
Abstract. We review some theoretical and phenomenological
aspects of massive gravities in 4 dimensions. We start from the
Fierz ± Pauli theory with Lorentz-invariant mass terms and
then proceed to Lorentz-violating masses. Unlike the former
theory, some models with Lorentz violation have no pathologies
in the spectrum in flat and nearly flat backgrounds and lead to
an interesting phenomenology.

1. Introduction

Recently, there has been a revival of interest in attempts to
construct models of gravity that deviate from general
relativity at ultra-large distance and time scales, that is,
models with infrared-modified gravity. The general
approach is to view these models as possible low-energy
limits of an unknown fundamental theory, and at the
exploratory stage not to worry too much about issues like
renormalizability, embedding into an ultraviolet-complete

theory, etc. However, self-consistency problems do occur in
low-energy theories, which severely limits the classes of
acceptable models. But acceptable models can nevertheless
be found, and their phenomenology turns out to be rather
rich.

Besides pure curiosity, there were several original motiva-
tions for the recent increase in this activity. One of them is
related to the cosmological constant problem and the
observational evidence for the accelerated expansion of the
Universe in the present epoch (for reviews from the
theoretical standpoint, see, e.g., Refs [1 ± 7]). This accelerated
expansion may well be due to the cosmological constant (the
vacuum energy density), a new weakly interacting field, or
some other kind of dark energy, which, according to Ref. [8],
contributes about 75% to the total energy density rc in the
present Universe. The problem is that the value EL of the dark
energy density is very small,

EL ' 0:75rc ' 4� 10ÿ6 GeV cmÿ3 :

This is many orders of magnitude smaller than the values that
can be associated, on dimensional grounds, with the funda-
mental interactionsÐ strong, electroweak, and gravitational:

EL � 10ÿ46EQCD � 10ÿ54EEW � 10ÿ123Egrav :

In other words, the energy scale ML � E1=4L � 10ÿ3 eV
characteristic of dark energy1 is much smaller than the
energy scales of the known interactions, LQCD ' 200 MeV,
MW ' 80 GeV, and MPl ' 1019 GeV. The unnatural small-
ness of EL (or ML) is precisely the cosmological constant
problem.

In fact, there are two parts to this problem. One is that the
contributions from the strong (quantum chromodynamics),
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electroweak, and gravitational sectors to the vacuum energy
density should be of the order of EQCD ' L 4

QCD, EEW �M 4
W,

and Egrav �M 4
Pl.

2 Thus, the first part of the cosmological
constant problem is to explain why EL is almost zero. The
second part is to understand why EL is in fact nonzero, and
what physics is behind the energy scaleML.

Evidently, the first part of the dark energy problem may
be solved by one mechanism or another that drives the
cosmological constant to zero (for a review, see, e.g.,
Ref. [9]); such a mechanism would most probably operate at
a cosmological epoch that preceded any known stage of
cosmological evolution, but at which the state of the
Universe was quite similar to the present one [10, 11].3

On the other hand, despite numerous attempts, no
compelling idea has been put forward of how the value of
ML may be related to other known fundamental energy
scales. One possible standpoint is that EL is actually the
cosmological constant (a time-independent quantity during
the known history of our part of the Universe) and that its
value is determined anthropically (for reviews, see, e.g.,
Refs [1, 12]): much larger values of jELj would be inconsistent
with our existence. This standpoint implies that the Universe
is much larger than its visible part and that EL takes different
values in different cosmologically large regions; we happen to
have measured a small value of EL merely because there is
nobody in other places to measure (larger values of) the
cosmological `constant.'

Another option is that the accelerated expansion of the
Universe is due to new low-energy (infrared) physics. Perhaps
the best known examples are quintessence models (for
reviews, see, e.g., Refs [2 ± 6]), in which gravity is described
by general relativity and the accelerated expansion is driven
by (dark) energy of a new super-weakly interacting field
(conventionally, but not necessarily, this field is a Lorentz
scalar). The original idea of infrared-modified gravity is that,
instead, gravitational laws are modified at cosmological
distance and time scales, hopefully leading to the accelerated
expansion without dark energy at all. This would certainly be
an interesting alternative to dark energy, which might even be
observationally testable.

Another original motivation for infrared-modified gravi-
ties came from theories with brane-worlds and extra dimen-
sions of large or infinite size (for a review, see, e.g., Ref. [13]).
In these theories, the ordinary matter is localized on a three-
dimensional hypersurface (brane) embedded in higher-
dimensional space. The idea [14 ± 16] is that gravitons may
propagate along `our' brane for a finite (albeit long) time,
after which they escape into extra dimensions. This would
modify the brane-to-brane graviton propagator at large
distances and time intervals, thus changing the gravitational
interactions between particles on `our' brane. If successful,
models with this property would provide concrete and
calculable examples of the infrared modification of gravity.
Again, this idea is very hard to implement in a self-consistent
way, and the models constructed so far have their intrinsic

problems. In this regard, it is worth mentioning that there are
claims of an exception: it has been argued [17] that theDvali ±
Gabadadze ± Porrati `brane-induced gravity' model [18]
(see Ref. [19] for a review) may be fully self-consistent,
although at a first glance this model becomes strongly
coupled at unacceptably large distances [20 ± 22]. Interest-
ingly, the DGP model has a self-accelerating branch of
cosmological solutions [23 ± 25], which, however, has phe-
nomenologically unacceptable ghosts among perturbations
of these solutions [20, 26].

Among other lines of thought, we mention theories
attempting to incorporate MOND (modified Newtonian
dynamics) [27 ± 31], which modify gravity for explaining
rotation curves of galaxies without dark matter, and RTG
(relativistic theory of gravity) [32, 33], motivated by the desire
to restore the full generality of energy and momentum
conservation laws. It remains to be seen whether these
theories can be made fully self-consistent and phenomenolo-
gically acceptable.

Recently, the massive graviton has been motivated from
quite a different perspective [34]. Namely, there is a fairly
widespread expectation that quantum chromodynamics
(QCD) may be formulated in terms of a string theory of
some sort. The known string theories, however, often have a
massless spin-2 state in the spectrum, while QCD does not.
The argument is that it is desirable to remove this state from
the massless sector of string theory by giving it a mass. In
terms of the effective four-dimensional low-energy theory,
this task appears very similar to giving amass to the graviton.

It is natural to expect that the infrared modification of
gravity may be associated with the modification of the
dispersion law o � o�p� of metric perturbations at low
spatial momenta p, the simplest option being the graviton
mass. In this review, we mostly discuss this type of theories,
and stay in 4 dimensions. But we emphasize that theories of
this type by no means exhaust all possible classes of theories
with infrared-modified gravity. Other classes include scalar ±
tensor theories, in which the modification of gravity occurs
due to the presence of extra field(s) (scalars), over and beyond
the space ± time metric, that are relevant in the infrared
domain. There are examples of models belonging to this
class that not only are phenomenologically acceptable but
also lead to interesting cosmological dynamics, including the
accelerated expansion of the Universe [35 ± 37]. Another class
of models involves condensates of vector and/or tensor fields
(see, e.g., Refs [38, 39] and the references therein). The
discussion of these and similar models is beyond the scope
of this review.

