources also indicate a magnetic field strength
of order 10'? G on the neutron star surface. The upper limit of
the magnetic field intensity of a neutron star, 10'® G, is given
by equating the magnetic field energy to the gravitational
energy E, of the neutron star.

As mentioned above, there are neutron stars belonging to
a rather small but very active class, which demonstrate
bright bursts of gamma- and X-ray emission and have
significantly stronger magnetic fields than ordinary pulsars.
Such stars rotate comparatively slowly with the periods
P~5—10s but undergo braking much faster, dP/dz ~
10719-10"12 s s~!. Their energy is caused by magnetic
fields, not by rotation. The X-ray flux from such a star,
Wy ~ 10 —103¢ erg s~!, is much higher than the rotational
energy losses defined as 7QdQ/dr. The energy stored in the
magnetic field, 2I(B2/815)dV, is also larger than the rota-
tional energy 1Q° /2 of the star. This suggests that the activity
of such neutron stars is due to their magnetic fields and not
the rotational energy, as is the case for ordinary radio
pulsars. Such stars are thus termed magnetars.
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The strong magnetic field in the neutron star magneto-
sphere provides conditions for plasma generation and the
formation of a wind — the flux of relativistic electrons and
positrons emitted by active stars.

3. Plasma generation

Effective particle creation begins at magnetic field intensities
close to the intensity of a so-called critical magnetic field:

mzca

B. = =44x 10" G.

e

Here, m and e are the mass and charge of an electron, ¢ is the
speed of light, and 7 is the Planck constant. In such a magnetic
field, the distance between the adjacent Landau levels is equal
to the electron rest energy: /iw. = mc>. In such an electric
field, the vacuum becomes unstable and electron —positron
pair creation begins. The probability of one-photon pair
creation in the magnetic field is given by

8
- 3Bksinﬁ>’ B<1,

w = bBsin ff exp (
where f is the angle between the photon wave vector and the
direction of the magnetic field, k is the photon wave vector in
units of the inverse electron Compton wavelength, the
magnetic field intensity is measured in units of the critical
magnetic field intensity, and b is a constant. Pair creation
occurs above the threshold value of ksin # > 2. It is seen that
even in not very strong fields, B < 102, typical in radio
pulsars, photons with energy k > 102 effectively create pairs.
In a strong magnetic field B > 1, pair creation probability is
even higher:

k? sin’
wyzlaBexp(—%ﬁ)7 B>1,

and electron —positron pairs form immediately after reaching
the threshold.

Relativistic particles in the star magnetosphere rapidly
lose transversal momentum due to synchrotron emission and
move along the magnetic field. The magnetic field lines have a
large curvature; the radius of curvature p near the surface
changes from the stellar radius (~ 10° cm) at the equator up
to about 10® cm near the pole. Particles moving along a
curved trajectory emit so-called curvature photons with
energies k = 3y3/2p ~ 10*, which is sufficient for subsequent
pair creation. Here, y is the Lorentz factor of a particle, and
the radius of curvature is measured in units of the electron
Compton wavelength 7/mc. Charged particles acquire sig-
nificant energy (with Lorentz factors up to y ~ 107) by
moving in the electric field E that appears in the rotating
magnetosphere, E ~ QRB/c. The curvature photons, which
initially propagate along the magnetic field lines, after passing
the length / acquire the threshold angle f: //p = 2/k, due to
the field line curvature. In a strong magnetic field B > 1, the
length / is the photon mean free path for pair creation. In a
weak magnetic field B < 1, the mean free path is somewhat
longer, / = 8p/3kBA, where A is a logarithmic factor ranging
A ~ 10—15. In this way, the electron — positron cascade in the
neutron star magnetosphere is formed, as shown in Fig. 1.

In a weak magnetic field B < 1, the cascade strengthens
due to particles being created at high Landau levels and

: A Synchrophotons

Secondary
Curved e* e -pair

magnetic field

{7 Free
photons

Electric field £

/

Positron

Neutron star

Figure 1. Schematic of the process of creation of an electron — positron pair
in the magnetosphere of a neutron star near its surface. Particles are
accelerated by the electric field, move along the magnetic field lines, and
radiate curvature photons which, by crossing the magnetic field lines,
produce electron—positron pairs. In a weak magnetic field B < B,
particles created change to the ground Landau level and emit synchro-
photons. In a strong magnetic field, particles are created on the ground or
on the first Landau level.

emitting so-called synchrophotons during the transition to
the ground level. These additional photons significantly
increase the photon number. In a strong magnetic field
B > 1, particle creation occurs either on the ground or on
the first level, depending on the photon polarization.

Generally, radiation processes in a strong magnetic field
greatly depend on photon polarization. Two polarizations are
possible: (1) the longitudinal one, where the electric field of a
photon lies in the plane (k,B) and has a nonzero projection
onto the magnetic field, and (2) the transversal one, where the
electric field is orthogonal to both the k and B vectors.

In a field B > 1, the decay of a transverse photon into
two longitudinal ones, k; — ki + (k — kl)H’ is possible. It
had been thought earlier that these two facts, viz. the
absence of synchrophotons and the radiation decay of a
photon, suppress the plasma generation in a strong
magnetic field of magnetar magnetosphere. This seemed to
have been confirmed by observations—no magnetars were
known to radiate radio emission. However, very low-
frequency observations carried out at ~ 100 MHz at the
Pushchino Radio Astronomical Observatory of LPI have
shown that there is an unusual radio emission from two
magnetars [3, 4]. In addition, the anomalous X-ray pulsar
(magnetar) XTE 1810-197 started to act as a powerful pulsar
after the X-ray burst in 2003 [5]. In 2007, a magnetar emitting
in the radio band was also discovered. This means that the
generation of dense plasma in magnetar magnetospheres with
a strong magnetic field B > 1 is also possible, as in pulsar
magnetospheres with B < 1.

A plasma is called dense if the number density of particles
exceeds some value called the Goldreich—Julian density ng;
[6], which separates the vacuum magnetosphere of a neutron
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star, where a nonstationary electromagnetic field is generated
(magneto-dipole wave), and the stationary magnetosphere
filled with plasma:

BQ
6= T e
This density near the neutron star surface, both in pulsars and
magnetars, is of the order of 10'2 cm~3. Cascade creation of
electrons and positrons in the magnetosphere of a radio
pulsar leads to a number density much higher than ngy. The
plasma particle multiplicity A = n/ngy reaches values of
A= 10*-10°[7].

In magnetars with a strong magnetic field B > 1, the
plasma particle multiplicity also turned out to be comparable
with that in radio pulsars [8]. Although for B > 1 there is no
second generation of particles, i.e., those created by synchro-
photons, the number density of the first-generation particles
created by the curvature photons is proportional to the
magnetic field strength, n oc B, which compensates for the
lack of synchrophotons in a high magnetic field. The photon
radiation decay leads to the 100% polarization of gamma
quanta which become longitudinally polarized [8].

Thus, a strong magnetic field does not suppress plasma
generation, as was thought before. The only factor suppres-
sing plasma particle creation in magnetars is their slow
rotation. On average, the rotation periods of magnetars is
larger by two orders of magnitude than those of radio pulsars.
Thus, the size of the polar cap where plasma is generated,
~ R(QR/C)I/Q, decreases by one order of magnitude. This
increases the radius of curvature p of the magnetic field lines
(at the dipole axis p is infinite). As a result, the energy range of
electrons and positrons created becomes smaller. The mini-
mum Lorentz factor y,;, = p/R increases, while the max-
imum one y,,,,, = 373/4p decreases. The energy yomc? equals
the energy that particles acquire from a longitudinal electric
field induced in the polar cap region. At Y.« = Vmin, Plasma
generation in magnetars almost stops. This condition
determines the range of parameters, the neutron star rotation
period P and the magnetic field intensity B, where dense
plasma generation is possible in magnetar magnetospheres:

B N\

For radio pulsars, a similar boundary was determined in
paper [7] (see also the book [9]): P(B/10'2G) %> < 1 s. The
(P, dP/dr) diagram for radio pulsars and magnetars, in which
plasma generation boundaries are shown, is presented in
Fig. 2. The magnetic field intensity and the rotation braking
is related by the formula B = (PdP/dr_5)"* x 10'2 G.

