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Abstract. About 10 years ago, the method of renormalization-
group symmetries entered the field of boundary value problems
of classical mathematical physics, stemming from the concepts
of functional self-similarity and of the Bogoliubov renormali-
zation group treated as a Lie group of continuous transforma-
tions. Overwhelmingly dominating practical quantum field
theory calculations, the renormalization-group method
formed the basis for the discovery of the asymptotic freedom
of strong nuclear interactions and underlies the Grand
Unification scenario. This paper draws on lectures delivered
at the XIII School for Nonlinear Waves, Nizhnii Novgorod,
Russia, 1-7 March 2006 [see V F Kovalev, D V Shirkov
“Renormalization group symmetry for solutions of boundary
value problems” in Nonlinear Waves 2006 (Ed. by A V Gapo-
nov-Grekhov) (N. Novgorod: IAP RAS, 2007) p. 433] to
describe the logical framework of a new algorithm based on
the modern theory of transformation groups and to present the
most interesting results of application of the method to
differential and/or integral equation problems and to pro-
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blems that involve linear functionals of solutions. Examples
from nonlinear optics, kinetic theory, and plasma dynamics are
given, where new analytic solutions obtained with this
algorithm have allowed describing the singularity structure
for self-focusing of a laser beam in a nonlinear medium,
studying generation of harmonics in weakly inhomogeneous
plasma, and investigating the energy spectra of accelerated
ions in expanding plasma bunches.

1. Introduction

We present materials illustrating the use and extensions of the
concepts of functional self-similarity and the Bogoliubov
renormalization group in boundary value problems of
mathematical physics.

The (Lie transformation) group structure discovered by
Stiickelberg and Peterman in the early 1950s in calculation
results in renormalized quantum field theory and the exact
symmetry of solutions related to this structure were used in
1955 by Bogoliubov and one of the present authors to
develop a regular method for improving approximate
solutions of quantum field problems, the renormalization
group (RG) method. This method is based on the use of the
infinitesimal form of the exact group property of a solution
to improve a perturbative (that is, obtained by means of the
perturbation theory) representation of this solution. The
improvement of the approximation properties of a solution
turns out to be most efficient in the presence of a
singularity, because the correct structure of the singularity
is then recovered.

The most spectacular results obtained by the renormaliza-
tion-group method in quantum field theory were the
discovery of the asymptotic freedom of non-Abelian gauge
theories (Nobel Prize in 2004), which led to the creation of
quantum chromodynamics, and sketching the picture of the
joint evolution in energy of the three effective interaction
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functions (electromagnetic, weak, and strong) in the Standard
Model, which led to the speculative conjecture of a Grand
Unification of interactions and the possible instability of the
proton.

Apart from this, the quantum field renormalization group
provided a foundation (see K G Wilson’s Nobel lecture, 1982)
for the construction of an approximate semigroup in the
investigation of phase transitions in large spin lattices, the so-
called Wilson renormalization group, which is widely used in
the analysis of critical phenomena.

In the present paper, we discuss the most interesting results
obtained by the authors by extending the RG concepts in
quantum field theory to boundary value problems of classical
mathematical physics. The main achievement here was the
development of a regular algorithm for finding symmetries of
the RG type by means of the modern theory of transformation
groups. The existence of such an algorithm eliminates the
usual deficiency of the RG approach in application to
quantum field theory problems: finding the group property
of solutions requires using special-purpose methods of
analysis, usually nonstandard, in each particular case.

We note that the algorithm of the construction of
renormalization-group symmetries proposed here can be
applied to problems involving differential and integral
equations, as well as linear functionals of the solutions.

We illustrate applications of the algorithm by examples
from nonlinear optics, kinetic theory, and plasma dynamics,
including the problem of propagation and self-focusing of a
wave beam in a nonlinear medium (Sections 3.2 and 3.3),
problems of the dynamics of a plasma bunch and ion
acceleration (Section 4.2), and the generation of harmonics
in laser plasma (Section 3.1). There, the use of renormaliza-
tion-group symmetries brought about new exact and approx-
imate analytic solutions of nonlinear physics problems, which
allowed describing the space structure of a self-focusing beam
in a nonlinear medium in a realistic setting, making significant
progress in establishing relations between the intensity of the
harmonics generated by weakly inhomogeneous laser plasma
in a strongly nonlinear regime and the parameters of the
radiation and the plasma, and finding, for the first time, the
energy spectrums of accelerated ions in the kinematic
description of an adiabatic expansion of plasma bunches
consisting of several kinds of ions.

This paper is motivated by our desire to draw theorists’
attention to a new and fairly general algorithm based on using
the symmetry of an approximate solution for enhancing its
approximation power. The use of the group property (the
symmetry) of a solution underlies both the renormalization
group method in quantum field theory and its analogue, the
new renormalization group algorithm in mathematical
physics.

The universality of the renormalization-group ideas
allows a unified approach to the analysis of properties of
solutions of various nonlinear problems and gives grounds
for hopes that this method can be efficiently used in other
areas of contemporary physics.

As is known, this universality is a characteristic feature of
another general method that represents a solution as a ‘path
integral’ (functional integral) and is widely used in quantum
mechanics, quantum field theory, the theory of large
statistical systems, and turbulence theory.

Classical mathematical physics deals with physical objects
described by (ordinary or partial) differential equations,
which are nonlinear, or integrodifferential in most practi-

cally interesting cases. Finding analytic solutions of such
equations for arbitrary initial and/or boundary conditions is
impossible: normally, exact analytic solutions can only be
found for initial and boundary data of a special form; in other
cases, we must content ourselves with approximate solutions.
The method of constructing a solution of a specific boundary
value problem (BVP) is usually peculiar to the equations of
the particular problem under consideration.

In this paper, we present a method of investigation of
analytic solutions based on the construction and use of
symmetries of a special form of BVP solutions, which we
call symmetries of the renormalization group kind or
renormalization group (RG) symmetries. We treat the notion
of ‘symmetry’ in the standard sense of continuous transfor-
mation groups: this means that a solution of the BVP is
transformed into another solution of the same BVP by a
continuous transformation group acting in the space of all the
variables determining the solution. The attribute ‘renorma-
lization group’ points to similarities existing between these
symmetries and the symmetries in quantum field theory
related to the operation of renormalization of masses and
charges (coupling constants) of microparticles.

We note that a connection between symmetries and the
problem of finding solutions of differential equations was
first established [1, 2] by a Norwegian mathematician, Sophus
Lie (1842-1899), who showed that most results on the
integration of ordinary differential equations of various
kinds can be obtained by a general method, subsequently
called the group analysis of differential equations. As one of
the main ingredients of the theory of continuous groups, the
group analysis of differential equations allows classifying
differential equations using the language of symmetry
groups, i.e., it produces a complete list of equations that can
be integrated (or such that their order can be reduced) by the
group method and also suggests a regular procedure for
finding these symmetries. Considerable progress in this area
since the early 1950s has led to new concepts and algorithms,
and has also extended the range of possible applications of the
group analysis (see, e.g., monographs [3—9] and handbook
[10]), but it has not changed the general aims of the modern
group analysis to develop regular methods of constructing
and classifying solutions of nonlinear differential equations
on the basis of the symmetries of these equations.

In problems described by ordinary differential equations,
the use of a symmetry group yields general and particular
solutions. In problems involving partial differential equa-
tions, which are typical in mathematical physics, knowing a
symmetry allows constructing particular solutions of a BVP
(invariant solutions, which are mapped into themselves by the
group transformations, and partially invariant solutions),
with boundary data not known a priori and determined in
the construction of a specific solution. Because arbitrary
boundary data are not normally invariant under group
transformations, the use of invariant solutions is generally
considered inefficient for the solution of BVPs.

Arguments underlying the renormalization group method
in quantum field theory lead to a different conclusion [11].
This method uses the group property of a solution (expressed
in quantum field theory as a functional equation) for the
enhancement of its approximation power.

Although the renormalization group method was origin-
ally formulated for quantum field problems, we can explain
its core idea by an example of a planar problem of radiation
transfer [12, 16]. We assume that the half-space x > 0 is filled
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with homogeneous matter and a stationary stream of
particles, characterized by a number «, is falling on the
boundary x = 0 of this medium. We consider the evolution
of the number of particles in the stream as it moves deeper
into the medium. Let o; be the number of particles in the
stream at a distance x = /; from the vacuum —matter interface
and oy the number of particles at the distance x =L =1, + 4
from the interface. Because the medium is homogeneous, the
number of particles moving inside at a distance / from the
interface is uniquely determined by some function A4(/, o) of
the value of o at the interface and the distance /, i.e.,
oy = A(l},o) and oy = A(L, o). But the value o, can also be
expressed as oy = A(A, ;) in terms of the same function
A(2,0) of two variables, the distance /A from the imaginary
interface x =/; and the number of particles «; at this
interface. Combining the two different definitions of o,, we
obtain the functional equation

AL+ 2y0) = A(7, AL ) (1)

for A(x, o). The nature of the particles and the properties of
the medium are irrelevant for this argument. Of course,
solving the transport problem (i.e., an integrodifferential
kinetic equation), we find the explicit (exact or approximate)
form of the function A(x,«) in each particular case, but the
exact solution of the problem necessarily satisfies Eqn (1).