As it often happens, irrespectively of the original motiva-
tions, theoretical developments lead to new insights. In the
case of infrared-modified gravity and a modified graviton
dispersion law, these are insights into self-consistency issues,
on the one hand, and phenomenological implications, on the
other. The reason behind self-consistency problems is the lack
of manifest invariance under general coordinate transforma-
tions (or a nontrivial realization of these transformations).
Indeed, unless extra fields are added to the gravitational
sector of the theory, straightforward implementation of the
requirement of this gauge symmetry leads in a unique way to
general relativity (with the cosmological constant) plus
possible higher-order terms irrelevant in the infrared
domain. Once this gauge symmetry is broken, explicitly or
spontaneously, gravity is infrared-modified, but new light
degrees of freedom may appear among metric perturbations

2 For example, the QCD vacuum has a complex structure: there are quark

and gluon condensates whose values are determined by highly complicated

(and largely unknown) dynamics and depend on the QCD parameters

(LQGD and quark masses) in a complicated way. The difference between

the energy densities of this vacuum and the naive, perturbative one is

certainly of the order of EQCD, and hence there is no reason whatsoever for

the energy density of the physical vacuum to be 46 orders of magnitude

smaller than EQCD.
3 A name suggested by G Ross for this scenario is `deja vu Universe.'
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in addition to spin-2 gravitons. These new degrees of freedom
may be ghosts or tachyons, which is often unacceptable.
Another dangerous possibility is that they may be strongly
interacting at energy scales above a certain `ultraviolet' scale
LUV. This would mean that the theory of gravity becomes
inapplicable at energies above LUV. If LUV is too low and if
the new degrees of freedom do not effectively decouple, the
theory cannot be considered phenomenologically acceptable.
We see in what follows that problems of this sort are quite
inherent in theories with manifest Lorentz invariance in the
Minkowski background.

In four-dimensional models with infrared-modified grav-
ity, avoiding the self-consistency problems is relatively easy if
the Lorentz invariance is broken for excitations about a flat
background. Themain emphasis of this review is onmodels of
this type [38 ± 42]. Breaking of the Lorentz invariance is in fact
quite natural in this context. Indeed, infrared modification of
gravity may be considered an analog of the broken (Higgs)
phase in gauge theories, gravity in a certain sense being the
gauge theory of the Lorentz group. Gravity in the Higgs
phase is thus naturally expected to be Lorentz violating. We
discuss various aspects of theories of this type, including self-
consistency, technical naturalness, and phenomenology. The
last point is quite interesting in a number of cases, because
intuition gained in Lorentz-invariant field theories is often
misleadingwhen Lorentz invariance does not hold. At the end
of this review, we return to the issue of the accelerated
expansion of the Universe.

2. The Fierz ±Pauli model

To better understand the problems arising in attempting to
modify the gravitational interaction at large distances, it is
instructive to first consider the Lorentz-invariant massive
gravity. The Lorentz-invariant graviton mass term was
proposed by Fierz and Pauli [43]; we refer to the correspond-
ing model as the Fierz ± Pauli model.

The theories belonging to the class we discuss in this
section can be considered in various ways. A graviton mass
term can simply be added to the Einstein ±Hilbert action, as
we do in Section 2.1. Equivalently, general relativity coupled
to extra massless fields can be considered (see, e.g.,
Refs [44, 45] and the references therein). Once these fields
acquire background values that depend on space ± time
coordinates, general covariance is broken, and the graviton
acquires a mass in a manner reminiscent of the Higgs
mechanism. Each of these approaches yields the same class
of theories if the following requirements are satisfied:
(i) Minkowski space ± time is a legitimate background, i.e.,
the flat metric solves the field equations;4 (ii) in the
Minkowski background, there are no light fields except for
metric perturbations; (iii) Lorentz invariance is unbroken in
this background.

The issues arising in modified gravity theories are as
follows: ghosts and the related instabilities; the absence of
the zero-mass limit (the van Dam±Veltman ±Zakharov
discontinuity); strong coupling at the parametrically low
ultraviolet (UV) energy scale; and the existence of a `hidden'
Boulware ±Deser mode that is not seen in the analysis of

perturbations about theMinkowski background but becomes
propagatingÐand dangerousÐonce the background is
curved, even slightly. In this section, we discuss these issues
using the Fierz ± Pauli model as an example.

2.1 Lorentz-invariant massive gravity
in the Minkowski background
We consider general relativity plus the most general Lorentz-
invariant graviton mass term added to the action. We
parameterize the nearly Minkowski metric as

gmn � Zmn � hmn :

We sometimes need the expressions for g mn and
�������ÿgp

up to the
second order,

g mn � Zmn ÿ h mn � h mlh n
l ;�������ÿgp � 1� 1

2
h m
m �

1

8
h m
m h

l
l ÿ

1

4
h mnhmn ; �1�

where the indices are raised and lowered with the Minkowski
metric Zmn � diag�1;ÿ1;ÿ1;ÿ1�. At the quadratic level about
the Minkowski background, the general action for the
Lorentz-invariant massive gravity is given by

S �M 2
Pl

�
d4x

�
L
�2�
EH�hmn� �

a
4
hmnh

mn � b
4
�h m

m �2
�
; �2�

where M 2
Pl � 1=�16pG�, a and b are arbitrary coefficients of

dimension [mass squared], and L
�2�
EH is the standard graviton

kinetic term coming from the Einstein ±Hilbert action. This
term can be written as

L
�2�
EH �

1

4

ÿ
qlhmn q lhmn ÿ 2qmh mn qlh l

n

� 2qmh mn qnh l
l ÿ qmh n

n q
mh l

l

�
: �3�

When discussing metric perturbations, we use the convention
that the Lagrangian and the action are related by

S �M 2
Pl

�
d4xL : �4�

This simplifies the formulas; many of them do not then
includeMPl.

In what follows, it is convenient to use both the above
Lorentz-covariant form of the Lagrangian and the form
corresponding to the (3+1) decomposition. The metric
perturbations in the latter formalism are traditionally para-
meterized as follows [51]:

h00 � 2j;

h0i � Si � qiB;

hi j � hTTi j ÿ qiFj ÿ qjFi ÿ 2�cdi j ÿ qiqjE� : �5�
Here, hTTi j is a transverse traceless 3-tensor,

qihTTi j � 0 ; hTTi i � 0 ;

Si and Fi are transverse 3-vectors,

qiSi � qiFi � 0 ;

and the other variables are 3-scalars; hereafter, summation
over spatial indices i; j � 1; 2; 3 is performed with the

4 It is worth noting that massive gravities with legitimate backgrounds

other than the Minkowski one may have properties quite different from

those exposed in this section. A well-studied example is massive gravity in

the (anti-) de Sitter background [46 ± 50].
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Euclidean metric. Accordingly, the quadratic part of the
Einstein ±Hilbert term decomposes into tensor, vector, and
scalar parts,

L
�2�
EH � L

�T�
EH � L

�V�
EH � L

�S�
EH ; �6�

where

L
�T�
EH �

1

4

ÿ
q0hTTi j q0hTTi j ÿ qkhTTi j qkhTTi j

�
; �7�

L
�V�
EH �

1

2
qk�Si � q0Fi� qk�Si � q0Fi� ; �8�

L
�S�
EH � 2

�
qkcqkcÿ 3q0cq0c� 2qk�jÿ q0B� q20E� qkc

�
:

�9�

Likewise, the mass terms decompose as

Lm � a
4
h
�TT�
i j h

�TT�
i j �10�

� a
2
�qiFjqiFj ÿ SiSi �11�

�
�
�a� b�j 2 � 2b�3cÿ DE�j� �a� b� �DE�2

ÿ 2�a� 3b�cDE� 3�a� 3b�c 2 � a
2
BDB

�
: �12�

Hereafter, Lagrangians differing by a total derivative are not
distinguished.