4. Conclusion

Observations of radio pulsars provide the possibility to
explain how plasma generation occurs in magnetospheres of
neutron stars. This possibility emerged during observations
of a small group of so-called switch-off pulsars. These are
pulsars in which radio emission temporarily disappears and
then appears again. Such ‘radio-quiet’ and ‘radio-loud’
phases occurs at all times of observations. For example,
careful observations of the pulsar PSR B1931 + 24, which is
quiet for 20—25 days and then switches on for 5—10 days,
showed that its rotation braking is significantly different
during the quiet and loud phases [10]. The braking during

lg(dP/dr)

Figure 2. The P — dP/ds diagram with boundary lines for effective pair
creation. Circles are radio pulsars, while crosses and squares are magne-
tars. The thin line marks the plasma generation boundary for radio
pulsars, dP/dr o< P'/4[7], and the thick line is the plasma generation
boundary for magnetars, dP/d¢ oc P'/3 [8].

the radio-loud phase is 1.5 times as effective as during the
radio-quiet one. The explanation for this is that the radio
emission is related to plasma generation, and the rotational
energy of the neutron star is spent on the generation of the
pulsar wind. The absence of radio emission, in turn, implies
that no plasma is generated and the rotational energy is spent
on the generation of magneto-dipole waves [11]. Hence, the
energy losses are very different. Should one catch the moment
of the switch-on, one could observe the development of
cascade plasma generation, which should show up in the
intensity and spectral range of the radio emission. At the
switch-off moment, which lasts less than 10 s, one could
observe the interaction of the magneto-dipole radiation with
the pulsar wind. The point is that electromagnetic radiation
propagates with the speed of light, faster than the wind, and
when catching up with the wind the radiation starts interact-
ing with it. The magnetic field of the radiation excites
synchrotron radiation of relativistic particles in the wind.
Measurements of the intensity and spectral range of such a
radiation would allow the determination of the particle
number density and particle energy spectrum in the wind.

In conclusion, we should note that the observations of
neutron stars and the theory of the observed phenomena
provide us with a fundamental understanding of the behavior
of matter under extreme conditions, in particular, in super-
strong magnetic fields.
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Multichannel propagation and scattering
of phonons and photons in low-dimension
nanostructures

Yu A Kosevich

1. Introduction

Recent major achievements in the research and development
of technologically and functionally advanced materials have
markedly increased research interest in the generation and
propagation of coherent acoustic phonons in quasi-one-
dimensional superstructures (including those with ‘acoustic
nanocavities’ [1]), nanowires, and nanorods [2]. Of much
importance in terms of potential applications is the study of
phonon heat transfer in low-dimension systems — for exam-
ple, through a solid —solid microcontact [3]. The search for
technologically feasible materials for thermoelectric transdu-
cers lent very topical significance to the recent experimental
finding that silicon nanowires with rough surfaces have a
much lower thermal conductivity than their smooth-surface
counterparts and bulk silicon [4-6]. Furthermore, the
phonon contribution to the thermal conductivity of single-
crystal silicon nanowires with a diameter of less than 50 nm
approaches the limiting value found for amorphous silicon,
something which current theories cannot explain [5]. Also,
the molecular dynamics modeling of the thermal conductiv-
ity of diamond nanorods whose surfaces are coated with
hydrogen with attached phenyl groups has shown that the
thermal conductivity of nanorods is much less than that of
bulk crystals [7].

This talk describes and discusses several examples of the
so-called multichannel propagation and scattering of pho-
nons and photons, two processes which can contribute to the
phonon and photon characteristics, both dynamic and
kinetic, of low-dimension systems.

The important thing about the multichannel propagation
of phonons or photons is that there are several ‘parallel’ paths
along which propagation is effected, between which both
constructive and destructive interference can take place.
Path-to-path interference occurring during multichannel
propagation in a low-dimension system results in the
transmission, reflection, and/or absorption coefficients gen-
erally having an asymmetric (non-Lorentzian) line shape as a
function of the phonon (photon) frequency.

An asymmetric absorption line shape was first described
by Fano [8] in his study of inelastic autoionization resonances
in atoms and has been interpreted as due to discrete
resonances interfering with the surrounding continuum of

‘background’ states. Although Fano type asymmetric absorp-
tion profiles have been discovered in many atomic systems
(see, for example, Ref. [9]), they are not exclusive to them
alone and have also been detected in doped semiconductor
materials (the absorption [10] and Raman scattering [11]
spectra taken from impurities), as well as in bulk intrinsic
semiconductor GaAs and semiconductor superlattices [12,
13], and in quantum wells [14]. In the context of electron
transport, conductivity as a function of applied voltage or
gate voltage has been observed to exhibit asymmetric peaks in
quantum dots with few electron levels [15, 16], crossed carbon
nanotubes [17], and quantum wires with an attached ‘lateral’
quantum dot [18, 19]. The electron Fano effect in a quantum
dot on one arm of an Aharonov—Bohm interferometer can
interact with the Aharonov—Bohm effect [20, 21] and with
Kondo correlations in the quantum dot [22]. For photons, the
clearest manifestation of the Fano effect is the asymmetrically
shaped line of the photon transmission coefficient through a
two-dimensional system of local (plasmonic or optical-
phonon) resonances [23, 24] or through a layer of a
transparent material with a periodic arrangement (two-
dimensional lattice) of holes [25, 26].

The phonon analogue of the Fano effect was first
described in Ref. [27] and Ref. [28] independently. Reference
[27] studied, in particular, the passage of a long acoustic wave
(acoustic phonon) through a crystal two-dimensional (2D)
defect with a complex structure. A peculiarity in considering
such a 2D defect in crystal consisted in accounting for not
only the interaction between the neighboring atomic layers
closest to the defect but also the direct interaction of the
lattice matrix rims through the defect monolayer. In an
atomic model of the 2D defect this corresponds to the
interaction between nonclosest neighbors. Reference [27]
predicted that this essentially monolayer defect characterized
by weak local force bondings of both nearest and more distant
neighbors can fully reflect in a resonant manner acoustic
phonons with wavelengths much larger than the physical
thickness of the defect. From the viewpoint of the Fano effect
interpretation, the reason for the anomalously strong reflec-
tion of an acoustic wave is the destructive interference
between two phonon wave paths: through a local oscillator
(or through the local bondings of the nearest neighbors) and
through the local force bondings of the nonclosest neighbors,
bypassing around the local oscillator. A further prediction of
Ref. [27] was that a phonon undergoes total resonant
absorption (total nonreflection and total nontransmission)
at the boundary of a crystal 2D defect with a complex
structure. As noted in Ref. [27], a normally incident, long-
wave acoustic phonon cannot suffer anomalously strong
resonant reflection (or absorption) by a laterally uniform
layer of the material (see, for example, the well-known
monograph [29]); this can only happen in the acoustics of
composite materials. What a laterally uniform layer can only
do is resonantly increase the phonon transmission coefficient
under Fabry—Perot resonance conditions, thus demonstrat-
ing the phonon analogue of the resonant bleaching effect. The
interaction of the matrix rims directly through the defect layer
is equivalent to the lateral nonuniformity of a two-dimen-
sional defect. Introducing this additional local interaction can
also be regarded as effectively taking into account that
impurities do not always fill the entire surface of a crystal
2D defect, i.e., impurity atoms can alternate in the plane of
the defect with matrix atoms or, alternatively, there may be
two or more types of impurities in a 2D defect (Fig. 1).
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Figure 1. Three possible 1D lattice models describing the multichannel
propagation of phonons through a lattice region containing a local defect.