A functional equation of form (1) occurs naturally in
considering a one-parameter group G of point transforma-
tions T, in the plane

T,: x=f(x,u,a), u=g(x,ua),

J((‘x?u70) :x7 g(x’u70) :u’ (2)

mapping a point P = (x,u) into another point P =
(x,u) = T,(P). We recall that a set G of invertible transfor-
mations T, forms a group if these transformations satisfy
several conditions: a) the set G contains the identity
transformation Ty; b) each T, has an inverse transformation
T,-1; ¢) the composition T, T, of two transformations is also
an element of G:

Ta"(P):P; TO(P):P7

P Ty (P) = TyTu(P) = Taun(P). (3)

The last condition in (3) can be expressed in terms of the
functions f'and g in (2) as two functional equations:

f(x> u,a+ b) :f<f(x7uaa)> g(x,u,a)7b),

glx,u,a+b) = g(f(x, u,a), g(x,u, a)7b) . (4)

It is known from the Lie theory that each continuous one-
parameter group is fully determined by the infinitesimal
transformation

X =x+aé(x,u) +0(a®), @=u+an(x,u)+0(a*),
of

_ g
dal n(x,u) == (5)

- )
da|,_,

E(x,u) =

which is customarily expressed using the infinitesimal opera-
tor (or generator)

X =&(x,u) 0y + n(x,u) 0, (6)

of the group. Finite transformations of a continuous group
are uniquely determined by the infinitesimal generator by
means of the Lie equations, which are the characteristic
equations for the first-order partial differential equation
associated with (6),
dx
da

du o
a:n(x,u), u|a:0 =u.

(7)

For the radiation transfer problem under consideration, we
have f=x, g= A(a,), a= 2, and u = o, and functional
equation (1) coincides with the second equation in (4) (the
first equation there is an expression of the obvious additive
law of the transformation of the coordinate X = 1), and the
group generator is given by

&x,u), X|,_,=x,

X=0,+n(x)0,, n(e)=0,4(x, 1)

=0 (8)

In accordance with (7), to find A at a large distance from the
boundary, i.e., for large values of the parameter A, we must
know the behavior of & = A(a, A) in a thin boundary layer, as
A— 0, i.e., we must in fact know the derivative of this
function at the boundary. This information can usually be
extracted from an approximate solution provided by the
perturbation theory. Next, integration of the Lie equations
yields formulas for finite transformations:

" da

@ x=2. 9)

P(E) = V(o) + 4, V()= J

Assuming that ¥ has the inverse function ¥ !, we find
solutions of functional equation (1) in the general form:
a=A, ) =Y (P(a) +1), ¥=4. (10)
These constructions are the essence of the renormalization
group method. We now present two examples of implement-
ing this method.
We consider a medium absorbing particles in proportion

to their number; from the perturbation theory, we know the
approximate solution

Api (o, ) = o0 — vad, v =const. (11)
Calculating the coordinate n(o) = —vo of group generator (8)
with the help of (11) and using it in relations (9), we obtain
solution (10),

Arg(o, 1) = oexp (—v4), (12)
which is valid in the entire space filled with matter, up to
X — OQ.

We now assume that the absorption has a nonlinear
mechanism, with the absorption coefficient proportional to
the stream of particles, v(a) = fo, where f = const. In a thin
boundary layer, we then have

Api(2, 1) m o — pa s, (13)

and the use of (13) in (9) yields a solution of (10) in the form of
the sum of a geometric progression:

A0, 1) = —2

IR (14)
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This result, similarly to the previous one, holds in the entire
subspace x > 0 and, in particular, describes the asymptotic
behavior of the permeating stream as x — oo.

The efficiency of the (renormalization) group approach in
the above examples shows itself in the following fact: using
information about the behavior of a solution in a neighbor-
hood of the vacuum—medium interface, we obtain explicit
expressions for the solution over the entire interval
0 < x < oco. We note that if we expand expression (14) in a
power series in the particle number density, i.e., return to the
perturbation theory, then in each order in n, we obtain
expressions increasing in proportion to A", which is a
distorted representation for the asymptotic form of the
solution. The advantage of the renormalization group
method is the recovery of the actual structure of the
solution, consistent with functional equation (1), which is
distorted by perturbation theory approximations. !

In the case of the planar problem of radiation transfer, the
transparency of the renormalization group method is a
consequence of taking account of the symmetry properties
of solutions (i.e., of the functional equation for them) in the
actual configuration space. The RG transformation of the
particle number density in moving deeper into the medium is
related to a shift in the spatial coordinate.

Returning to the renormalization group method in its
original (quantum field) formulation [11, 13—15], which is
also called the Bogoliubov renormalization group,? we note
that it is based on a functional equation that in the simplest
case has the same form as (1) after the substitution x — In ¢,
such that the RG shift transformation of a spatial variable in
transfer theory corresponds to a rescaling of the momenta or
the frequencies in quantum field theory; the quantity a is
called the invariant coupling function in this theory. In
particular, a solution of form (14) with A =Inx occurs in
quantum field calculations in the one-loop approximation. If
a more advanced perturbation-theory approximation is used,
which differs from (13) by the presence of terms quadratic and
cubic in o, which corresponds to the two-loop approximation
in quantum field theory, then the RG-improved solution can
be found from an equation similar to (10) that is unsolvable in
elementary functions [17]. It is usually solved approximately,
using the one-loop approximation of the RG expression.

The comparison of the RG-improved solution found in
the two-loop approximation with the result obtained in the
one-loop approximation reveals a characteristic feature of the
renormalization group method: we can progressively improve
the accuracy, which is an indication of the stability of the
asymptotic behavior of the solution. Similarly, in the
perturbation theory, we can also take higher-order correc-
tions into account, which successively improves the corre-
sponding RG solutions.

Thus, the procedure for the systematic (successive)
improvement of the system of approximate solutions found
in quantum field theory in the perturbation theory with
respect to a known small parameter is quite similar to the

! We note that formulas (12) and (14) can also be obtained in transfer
theory by other methods, for instance, by solving the kinetic equation;
however, the method described here, based on the use of group differential
equations, is the simplest. Moreover, in several important cases, this is the
only possible method: results obtained with this method are unattainable
in other ways.

2 This term was introduced to distinguish the Bogoliubov RG from
different constructions also called renormalization groups in some other
areas of physics. They are briefly listed, e.g., in [16].

above. This improvement of the approximation properties is
most significant in the neighborhood of a singularity of the
solution. In the quantum field context, these are singularities
in the infrared (see [13, 14, 18]) and ultraviolet domains. The
latter include the most spectacular result obtained with the
help of the RG method, the discovery of the asymptotic
freedom of non-Abelian gauge theories [19].

The above examples of the use of the renormalization
group method for improving the approximation properties of
solutions are based on a functional equation of the simplest
form, with one independent and one dependent variable. But
the number of independent and dependent variables in the
problem is often larger than this minimal set.

For example, a version of functional equation (1) with
x = Inz corresponds to a massless model with one coupling
constant in quantum field theory. We can make this model
more involved in two ways. First, the number of arguments
defining the effective coupling can be increased. For instance,
the field model under consideration can contain one or
several masses (e.g., as in quantum chromodynamics); in
that case, the coupling constant acquires a dependence on
several mass variables with the corresponding transformation
laws, with the result that the group transformations and the
functional equation change their form. Second, the number of
functional equations can be larger, which corresponds to a
quantum field model with several coupling constants. This
means that we now consider a group of continuous transfor-
mations of independent variables x = {x' ...,x"} and
dependent variables u = {u!,... u™} with infinitesimal
operator (6) in the space R"™™ and the coordinates of
generator  (6) are vectors ¢={&' ... ¢"} and
n=1{n',...,n™}; the corresponding contributions to the
infinitesimal operator must be understood as the result of
the contributions of the individual variables. With an increase
in the number of arguments of the function to be governed by
the functional equation and an increase in the number of the
equations themselves, finding the group property of the
solution that can be expressed by a functional equation (if
we use the original formulation of the renormalization-group
method [13]) requires a special and often nontrivial analysis in
each particular case (see, e.g., the discussion in [16, 20]); from
the algorithmic standpoint, this is a deficiency of the RG
technique.

To overcome this deficiency in extending the RG concepts
to problems of mathematical physics, another FG algorithm
was developed (see [21, 22] and also reviews [23; 24, p. 232; 25,
26]). It has the same aim of finding an improved solution (in
comparison with the initial approximate solution) as the
algorithm of Bogoliubov’s RG method, but in finding
symmetries of a solution of a BVP, it uses a scheme of
calculations similar to that of the modern group analysis.
This feature explains the term ‘RG symmetry.’