In general relativity, most of the fields entering the
Lagrangian LEH do not propagate: the only propagating
degrees of freedom are conveniently parameterized by hTTi j
and are transverse traceless gravitational waves. This feature
is of course a consequence of the gauge invariance of general
relativity, with gauge transformations, at the linearized level
about the Minkowski background, having the form

hmn�x� ! hmn�x� � qmzn�x� � qnzm�x� ; �13�

where zm�x� are arbitrary functions of coordinates.
Once the mass terms are added, gauge invariance is lost,

and extra propagating degrees of freedom emerge. Indeed, the
massless spin-2 graviton is to be expected to become amassive
spin-2 particle. The graviton has two polarization states, but a
massive particle has five, with helicities �2, �1, and 0. In the
(3+1)-language, these respectively correspond to two tensor
modes, two vector modes, and one scalar mode. For general a
and b, however, there is one more scalar mode, which is
necessarily a ghost. We consider this point, within the (3+1)-
formalism first.

In the tensor sector, the hTTi j remain two propagating
degrees of freedom, whose mass is now given by

m2
G � ÿa : �14�

To avoid tachyons, we consider the case a < 0 in what
follows.5 Because the tensor modes have healthy kinetic
term (7), this sector is not problematic.

The vector sector contains a nondynamic field Si that
enters the action without time derivatives.

We pause at this point to discuss, in general terms, two
kinds of nondynamic fields. At the level of quadratic action, a
nondynamic field may enter the action either linearly or
quadratically. An example of the latter situation is given by
the vector sector of massive gravity: there is a term S 2

i in
Lagrangian (11), and also a term �qkSi�2 in (8). In this case,
the nondynamic field can be integrated out: the field equation
obtained by varying this field can be used to express this field
through dynamic fields (those entering the action with time
derivatives), and then nondynamic fields are eliminated by
substituting the resulting expression into the action. The
number of dynamic fields is not reduced in this way in
general (there are important exceptions in gauge-invariant
theories, which we encounter a number of times in this
review).

Another possibility is that the action does not contain a
term quadratic in a nondynamic field. This is the case, for
instance, in the scalar sector of general relativity, whose
action (9) is linear in the field j (and B, which is also a
nondynamic field, because it enters without time derivatives
after integration by parts). Unlike in the quadratic case, the
corresponding field equation is a constraint imposed on the
dynamic fields, and the nondynamic field itself is a Lagrange
multiplier. An important feature here is that the constraint
reduces the number of dynamic fields, i.e., the number of the
degrees of freedom.

This discussion is straightforwardly generalized to the
case of several nondynamic fields: if the part of the action that
is quadratic in these fields is nondegenerate, all these fields
belong to the first category; otherwise, there are Lagrange
multipliers, whose number equals the degree of degeneracy.
After this general remark, we return to the vector sector and
integrate over the field Si. Its field equation is

�Dÿm 2
G�Si � ÿDq0Fi ;

where D is the 3-dimensional Laplacian. Expressing Si

through Fi from this equation and substituting it in the
action, we obtain the action for the remaining field Fi. In a
massless theory, this action is identically zero, and hence Fi

does not have to satisfy any equation and is therefore
arbitrary. This arbitrariness is of course a consequence of
gauge freedom (13), in this case, with a transverse zi. With the
mass terms added, the field Fi is dynamical. The Lagrangian
for Fi, in the 3-dimensional momentum representation, is6

LF � m 2
G

2

�
p2

p2 �m 2
G

q0F �i �p� q0Fi�p� ÿ p2F �i �p�Fi�p�
�
:

�15�

To convert it into the standard form, we introduce the
canonically normalized field

F i�p� �MPl mG

�����������������
p2

p2 �m2
G

s
Fi�p� �16�

and find that the linearized action is

SF �
�
d3p dt

1

2

h
q0F �i q0F i ÿ �p2 �m 2

G� F �i F i

i
:

5 We see shortly that a > 0 leads to an even more serious problem in the

vector sector of the model.

6 Hereafter, p denotes a 3-momentum, while p is reserved for a

4-momentum.
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Hence, the vector sector has two propagating degrees of
freedom of mass mG (we recall that the Fi are transverse,
and hence only two components of Fi are independent). The
number of propagating degrees of freedom in the tensor and
vector sectors corresponds to the number of states of the
massive graviton with the respective helicities �2 and �1, in
accordance with expectations.

We note here that form 2
G�ÿa < 0, Lagrangian (12) has a

negative overall sign, and hence vector modes are ghosts in
that case. This is even worse than the tachyon behavior of
tensor modes.

We return to the theory with m 2
G � ÿa > 0. It follows

from (16) that the limit mG ! 0 is singular. Fluctuations in
the canonically normalized field F i are finite in this limit, and
therefore fluctuations in the vector part of themetric (the field
Fi) diverge asm

ÿ1
G . At small but finitemG, this implies that the

quantum theory becomes strongly coupled at an ultraviolet
energy scale LUV that is much lower than MPl. In the vector
sector, this scale is not unacceptably low, however.We discuss
the strong coupling later, because it becomes a more serious
problem not in the vector but in the scalar sector.

We now pass to the scalar sector and begin with the
general case

a 6� 0 ; a 6� ÿb ; a 6� ÿ2b :

After integrating by parts, we obtain the following form of the
Lagrangian, including mass terms:

L�S� � 2

�
ÿ 2jDcÿ 2 _cDB� 2 _cD _Eÿ 3 _c2 ÿ cDc

� a� b
2

j 2 � b�3cÿ DE�j� a� b
2
�DE�2

ÿ �a� 3b�cDE� 3
a� 3b

2
c 2 � a

4
BDB

�
: �17�

In the case of general relativity (a � b � 0), the fields j and B
are Lagrange multipliers, resulting in the same constraint
c � 0. Then the equation of motion obtained by varying c
gives j � _Bÿ �E; varying E gives nothing new. There are no
propagating degrees of freedom, and the fields B and E
remain arbitrary. This is again due to gauge freedom (13),
now with z0 6� 0 and zi � qi zL.

In the massive case, the fields j and B are no longer
Lagrange multipliers, but are still nondynamical and can be
integrated out. Integrating over B, we obtain an additional
term in the Lagrangian,

LB � ÿ 8

a
_cD _c ; �18�

and integrating over j gives another additional term

Lj � ÿ 1

a� b

�
2Dcÿ b�3cÿ DE��2: �19�

Then the Lagrangian for the remaining fields c and E
becomes

L�S� � LB � Lj � 2

�
2 _cD _Eÿ 3 _c2 ÿ cDc

� a� b
2
�DE�2 ÿ �a� 3b�cDE� 3

a� 3b
2

c 2

�
: �20�

Both fields c and E are dynamical, and hence there are two
propagating degrees of freedom in the scalar sector. Thus,
there is an extra scalar mode in addition to the expected
helicity-0 state of the massive graviton. This degree of
freedom is actually a ghost (it has a negative sign of the
kinetic term).

To see this, we concentrate on the terms with time
derivatives. These come from the terms explicitly shown in
(20) and from term (18). Therefore, for a given spatial
momentum, the relevant part of the Lagrangian has the form

Lkin � A

2
_c2 � B _c _E

� A

2

�
_c� B

A
_E

�2

ÿ B 2

2A
_E 2 ; �21�

where A and B are numerical coefficients (depending on the
spatial momentum). It follows that irrespectively of the sign
of A, one of the two degrees of freedom is a ghost. Of course,
the theory is Lorentz invariant, and hence both modes have
o 2 � p2 at high spatial momenta, and the ghost exists at
arbitrarily high spatial momenta p.