Reference [28] drew an analogy between the scattering of
electrons and the scattering of phonons and calculated
numerically the phonon transmission coefficients with an
asymmetric line shape for a quasi-one-dimensional multi-
channel waveguide consisting of a strip of oscillator chains
connected in parallel. However, the oscillatory phenomena
occurring in quasi-one-dimensional systems of oscillator
chains were not generalized to the case of phonons propagat-
ing and undergoing a scattering in real 3D systems [28], such
as that considered in Ref. [27] 2D defect of complex structure
in a 3D crystal.

The later work [30] was the first to study experimentally
the acoustic properties of a so-called ‘locally resonant’
material, a 3D lattice of rubber-coated steel balls embedded
in a solid epoxy resin matrix. It was shown that at frequencies
close to the natural frequency of a steel ball in a solid matrix, a
‘monolayer’ of such composite material is capable of
essentially totally reflecting, in a resonant manner, the
acoustic wave with a wavelength nearly two orders of
magnitude larger than the physical thickness of the layer. It
was shown, further, that the anomalously strong resonance
reflection of an acoustic phonon from a composite layer is
essentially unaffected by the irregular (not strictly 2D period-
ical) distribution of identical elastic-wave scatterers in the
solid matrix. Both the material used and the resonance
phenomenon observed in Ref. [30] can be given an immediate
interpretation in terms of the model posed in Ref. [27] if the
layer of steel balls in a solid matrix is regarded as a crystal 2D
defect formed by ‘weakly coupled’ impurities, and the
material of the matrix between ‘local resonators’ as a force
bonding through the composite layer, bypassing around the
resonators (Fig. 1a). It is significant that in both Ref. [27] and
Ref. [30] the above effects were given a correct theoretical
description and experimentally studied without using any
analogies with the Fano effect. That acoustic phenomena in
locally resonant materials can be interpreted in terms of a
phonon analogue of the Fano effect was first brought to
attention in Refs [31, 32] (note that, however, the analogy
itself added nothing either to the theoretical description or to
the experimental investigation of the acoustic phenomena in
question). A two-dimensional system of thin-walled elastic
hollow cylinders is, as shown in Ref. [33], another example
where the peculiarities of the resonant propagation of
acoustic waves are most naturally explained using an
analogy with the Fano effect.

2. Multichannel scattering of acoustic phonons
from a crystal two-dimensional defect

To macroscopically describe the scattering of a long-wave
acoustic phonon from a crystal 2D defect requires that the
form (and number) of boundary conditions for surface bulk
strains (0. = Azmuy,) and elastic displacements  (u;,
i=1,2,3) be specified on the surface of the defect (z=0
plane). If the interface between two solids is sharp, then all
that is needed is that these quantities be continuous (see
Ref. [34]). In the general case, both the surface strains and
elastic displacements exhibit discontinuities at the surface of a
crystal 2D defect (see Ref. [35]). Denoting by N the number of
types of atoms residing in the plane of the 2D defect, the
simplest generalization of the multichannel propagation
model posed in Ref. [27] reduces to the following dynamic
equations on the surface of the defect:

N 2 (1)
(1 0 u;
ZAzk U _uk))_g atlz ’ (1)
=1
O N 00 ) o%u;
o = ZAfk (™" —w ") +e atlz ; (2)
=1
52 I / ! 2
P == A0 — ) — ), (3)

where the z-axis is directed from medium 1 to medium 2; u( 2
and u; ") are the macroscopic (averaged) displacements of the
matrlx rlms and surface atoms of the / type; the symmetric
tensor A ) describes the interaction of the matrix rims with
the surface atoms of the / type, while pg ) and o are the surface
densities of / type atoms and of atoms in the near-surface
layers [the latter density should only be considered if it is large
compared to the Average ‘bulk’ den51ty (see Fig. 4 below)].
For N = 2 and py @ =9 (or p( ) < p5 ) equations (1)—(3) are
reduced to those obtained in Ref. [27]:
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where u —u( ), py= ,051> Aj= Al(,(1 , and the tensor By =
(1/2)4 descrlbes the ‘direct interaction’ between the
matrix rlrns via the defect layer. When the normal to the
surface of the 2D defect coincides with a symmetry axis of the
crystal and when this is the only wave propagation direction
of interest, then in the simplest case of interaction between
only nearest neighboring atoms in the bulk of the crystal the
3D equations (1)—(3) and (4)—(6) can be reduced to 1D
oscillator chain models (Figs 1a and 1b for the case of N = 2).
Notice that in the latter of these models (Fig. 1b) the local
force bondings near the defect correspond to the situation in
which both the nearest and more distant neighbors interact.
As can be seen by comparing Figs 1a and 1b, the latter force
bondings can indeed effectively take into account force
bondings through the matrix, bypassing around the defect
atom.

The long-wave approximation allows a direct corre-
spondence to be made between elasticity theory equations
(4)—(6) (used, for example, to describe the interaction of a



850 Conferences and symposia

Physics— Uspekhi 51 (8)

z-propagating longitudinal phonon with a 2D defect) and
the 1D lattice model of this 2D defect, presented in Fig. 1b:

Ou. C(un+l - un)
oz a? ' ™)
and between all the parameters in both descriptions: 4,... —
cla, A — c1/a*, B— cy/a?, 0 — m*/a?, and p, — my/a?,
where a is the 1D lattice spacing. Below we will use the simple
1D lattice models of Fig. 1 as an example to describe the most
interesting aspects of the multichannel propagation of
phonons through a crystal 2D defect.

For a 2D defect coinciding with the n =0 plane, the
solution of the corresponding linear lattice equations for the
planes n < — 2 and n > 2 are assumed to be of the form

Oz = izzzz

u, =exp (ikan — iot) + rexp (—ikan — iwt), n < -2, (8)
u, = texp (ikan —iwt), n =2, 9)

where w and k are the frequency and wave number of the
incident acoustic phonon, and r and ¢ are the amplitude
reflection and transmission coefficients, respectively. The
reflection (R) and transmission (7) coefficients are respec-
tively defined as R = |r|* and 7= |¢]*. In the absence of
dissipation, the condition to be satisfied is the conservation
of energy for the incident acoustic phonon, T+ R =1, a
condition we always check when carrying out calculations.
Equations of motion for three planes—n = —1, n = 0, and
n = 1 —are determined either by the long-wave approxima-
tion equations (1)—(3) [alternatively, (4)—(6)] or by the
corresponding discrete lattice equations [due to the presence
of correspondence (7) in the long-wave limit]. The phonon
dispersion relation in the lattice under study is given by
® = Omax Sin(ka/2) (Where wpn,x = 24/c¢/m), which is usual
for a 1D monatomic model with the nearest neighbor
interaction.

For the fault of direct interaction between the defect rims,
¢» = 0, the presence of a weakly coupled defect, for example,
with ¢; = 0.07¢ and m; = m* = m, brings about the resonant
passage of the phonon through the system at o=
wo = /2¢1/m) < omax against the background of its trans-
mission decreasing as a whole with increasing frequency [36]
(Fig. 2a). This transmission resonance is analogous to the
acoustic Fabry—Perot resonance at a monolayer of a ‘soft’
laterally uniform material embedded in a more ‘rigid’
medium. Allowing for a second phonon propagation chan-
nel, one with ¢; > ¢| (and with or without a matrix atom with
my; =m or mp =0, see Fig. la), results in our obtaining,
instead of the total resonance transmission of the phonon, its
total resonance reflection at the same frequency wg =
v/2¢1/my (Fig. 2c, corresponding to the model of Fig. la
with ¢; =0.9¢, ¢; =0.07¢, and my = m; = m* = m). This
effect, first described in Ref. [27], provides the clearest
evidence for the influence of an additional channel on the
propagation and scattering of phonons in low-dimension
multichannel systems and nanostructures. Because for a
weakly coupled defect the resonance frequency is low,
V2¢1/my € Omax = 24/c¢/m, the wavelength of a totally
reflected phonon is much larger than the physical width
d = 2a of the nanodefect.