In this paper, we describe the RG algorithm in mathema-
tical physics and illustrate its capabilities by various examples
of BVPs. The paper is organized as follows. In Section 2, we
explain the core ideas of the RG algorithm using the example
of the construction of an RG symmetry for a solution of a
BVP for the Hopf equation. Sections 3 and 4 illustrate
different approaches to the construction of RG symmetries;
furthermore, in Section 3, we consider several progressively
more complicated problems obtained by modifying and
supplementing the Hopf equations in Section 2. Section 4
follows the same logic, but we supplement the presentation
there with a discussion of nonlocal problems, which are not
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necessarily connected with the ones in Section 3. The scope
for possible applications of the RG algorithm and a brief list
of results obtained with its use are presented in Section 5.

2. The renormalization-group algorithm
in mathematical physics

We preface the description of the RG algorithm with the
following simple argument. It is known that if we treat all the
variables (independent or dependent in the standard sense)
involved in a differential equation and their derivatives
(called differential variables in group analysis) as indepen-
dent, then the differential equation can be regarded as an
algebraic relation for these variables. In the case of one
equation, this relation describes a ‘surface’ in the extended
space of all the variables involved in the equation (if there are
several equations, then we speak of a manifold), and each
solution of the equation defines a ‘line” on this surface. The
projection onto the {x,u} ‘plane’ defines a family of curves,
one of which passes through the ‘point’ {xg, 1} correspond-
ing to the boundary condition of the BVP in question.

Transformations of the group G move points on the
surface (the manifold) along this surface, and therefore the
equation preserves its form in the transformed variables and
each solution of the equation is taken into another solution. A
transformation T, from the group G maps a point in the plane
{x,u} € R™" into a point {X,u}, and the locus of these
points is a continuous curve (a trajectory of the group G)
passing through {x, u}. The locus of images T,({x, u}) is also
called the G-orbit of the point {x, u}. In the general case, the
motion along a group trajectory corresponds to the transition
from one curve in the family to another, that is, to a
‘multiplication’ of solutions.

Returning to the renormalization-group point of view, we
consider only the group transformations under which points
on the curve passing through {xo,u} are moved along this
curve. This means that the solution of the BVP is the RG orbit
of the point {xg, uy} (of the boundary manifold in the general
case) and is an invariant RG manifold (similarly to the
invariant charge in quantum field theory [15]). We use the
infinitesimal version of this property in our construction of
the RG symmetry.

The group property of a solution of a BVP manifests itself
as follows: instead of the boundary point {xy, 19} parameter-
izing the solution, we can take another point in this curve
related to it by an RG transformation. This ‘universality’ of
the solution of a BVP under a change of parameterization is
called ‘functional self-similarity’ [27]. To find RG transfor-
mations that map a solution of a BVP into a solution of the
same BVP, we use the fact that a physical problem is
formulated in terms of differential (integrodifferential)
equations whose symmetries can be found by the techniques
of group analysis.

We now illustrate the characteristic features of the
algorithm for constructing an RG symmetry by an example
of a BVP for the Hopf equation [26], which is widely used in
physics for the description of the initial perturbations at the
nonlinear stage of their evolution:

ow+vo,v=0, v(0,x)=c¢U(x), (15)
where U is an invertible function of x and the parameter ¢
defines the ‘amplitude’ of the initial perturbation ‘at the
boundary’ r = 0. For a very small distance ¢ < 1/¢ from the

boundary, the solution of problem (15) given by the
perturbation theory is a segment of a power series,

v=¢eU—etUd, U+ O(1?), (16)
but this form becomes inapplicable for large . The RG
symmetry allows improving the perturbative result and
recovering the correct behavior of the solution in a neighbor-
hood of a singularity (when such a singularity occurs for some
values of 7).

In constructing an RG symmetry, the algorithm uses the
symmetry group of the BVP equations. The boundary data
defining a particular solution are involved in RG transforma-
tions by extending the space of the variables on which the
group acts. In the case of BVP (15), this space involves three
independent variables, x = {t, x,¢}. It is convenient to write
differential equation (15) for the function u = v/¢ introduced
such that the ‘amplitude’ ¢ is carried over from the boundary
condition to the differential equation:

O+ eud,u=0, u(0,x)=U(x). (17)
The general element of the transformation group G for
Eqn (17) (for the basic manifold in the general case) can be
found by means of the standard Lie techniques (see, e.g., [4]);

it is given by a combination of four infinitesimal operators,

X=>"Xi, Xi=y'(0+euds), Xo=1"0,

X3 =y (x0, +ud,), X4 =*(ed, + x0,), (18)

where W' (i =2,3,4) are arbitrary functions of &, u, and
x —eut and ' is an arbitrary function of all the group
variables {7, x,& u}. We now use the RG invariance condi-
tion for a particular solution of BVP (17) defined by the
relation

S=u—W(t,x,e)=0 (19)
with the function W that is unknown at this point; in other
words, we use the condition that the RG transformation map
the solution of the BVP into a solution of the same BVP. In
the infinitesimal form, this condition can be written as

XS|g = YIW—x0,. W) —y oW

— (0 W + X0, W) =0, (20)
where |; means that the result of the action of the operator is
taken on the manifold defined by the equation S = 0 and all
its differential consequences. The term containing ¥ ' is
absent in (20) because it is proportional to 0, + ¢ W0, W,
which vanishes identically on solutions of Eqn (17). Condi-
tion (20) holds for all ¢, and for  — 0 in particular, when Wis
replaced by the approximate solution

W= U—etUd, U+ O(1?) (21)
obtained in the framework of perturbation theory (16). In this
limit, Eqn (20) yields a relation for the functions '
(i =2,3,4), which extends in the obvious fashion to ¢ # 0:

V= U b gV a=x e (22)
Y4
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where the derivative 9, U must be expressed in terms of y or u
in accordance with the boundary conditions. Using (22) in
(18), we arrive at a group of a smaller dimension with the
infinitesimal operators

R=> "R, R =y'(8 +eud,),

Ry =u)? Ksﬁﬁ)ax +au} . Ry = et (ud, +9,).
X
(23)

The above procedure reducing (18) to (23) is the restriction
of group (18) on a particular solution, and the set of operators
R;in (23) describes the required RG symmetry. We obtain the
solution of the BVP with the use of the corresponding Lie
equations (similar to (7)) for any generator in (23). Without
loss of generality, we can take the generator Rs with ey * = 1
to obtain the finite RG transformations

t'=t, u =u,

xX'=x+4atu, ¢ =¢e+a, (24)
where a is the group parameter, ¢ and « are invariants, and the
transformations of ¢ and x are translations, which in addition
depend on 7 and u for the x variable. For ¢ = 0, in view of (17),
the variables x and u are related by x = H(u), where H(u) is
the function inverse to U(x). Eliminating a, 7, and u from (24)
and dropping the dashes in our notation for the variables, we
obtain the required solution of BVP (17) in implicit form
[similar to the implicit form of the solution of functional
equation (10)]:

x —etu= H(u). (25)
In effect, this is the improved perturbation theory solution
(16), which can be used not only for small # < 1/¢ (of course,
under the condition that (25) defines « uniquely). Depending
on H(u), this solution either indicates the correct asymptotic
behavior as 1t — oo or gives the correct description of the
solution in the neighborhood of finite values ¢ — fsne. One
example of the first option is the solution of the BVP for the
linear function U(x)=x. This yields the expression
v =ex(1 +&7)"", which remains finite as 7 — oo, similarly to
the solution of (14). For the second option, we can select, for
instance, a sine wave U(x)=—sinx at the boundary. Then
solution (25) describes the well-known distortion of the initial
profile of a sine wave, transforming it into a saw-tooth shape
[28, Ch. 6, § 1], with a singularity forming at a finite distance
ting = 1/& from the boundary. We note that for finding
solution (25) of the BVP, we use only the known symmetry
of the solution and the corresponding perturbation theory
(PT).

The above example of the construction of RG symmetries
illustrates the general algorithm, whose detailed description
in relation to BVPs for differential equations can be found,
e.g., in reviews [23, 24], and whose generalization to nonlocal
problems is presented in [26, 25]. We can schematically
express the implementation of the RG algorithm as a
sequence of four steps (see the figure):

(I) constructing the basic manifold RM;

(IT) finding a symmetry group G admitted by RM;

(IT) restricting the symmetry group G on a particular
solution of the BVP and finding the RG symmetry (RGS);

(IV) finding an analytic solution corresponding to the RG
symmetry.

PT solution Basic model

I
~_~

p
Basic manifold RM } .

( .~
Generators of the group G ]

v
Generators of the RG symmetry ]

I
I
I
I
|
I
|
I
I
I I
I
|
I
|
I
I
I
I
L

v
~_—

[ RG-invariant solution

|
I
I
I
I
|
I
|
111 I
I
I
I
|
I
|
I
I

Figure. The scheme of the RG algorithm

A characteristic feature of the procedure of constructing
the RG symmetry is the multivariance of step (I), whose aim is
to have the parameters participating in the equations and the
boundary conditions of the problem and determining the
solution somehow involved in transformations. The choice of
a concrete realization of the first step is most usually governed
by the form of the basic equations and the corresponding
boundary conditions on the one hand and by the form of the
approximate PT solution on the other. This multivariance,
which is a feature of step (I) alone, is aimed at covering a
possibly broader spectrum of problems to be investigated by
the method. The subsequent steps are carried out in the
framework of well-developed group-theory methods.