It is clear from (19) that the case a � ÿb is special.7 This is
precisely the Fierz ± Pauli theory, where

b � ÿa � m 2
G :

In this case, there is no quadratic term in j, and therefore j is
a Lagrange multiplier. The corresponding constraint is

DE � 3cÿ 2

b
Dc : �22�

This constraint eliminates one degree of freedom out of two,
and hence the only mode in the scalar sector is the helicity-0
state of a massive graviton with the normal (positive) sign of
the kinetic term. Indeed, by inserting (22) in action8 (17) and
adding term (18), we find that the only remaining degree of
freedom is c, and the Lagrangian has the kinetic term

Lkin;c � 6 _c2 :

In fact, the complete quadratic Lagrangian for c is

LcFP � 6
ÿ
qmcq

mcÿm 2
Gc

2
�
; �23�

in full analogy, for example, with the Lagrangian for tensor
modes hTT

i j .
We finish this discussion with the following comment. Of

course, in the case of the Minkowski background and
Lorentz-invariant mass terms, the analysis is most straight-
forwardly performed in a Lorentz-covariant way. The (3+1)-
formalism used here certainly looks like an unnecessary

7 The cases a � 0 and a � ÿ2b are also special. For a � ÿ2b, the ghost has
the same mass as the graviton, and because of this degeneracy, its wave

function increases in time, i.e., behaves as t exp �iot�. For a � 0, graviton

mass (14) is zero, and it can be verified that the only degrees of freedom of

the linearized theory are transverse traceless massless gravitons. There-

fore, the theory with a � 0 cannot be considered a massive gravity, and we

do not discuss this case further.
8 The question may arise as to whether this procedure is legitimate, since

one of the field equations is apparently lost. The case is that in the original

formulation, this would-be-lost equation is an equation determining the

Lagrange multiplier j in terms of c.
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complication. Our analysis, however, does provide useful
insights. First, it suggests that the problems of massive
gravity are most severe in the scalar sector. Second, it shows
that the Fierz ± Pauli miracle occurs due to the special
property of the field j, which acts as the Lagrange multiplier
and eliminates the undesirable degree of freedom. We see in
Section 2.6 that this property is lost in curved backgrounds,
and the extra degree of freedomÐthe Boulware ±Deser
modeÐreappears in the spectrum. Finally, our discussion
suggests a possibility that Lorentz-violating mass terms may
give rise to a healthier theory, if they are chosen such that the
unwanted degree of freedom is consistently eliminated. We
discuss this possibility in Sections 3 ± 5.

2.2 A ghost via the St�uckelberg trick
A convenient way to isolate and study dangerous degrees of
freedom is to use the St�uckelberg formalism [44]. The idea is
to enlarge the field content of massive gravity in such a way
that the gauge invariance is restored, and then make a
judicious choice of the gauge fixing condition. We use this
trick in various sections of this review, and here we illustrate
the St�uckelberg approach by rederiving the ghost in the
spectrum about the Minkowski background.

We again consider theory (2) with general mass terms. In
the linearized theory, we introduce a new, St�uckelberg field xm
and a new field �hmn by writing

hmn � �hmn � qmxn�x� � qnxm�x� : �24�

Then the linearized theory is invariant under the gauge
transformations

�hmn�x� ! �hmn�x� � qmzn�x� � qnzm�x� ;
xm ! xm ÿ zm :

Importantly, because of the gauge invariance of general
relativity, the Einstein ±Hilbert part of the quadratic action,
Eqn (3), is independent of xm:

L
�2�
EH � L

�2�
EH��hmn� :

We note that we did not introduce new degrees of freedom: by
imposing the gauge condition xm � 0, we return to the original
massive gravity. The trick is to impose a gauge condition on
�hmn instead, such that all independent components of �hmn
obtain nontrivial kinetic terms from the Einstein ±Hilbert
Lagrangian. This guarantees that the fields �hmn and xm
decouple at high energies (for a 6� ÿb) and the properties of
the dangerous modes can be derived from the Lagrangian
involving the fields xm only. We further comment on this
procedure in what follows [see Eqns (33) and (34)].

We are interested in relatively high energies and spatial
momenta,o2, p2 4 jaj; jbj, and therefore keep the terms in the
action that are of the highest order in derivatives. Because of
the structure of (24), these terms come not only from the
Einstein ±Hilbert part of the action but also from the mass
terms. This is a peculiarity of the St�uckelberg formalism.

The choice of the gauge condition for �hmn is not very
important. The gauge �h00 � 0, �h0i � 0, of covariant gauges
can be used.9 In any case, the remaining components of �hmn
have nondegenerate terms with two time derivatives, which

come from the Einstein ±Hilbert action. For example, in the
gauge �h00 � 0, �h0i � 0, i.e., �j � 0, �Si � 0, and �B � 0, the
fields �Fi, �c, and �E have nondegenerate terms with two time
derivatives [see (8) and (9)]. We sometimes write, schemati-
cally,

L
�2�
EH � �q�h�2 :

Kinetic terms for the field xm come from the mass terms in
action (2). They are

a
2
�qmxn�2 �

�
a
2
� b
�
�qmxm�2 : �25�

The mass terms also induce a mixing between xm and �hmn, but
as we discuss shortly, this mixing is unimportant for a 6� ÿb
at high momenta and frequencies, p2, o2 4 jaj; jbj. Once this
mixing is neglected, the fields �hmn and xm decouple, as
promised, and we can study the metric and St�uckelberg
sectors, �hmn and xm, independently.

In the metric sector, the kinetic part of the Lagrangian is
just the gauge-fixed Einstein ±Hilbert Lagrangian. Therefore,
the only propagating modes in this sector are the �h TT

i j . The
other propagating modes belong to the St�uckelberg sector.
Once the mixing between �hmn and xm is taken into account, the
propagating modes have nonvanishing contributions propor-
tional to �hmn, but this effect is small and can be neglected. To
see explicitly how this works in the gauge �h00 � 0, �h0i � 0, we
consider the vector sector in the (3+1)-decomposition
language as an example. The full Lagrangian in this sector is

L�V� � 1

2

ÿ
qiq0 �Fi

�2 � a
2

ÿ
qi �Fj

�2 ÿ aqi �Fj qi x
T
j ÿ

a
2

ÿ
qmx

T
i

�2
;

�26�

where we set Si � 0 in accordance with our gauge choice
and xT

i is 3-dimensionally transverse, qix
T
i � 0. The first term

in (26) is the Einstein ±Hilbert term (8), the last term comes
from (25), and the third term is precisely the one that mixes
the metric and the St�uckelberg field. The field equations are

��Fi � axT
i ÿ a �Fi � 0 ; �27�

&xT
i � D �Fi � 0 ; �28�

were & is the standard d'Alembertian. For o 2,
p2 4m 2

G � ÿa, these equations may be solved perturba-
tively in the small parameter a. In the zeroth order, the first
of these equations has no oscillating solutions, and hence
Fi � 0, and the only propagating modes are xT

i , as expected.
These are helicity-1 states of the massive graviton in the
St�uckelberg picture. In the first order, it follows from (27) that

�Fi � a
2o 2

xT
i ;

and therefore Eqn (28) becomes

�o 2 ÿ p2� xT
i �

ap2

o 2
xT
i � 0 :

As promised, the second term here, which appears due to the
mixing between �Fi and xT

i , is negligible for o
2, p2 4m 2

G.
The lesson from this exercise is twofold. First, it shows

that neglecting the metric sector �hmn is indeed legitimate

9 Unlike noncovariant gauges, covariant ones do not fix the gauge

completely. There remain unphysical modes to worry about.
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(except for helicity-2 states) as long as modes with
o 2, p2 4m 2

G are considered. Second, we see that the St�uckel-
berg formalism is useless for studying modes with o 29m 2

G;
restricting to only the St�uckelberg sector may even result in
losing some modes with o 29m 2

G. Indeed, there is no
guarantee that system of equations like (27), (28) does not
have more slowly oscillating solutions than the equation
&xT

i � 0; after all, Eqns (27) and (28) are both second order
in time. In the theory considered in this section, the number of
modes with high and low o is the same due to Lorentz
invariance, but the last remark should be kept in mind when
studying Lorentz-violating massive gravities.