As noted earlier and as is clear from the properties of the
systems discussed, a phonon incident normal to a 2D defect
can only suffer total reflection from a laterally nonuniform
and ‘locally resonant’ composite layer. For an intermediately
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Figure 2. Energy transmission coefficients as functions of the normalized
frequency w/wmax for phonons passing through a lattice 2D defect. The
one-dimensional projection of the defect corresponds to the model shown
in Fig. la with my =m* =m and (a) ¢; =0.07¢, ¢, =0, (b) » =
4¢1 =0.28¢,my =0, and (¢) ¢; = 0.07¢, ¢; = 0.9¢, my = m.

strong force bonding relevant to the direct interaction
between lattice matrix rims, the frequency dependence of the
transmission coefficient acquires asymmetric form, as is
characteristic of the Fano effect (Fig. 2b, corresponding to
the Fig. la model with ¢; =4¢; =0.28¢c, my =m* =m,
my; =0 or to the Fig. 1b model with ¢; =2¢; = 0.14c¢,
my = m* = m). In this case, the phonon transmission coeffi-
cient takes both zero and unity values at frequencies close to
.

The same features are seen in the passage of phonons
through a nanodefect in a quasi-one-dimensional waveguide
with a ‘lateral’ oscillator (or a chain thereof) attached to it to
serve as a ‘phonon lead’ (Fig. 1c). For a given weak force
bonding in the phonon lead, ¢; < ¢, the transmission coeffi-
cient for a given weak force of the ‘longitudinal bonding’ of
the defect, ¢4 < ¢, has one or several transmission resonances
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of the Fabry —Perot type. For a relatively strong longitudinal
bonding of the defect, ¢4 =~ ¢ > ¢|, the transmission coeffi-
cient has one or several reflection resonances in the low
frequency range against the background of almost total
transmission for the rest of the frequencies. In particular, if
a phonon lead with one, two, or three series-connected,
identical, weakly coupled links for each of which ny =m
and ¢ < cisattached to one site of the 1D lattice with myq = m
and ¢q = ¢, then the propagation of a long-wave phonon
through such a defect is characterized by the presence of one,
two, or three resonance frequencies, respectively, at which
total reflection occurs (see Fig. 3 for the case of ¢, = 0.1¢). For
each such resonance, the second phonon propagation
channel, whose destructive interference with the channel
along the 1D crystal results in the complete suppression of
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Figure 3. Energy transmission coefficients versus frequency for phonons
passing through a 1D waveguide containing a lateral chain depicted in
Fig. 1c with one (a), two (b), and three (c) identical links for the case of
mg=m =m,cq =c, and ¢ = 0.1c.

transmission, is one of the natural vibrational modes of the
phonon lead, the total number of the modes being determined
by the number of links in the lead. The 1D crystal model with
phonons lead will be used in what follows to simulate the
phonon thermal conductivity of nanowires with dynamically
rough surfaces.

Multiple phonon transmission zeros are also found in a
1D lattice (or a crystal 2D defect) with several parallel
propagation channels similar to those in Fig. la. In the
general case, N transmission channels can produce N — 1
total reflection resonances.

The large mass m* of near-surface atoms and the
correspondingly large near-surface density ¢ in Eqns (1)—(6)
are further crucial factors for the resonant transmission of a
phonon through 2D defects of the crystal whose 1D lattice
models are shown in Fig. 1 [27]. In particular, the simplest 1D
model depicted in Fig. 1b accounts for the presence of one or
two resonance transmission peaks through two or three layers
of strongly bounded ‘heavy’ impurity atoms, when ¢; =0,
c=c,m*=5mand ¢; =c, ¢c; =0, m* = m; = 5m, respec-
tively (Figs 4a and b). In other words, N strongly coupled
dense layers produce N — 1 Fabry—Perot type phonon
transmission resonances with a characteristic frequency (or
interfrequency interval) oy =~ \/2¢/m* [unlike N weakly
coupled layers leading to N phonon transmission resonances
of the Fabry—Perot type (Fig. 2a)]. As far as electron
transport in the strongly coupled 1D lattice model is
concerned, the reader is referred to papers [37, 38] for a
discussion of the resonance transparency of a pair of equal-
energy sites (dimer) and how this transparency influences the
delocalization of electron states in random dimer lattices and,
in particular, in conducting polymers.

An additional resonance in transmission through the
vibrating ‘dimer’ of strongly coupled dense layers can
produce a ‘double’ transmission resonance (double Fano
type resonance), in which the natural frequencies of two
strongly coupled dense outer layers coincide with those of a
weakly coupled inner layer (Fig. 1b). In this case, a narrow
reflection resonance (a transmission minimum) is observed
against a background of transmission resonance (Fig. 4c).
However, a particularly pronounced effect can be observed in
the case of natural vibrations undergoing finite dissipation
under double-resonance conditions; this is the total surface
absorption of an incident phonon by a lattice 2D defect [27],
an effect in which the transmission and reflection coefficients
simultaneously tend to zero and the surface absorption
As =1 — T — R approaches unity (Fig. 4d). Phenomenologi-
cally, the dissipation of vibrations can be introduced through
the imaginary parts of the constants of local force bondings ¢;
and ¢,, which are assumed to be proportional to the frequency
and small compared to the real parts of the corresponding
force constants. For total surface absorption, 4s =~ 1, the
following conditions must be satisfied [27]:

2 B 2
oo = Cl+61/62: /C1—&-*027 (10)
\ my m
o2 Imer +20) =20 -2 (11)
m C1 Wmax

Figure 4d displays the transmission, reflection, and surface
absorption coefficients which are calculated for the following
parameters of a 2D defect as modelled by Fig. 1b:
c1=¢(0.2 —=10.01650/ ®max), c2=c(1 —iw/Wmax), m* = Sm,
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Figure 4. Energy transmission coefficients versus frequency for phonons passing through a 2D lattice defect containing two (a), (c)—(e) and three (b) high-
density atomic layers and corresponding to the one-dimensional model of Fig. 1b with (a) m* = Sm,¢; = 0,¢; = ¢,(b)m* = m; = Sm, ¢; = ¢,c; = 0,and
(©)c1 =0.2¢, ¢ = ¢, m* = Sm,m; = m. (d) Energy transmission (7, reflection (R), and surface absorption (4, = 1 — T — R) coefficients as functions of
frequency for a 2D defect with ¢;=¢(0.2 —i0.01650/®max), c2=c(1 —i®w/®max), m* = 5m, and m; = m. (e) Energy amplification coefficient
As = T+ R — 1 as a function of frequency for a 2D defect with ¢; = ¢(0.2 +10.0168®/®max), ¢2 = ¢(1 4+10.928500/Wax ), m* = 5m, and m; = 0.88m.
(f) Energy loss coefficient 4; = 1 — R} — Tj as a function of frequency for a 1D waveguide for reflection from a single phonon lead (Fig. 1¢) with an
effective mass (18) and the dimensionless coupling parameter f = ¢|/c = m/m = 0.1.

m; = m, and which agree with the analytical prediction
following from formulas (10) and (11).

Based on the effect of the total absorption of an acoustic
phonon by a double resonance layer — an effect similar to the
total absorption of a flux of photons by resonant atoms in
optics—it is, in principle, possible to build a phonon laser
working by amplifying a radiation-stimulated (with | 4| > 1)
phonon field propagating through a preliminary excited
double resonance layer. (This amplification mechanism is
different from the mechanism studied in Ref. [39], by which
acoustic phonons are resonantly emitted from a weakly
coupled semiconductor superlattice.)

Because stimulated radiation corresponds to the case of a
‘negatively absorbed’ phonon field, values of |45| > 1 can be
reached by changing the sign of the imaginary parts of the
force bonding constants ¢; and c¢,. Figure 4e exhibits the
resonant value of energy amplification coefficient
Ag ~ 2 x 10", which is achieved at a double resonance layer
(Fig. 1b model) with ¢; =¢(0.2410.0168w/wmax), 2 =
(1 +10.928500/ Wmax ), m* =5m, and m; = 0.88m. With this

large numerical value of the amplification coefficient, it is
hopeful that a system of appropriate double vibrational layers
will indeed be able to produce a strengthened phonon field in
the sample.