This multivariance is also seen in the above simple
example of a BVP for the Hopf equation. Underlying our
construction of the RG symmetry for BVP (17) was the most
obvious option: constructing the RG symmetry from the
point symmetry group of the Hopf equation in the space
extended by incorporating the parameter ¢ into the set of
independent variables. This way of constructing the basic
manifold RM is not the only possible one.

We could also construct the RG symmetry for BVP (17)
using an additional differential constraint compatible with
the boundary conditions and the basic equations.* For
instance, if the initial conditions in (17) are given by the
linear function U(x) = x, then we can take the differential
constraint O,,u = 0. Next, we calculate the RG symmetry of
BVP (17) taking the basic manifold RM to be the system

3 Here, we do not detail the construction of such a differential constraint.
As an example, we note the use of the invariance condition for the basic
equation under so-called higher (or Lie—Backlund) symmetries rather
than point symmetries. In contrast to the coordinates of an infinitesimal
generator of a point symmetry group, the coordinates of a generator of a
higher-symmetry group in addition to independent and dependent vari-
ables, also depend on higher derivatives. Expressing the invariance
condition under a group of higher symmetries in the infinitesimal form,
we obtain the required differential constraint (see [23] for the details).
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obtained by combining this constraint and the Hopf equa-
tion. The admissible group G for the manifold RM is then
different from (18), but the form of solution (25) is the same.
Other examples of the implementation of step (I) of the
algorithm can be found in [23].

3. Renormalization-group symmetries
in local problems of mathematical physics

The example of the construction of the RG symmetry for
Hopfequation (17) demonstrates that a particular form of the
realization of the general scheme of the RG algorithm
depends on the form of the equations in the BVP, as well as
on the way the boundary data are specified. Because the
construction of the RG symmetry proceeds by restricting the
symmetry group G of the basic manifold [step (IIT)], the RG
usually has a smaller dimension than G. For instance, in the
case of BVP (17), the symmetry group G is defined by the four
generators X;, and the RG is defined by the three generators R;.
It is obvious that for the construction of the RG symmetry, it
is desirable to have a maximal group G. However, the more
complicated the basic equations are, the narrower the
admissible transformation group typically is. For instance, if
the term vu,, accounting for dissipation is added to the Hopf
equation, then after the change of variables u, = w, we obtain
the modified Burgers equation. For this equation, the
admissible symmetry group is infinite-dimensional, but it is
now characterized by a single arbitrary function instead of
four functions for the Hopf equations, and after the reduction
procedure, we obtain a finite-dimensional (8-dimensional)
RG [29].

It is also possible that the RG symmetry cannot be
constructed using a point symmetry group for the basic
manifold alone because restricting on a particular solution
yields a zero-dimensional group. In this case, we must either
modify (and simplify) the system of equations used for the
description of the physical process or use other symmetries in
addition to Lie symmetries for constructing the RG.

We now demonstrate various approaches to the construc-
tion of the RG symmetry for the BVP obtained by complicat-
ing the problem in (17), which was our example of the
construction of the RG symmetry in Section 2.

3.1 Renormalization-group symmetry
in nonlinear plasma theory
We consider the following problem, which was historically
the first example of a successful application of the RG
algorithm. This is the interaction of p-polarized electro-
magnetic radiation with a frequency w and a ‘moderate’
(by today’s standards) intensity, with inhomogeneous
plasma [21]. This interaction is described by a system of
2-dimensional nonstationary differential equations (the equa-
tions of the collisionless hydrodynamics of electron plasma
with a self-consistent electromagnetic field) for six functions:
the components B. and E\, E, of the magnetic and the electric
fields, two components Vy, V,, of the velocity of the electrons,
and their density #; these functions depend on three variables:
the coordinates x and y and time ¢. Our aim is to obtain an
approximate analytic solution of this system of equations in
an arbitrary order of nonlinearity, without confining our-
selves to the perturbation-theory framework.

For an arbitrary ion density function n’(x), the basic
system of equations admits only a finite-dimensional point
transformation group, the group of translations along the ¢

and y axes. If the ion density is a constant, n’ = N = const,
then we also have the group of translations along the x axis
and the group of simultaneous rotations in the three planes
defined by the coordinates {x,y} and the corresponding x
and y components of the velocity of the electrons and of
the electric field. Thus, regarding the original equations as
the manifold RM, we obtain a fairly narrow admissible
group, which does not allow finding the required RG
symmetry.

To construct a manifold RM allowing a wider point
transformation group, we use the fact that the leading
contribution to nonlinear effects of the interaction of the
electromagnetic wave with the inhomogeneous (in x) plasma
under consideration here comes from the components of the
electric field and the velocity of the electrons that are
directed along the density gradient. Furthermore, due to
the natural smallness parameters (the smooth inhomogene-
ity of the ion density along the x axis and the small angle of
incidence 6 of the laser beam to the plasma), the dependence
of these components on the y coordinate, which is
transverse to the density gradient, is smoother than their
dependence on x in the neighborhood of the plasma
resonance. Hence, in the construction of RM, in the full
system of 6 original equations, we can single out a simpler
system of two one-dimensional nonlinear partial differential
equations for the x components E, of the electric field and
V, of the velocity of the electrons in the neighborhood of
the plasma resonance:

w0 v+avdw—p=0, wafp—&—avaxp—&—wfvzo,
(26)

wy .
rzwtf—ysmﬁ.
¢

Here, v and p are the respective quantities V', and E,
normalized by the parameter a, the parameter a < /g is
determined by the radiation flux ¢ on the plasma and the
linear transformation coefficient, wr(x) is the plasma
frequency (for the fixed ion density), and c¢ is the speed of
light.

The infinite-dimensional point transformation group in
the space of 5 variables {1, x, a, v, p} allowed by (26) is defined
by an infinitesimal operator, which is a sum of three
operators:

3
X:ZA/H X1:M1Y7
i=1

1 1
Xo = 00y + = Y1) 0 = Y (12) 9y,
X; = % (ad, — v0, — po,),
Y = w0, + avdy + po, — wfv@l, .

Each of these three operators involves an arbitrary function y;
of the group variables, where p, and y; satisfy the differential
constraints

V() + Y(ofn) =0,  Y(g3)=0. (28)
To specialize the functions u;, u,, and p; entering the
coordinates of the operator X, we use the procedure of
restriction on the point transformation group (27) to an
approximate (in powers of @) solution of the BVP. We can
construct this solution such that the zeroth approximation to
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the functions v and p is found by solving the linearized system
of the original six equations endowed with the corresponding
boundary conditions (an electromagnetic wave falling on
plasma from the vacuum) and by the selected density profile
n(x) in the plasma resonance region; corrections to this
solution that are proportional to a arise after the lineariza-
tion of system (26). The verification of the RG-invariance
conditions [similar to (20)] for this approximate particular
solution determines our choice of the functions u, =0,
W =—p/w?, and py =1 and yields the required RG-
symmetry operator (where the first relation in (28) holds

with the substitution o — »?):

R:X2+X3:—§6X+8a. (29)
The quantities 7, v, and p are invariants of the RG
transformations with infinitesimal operator (29), and the
transformation of the x variable defined by the solution of
the Lie equation for (29) exhibits a linear dependence on the
parameter a:

x:n—wia. (30)

The group composition law for x can be easily deduced from
the functional equation of form (1) with the substitutions
A — x,l — ap, . — aj,and o — 5. We note that in contrast to
the transfer theory problem, the group parameter here is not
an independent variable involved into the equation but the
parameter ¢ imported into the equation from the boundary
conditions.

The solution of Eqn (26) constructed with the help of (29)
is given by

1/2
a = —¢(fisint+ frcos1), 35<2> ,

24 q0

a—Z:a(flcosr—ﬁsinr), x=n+e(fisint+frcos1).
10)
(31)

where the parameter ¢ o< a o< /g, which depends on the flux
qo of the plasma wave breaking at the critical point, does not
exceed 1, and the functions fi,(n) are determined by the
well-understood linear structure of the field, whose explicit
form can be various, depending on the density profile and
the thermal motion of the electrons in the plasma. In cold
plasma with a linear density profile, we have

f=0+nd)h fp=alten) (32)
When a weak thermal motion of the electrons is taken into
account, relations (32) must be modified:

00 53 ) E3
f':J décos (nf-ﬁ-?), fz:J désin (175-*-'?)
0 0

(33)

Solution (31) is an exact solution of Eqns (26) for oy = .
The x and # variables in relations (31)—(33), in view of the
normalization by the width of the plasma resonance 4, are
dimensionless quantities. The equations for the remaining
four normalized quantities (the electric field E,, the magnetic
field B., the y-component V, of the velocity of the electrons,

and the density n) are given by

A .
0 Ey = — 22 Sin00.E,, 0.V, =E,,
: : y

£

v,
anBZ :7 J

6,7Ey - 7

(34)

Integration of Eqns (34) is elementary. Formulas (31) and
(34) present the required solution of the BVP. Discarding
strongly nonlinear effects, we can use (31) and (34) to obtain
results from the theory of generation of arbitrary-order
harmonics in cold [30] and hot [31] inhomogeneous plasma
(if we respectively use formulas (32) and (33) for ) »). Taking
strong nonlinearities (the influence of higher harmonics on
the lower ones) into account significantly changes the
dependence of the coefficient of the transformation into
harmonics emitted by the plasma on the density of the
electromagnetic radiation flux falling on the plasma [21, 32]
and the temperature of the plasma [33, 34].