We return to modes with o 2; p2 4m 2
G and consider the

St�uckelberg sector. Expression (25) can be considered the
most general Lorentz-invariant Lagrangian for the vector
field xm. It is well known that this Lagrangian has a ghost in
the spectrum unless the two terms combine into the field
strength tensor F 2

mn � �qmxn ÿ qnxm�2. Thus, we again see that
the no-ghost situation is possible in the Fierz ± Pauli case
only.

Ghosts are unacceptable in a Lorentz-invariant theory.
Therefore, we concentrate on the Fierz ± Pauli theory in the
rest of this section.

We show how the St�uckelberg analysis works in the
Fierz ± Pauli case b � ÿa � m 2

G. The relevant part of the
mass term is then given by

Lm � ÿm 2
G

2
�qmxn ÿ qnxm� �q mx n ÿ q nxm�

ÿm 2
G�qnxm �h n

m ÿ qmx
m �h n

n � ; �29�
where we omitted terms without derivatives but kept the
kinetic mixing between �hmn and xm. The 4-dimensionally
transverse part of xm, which obeys qmx

m
tr � 0, has a healthy

kinetic term given by the first line in (29). On the other hand,
the longitudinal part

xm �
1

2
qmf

has the kinetic term only due to mixing with the field �hmn; this
is why the mixing term, which is subdominant for a 6� ÿb,
plays a key role now. Temporarily, we do not impose the
gauge condition on �hmn. Then the kinetic term for �hmn and f is
given by

L
�2�
EH��hmn� ÿ

m 2
G

2
�qmqn �h mn ÿ qmq

m �h n
n �f : �30�

It can be diagonalized [44] by noticing that the combination
qmqn �h mn ÿ qmq

m �h n
n is proportional to the linearized Riemann

curvature, and hence the second term in (30) has the structure
m 2

GR��hmn�f. Therefore, the kinetic term is diagonalized by a
conformal transformation, which at the linearized level is
given by

�hmn � ĥmn ÿm 2
G

2
Zmnf : �31�

Then the kinetic term becomes

Lkin � L
�2�
EH�ĥmn� �

3

8
m 4

Gqmfq
mf : �32�

Upon gauge fixing of ĥmn, the longitudinal sector of the theory
contains one degree of freedom fwith a healthy kinetic term.
In this way, we recover the absence of ghosts in the Fierz ±
Pauli theory in the Minkowski background.

We note that for general a 6� ÿb, term (32) is subdomi-
nant compared to the term �a� b��&f�2 that arises from
(26). Thus, mixing between the scalar parts of �hmn and xm is
unimportant in this case, just as in the vector sector.

A general comment is in order. With gauge conditions
imposed on �hmn, the St�uckelberg procedure may result in the
occurrence of spurious solutions of the field equations. For
example, in the gauge �h00 � 0, �h0i � 0, we have h00 � 2q0x0
and h0i � q0xi � qix0. Varying the action of the original
theory with respect to hmn, we obtain the field equations

dS
dh00

� 0 ;
dS
dh0i
� 0 ;

dS
dhi j
� 0 : �33�

The first two of these equations do not contain second time
derivatives; these are constraints. On the other hand,
substituting h00 � 2q0x0 and h0i � q0xi � qix0 in the action
and then varying with respect to xm and hi j, we find

q0

�
dS
dh00

�
� qi

�
dS
dh0i

�
� 0 ; q0

�
dS
dh0i

�
� 0 ;

dS
dhi j
� 0 :

�34�

There are no constraints any longer; instead, all these
equations are second order in time. Hence, system (34) has
more solutions than (33). However, we are interested in
propagating modes, i.e., solutions of the linearized field
equations that have the form exp �iotÿ ipx�. In this case,
the left-hand sides of (33) oscillate unless they are identically
zero, and hence the left-hand sides of (34) cannot vanish
unless (33) are satisfied. System (34) has the same number of
propagating modes as the original system (33). Also, energies
andmomenta of the solutions are the same in the original and
St�uckelberg formalisms: if a propagating mode is a ghost in
the St�uckelberg formalism, it is a ghost in the original theory.
Indeed, in general there is a unique energy ±momentum
tensor (modulo terms that do not contribute to the total
energy or momentum) that is conserved on solutions of the
field equations. This last observation is also valid at the
nonlinear level, and for adiabatically varying backgrounds.

2.3 Van Dam±Veltman ±Zakharov discontinuity
The Fierz ± Pauli mass term changes the gravitational inter-
action both between two massive bodies and between a
massive body and light. This interaction can be straightfor-
wardly calculated in the weak-field approximation [52, 53].
The result is surprising: the prediction of light bending in the
massive case is different from general relativity even in the
limit of zero graviton mass. This is known as the van Dam±
Veltman ±Zakharov (vDVZ) discontinuity: the linearized
Fierz ± Pauli theory does not approach linearized general
relativity as mG ! 0. Taken at face value, this result would
mean that the Fierz ± Pauli gravity is ruled out, because the
experimental measurement of light bending agrees with the
general relativity (see, e.g., [54] and the references therein).

We consider this phenomenon in more detail. At the
linearized level, the interaction between two sources of a
gravitational field is given by

GT mnPmnlrT
0lr ;

where G is the gravitational coupling constant, Pmnlr is the
propagator of the gravitational field, andT mn andT 0lr are the
energy ±momentum tensors of the two sources. The point is
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that the propagators are different in the massive and massless
cases. Their structure in both cases is

Pmnlr /
P

i e
i
mne

i
lr

p 2 ÿm 2
G

;

where e imn are the graviton polarization tensors; in themassless
case, the mass in the denominator is zero. Because the
denominator is continuous in the zero-mass limit, the sum
over the polarizations is responsible for the discontinuity.

In the massive case, there are 5 polarization tensors. The
summation over these tensors gives

FP : Pmnlr � 1

p 2 ÿm 2
G

�
1

2
ZmlZnr �

1

2
ZmrZnl ÿ

1

3
ZmnZlr

� � p-dependent terms�
�
; �35�

where the terms containing pm are irrelevant because they do
not contribute when contracted with the conserved energy ±
momentum tensors. In the massless case, there are only two
polarizations. The propagator in this case takes the form

GR : Pmnlr � 1

p 2

�
1

2
ZmlZnr �

1

2
ZmrZnl ÿ

1

2
ZmnZlr

� � p-dependent terms�
�
: �36�

The difference between these two expressions is in the
coefficient of the third term. This difference persists in the
limit of zero mass; this is precisely the vDVZ discontinuity.
We also note that the difference is in the part of the
propagator that is coupled to the trace of the energy ±
momentum tensor.10

It is worth noting that the vDVZ discontinuity is specific
to a spin-2 field. In the case of a vector field, the zero mass
limit of the propagator coincides, modulo the longitudinal
piece, with the propagator of the massless field, and hence the
vDVZ discontinuity is absent.