3. Acoustic phonon scattering
in a quasi-one-dimensional waveguide
with surface phonon leads

This section will discuss a phonon scattering model by a
system of surface phonon leads in a quasi-one-dimensional
waveguide. In this model it is assumed that an (infinitely) long
oscillator chain with a small dimensionless coupling coeffi-
cient f < 1 is attached to each atom in the 1D crystal (phonon
waveguide), when ¢; = fe, my = fim (Fig. 5). Phonon propa-
gating along the waveguide excites vibrations in a lead, which
propagate along the lead and, most importantly, do not
return to the waveguide as a coherent phonon. We will
apply this model to describe phonon scattering by a
‘dynamic roughness’ on the surface of a quasi-one-dimen-
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Figure 5. Schematic of the one-dimensional waveguide with identical
phonon leads attached to each site as an extension of the one-dimensional
model of Fig. 1c with a single lead defect.

sional waveguide and how this scattering influences the
phonon thermal conductivity of nanowires. In the layer of a
dynamic roughness there occur random intersections and
contacts between different phonon leads, which, in turn,
results in a phonon suffering random scatterings in its travel
along a lead and, correspondingly, not returning to the
waveguide as a coherent wave (in-phase with the generating
phonon in the waveguide). In the dynamic lattice model, a
dynamic roughness can be described by a random arrange-
ment of vacancies and vacancy clusters in the lattice layer of
atoms, which surrounds the waveguide. The dimensionless
coupling coefficient f'< 1, a characteristic of dynamic
coupling between the ‘single-crystal’ waveguide and the
disordered waveguide in the surface layer, can be related to
the dimensionless vacancy ‘filling factor’ in this layer.

As seen from Fig. 3, with increasing N (the number of
links in a lead), the minimum total reflection frequency
decreases (as wy ~ +/ci/my /N for N > 1), the total reflec-
tion frequencies condensing in the low-frequency region. For
N > 1, this is equivalent to the formation of an effective
quasigap in the low-frequency vibrational spectrum of such a
quasi-one-dimensional system: in the quasigap, vibrations
become strongly damped and their passage through a finite
length system is hindered, correspondingly decreasing the
phonon thermal conductivity of the system.

We assume that displacements in the n-th phonon lead
take the form of a wave outgoing from the waveguide and
carrying its vibrational energy away:

um,n:Al,nexp[fithrikLa(mf 1)} , (12)
wherem = 1,2, ... are the atomic numbers in the link counted
in the direction away from the waveguide, and &, is the wave
number along the waveguide, which is related to the wave
frequency by the relationship w = 2+/¢;/my sin(k a/2). In the
low-frequency and long-wave limit k,a <1, we find
kia = wy/m/q. Using formula (12), we obtain

[mw274csin (k'za)z] [mlwt o+ e (exp (ikpa) — 1)]

:cl[m1w2+c1(exp(ikla)f 1)} (13)
for the dispersion of a phonon with the wave number k| along
a quasi-one-dimensional waveguide with surface leads. From
this, passing to the low-frequency (long-wave) limit
(ky,kr)a <1, when kia= w\/mjc, we arrive at the
equation for the complex wave number kj of a damping
phonon:

m-+m . /M
kHZa2 = +iw .
4 c

(14)

This equation implies that in the frequency range
® > w* = \/mci/(m + m;) phonons are weakly damped (the
imaginary part of the phonon wave vector is small and
frequency-independent) and propagate ballistically:

m-+m 1 myc
kHa:w + = .
V ¢ 2\ (m+m)c

In the low-frequency limit, w <€ w*, phonons are strongly
damped:

(15)

1+1 (m161)1/4
kja = ) ,
I

and propagate diffusively in accordance with the equation
o= Dpth2 comprising the diffusion coefficient

(16)

Cdz

———= Vpnlpn
e, phipho

where Vpn = ay/c/m is the velocity of long-wave phonons,
and lph = av/mc/mc; = a/f is the phonon mean free path.
This latter is also defined as half the inverse imaginary part
of the ballistic phonon wave vector as given by formula (15).
In conformity with the definition of the absorption coeffi-
cient of an acoustic phonon [34], twice the imaginary part of
the wave vector defines the absorption coefficient of phonon
energy. Consideration of the energy loss coefficient
Ar=1— R — T of a phonon on a single phonon lead
yields a similar estimate for the phonon mean free path.
The presence of a phonon lead is tantamount to the
renormalization of the mass m; in a waveguide with a
single lateral oscillator (Fig. 1c). In this case, the mass m
is replaced by a complex effective mass

Dy, =

(17)

t ¢ .
msT = my +w—12 [exp (ik a) — 1]

=f m—i—é(exp(ilﬂa)—l) . (18)

Figure 4f presents the frequency dependence of the energy
loss coefficient A; in a one-dimensional waveguide for
reflection from a single ‘lateral defect’” with the effective
mass (18) for the case of f'= 0.1. It is seen that 4; ~ fover a
very wide frequency range, including low frequencies. There-
fore, if such scatterers are arranged in the waveguide with a
spatial period a, the mean free path of a phonon in respect to
energy is estimated to be /,, ~ a/f, which is in line with
formula (17).

Let us now estimate the dimensionless dynamic coupling
coefficient ' < 1 between a phonon lead and a waveguide. For
a rod with a circular or rectangular cross section, this
parameter can be estimated as the ratio of the number of
force atomic bonds in the rough surface layer to that in the
undistorted portion of the waveguide, i.e., as f ~ §/D, where
8 ~ /2 is the root-mean-square roughness height, and D is
the nanowire diameter. The phonon mean free path is then
estimated to be

(19)

From formulas (17) and (19) we obtain the following
estimate for the phonon thermal conductivity »p, of a
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nanowire with a dynamically rough surface:
a
0

where Cpy, is the phonon specific heat.

Thus, phonon scattering from dynamic roughnesses in
nanowires decreases the phonon mean free path (and hence
the phonon contribution to thermal conductivity) as the
parameter a/0 decreases. Because a ~ 0.54 nm in silicon and
the root-mean-square roughness height varied in the range
1-5 nm [5], the parameter ¢/« falls within the range 2—10.
This ratio of the phonon mean free paths (and thermal
conductivity) in smooth and rough surface nanowires (with
0 ~a and J§ > a, respectively) is consistent with the experi-
mental value of 5—8 for the corresponding factor [5].

What seems contradictory about estimate (19) is that
because of scattering from the surface the phonon mean free
path turns out to be less than the diameter of the sample: it is
usually considered that /,, = D is the minimum mean free
path for such scattering (see, for example, Refs [5, 40]).
However, this contradiction is resolved if it is remembered
that estimate (19) refers primarily to the phonons traveling
along the axis of the waveguide, whereas the restriction
Ioh = D refers to those traveling at arbitrary (including
large) angles to the axis. But it is exactly the axially traveling
longitudinal phonons that make the most contribution to the
nanowire thermal conductivity due to the largest projection
of the group velocity V,n. on the axis of the quasi-one-
dimensional sample [see formula (20)]. Applying estimate
(19) primarily to the axially propagating phonons also
removes the ‘quasi-one-dimensionality’ restriction on nano-
wire phonons, i.e., the requirement kpp D < 1 (where kpy, is the
wave number of a thermal phonon) which is met only at very
low temperatures, even in nanowires with an average
diameter of 100 nm (= 200a) [S]. On the other hand, when
the parameter a/0 becomes very small with increasing root-
mean-square roughness height, it should be remembered that
the phonon mean free path (19) cannot be less than half the
phonon wavelength Zp,/2 (see Ref. [41]). Therefore, in
nanowires with small enough diameters and rough surfaces
the phonon mean free path can tend to A,,/2, while the
phonon thermal conductivity to the lower limit of thermal
conductivity for an amorphous solid. The fact that the
thermal conductivity of nanowires made of single-crystal
silicon tends to the limiting value of the thermal conductivity
of amorphous silicon as the diameter of a rough surface
nanowire decreases was also discovered (but not explained)
in Ref. [5].