Result (31), (34) of solving the BVP for the six original
equations takes both the boundary condition and the
strongest nonlinearity into account, and is exact in the same
measure in which the group symmetry of Eqns (26) reflects the
symmetry of the full system of six original equations under the
above assumptions. The approximate nature of the group
with infinitesimal operator (29) so obtained relative to the
group (27) inducing it is determined by the inhomogeneity of
the plasma (we recall that in the derivation of operator (27),
we imposed no assumptions on Eqns (26) concerning the
inhomogeneity pattern of the plasma density). This is similar
to the situation in quantum field theory: the exact group
property of a solution is used for a progressive improvement
of the system of its approximation characteristics, where the
next approximation improves the previous one without
destroying it. From the standpoint of the RG symmetry, this
means that operator (29) can be refined by accounting for the
small parameters of the problem used in passing to Eqns (26).
We say in this case that the symmetry of system (26) is
inherited by a more general system of equations. An example
of an RG symmetry for (26) with the corrections due to the
inhomogeneity of the plasma taken into account is presented
in [21].

3.2 Renormalization-group symmetries in problems of
gaseous and quasi-Chaplygin media
The situation where the existence of an infinite-dimensional
point transformation group ensures the construction of an
RG symmetry, as in the examples of BVPs for the Hopf
equations and Eqns (26), is not universal. Below, we present
an example of a BVP in which the symmetry group for the
original manifold (the system of differential equations) is
infinite dimensional, but the construction of the RG
symmetries requires using higher symmetries (which are also
called Lie—Backlund symmetries [5]) instead of a point
transformation group.

We consider the BVP for a system of two nonlinear first-
order partial differential equations for functions v and n > 0:

0w + v0yv = ap(n)Oxn, O;n+ v0yn—+ ndyw =20,
v(0,x) = aW(x), n(0,x)= N(x), (35)

with constant & and a nonlinearity function ¢ depending only
on n. Depending on the sign of a¢(n), these equations are of
either the hyperbolic (x¢(n) < 0) or the elliptic (x¢p(n) > 0)
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type. In the first case, (35) corresponds to the standard
equations of gas dynamics for one-dimensional planar
isoentropic motion of gas with the density n and velocity v.
The second case relates to equations of quasi-Chaplygin
media.*

Because Eqns (35) are linear in the hodograph variables
t=ntand y = x — vt,
n

a'UT - l,b(}’l) anX = 07 av% + anf = 07 lrb = (36)

xp

there exists an infinitesimal operator of an infinite-dimen-
sional subgroup X, = &la, + 5262, whose coordinates &'
and &2 are defined by arbitrary solutions of the partial
differential equations transformed into (36) by the substitu-
tion T — &', q— &2, This means that we can formally
construct an RG symmetry by restricting an infinite-dimen-
sional point transformation group, but this requires knowing
the solution of (36) for arbitrary boundary data; in fact, such
a procedure is equivalent to solving the original BVP.

Another approach to the construction of RG symmetries
for the problem under consideration is the use of a higher
(Lie—Backlund [37]) symmetry group. By contrast to point
transformation groups with generators of form (6), Lie—
Bicklund symmetries are characterized by an infinitesimal
operator with the coordinates depending on independent
variables x and differential variables u# and the derivatives
Uy = {aw-u“} = {uz‘“}’ Up) = {axix,'u“} = {ulf)}}, ..., Wwhere
a=1,...,m; i,j=1,...,n. The relation between these
variables can be expressed by means of the total differentia-
tion operators D;, as the following system of equalities:

uf = Di(u”) s = Di(u) = DiDi(w") ...

1

D; = axr. + uiM au" + uloj au[’ + ... (37)

The Lie—Backlund group theory allows restricting to only
canonical operators, which leave all the independent variables
invariant. This is important, for instance, in the analysis of
symmetries of integrodifferential equations and in the
construction of the RG symmetries in problems involving
nonlocal equations. For BVP (35) under consideration here, it
is convenient to write the Lie— Backlund group generators for
the equations expressed in hodograph variables (36):

X=) caXi=) a(fidc+gid,). (38)
The coordinates f; and g; of generators (38), which are linear
functions of the differential variables [38], are connected by a
system of recursion relations

& 8+
where the entries of the matrix recursion operators L; are

linear functions of the operator D, of total differentiation
with respect to n. The number of operators L; depends on the

(39)

4 The term ‘quasi-Chaplygin media’ is used in the discussion of nonlinear
phenomena developing in accordance with the mathematical scenario for
the Chaplygin gas, i.e., the gas with a negative adiabatic exponent. At first
glance, such a model looks like the standard model of gas dynamics, but it
corresponds to the negative first derivative of the ‘pressure’ with respect to
the ‘density.” A characteristic feature of quasi-Chaplygin media is a
universal mathematical form of various nonlinear effects accompanying
the development of an instability.

form of the nonlinearity function ¢(n); in the most typical
case ¢(n) = n(n+b)', where b, [ = const, there are three
operators: k = 1,2, 3. The action of the recursion operators
on the coordinates f; =1 and g; = y of the physically
‘obvious’ dilation operator in the space of the hodograph
variables T = nt and y = x — vt yields three operators with
coordinates f; and g; (i = 2, 3,4) linearly depending on the
derivatives t, = 0,7 and y,, = 0, ; they are therefore equiva-
lent to infinitesimal operators of the point group. The action
of the recursion operators Li,...,L; on the first-order
symmetries f;,g; (i = 2, 3,4) generates five operators, whose
coordinates in the hodograph variables are linear functions of
these variables and their second-order derivatives. These are
Lie—Backlund symmetries of the second order. Repeating
this procedure several times, we obtain 2s 4+ 1 symmetries of a
fixed order s [38].

The infinite system of operators (38) (obtained at step (II)
of the RG algorithm) for Eqns (36) (treated as the RM
manifold) enables constructing the operators of RG symme-
tries and finding the corresponding RG-invariant solutions.
The reduction of the Lie— Backlund group (step (III) of the
RG algorithm) reduces to the verification of the invariance
conditions f'= 0 and g = 0 (similar to (20), but generalized to
the case of Lie — Backlund symmetries) for a concrete solution
of the BVP, where the functions f'and g are arbitrary linear
combinations of some coordinates f; and g; of the canonical
operators of the group and are chosen so as to satisfy the
prescribed boundary conditions at ¢ = 0. As examples, we
give the values of the coordinates of two second-order
operators of the Lie— Backlund RG symmetry.

Example 1:

2T,

S=2n(1 = n) Ty — nty — 2n0(3, + ny,) + 7

g = 271(1 - n)Xnn + (2 - 3n)Xn
'U2

+ 1)(211‘5,,,1 + ‘CH) + 7 (n%nn + Xn) : (40)
Example 2:
i ) n T 3 3,
‘f:—/’l lnnrnll_ztll+§+v n an1+§n Xﬂ ?

g= —n21nn;5n,l +g (1+41nn)y, +§+v(m,m +%”) .
(41)

The operator R with coordinates (40) corresponds to the
solution of the BVP for Eqns (35) with « = 1, ¢(n) = 1 for
V(x) =0 and N(x) = cosh ?(x), and the operator R with
coordinates (41) corresponds to the solution of the BVP for
Eqns (35) with o =—1, ¢(n)=1/n for V(x) =0 and
N(x) = exp (—x?2). To solve the BVP using RG symmetries
(40) and (41), we must add the invariance condition f'= g = 0
to the basic R M and solve the resulting system of equations
(step (IV) of the RG algorithm).

For RG symmetry (40), a solution exists on a finite
interval 0 < ¢ < fng, until a singularity occurs on the axis
x =0att = f4ne = 1/2, when 0,v(tsing, 0) — oo and the value
of n remains finite, 7(fng, 0) = 2:

v= —2nttanh (x —vr), n*t> = ncosh®(x —vr) — 1. (42)

From the physical standpoint, solution (42), which was
previously obtained in [39], describes the evolution of a
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planar light beam in a medium with a cubic nonlinearity (a
quasi-Chaplygin medium) for the boundary condition
N(x) = cosh™?(x). The quantities 7 and v define the intensity
and the eikonal derivative of the beam.

For RG symmetry (41), the solution describes a mono-
tonic evolution (decrease) with time n of the density z > 0,
while the particle velocity continues to be linearly dependent
on the coordinate:

PE:
v = xV2gexp (—7> ,

e
n = exp (—7> exp [— x%exp (-

Solution (43), which was discussed in [40], describes an
expanding plasma layer with the initial density distribution
N(x) = exp (—x?).