In general, the coupling constants GGR and GFP in the
massless andmassive cases are different. The relation between
them can be found by requiring that two nonrelativistic
bodies interact with the same strength in the massive and
massless theories. In the nonrelativistic limit, only the 00-
component of the energy ±momentum tensor contributes,
and therefore we have

GR : GGRTmnPmnlrT
0
lr �

1

2
GGR T00T

0
00

1

p 2
;

FP : GFPTmn ~PmnlrT
0
lr �

2

3
GFP T00T

0
00

1

p 2 ÿm 2
G

:

In the zero-mass limit, this implies

GFP � 3

4
GGR � 3

4
GNewton : �37�

We next consider the prediction for light bending in each
case. The energy ±momentum tensor of an electromagnetic
wave is traceless. Hence, the third term in the propagator does
not contribute, and we find the following expressions for the
interaction strength:

GR : GGRT00T
0
00

1

p 2
;

FP : GFPT00T
0
00

1

p 2 ÿm 2
G

:

In view of Eqn (37), the light bending predicted in the massive
theory in the limit of the vanishing graviton mass is 3=4 times
that in the massless theory, general relativity.

Clearly, the discontinuity is related to the longitudinal
polarizations of the graviton, i.e., to the St�uckelberg field xm
discussed in Section 2.2. In what follows, we shed more light
on the mechanism responsible for this phenomenon.

2.4 The Vainshtein radius
As we already noted, if the arguments in the previous section
were strictly correct, they would imply that the graviton mass
is exactly zero in the Lorentz-invariant theory. But these
arguments have a loophole [56], because they rely on the
linear approximation. In general relativity, this approxima-
tion is valid for distances much larger than the Schwarzschild
radius of the source. Therefore, the gravitational bending of
light that passes next to the surface of the Sun is describedwell
in the linear regime.

The situation is different in the Fierz ± Pauli gravity. It
was argued in Ref. [56], by studying spherically symmetric
classical solutions, that with a nonzero graviton mass, the
linear approximation actually breaks down already at a
distance much longer than the Schwarzschild radius,
namely, at the distance called the Vainshtein radius,

rV �
�

M

M 2
Plm

4
G

�1=5

; �38�

where M is the mass of the source. We note that the smaller
the graviton mass, the larger is the distance where the
nonlinear regime sets in. Taking the graviton mass to be of
the order of the present Hubble parameter yields
rV ' 100 kpc for the Sun, and therefore bodies orbiting the
Sun, as well as light passing not far from the solar surface, feel
the nonlinear gravitational interaction. The above argument
for the incorrect bending of light in the massive theory is
therefore not directly applicable. On the other hand, the
nonlinearity of the Fierz ± Pauli gravity in the entire solar
system is a problem by itself.

The origin of the scale rV is easy to understand by simple
power counting [44]. We first recall how the Schwarzschild
radius rS � 2M=M 2

Pl appears as the expansion parameter in
general relativity. Schematically, quadratic Einstein ±Hilbert
action (3) with a source term can be written as�

d4x
�
M 2

Pl�qh�2 � Th
�
; �39�

where h is the metric perturbation and T is the energy ±
momentum tensor. The corresponding equations have the

10 A question may arise whether the vDVZ discontinuity can be bypassed

by abandoning the weak equivalence principle, i.e., by modifying the way

in which gravity couples to matter. Indeed, in massive gravity, the

consistency of the field equations does not require the covariant conserva-

tion of the source tensor (unlike in general relativity, where the gravita-

tional part of the field equations Ð the Einstein tensor Ð obeys the

Bianchi identity, and therefore the matter part Ð the energy ±momentum

tensor Ð must obey the covariant conservation law). The above analysis

becomes inapplicable if instead of the coupling to the conserved energy ±

momentum tensor, the field hmn couples to some tensor S mn whose

divergence is nonzero at finite mG and vanishes in the massless limit

only. This question has been studied in Ref. [55]; the result is that the

vDVZ discontinuity cannot be bypassed in this way.
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solution11

h � 1

q2
T

M 2
Pl

or, equivalently,

h � M

M 2
Plr

; �40�

where M is the total mass of the source. This is the standard
formofNewton's law. The nonlinear corrections to the action
begin with terms of the type M 2

Pl

�
d4x h�qh�2. Requiring that

these terms be small compared to quadratic contributions
(39) yields the condition h5 1, i.e.,

M

M 2
Plr

5 1

for perturbation (40). This is precisely the condition r4 rS
ensuring the validity of the linear approximation in general
relativity.

In the case of the Fierz ± Pauli massive gravity, this
condition has to be satisfied as well. But there is a stronger
constraint. In the St�uckelberg language of Section 2.2, this
constraint comes from the analysis of the field xm. Of
particular importance is its scalar part, xm � qmf. It follows
from the discussion at the end of Section 2.2 that the action for
the fields ĥmn and f in the presence of a conserved source Tmn

schematically has the form�
d4x
�
M 2

Pl�qĥ�2 �M 2
Plm

4
G�qf�2 � Tĥ�m 2

GTf� . . .
�
;

�41�

where we again omitted numerical coefficients and did not
explicitly write the mass terms for ĥmn and f. The kinetic term
here is the same as in (32), and the source term is obtained
from the standard expression h mnTmn using (24) and (31),
together with the linearized conservation law qmT mn � 0. We
note that after the diagonalization of the kinetic term via (31),
matter becomes directly coupled to the field f. Solving the
equations of motion, we find that at distances much shorter
than mÿ1G , the gravitational potential ĥ is given by Eqn (40)
and that m 2

Gf is of the same order,

m 2
Gf �

M

M 2
Plr

:

This formula implies that f itself is large and singular in the
limit mG ! 0 [cf. Section 2.1, Eqn (16)]. This is the origin of
the nonlinearity at long distances from the source.

Indeed, a nonlinear generalization of the Fierz ± Pauli
mass term would contain higher powers of the perturbation
hmn. The lowest term of this type is just h 3. This term gives rise
to the nonlinear contribution to the action of the form�

d4xM 2
Plm

2
G�q2f�3 : �42�

Another source of terms of the same order is the nonlinearity
of gauge transformations in general relativity. In general, a

coordinate transformation x m ! x m � zm corresponds to the
following gauge transformation of the metric:

gmn�x� ! g 0mn�x� � gmn�x� z� � qmz
lgnl�x� z�

� qnz
lgml�x� z� � qmz

lqnz
rglr�x� z� : �43�

With gmn � Zmn � hmn, it follows in the quadratic order (in both
hmn and zm) that

h 0mn � hmn � qmzn � qnzm

� qmz
l qnzl � qmz

l hnl � qnz
lhml ;

where the indices are still raised and lowered with the
Minkowski metric. Accordingly, in this order, the change of
variables in (24) has the form

hmn � �hmn � qmxn � qnxm

� qmx
lqnxl � qmx

l �hnl � qnx
l �hml : �44�

The field xm still does not enter the Einstein ±Hilbert part of
the action, while the mass term receives the contribution
whose schematic form is�

d4xM 2
Pl m

2
G�qx�3 ; �45�

that is, the contribution of form (42) with xm � qmf.
The linearized theory is valid when contribution (42) is

smaller than the quadratic term. This requirement leads to the
condition

M

M 2
Plm

4
Gr

5
5 1 ;

which is equivalent to r5 rV with rV given by Eqn (38).
The situation may be improved by tuning the explicit h3

terms in the nonlinearly generalized Fierz ± Pauli action such
that the leading correction �q2f�3 be absent. In this way, the
onset of the nonlinear regimemay be pushed to smaller scales,
namely, to the distance

r� �
�

M

M 2
Plm

2
G

�1=3

: �46�

It can be shown that the situation cannot be improved further
[44]. For a graviton mass of the order of the present Hubble
parameter,12 the nonlinear regime occurs at distances below
r� � 10 pc from the Sun, which still covers the whole Solar
System.