To summarize, the proposed mechanism of nonresonant
phonon scattering from surface phonon leads that model the
dynamic surface roughness of a phonon waveguide allowed
us to explain, qualitatively and in part quantitatively, the
significantly (almost by an order of magnitude) reduced
thermal conductivity of rough-surface, compared to
smooth-surface, nanowires, as well as to suggest the reason
why nanowires of single-crystal materials achieve the lower
limit of thermal conductivity found in an amorphous solid.
The important point here is that the ‘parallel dynamic
connection’ of an ideal heat conductor (crystalline phonon
waveguide) with a poor heat conductor (disordered surface
lattice layer) leads to a marked reduction in the thermal
conductivity of the composite as a whole—unlike the
electric conductivity of parallel-connected ideal (for exam-
ple, superconducting) and resistive electric conductors.

%ph ~ CphDph ~ ConVpn < D, (20)

4. Multichannel photon scattering from
two-dimensional nanostructures

The idea of multichannel propagation may find another
application to the scattering of photons from two-dimen-
sional systems. Similarly to acoustic phonons, an additional
propagation channel can result in a photon being totally
reflected from a two-dimensional system with a physical
thickness much smaller than the incident wavelength.
Reference [23] gives examples of various anisotropic and/or
gyrotropic 2D systems that scatter a photon such that it
undergoes total reflection or total polarization conversion.
The simplest system of this type is a thin layer of a polar, cubic
GaAs type semiconductor whose characteristic frequency
dispersion of the dielectric constant, g = &dy, is due to
optical phonons [42]:

€0 — €0
—0l/o2 — | 2
1 —w?/wiy —iTw/ofq

(1)

& =60 +

where g and &, < g are the static and optical dielectric
constants, and wto and I’ are the frequency and the
attenuation constant of a long-wave transverse optical
phonon. It is a simple matter to see [see formulas (22) and
(23) and Fig. 6] that close to the frequency wto, at which
& — 00, a resonant increase occurs in the reflection coefficient
from a thin layer at the interface between two media
(including the case in which such a layer resides in a
vacuum). In this case, the reflection curve is generally
asymmetric as a function of frequency (see Fig. 6). The
increase in the reflection coefficient at resonance is greater,
the higher the quality factor [which is described by the
parameter wro/I" in formula (21)] of the optical phonon is.
However, if the thin semiconductor layer is at the interface of
two identical media (for example, in a vacuum), then for
¢(w) =1, o > wro the photon undergoes total transmission
through the layer. The asymmetric shape of the transmission
coefficient through a thin layer of a polar semiconductor can
be related to the interference of two photon paths: through a
resonance with an optical phonon, and through the surround-
ing medium with dielectric constant &, i.e., with the Fano
effect for photons.
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Figure 6. Energy reflection coefficient as a function of normalized
frequency for a photon incident on a 100-nm-thick layer of polar GaAs
semiconductor at the vacuum —glass interface; wro is the frequency of a
transverse optical phonon. The remaining layer parameters are given in
the text.
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Another photon analogue of the Fano effect is presented
by the interaction of photons with a two-dimensional metal —
dielectric type nanostructure consisting, for example, of single
or double strips of 2D electron gas on a substrate of a GaAs
type semiconductor [43], or of resonant metallic elements like
split double [44, 45] or single [46] ring cavities on glass
substrates. Resonantly enhanced photon reflection from
such structured (laterally nonuniform) 2D electronic systems
is observed in the far infrared [43, 44] and in the optical range
with v & 100 THz [45, 46]. Common to all of these structured
two-dimensional electronic systems (STDESs) is the fact that
photons interact with local electronic nanostructures
(LENSs) located at a certain concentration on a transparent
substrate and exhibiting local electron — plasmon resonances.
This suggests that a resonant reflection enhancement can be
related to the destructive interference of two photon paths:
through a local electron—plasmon resonance, and through
the transparent substrate surrounding the resonator.

Macroscopically, the interaction of a photon with a 2D
system is described in the general case in terms of the effective
dynamic conductivity o,g(w), o, f = 1,2 of the 2D system,
which relates the surface (dynamic) current to the electric field
component tangent to the surface (see, for example, Refs [23,
47]. For a photon normally incident from medium 1 to
medium 2 with respective refraction indices n; and n,, the
following expressions can be obtained for the amplitude
coefficients of reflection (r*¥)) and transmission (¢»)) for
the photon electric field polarized along the x- or y-axis,
respectively, in the plane of the 2D system:

[(4m/c) oy :

ny +ny+ (4n/c) 6y xx
[ 4rnt/c) au]z 7
ny +ny + (4n/c) oy,

ny —ny — (4n/¢) Oy, yy +
Fey) —

n+ny + (4n/¢) 0y, yy —

t(x.,y) =14+ },(X-,)")7 (22)

where c¢ is the speed of light in vacuum. Equation (22) also
describes the possible anisotropy and/or gyrotropy of the
2D electronic system, which in the general case are
introduced through the different diagonal (o, and oy,)
and the off-diagonal (o,,) components of the 2D conductiv-
ity tensor o,5. The dynamic 2D conductivity tensor o,5(®)
can, in the general case, be related to the ‘excess’ local
dielectric susceptibility tensors (g,5(w) —&(§,5)/4m in the
thin layer of thickness d and average dielectric susceptibility
tensor at the interface of two (isotropic) media 1 and 2,
(8—eM)&,p/4n, &= (e +e®?)/2, with respect to the
susceptibility of medium 1 (with lower dielectric constant,
8(1) < 8(2)):

¢@ 3

dno,; = —iwd {sa/; + (7 ) 8(1)> 5&/1] ; (23)

where it is assumed that wd/c < 1.

Figure 6 depicts the frequency dependence of the energy
reflection coefficient of a photon (incident normally from a
vacuum) from a GaAs layer of thickness d = 100 nm located
at a vacuum—glass interface. The calculations performed
used formulas (21)—(23) with the following values of GaAs
parameters: g = 12.9, &, =10.9, wrto =2 x 8 THz,
I'=0.77 x 10"2s~!, and with ¢ =2.25 for glass. As seen
from the figure, at resonance with a transverse optical phonon

a large increase from 4% to 33% indeed occurs in the
reflection coefficient of a T-photon from a nano-thickness
layer of a polar semiconductor (the photon wavelength in
vacuum is 375 times the film thickness!). For a photon
reflected from the same GaAs layer in a vacuum, the energy
reflection coefficient varies from essentially zero out of
resonance to 28% at resonance (w = wrp). It should be
noted that calculations based on formulas (21)—(23) agree
to a high accuracy with those using expressions for R and T’
known from the optics of layered media (see Ref. [29]), with
the same GaAs layer parameters.

For an STDES at the interface of two media, in the
presence of a perpendicular magnetic field B, the following
expressions can be obtained for the components of the 2D
conductivity tensor [23]:

2
. nse-m 1 _ ) .
e d 24
o =1 i g G # o | (
2 %
nge*m;
Oxy = —0Oyx = ] (25)
! " \V mwm}} ((’02_(’0:2)
w2
" X Wy, 1y
mi ., =m {1 w‘ z +5} (26)
2nliige? .
(U()Z\l = W , N = ngsNa = nashis Wy Wy, (27)
B
Wl = — (28)

c * E
c./m xxmyy

where wy,, , are the frequencies of local electron—plasmon
resonances, y is the electron scattering rate in an LENS, o}
is the effective cyclotron frequency, m* is the effective
carrier mass in an LENS, nq is the average electron surface
density in the two-dimensional structure, ngs is the number
of LENSs per unit area, Ng =W, W, and 7 are the
number of electrons and the average electron number
density in one LENS, respectively, W, , are the character-
istic sizes of a (rectangular) LENS, and d* is the effective
thickness of the two-dimensional system (in the case of a
bilayer LENS [43, 45]).