These two examples demonstrate that by using the Lie—
Backlund RG symmetry, we achieve the same goals as with
point RG symmetries: we can give an adequate description of
the structure of the solution in the presence of a singularity or
can find its asymptotic behavior. Although we found RG
symmetries (41) and (42) for the already known solutions, the
RG approach reveals the group structure of these solutions.
Previously, to obtain these results, the authors imposed some
a priori assumptions about the structure of the solution. In
[41], the reader can find an example of the solution of a BVP
with the help of Lie — Biacklund RG symmetries for (35) with
the initial condition of a more complex type, not represen-
table in terms of elementary functions, when the intensity
distribution of the light beam at the boundary has the form of
a smoothed step function.

3.3 Approximate renormalization-group symmetries

in problems of quasi-Chaplygin media

Constructing an RG symmetry on the basis of higher
symmetries is justified if the equations defining an RG-
invariant solution can be investigated analytically. The
complexity of differential equations usually increases with
their order. Hence, the use of higher-order Lie—Backlund
symmetries in the invariance conditions of the RG symmetry
can often limit the potential for applications of such
symmetries in the case of arbitrary boundary data. On the
other hand, a restriction on the order of the allowed
symmetries narrows the variety of approaches to the con-
struction of RG symmetries for arbitrary boundary data. For
instance, for BVP (35), the symmetry group of the original
manifold (36) allows only 2s + 1 symmetries of a fixed order s,
which for small s can be insufficient for the construction of the
RG symmetry for arbitrary N(x). For the extension of the
symmetry group of the original manifold, we must use the
technique of approximate symmetries [35].

The central idea here is the use of natural smallness
parameters (which we distinguish from the parameter with
respect to which we construct the PT approximation to be
used in RG transformations), which are involved in some
form in most physical problems and which enter the
equations as coefficients. For instance, the coefficient o of
the nonlinearity function ¢(#) in (35) is such a parameter. The
presence of natural small parameters allows expressing the
required symmetry as a power series in these parameters and
taking finitely many terms of this series. If we discard the

small parameters altogether, then the equations defining the
RM are simpler than the original equations and allow a wider
transformation group, and hence there can be more
approaches to the construction of the RG symmetry for
arbitrary boundary data. An essential point here is the
possibility to successively account for corrections to the
obtained RG symmetry for the system of differential
equations of the simplified manifold: when this can be done,
we say that we have constructed a symmetry inherited in a
given order in the small parameter.

We demonstrate how approximations to the RG symme-
try for BVP (35) can be constructed for small o < 1. Setting
w = v/a, we write system of equations (36) as

a\vf - L an% = 07
@(n)

As o — 0, dropping the second term in the second equation
yields a simpler subsystem of differential equations, which is
an approximation to the original manifold RM. By contrast
to the symmetries of Eqns (36), which allow only a finite-
dimensional Lie — Backlund symmetry group of a given order,
Eqns (44) with « = 0 have an infinite-dimensional symmetry,
which is consistent with the perturbation theory for the BVP
with arbitrary boundary data. Hence, we seek RG symmetries
by combining symmetries of the ‘zeroth’ approximation to
the equations (i.e., of Eqns (44) with & = 0) and corrections to
them in powers of a. We represent the coordinates f'and g of
the canonical operator of the group for (44) as a power series
in o

aw;{ + O(anf =0. (44)

X=f0.+gd,, f=) daf, g=) da'g" (45)
=0 i=0

Using the techniques of modern group-theory analysis [10]
that generalize Lie’s algorithm to higher symmetries, we
obtain a system of recursive relations for the /% and g*:

f[:Fi+Jd}t’{(l —8[,0)2]”'_1 +% Yg'}7

o : . (46)
g'=G"+(1=23;0) JdW{Zg“1 — Yf’fl} ,
where
00 o0
Y=20,+ Z (Ts+107, + X.wlaz\) , L= Z Tx-%—layd )
s=0 5s=0
v 0't 0%y
Ve T BT “7)
o"(n/p)
=T, — W Z(ﬂ) an[) s —p+1>
Fi(n,y,,15), and G'(n,y,,7,) are arbitrary functions; the

integrands are expressed in terms of 7y, y,, n, and w. It is an
immediate consequence of (46) that for small o, the symmetry
of the equations of the ‘zeroth’ approximation is inherited by
system (44) in any finite order in «: the corrections do not
destroy the symmetry f°, g of the ‘zeroth’ approximation.
The form of the inherited symmetry (i.e., the expressions for f
and g) is fully determined by relations (46): it can be a point
symmetry or a Lie—Béacklund symmetry.

Because the dependence of the functions F’ and G’ on
their arguments can be arbitrary, we can construct RG
symmetries for the BVP with arbitrary boundary data: the
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restriction of approximate group (46) on solutions of the BVP
(step (III) of the RG algorithm) is performed, similarly to the
case of the exact Lie—Backlund RG symmetry in subsection
3.2, by verifying the condition f'=g=0 for a concrete
solution of the BVP. Here, we choose the functions F' and
G' so as to satisfy the prescribed boundary conditions at
t = 0. In particular, for BVP (35) with W(x) = 0, we can set F’
and G (i > 1) equal to zero and can ensure the boundary
conditions by selecting F* and G°.

We now present two examples of RG symmetries
constructed with the use of relations (46). The first example
is related to the BVP for Eqns (35) with ¢(n) = 1 for V(x) =0
and N(x) = cosh2(x). With these conditions, we can take the
following functions f° and g%

2 =2n(1 —n)try — nty — 2nw(y, + nya)

g =2n(1—n) o+ (2-3n)y. (48)
Substituting /° and g° in (46), we find the next terms of series
(45), the functions /! and g ':

2 2

nw-tp w
= D) ) gl214’(2’”’[2—"_‘[1)—’_7(”%2—"_%1)7

/! (49)

and the substitution of /! and g! in (46) gives zero values for
all /' and g’ with i > 2. This means that the RG symmetry can
be expressed in this case by binomials f= %+ oaf’,
g =g%+og!, that is, infinite series (45) terminate and turn
into finite sums, and the binomial expressions for the RG
symmetry are exact and hold for arbitrary values of «. In
particular, setting o = 1, we arrive at relations (40).

For arbitrary boundary data, the infinite series in (45) do
not automatically terminate, and taking only finitely many
terms of the series means that the RG symmetry constructed
with the use of (45) and (46) is approximate in the sense
described in [42]. The second example corresponds to an
approximate RG symmetry for BVP (35) with ¢(n) = 1 for
V(x) = 0 and N(x) = exp (—x?):

2
T
f=142nyy, —|—oc<—2'rcn +;) . g = —2o(ty, + xta) -

(50)

Here, we omit all the contributions to fand g proportional to
the higher powers o with i > 2.

The above constructions of RG symmetries can be easily
generalized to the case where the group transformations
involve the parameter « in addition to the ‘natural’ variables
of the problem. In this case, the set of possible RG symmetries
is usually larger. For example, we note the approximate RG
symmetry for the same BVP as in the second example, but, in
contrast to (50), containing derivatives with respect to the
parameter o:

f="2n(ty, + tuy) + 20074,
(51)

Unlike exact RG symmetries, which allow finding an exact
solution of the BVP for any RG generator chosen, approx-
imate symmetries yield a solution of the BVP depending
essentially on the form of the RG symmetry operator, as can
be seen, for instance, from the use of generators (50) and (51)
(see [41]). The use of several approximate analytic solutions or
the comparison of the solution obtained on the basis of the

g =1+ 2nyy, + 20ty — 7).

exact RG symmetry (and used as a test) with the solution
obtained on the basis of an approximate RG-symmetry
allows evaluating the accuracy of the corresponding approx-
imate RG-invariant solution [43].

For finding approximate RG symmetries in a physical
problem, we can use not one but several small parameters.
This is the case, for instance, in the construction of the RG
symmetry for a BVP for the system of equations of a light
beam in a nonlinear medium, which can be regarded as a
natural generalization of (35):

v + vy — ap(n) n, — POy % 0y (x"0/n)| =0,

n; + nvy + vny +v@ =0, v(0,x)=V(x),
X

n(0,x) = N(x). (52)

The parameters o and f§ determine the contribution of the
nonlinear refraction and diffraction processes; v =0 for a
planar (2-dimensional) wave beam and v = 1 for a 3-dimen-
sional (axially symmetric) wave beam.

The construction of an RG symmetry for BVP (52)
proceeds in accordance with a scheme similar to the one
used before: the coordinates f'and g of the canonical operator
for the manifold R M defined by Eqns (52) can be represented
as double power series in the nonlinearity parameter o and the
diffraction parameter f3:

0 00
X=f0,+gd,, f=Y aplf) g=> olpighi.
i,j=0 i,j=0
(53)

The standard techniques of group analysis are used for the
calculation of the coefficients fU#) and g(#). Restricting
ourself to finitely many terms of series (53), we arrive in the
general case at an approximate symmetry, which after the
restriction procedure gives the required RG symmetry. As an
example [44], we present explicit expressions for the coordi-
nates f'and g of the infinitesimal RG symmetry operator for
BVP (52) in the case of a collimated cylindrical (v = 1) beam
in a medium with cubic nonlinearity (¢ = 1):

F=D, [s - (om +%ﬁ Dx(xDx\/ﬁ)>] ,

1
§=1 Dv\-{(xn)[v - ZSZ]} , (54)
where the function S depends on y = x — vf:
S() = V() +—E— o, (x@z\/N(x))- (55)

2V N(x)

The canonical RG operator with coordinates (54) is
equivalent to the following operator of a point RG symmetry:

R=(1+12S,)0,+S,0, + (S, +vt’S,,) 0,

vt 1
- l1+—|S,+-S,|0,,
nt[( +x) Szx+xsz}

which allows easily finding finite group transformations
(step (IV) of the RG algorithm) relating the values of n (the
beam intensity) and v (the eikonal derivative) for # > 0 to
similar quantities at the boundary 7 =0 of the nonlinear
medium, i.e., constructing the required solution of BVP (23).