We discuss how the analysis presented here is related to
the study of the vDVZ discontinuity. It is clear from (41) that
the gravitational field �hmn coupled tomatter is a mixture of the
two fields ĥmn and m 2

GZmnf. The field ĥmn has the same kinetic
term LEH�ĥmn� as the linearized gravitational field in general
relativity, while m 2

Gf has the kinetic term of a gravi-scalar.
Both fields interact with matter at roughly the same strength.
In the massless limit, keeping only the part ĥmn, yields the

11 Throughout this review, when presenting power-counting arguments,

we ignore numerical factors and signs.

12 Hereafter, we assume that greater values of mG would be inconsistent

with cosmology. Even without this assumption, the requirement that

Newton's law remains valid at the scale of galaxy clusters would give

mG910 Mpc
ÿ1
. The estimates here and in the rest of this section would

change by about two orders of magnitude, with no change of the

conclusions.
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propagator of �hmn (and hence the propagator of the full
metric perturbation hmn modulo the longitudinal terms
omitted in (35) and (36)) that has precisely the form of the
propagator in linearized general relativity. The field m 2

Gf
adds an extra trace piece to the propagator, which does not
vanish in the massless limit and sums up with the contribu-
tion of ĥmn to propagator (35).

To summarize, distances belowwhichmassive gravity is in
the nonlinear regime are not less than given by (46) and hence
are very large. One may hope that the nonlinear interactions
would modify the theory so as to make the massless limit
smooth [56]. This indeed happens in some cases, an example
being the DGP model [22], where the nonlinear interactions
mainly affect the gravi-scalar sector and essentially decouple
it from other modes in the small-mass limit, eliminating the
extra contribution to the propagator responsible for the
vDVZ discontinuity. This mechanism, however, does not
work in the case of the Fierz ± Pauli theory [57]. Thus, the
Fierz ± Pauli gravity in the Minkowski background is already
problematic at the classical level: it most likely contradicts
precision tests of general relativity. It becomes even more
problematic at the quantum level, as we discuss below.

2.5 Strong coupling
At the quantum level, the above nonlinearity problem
manifests itself as a strong coupling at the energy scale that
is much lower than the naive expectation.

Both massless and massive gravities should be treated as
low-energy effective theories valid at energies (more precisely,
momentum transfers) below some ultraviolet (UV) scaleLUV.
Above this scale, these theories are meant to be extended to
some `fundamental' theories (UV completions) with better
UV behavior. The situation here is analogous to the theory of
the massive self-interacting vector field, whose possible UV
completion is a non-Abelian gauge theory with the Higgs
mechanism. In the case of general relativity, the UV comple-
tion is most likely the string/M-theory; whether there exists a
UV completion of massive gravity is not known (in fact, the
discussion in this section suggests that the Lorentz-invariant
massive gravity does not have a UV completion at all).

The effective theories can be trusted only at distances
r4Lÿ1UV; at shorter distances, the putative UV-complete
theory has to be considered, which most likely has quite
different properties. Experimentally, Newtonian gravity has
been tested down to submillimeter distances [58 61], and
hence an effective low-energy theory must be valid down to
those distances. This implies

Lÿ1UV910ÿ2 cm ; or LUV010ÿ3 eV :

On the other hand, an upper limit on theUV energy scaleLUV

can be obtained within the low-energy effective theory itself.
The tree-level scattering amplitudes calculated in the low-
energy theory grow with the center-of-mass energy E and
eventually, at some energy E, become large and hit the
unitarity limit. Above this energy E � L, the effective theory
becomes strongly coupled, and hence cannot be trusted. The
entire framework makes sense if the UV-completion scale is
below the strong-coupling scale,

LUV9L : �47�

The well-known illustration is again a non-Abelian gauge
theory with the Higgs mechanism. The strong-coupling scale

of its effective low-energy theoryÐ the theory of the massive
self-interacting vector fieldÐ is

L � mV

g
; �48�

where mV is the vector boson mass and g is the gauge
coupling. This low-energy theory is extended to its UV
completionÐ the gauge theory in the Higgs phaseÐat the
scale LUV � mH, where mH is the Higgs boson mass: at that
scale, new degrees of freedom, the Higgs bosons, show up.
Because L � mV=g � v, where v is the Higgs vacuum
expectation value, and mH �

���
l
p

v, where l < 1 is the Higgs
self-coupling, inequality (47) indeed holds in this example.

In general relativity, the strong-coupling scale isL �MPl,
and therefore its UV completion may occur well above
accessible energies.13 In massive gravity, the strong-coupling
scale L, and hence the UV-completion scale LUV, are
certainly much below MPl. Naively, the strong-coupling
scale would be estimated as

L � �MPlmG�1=2 : �49�

This is a direct analog of (48). Indeed, we consider the
transverse component of the St�uckelberg field xm, which
obeys qmx

m
tr � 0. The kinetic term in the Lagrangian for this

component comes from the Fierz ± Pauli mass term and
schematically has the form

L
�2�
tr �M 2

Pl m
2
G�qxtr�2 : �50�

The terms that are cubic in hmn and come from a nonlinear
generalization of the Fierz ± Pauli term, as well as from the
nonlinear change of variables in (44), give rise to the
interaction terms schematically written in (45). Had the
form (50) been common to the kinetic terms for both
transverse and longitudinal components of xm, we would
have introduced the canonically normalized field
wm �MPlmGx

m and found that it enters the kinetic term
with the unit coefficient, while the interaction Lagrangian is

Lint � 1

MPlmG
�qw�3 : �51�

This theory would indeed have the strong coupling scale (49),
because it is this parameter that suppresses higher-order
operator (51). The analysis of other higher-order operators,
�qx�4, etc., would lead to the same conclusion. The same
argument applied to theories of self-interacting vector fields
leads to estimate (48), hence the analogy between (48)
and (49).

Scale (49) is actually quite interesting phenomenologi-
cally. For the graviton mass of the order of the present
Hubble parameter, the corresponding distance is

�MPl mG�ÿ1=2 ' 0:05 mm : �52�

If this were the true scale of the UV completion, we would
expect novel phenomena in the gravitational sector at sub-
millimeter distances. In the Fierz ± Pauli theory, however,

13 This is not a necessity: the inequality in (47) may be strong. In this

regard, an interesting possibility is offered by TeV-scale gravities, where

LUV is of the order of a few TeV, and new phenomena occur at collider

energies. This possibility is reviewed, e.g., in [13, 62 ± 64].
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the strong-coupling scale is actually much lower than
estimate (49), and the corresponding distance is much
longer than (52).