Because the two-dimensional dynamic conductivity of an
STDES, formula (24) with B = 0, has a frequency dependence
similar to that of the two-dimensional layer of a polar
semiconductor, Eqns (21) and (23), it follows from formulas
(22)—(27) that in the absence of an external magnetic field the
resonant reflection from an STDES similar to that shown in
Fig. 6 should be observed near each of the local electron—
plasmon resonances. The spectral position, depth, and width
of such a resonance are determined by the values of the
parameters oy, and p, and also by the average electron
surface density ng which determines the effective ‘oscillator
strength’ of the resonance. In particular, the two-dimensional
concentration of LENSs influences only the depth and width,
but not the spectral positions of transmission minima
(reflection maxima) [46]—a fact which Eqns (22)—(27) do
incorporate because reducing the two-dimensional concen-
tration of LENSs results in decreasing the oscillator strength
n virtually without changing its resonance frequency w,, ,
and the damping parameter y. In the limit of zero damping of
optical phonons (or electrons) in the local structure, the
conditions r®¥ = —1, &) =0 should be satisfied at a
reflection resonance for the arbitrarily small (down to
monatomic) physical thickness d (or d*) of the 2D system
(23) or (24).
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On the other hand, formulas (22) suggest that in the case
of oy, yy = 0(and oy, = 0, B = 0) an STDES at the boundary
of dissimilar media with ¢(!) < ¢ becomes optically trans-
parent for a photon with appropriate polarization. The
photon transmission and reflection coefficients are the same
as at the interface of media 1 and 2 without a 2D electronic
system. Reference [48] described the total transmission of a
photon through a thin semiconductor layer made of high-
permittivity material and containing a two-dimensional
electron gas. In the recent paper [49], a similar phenomenon
of a ‘totally transparent structured film’ was discovered
experimentally in the optical range in a two-dimensional
square lattice fabricated from pairs of cylindrical gold posts
~ 80 nm in height placed on a glass substrate. Within the
framework of Eqns (22)—(28) and expression (24) for oy,
this phenomenon can be described, for example, by taking
Oy =0, d* ~ 80 nm, & — ¢ ~ 0.63 (vacuum —glass inter-
face), m* = me, B =0, and the corresponding values of the
electron —plasmon resonance frequency wyy, electron scatter-
ing parameter 7y, and the average electron surface density n.

The essential point is that to explain the experimental
results of Ref. [49] in terms of Eqns (22)—(28) and using the
photon analogy of the Fano effect, there is no need to
introduce (as in Ref. [49]) negative permeabilities u(w) in the
optical frequency range. In Ref. [49] and also in Refs [44 —46],
the negative values of permeability in the optical frequency
range were used to explain the resonant enhancement in
photon reflection from STDESs. (In this connection, inter-
estingly, earlier references on the reflection of electromagnetic
waves from STDESs [43] did not use negative permeabilities
of the system to explain experiments.) Indeed, Eqns (22)—(28)
assume that the permeability of a nonmagnetic STDES
(including when in an external magnetic field) is identically
equal to unity. These equations can also be used to describe
the resonant enhancement in photon reflection from an
STDES (see Fig. 6). (According to formulas (23), (24), and
(27), coating a 2D system of pairs of nanoposts with a thin
layer of glycerine of thickness d©) ~ d* and with ¢ > 1[49]
increases the average effective dielectric constant & at the
interface and lowers the frequency wg, of the reflection
resonance from an STDES-—which is exactly what the
experiments in Ref. [49] showed.) Moreover, in accordance
with the estimates given by Landau and Lifshitz [50] and
discussed in Ref. [49], taking into account the deviation of
u(w) from unity in the optical and higher-frequency ranges is
“clear excess of accuracy”. Therefore, an important conclu-
sion of this section is that the resonant enhancement in
photon reflection from STDESs found experimentally in the
optical frequency range can be explained by and reproduced
with equations like (22)—(28) under the assumption of the
permeability of the system being identically equal to unity,
u(w) =1, which is fully consistent with the statement in
Ref. [50] concerning the permeability of materials in the
optical (and higher) frequency range.

Interest in media with negative permeability u(w) was
sparked by the prediction made by Veselago [51] that isotropic
material with both negative ¢ and u should have a negative
refraction index n = /e, the underlying reason being that in
such a material the Poynting vector P = (¢/4n)E x H is
antiparallel to the photon wave vector k. Additional interest
in these unusual materials was created by the suggestion put
forward in Ref. [52] that the materials with negative refraction
indices could be used to fabricate ‘perfect lenses’— lenses
whose resolving power is not limited by the wavelength of the

photon and which are therefore of much interest. Because
materials with such properties do not exist in nature —not as
far as optical wavelengths are concerned — extensive efforts
have been made to produce artificial materials with both ¢ and
u being negative [53]. But, as noted above when mentioning
the estimate and statement in the book [50], the predicted
existence of materials with negative u in the optical (and
higher) frequency range is theoretically inconsistent. On the
other hand, no known theoretical framework is at odds with
the existence of anisotropic materials in which the Poynting
vector is not along (or is even antiparallel to) the photon wave
vector in a certain frequency range (and in a certain interval of
directions) (see, for example, Ref. 54]). Understanding the
refraction of waves in such media can be greatly enhanced by
analyzing the geometry of the ‘isofrequency surface’ of
elementary excitations propagating in an anisotropic med-
ium. One example is given in Ref. [55], in which the amplitude
damping of an elastic surface wave in the bulk of an
anisotropic crystal is related to the presence of nonconvex
portions at the isofrequency surface of crystal phonons with
appropriate polarization. Section 5 below briefly describes a
simple periodic, anisotropic, acoustic system negatively
refracting for a certain acoustic frequency range and suggests
some simple experiments in which this property can be
observed. The essential point here is that such a periodic
anisotropic system can be fabricated either from macroscopic
or nanoscale structural elements.

5. Negative refraction of phonons in periodic
anisotropic media and the acoustic analogue
of the Fano effect

Let us consider a simple two-component acoustic superlattice
consisting of plane layers of materials A and B. The
propagation of phonons in a periodic medium can be
described on the basis of the Bloch waves, in which a wave is
characterized by the Bloch wave vector k, frequency @ and
group velocity V. In the quasiclassical approximation, these
wave characteristics can change adiabatically in time and
space, and in doing so obeying the following equations (see,
for example, Ref. [56]):

ow
ok ’
where the frequency w determines the phonon energy
Epn = ho and is therefore assumed to be positive.

As follows from equations (29), the directions of the
phonon group velocity and the corresponding Poynting
vector are determined by the direction of the (outer) normal
to the phonon isofrequency surface w = const. Using the
results of Ref. [57] on the propagation of waves at an arbitrary
angle to an axis of an acoustic superlattice, it is possible to
prove that in a two-component acoustic superlattice formed
by layers of thicknesses dn and dg of materials with very
different acoustic impedances (p,ca < pgcp, where p, 5 and
cap are the density and velocity of the sound of the
appropriate polarization in layers A and B), in the case of
ca/da = cp/2dy the second miniband has a small width and a
negative group velocity along the Z-axis of the superlattice:

k=-Vo, V= (29)

2

w2=c2k2 +|n D 42 APAN os(kyd)| | d=datds,
‘ da da ppCB

(30)
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d paca
Vohz =~ —2can —
P da ppeB

sin(kzd) . (31)

Such a relatively narrow miniband is found, for example,
in a simple acoustic superlattice formed by Plexiglass layers
periodically arranged in water (in which case A and B in
formulas (30)—(31) stand for water and Plexiglass, respec-
tively). In a perturbed acoustic Plexiglass — water superlattice,
temporal acoustic Bloch oscillations in the ultrasound trans-
mission coefficient through the superlattice layer were
observed for the first time, similar to electron Bloch
oscillations found in a semiconductor superlattice in an
external electric field [58]. The perturbation of the acoustic
superlattice was achieved by a water layer thickness gradi-
ent—leading, in accordance with Eqns (29) and (31), to
temporal oscillations in the group velocity (and hence in the
acoustic Poynting vector) along the superlattice axis:

d ppca

Vonz =~ 2¢cA —
phz da ppcs

sin(wg?), (32)

where the frequency wp = |d0weay /0Z| ~ |m(ca/d3) Oda [0z
of acoustic Bloch oscillations is determined by a small
gradient of central resonance frequencies of ‘water cavities’
between neighboring Plexiglass layers, ey = Tca/da [see
formula (30)].