(56)
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In the derivation of (55) and (56), we considered
contributions of the form f° = f(¢:9 and g° = g9 in (53),
that is, contributions independent of o and f, and also
contributions linear in these parameters /! = of(h% 4 (0D
and g' = ag(9 4 g1 Dropping the terms proportional
to O(x?, f?,2f) means that symmetry (56) is approximate
with respect to these parameters. Of course, similarly to BVPs
for equations of quasi-Chaplygin media, there exist distribu-
tions N(x) for which series (53) terminate and become finite
sums. Such a situation corresponds to the exact RG symmetry
in (54) rather than an approximate one and to an exact
solution of the BVP for arbitrary values of the parameters o
and f. In particular, symmetry (53) is exact when S(x) is a
binomial: S(x) = s + s2x2/2. This form of S(x) corresponds
to a particular dependence on the x variable of the beam
intensity N at the interface. For instance, for s, =0 and
so > 0, Egn (56) yields a solution of the BVP that describes a
‘Townes’ self-channeling beam [45]; other exact localized
solutions of the BVP for s, # 0 decreasing as x — oo were
discussed in [46].

In the general case, S(x) is not a binomial and the use of
RG symmetry (56) yields an approximate analytic solution of
the BVP, studied in detail in [44, 46] for a Gaussian beam with
N = exp (—x?). This solution of the BVP allows tracing the
evolution of the Gaussian beam as the distance from the
interface increases, up to a singularity occurring in the
solution; the singularity has the 2-dimensional structure:
both the beam intensity » and the derivatives v, and n,
become infinite at the point tsﬁfgss =1/y/2(0c — p) fora > p.
A thorough discussion of this analytic solution and its
comparison with the results of other approaches (aberra-
tion-free approximation [39] and the method of moments [47,
48]) were carried out in [46].

4. Renormalization-group symmetries in nonlocal
problems of mathematical physics

The implementation of the RG algorithm in problems of
mathematical physics involving nonlocal (integral or inte-
grodifferential) relations depends on the form of this
nonlocality. On the one hand, the original system of
equations can be based on nonlocal relations, as, for
example, in the kinetic plasma theory, according to which
the relation between the current density and the charge
density in a medium and the distribution function of the
plasma particles in the Vlasov—Maxwell equations with a
self-consistent field is nonlocal. The application of the RG
algorithm to such nonlocal problems of mathematical
physics proceeds in accordance with the general scheme in
Section 3; the difference is in the methods of the calculation
of symmetries for nonlocal objects (see [43] and the
references therein). We note that in the case of problems
described by complicated equations, as in transfer theory
(the Boltzmann integrodifferential equation), only some
components of the solution or its integral characteristics
can have a relatively simple symmetry. For instance, in the
simplest planar one-velocity transfer problem, the RG
invariance is a property of the asymptotic form as x — oo
of the ‘density of particles going inside the medium’ n, (x),
which does not feature in the Boltzmann equation.’

3 But it can be represented as the integral L; n(x,9)dcos? of the solution
n(x,) of the one-velocity kinetic equation.

On the other hand, interesting from the physical stand-
point can often be not the solution itself over the entire range
of its arguments and parameters but some integral character-
istic, a functional of the solution. For instance, this character-
istic can be the result of averaging (integrating) with respect to
some independent variable or of passing to another integral
(e.g., Fourier) representation. In this case, we can use the RG
algorithm to improve the functional of the approximate
solution rather than to improve the particular solution and
the subsequent calculation of the corresponding integral
characteristic.

We now present examples of the implementation of the
RG algorithm in problems of mathematical physics involving
nonlocal relations, which provide illustrations to both
possible cases.

4.1 Renormalization-group symmetries for functionals

of solutions

We consider some BVP for local equations and assume that
we are interested in an integral characteristic of the solution,
given by a linear functional of this solution:

) = J]—'(u(z)) dz. (57)

We assume that for a particular solution u of this boundary
value problem, the RG algorithm has been used to find an RG
symmetry with a generator R. Instead of the RG transforma-
tion group of the solution itself, we are interested in the RG
transformation group of integral characteristic (57). To find
an infinitesimal generator of the group, we extend the action
of the RG symmetry operator R to nonlocal variable (57). For
this, we represent the operator in the canonical form, that is,
make the substitution R — Y = %0, and extend the operator
to the nonlocal variable J:

Y+ %70, = %0, +»70;. (58)
The %7 variable is related to » by means of an integral relation
[47] (for brevity, we write only one argument of the coordinate
of the generator, the one with respect to which the integration
is performed):

T 8J(u) .
% Jﬁu(z) %(z)dz

(59)

OF !

= J % x(z)dzdz' = J]—'u x(z)dz.
Considering operator (59) in the narrowed space of the
variables defining the functional, we obtain the required
infinitesimal RG symmetry operator for integral character-
istic (57).

4.1.1 The RG symmetry of functionals in the Hopf equation. To
demonstrate how formulas (58) and (59) actually work for
functionals of solutions of BVPs, we start with our example of
the BVP for the Hopf equation. The algebra of RG
symmetries of this problem is generated by the three
operators in (23). We consider the case where we are
interested not in the full solution to BVP (25) for all values
of its arguments and parameters but only in the value at some
point of some characteristic, which can be defined by a linear
functional of form (57). For instance, we can be interested in
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the value of the first spatial derivative at x = 0:

Dty X)),y = u = — Jﬂo dxd (x) u(t, x) (60)

—00

Using perturbation theory (21) in the right-hand side of (60)
yields the behavior of u? for small 7 < 1:

(U))p = U = at[(U))? + U0) U] + O(t?),

X

U? = a-\'U ‘x:() ’ U:(()x = a-’CXU |x:0 . (61)

To correct the asymptotic behavior of the functional of the
solution, which is distorted by perturbation theory (61), we
can use the RG symmetry for (60). As in the derivation of
solution (25), we use the last generator in (23) in the simplest
form, with ey* = 1, and write it in the space of variables
{1,¢, u?} For instance, for U = x, this operator is

R=20,—t(ul)’d,. (62)
Information about the behavior of the function
u? = 1/(1 + &) in the entire range of the 7 variable, including
its asymptotic behavior as x — oo, can be obtained either
with the help of (finite) transformations of the group with
generator (62), which are similar to (24), or by using the
obvious invariant J* = &t — 1/u® of RG generator (62), with
the initial condition u?(r = 0) = 1. We emphasize that we
obtain this result without explicitly finding solution (25), but
only using the RG symmetry. Our construction may look
cumbersome at first glance; however, in more complex
problems, the solution is typically not known explicitly, but
the RG symmetry can be constructed (see, e.g., [50]).

4.1.2 The RG symmetry of functionals in quasi-Chaplygin
media. One example of a more complicated situation is the
behavior of functionals of solutions of the BVP for the
equations of quasi-Chaplygin media (35) and, more specifi-
cally, of the quantities n(x) and v(x) on the axis x = 0, up to
the point where a singularity occurs. We claim that this
phenomenon can be investigated by applying the RG
algorithm to two functionals of solutions of BVP (35): the
density n°(f) = n(#,0) and the derivative of the velocity
WO(t) = v,(t,0) calculated on the axis of the beam and
related to the solution by the formal equalities

110(t)=de5(x)n(t,x)7 wo(r) :deé(x) vy(t,x). (63)

The boundary conditions for functionals (63) can be written
as

n’0)=1, w°0)=0. (64)
Although conditions (64) give no information about the
dependence of the density n on the x variable, such
information is incorporated into the RG symmetry opera-
tor, whose explicit form 1is determined by the density
distribution N(x) for ¢ = 0.

We consider an example of the problem with the planar
geometry, with the ‘soliton’ profile N(x) = cosh™2(x) of the
density distribution at the boundary, for the RG symmetry
operator as in (38), (40). Extending this operator to nonlocal
variables (63), we obtain a simpler operator in the space

{t, n°} [26]:

R=x"0,, ¥ =4—5n"— n? +2(n" — l)nonf(;(nto)*z7

0 _ 0 0 _ 0
n, =0,n°, n,=0,n".

(65)
The RG invariance condition »" = 0 for operator (65) leads
to an ordinary second-order differential equation for the
function 7°(¢), which must be solved with initial condi-
tions (64) and the additional condition (n/vn® — 1)|HO =2
for the first derivative, which follows from the original
equations (35) for x =0. This solution = vn® — 1/n°
reproduces the result obtained in (42), but the method is
simpler and solution (42) is not explicitly required.