Because an unperturbed anisotropic periodic system has a
frequency interval for waves with negative group velocity
along the superlattice axis— the length of the interval being
equal to the width 24 =4p,c3/(pgcnda) of the acoustic
miniband (30) near the central resonance frequency weay —
this simple system makes it possible for ultrasonic acoustic
waves to undergo negative refraction and to have a negative
refraction index. Some aspects of negative refraction of
acoustic waves have been studied in acoustical crystals that
are more difficult to make, consisting of a two-dimensional
lattice of solid cylinders in the air (see Ref. [59] and references
cited therein).

Negative refraction in the three-dimensional layered
system under consideration can be conveniently explained
by constructing the isofrequency surface of acoustic oscilla-
tions using Eqn (30). Figure 7 displays the cross section of this
surface by the k. k. plane for the parameters of the water—
Plexiglass superlattice that were used in the experiments:
d=2dp, paca/(pges) =047, and o = 1.150¢y [58]. (A
miniband with such an isofrequency surface occurs for
W > Wey — A, and for o > weay + 4 the isofrequency sur-
faces shown in Fig. 7 transform into a single open surface in
the form of a k.-aligned ‘corrugated cylinder’—a Fermi
surface shape known from the theory of metals [60].) In
accordance with the laws of radiation, the group velocity of
an acoustic wave incident normally to the layers should be
directed inward with regard to the superlattice, whereas its
wave vector will, according to Eqn (31) and Fig. 7, be directed
oppositely, i.e., away from the superlattice. Therefore, if the
second edge of the superlattice is cut, making it wedge-
shaped, then the acoustic wave going out from the opposite
side will be refracted at a negative angle to the external
medium. The same phenomenon of negative refraction of
electromagnetic waves in microwave range (10 to 12 GHz)
was studied in Refs[61, 62] in much more complex wedge-
shaped structures with a ‘high density of wires’. The discovery
and study of negative acoustic refraction in simple layered

k.d

Figure 7. Isofrequency surface of longitudinal ultrasound waves in an
acoustic water —Plexiglass superlattice. The frequency and normalized
parameters of the superlattice are given in the text.

water —solid systems is potentially of both fundamental and
applied interest. It is essential that a composite medium for
the study of acoustic Bloch oscillations and negative refrac-
tion can be made both of macroscopic elements (like layers of
a solid material in water) and of nanoscale structural elements
(like the semiconductor superlattice with ‘acoustic nanocav-
ities’ designed in Ref. [1]).

Negative group velocity of waves propagating along an
axis of superlattice (31) in miniband (30) will also be
encountered in studying acoustic Bloch oscillations in a
perturbed superlattice similar to that considered in Ref. [58]
but for a different arrangement of the experiment. What
needs to be monitored in this new arrangement is the
transverse oscillations of a Gaussian beam (with a finite
width across layers) propagating along the layers of a
perturbed superlattice. A similar arrangement of the experi-
ment was used, for example, in Ref. [63], which studied the
transverse Bloch oscillations of an optical Gaussian beam in a
two-dimensional system of parallel waveguides with a
transverse gradient of refraction indices of individual wave-
guides (the gradient being due to a transverse gradient in
temperature). In the experiments of Ref. [63], a Gaussian
beam excited by a laser at the ends of several waveguides
periodically shifted to the region of a higher index of
refraction as it propagated, the reason being that optical
excitations have a positive group velocity along the axis of the
unperturbed superlattice. However, in the case of miniband
(30) with a negative group velocity (31) along the axis of the
unperturbed acoustic superlattice, a Gaussian beam of
ultrasound waves which is excited at the ends of several
layers will, as it propagates, shift periodically to the region
of a lower index of refraction, i.e., to that region of a
perturbed superstructure where water layers between Plex-
iglass layers are thinner. The Bloch oscillations of the
transverse shift of the ultrasound Gaussian beam can be
visualized.

A further possible source of a narrow acoustic miniband
with a negative group velocity along an axis of a superlattice is
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an analogue of the Fano effect for acoustic waves in the case
in which relatively thin layers of a solid material have holes
(with a diameter of about the thickness of the layer) forming
identical two-dimensional lattices, square or rectangular, in
all the layers of the water—solid superlattice. If the lattice
constant a of the two-dimensional lattice of holes exceeds the
thickness of the solid material layer, then there is a possibility
for a normally incident longitudinal wave to be resonantly
reflected from an individual thin layer due to the destructive
interference of two acoustic paths: through the resonant
oscillations of standing bending waves in a perforated layer
(with in-layer wave number = m/a), and through the
‘averaged’ solid material layer. Resonant reflection from a
relatively thin perforated layer of a solid material in water will
have a line shape similar to that shown in Fig. 6. But if solid
material layers with identical two-dimensional lattices of
holes form a superlattice and if the narrow transmission
resonance falls within the first forbidden band of the super-
structure (this position of the resonance of acoustic waves
with the bending oscillations of the cylinder shape is
investigated in Ref. [33] for a two-dimensional lattice of
thin-walled cylinders in a gas or a liquid), then such a
resonance can produce in the superlattice a narrow miniband
for wave propagation with negative dispersion of the group
velocity along a superlattice axis (because such a miniband
will be the closest to the acoustic band with the positive
dispersion). In this case, the acoustic waves that enter into
resonance with the narrow miniband undergo negative
refraction when passing through a wedge-shaped sample of
such acoustic ‘metamaterial’. The resonant reflection effect
was first discovered in a study of photon propagation through
layers of a transparent material with a two-dimensional
lattice of holes [25, 26]. By analyzing the isofrequency surface
of phonons or photons in anisotropic periodic systems whose
structural elements show the Fano effect, it is possible to
explain the origin of negative acoustic or electromagnetic
wave refraction in such media.

6. Conclusion

Let us summarize the main points of this report. (1) A
description is given for a theory developed for the phonon
analogue of the Fano effect, which is predicted for the first
time and is observed in low-dimension multichannel systems,
in particular, in ‘locally resonant’ media. (2) A simple model is
proposed for an additional channel of transmission of long-
wavelength phonons through a crystal two-dimensional
defect or a quasi-one-dimensional phonon nanowaveguide.
How and when an additional transmission channel for
acoustic phonons can lead to the total resonant reflection or
absorption of phonons is analyzed. (3) It is shown that the
nonresonant interaction of acoustic phonons with the
dynamically rough surface of a nanowaveguide markedly
reduces the mean free path of phonons in such low-
dimension structures. The predicted reduction in phonon
mean free path and phonon thermal conductivity of nano-
wires is in agreement with experimental data on thermal
conductivity of silicon nanowires with smooth and rough
surfaces. (4) It is shown that the multichannel propagation
and scattering of photons can lead to an observed enhance-
ment in reflection from thin layers of polar semiconductors
and two-dimensional structured electronic systems on a
transparent substrate. Introducing the multichannel scatter-
ing of photons in a two-dimensional structured electronic

system makes it possible in some of the cases studied to avoid
using the negative permeability at optical frequencies. (5) Itis
shown that analysis of phonon or photon isofrequency
surfaces in macroscopically or nanoscale periodic structures
makes it possible to explain the origin of the negative
refraction of acoustic and electromagnetic waves in such
media and to predict new observable effects.
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