We note that the procedure of extending RG generators
represented as infinitesimal operators of a point group or a
Lie—Backlund group is universal, and hence we have a
common framework for the description of the behavior of
characteristics of solutions of BVPs (15) and (35) alike, if we
use the reduced description in terms of functionals of
solutions.

4.2 Renormalization-group symmetry in the problem
of an expanding plasma bunch
We now consider the construction of the RG symmetry in the
problem where nonlocal relations are involved in the
definition of the basic manifold. We discuss the problem of
an expanding plasma bunch in the quasineutral approxima-
tion [51]. In this approximation, the dynamics of plasma
particles in the planar geometry are determined by solutions
of kinetic equations for the distribution functions f*(z, x, v) of
the different kinds of particles (electrons and ions):
0uf* + vdy f* + ;— E(1,x)0,/* =0, (66)
with additionally imposed nonlocal constraints arising from
the conditions of the vanishing current and charge density
(the quasineutrality conditions):

J.deeaf“:O, JdvaeU‘“:O.

o o

(67)

The electric field is here expressed in terms of moments of the
distribution functions:

E(1,x)= (Jdmzax; eaf“> (Jdv%: ;—2 f“)

The initial conditions for system (66), (67) correspond to the
distribution functions of electrons and ions at the instant
t=0:

.f‘{x|,:0 :.f()[x(xﬂ ’U) .

-1
(68)

(69)

To construct the RG symmetry, we regard the system of local
(66) and nonlocal (67) equations as the manifold RM (step (I)
of the RG algorithm), on which the electric field E(¢, x) is to
be determined. The calculation of the Lie group of point
transformations admitted by this manifold (step (II) of the
RG algorithm) defines a finite-dimensional algebra generated
by the operators of time and space shifts, the Galilean
transformation operator, three dilation operators, the quasi-
neutrality operator, and the operator of the projective group.
The restriction of the group (step (II1) of the RG algorithm)



828 V F Kovalev, D V Shirkov

Physics— Uspekhi 51 (8)

on a particular solution of problem (66), (67), (69) with a
spatially symmetric initial distribution function with zero
mean velocity selects a linear combination of the time
translation operator and the projective group operator.
Under this combination, the approximate solution of the
initial problem f* = f*(x,v) + O(r) provided by the pertur-
bation theory as ¢t — 0 is invariant, and therefore this linear
combination is the RG symmetry operator:

R=(14+Q%%)0, +Q%tx0d, + Q*(x —v1)d,. (70)
The constant Q can be regarded as the ratio of the
characteristic speed of sound ¢ to the initial inhomogeneity
scale of the electron density L.

The invariants of RG operator (70) are given by the
distribution functions of the particles f* and the combina-
tions x/v/1 4+ Q%12 and v? + Q%(x — vr)*. Hence, the con-
struction of a solution of the BVP (step (IV) of the RG
algorithm) reduces to expressing the distribution functions at
an arbitrary instant 7 # 0 in terms of initial data (69) with the
help of these invariants,

] o !
V& :fO“(I(“)) 1) =5 [vz +Qz(x—vt)2} —l—;l—a bo(x"),
(71)

where the dependence of @, on x'=x/V1+ Q%2 is
determined by quasineutrality conditions (67). A concrete
example illustrating these formulas for a plasma layer formed
by a group of hot and cold electrons and two kinds of ions can
be found in [51].

Applications of the RG symmetry operator are not
confined to the construction of solutions of an initial value
problem for Eqns (66), (67) or to finding the corresponding
distribution functions of particles. For practical purposes, a
coarser characteristics of the plasma dynamics is often
needed, for instance, the density of the particles (ions) of a
certain kind n9(t, x), which can be found by integrating the
distribution function:

duf (1, x,v) .

—00

ni(t, x) :J (72)

Straightforward integration of the distribution function with
respect to the velocity cannot always be performed analyti-
cally because this function may have a complicated depen-
dence on the invariant 7®. In this case, we can use the
extension of the RG symmetry operator to a functional of
the solution because the density n9(¢, x) is a linear functional
of /7. The extension of operator (70) to functional (72) yields
the following operator in the narrowed space of the variables
{t,x,n"}:
R=(14+Q%%)0,+ Q*tx0, — Q% tn 0y . (73)
The solution of the Lie equations for operator (73) with initial
conditions (69) taken into account yields a relation between
the invariants of this operator (one of the invariants,
Jy=x/V1+ 0?2, coincides with the above-mentioned
invariant of operator (70), and the other invariant is
JI=ni1+ Q?¢2) at an arbitrary instant 1 # 0 to their
values at the initial instant 1 = 0: J3|,_y = x', J{|,_y =N, (x').
This relation immediately gives formulas describing the
space —time distribution of the density of the ions of a given

species in terms of their initial density distribution:

nt =

1 X
= )
1+0%2 "\V1+e%?
/\fq(x/):J dvfl(19).

We note that the function AV, also characterizes the energy
spectral distribution of ions for large times Q22 > 1 [51].
Thus, the use of the RG algorithm not only allows construct-
ing a solution of problem (66), (67), (69) for various initial
distribution functions of particles [51] but also permits
finding the law of the evolution of their density and their
energy spectrum without calculating the distribution func-
tions of the particles explicitly. Similar results are obtained
not only in the framework of the model of a planar one-
dimensional expansion but also, for instance, for a spherically
symmetric expansion of a plasma bunch [52].

(74)

5. Conclusion

We now expound on several important points related to the
development and applications of the RG algorithm to BVPs
of mathematical physics.

First of all, we note its universality, meaning that the
procedure for the construction and the use of RG symmetries
is implemented in accordance with the scheme described in
Section 3. Of course, approaches to the realization of the steps
of the algorithm can be different depending on the type of the
problem under consideration, but the general pattern of four
successive steps remains the same. Our method not merely
allows reproducing already known solutions in a regular
fashion but also produces new solutions.

Second, the above examples do not exhaust all possible
ways of implementing the RG algorithm. There is an
especially large freedom at the first step, that is, in the
construction of the original manifold. We have restricted
ourself to the description of the most typical approaches
(extending the list of independent variables, using higher
symmetries, applying the techniques of approximate symme-
tries). We left the detailed description of the construction of
the basic manifold with the use of additional differential
constraints and methods for the derivation of these con-
straints on the basis of higher symmetries [23] outside the
scope of this paper. One special case of a differential relation
defining a boundary condition is the embedding equation;
this is particularly interesting in mathematical models based
on ordinary differential equations for which the problem of
symmetry calculation is nontrivial [22—24]. We also left the
use of multiparameter renormalization groups [22], the
construction of approximate RG symmetries involving a
small parameter in the transformation [44], and integration
with respect to the RG-transformation parameter [22] with-
out detailed discussion. For a detailed discussion of these
issues and for applications of RG symmetries, the reader can
consult reviews [23—26, 50, 53] and the references therein.

Third, we note that methods of computer algebra can be
used for the construction of RG symmetries. In the frame-
work of the general scheme of the RG algorithm, one of the
central computational procedures is finding a maximal
symmetry group of the manifold RM. Here, it is necessary
to describe and solve a system of defining equations, which
are linear (in the coordinates of the infinitesimal operators)
ordinary or partial differential equations. This usually
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amounts to routine calculations, the bulk of which becomes
quite large for higher-order symmetries and which cannot be
performed ‘by hand’ in a reasonably short time; psychologi-
cally, this can be a factor constraining the use of the RG
algorithm. However, by using methods of computer algebra
at the second step of the algorithm, often allows considerably
accelerating the construction of RG symmetries, as was
shown in the example of the calculation of RG symmetries
for equations of quasi-Chaplygin media [38]. The prospective
gains can be at their greatest if analytic and symbolic
calculations are combined, when a priori information about
the form of the RG symmetry extracted from analytic
investigations can considerably reduce the time required for
symbolic calculations. Methods of symbolic calculations can
be used for exact and approximate RG symmetries alike,
which significantly enhances the potentialities of the RG
algorithm in general. At the same time, analytic approaches
used in constructing RG symmetries can be helpful in the
development of new algorithms for computer algebra
systems.

Finally, we indicate possible ways to extend the scope of
applications of the RG algorithm. This can be achieved by
covering new objects for which the use of the RG algorithm is
not yet standard or by modifying the algorithm itself. One
example of a new object can be an infinite system of coupled
integrodifferential equations similar to systems for correla-
tion functions in statistical physics or to systems of equations
for generalized Green’s functions, propagators, and vertex
functions in quantum field theory.

As concerns modifications of the algorithm, they are
connected in a natural way with the general progress in the
modern group analysis. This is how it became possible to
extend the RG algorithm (developed originally for physical
problems described by differential equations) to nonlocal
problems. Certain hopes in this direction are related to the
progress in group analysis in application to generalized
functions [54], further developing the theory of approximate
symmetries [55], finding new relations between the concept of
symmetry and conservation laws [57, 58], and applying group
analysis to difference [59] and functional [60] equations.

This research was carried out with the financial support of
the ISTC (grant 2289), RFBR (grants 06-02-16103 and 08-01-
00291), and LSS-1027.2008.2.
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