The problem occurs in the longitudinal sector, where
xm � qmf. We recall Eqns (41) and (42). According to (41),
the canonically normalized field is w �MPl m

2
Gf, and (42)

implies that its self-interaction has the form

Lint � 1

MPlm
4
G

�q2w�3 :

The scale that suppresses this higher-order operator is now

L � �MPlm
4
G�1=5 : �53�

This is the actual strong-coupling scale in the general Fierz ±
Pauli theory. For a graviton mass of the order of the present
Hubble parameter, this scale is of the order 10ÿ21 eV
� �1016 cm�ÿ1, which is clearly too low.

In the perturbative framework, the origin of this strong
coupling is the growth of the propagator and the wave
functions of the longitudinal components of a massive
graviton with energy, much like the case of a massive non-
Abelian vector field.We consider the four-graviton scattering
amplitude represented by the diagrams in Fig. 1. The external
lines of the diagrams for longitudinal gravitons behave as
E 2=m 2

G. The 4-vertex gives the factor E
2=M 2

Pl. Therefore, the
first diagram gives the contribution of the order of

E 10

M 2
Plm

8
G

:

The second diagram is of the same order because two leading
contributions to the propagator cancel in the on-shell
amplitude [65]. Thus, the scattering amplitude indeed
becomes large at energies of the order of (53). This has been
checked by an explicit calculation of the amplitude [65].

The strong-coupling scale can be pushed to higher
energies by a judicious choice of the interaction terms.
Indeed, a nonlinear extension of the Fierz ± Pauli theory can
be chosen such that the cubic terms �q 2f�3 vanish. Then the
fourth-order terms are

Lint �M 2
Plm

2
G�q2f�4 �

1

M 2
Plm

6
G

�q2w�4 ;

and the strong-coupling scale is

L � �MPlm
2
G�1=3 : �54�

This is the best that can achieved [44], because there are
not only self-interactions of the field f (these can be

canceled by an appropriate choice of higher-order terms in
hmn) but also interactions between the longitudinal compo-
nent of the St�uckelberg field, xm � qmf, and the transverse
component xm

tr.
For the graviton mass mG of the order of the present

Hubble parameter, it follows from (54) that L � 3�
10ÿ13 eV � �108 cm�ÿ1. This is also unacceptably low.14 We
conclude that the Fierz ± Pauli theory suffers from a severe
strong-coupling problem.

2.6 The Fierz ± Pauli theory in curved backgrounds:
The Boulware ±Deser mode
2.6.1 The cosmological background. If the background is not
exactlyMinkowskian, the Fierz ± Pauli cancellation no longer
works, and the ghost or tachyon mode reappears in the
spectrum. This mode exists for arbitrarily high spatial
momenta, and hence it is unacceptable phenomenologically.
This phenomenon is known as the Boulware ±Deser instabil-
ity [66]. Importantly, it occurs irrespectively of the way the
Fierz ± Pauli theory is generalized to a curved space±time [57].

To see the appearance of the Boulware ±Deser mode
explicitly, we consider an example of the cosmological
background. As noted above, the scalar sector is the most
problematic; indeed, as we find shortly, the Boulware ±Deser
mode emerges precisely in this sector. We therefore concen-
trate on the scalar sector in what follows.

We begin with general relativity. Let the metric with
perturbations have the form

ds 2 � a 2�Z��Zmn � hmn� dxm dx n ; �55�

where Z is the conformal time. We note that we have changed
the definition of hmn here; in Sections 2.1 ± 2.5, hmn denoted the
deviation of gmn from the background metric, while here this
deviation is equal to a 2hmn. In what follows, we raise and
lower indices by the Minkowski metric, and hence
h n
m � Znlhml by definition. Another convention is that

summation over spatial indices is performed using di j, and
we never use covariant derivatives in explicit formulas.
Hence, the dependence on the scale factor is always explicit.

Linearized gauge transformations (13) are generalized
using (43). According to our conventions, we define
zm � Zmnz

n and write the gauge transformations in this
background as follows:

Ð spatial, zi � ÿqizL:
dB � z 0L ; dE � zL ; �56�

Ð temporal, z0:

dB � z0 ; dj � z 00 �Hz0 ; dc � Hz0 ; �57�

where we use notation (5) and specify the scalar sector.
Hereafter, the prime denotes q=qZ and

H � a 0

a
:

To consider an expanding universe, we introduce a
positive cosmological constant, the corresponding term in

a b

Figure 1. Four-graviton scattering in the first two orders of the perturba-

tion theory (diagrams a and b, respectively). Only the a-channel diagram is

shown in the second order, panel b.

14 This discussion refers to a flat background. It may in principle happen

that effects due to curvature push the strong-coupling scale to higher

values, as occurs, for instance, in the DGP model [22]. This does not

happen in the Fierz ± Pauli case [57].
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the action being

SL � ÿ6H 2
0M

2
Pl

�
dx

�������ÿgp
:

Here, the constant H 2
0 is, by virtue of the Einstein equations,

the Hubble parameter of the de Sitter space in the theory
without a gravitonmass andwithoutmatter. The background
equations are

H 2 � H 2
0 a

2 ;

2H0 � H 2 � 3H 2
0 a

2 ; �58�
and their solution, the de Sitter space ± time scale factor, is

a � ÿ 1

H0Z
:

The quadratic part of the cosmological constant term is

S
�2�
L � 2H 2

0M
2
Pl

�
d3x dZ a 4

�
3

2
j 2 ÿ 9jc� 3jDE

ÿ 9

2
c 2 � 3cDE� 3

2
�DE�2 ÿ 3

2
�qiB�2

�
; �59�

where D � qiqi.
By appearance, the part of the action in (59) resembles the

graviton mass term, because it contains no derivatives of the
fields. This term does not have the Fierz ± Pauli structure, and
both thej 2 term and �qiB�2 term are present. Hence, unlike in
theMinkowski background, none of these fields is a Lagrange
multiplier, and it may seem that the theory has two dynamic
scalars, c and E. This is not the case in general relativity: the
twomodes remaining after integrating over j and B are pure-
gauge modes.

Indeed, we consider the Einstein ±Hilbert and cosmologi-
cal terms together. Off shell (that is, for an arbitrary back-
ground), the quadratic part is

S
�2�
EH�L � 2M 2

Pl

�
d3x dZ a 2

�
ÿ 2jDcÿ 2c 0DB

�2c 0DE 0�3cc 00ÿ cDc�H�2jDBÿ 2jDE 0� 6fc 0�

�
�
ÿ 9

2
H 2 � 3

2
H 2

0 a
2

�
j 2 �

�
ÿ 9

2
H 2 ÿ 9

2
H 2

0 a
2

�
c2

�
�
�H 2 ÿH 2

0 a
2�
�
9jcÿ 3jDE� 3

2
�qiB�2

�
� �2H0 �H 2 ÿ 3H 2

0 a
2�
�
ÿ cDEÿ 1

2
�DE�2

���
: �60�

Because of the background equations of motion, the last two
lines in this expression vanish, and the action simplifies to

S
�2�
EH�L � 2M 2

Pl

�
d4xa 2

�ÿ 2jDcÿ 2c 0DB� 2c 0DE 0

� 3cc 00 ÿ cDc�H�2jDBÿ 2jDE 0 � 6jc 0�
� �H 2�ÿ3j 2 ÿ 9c 2��	 : �61�

As expected, B and j are nondynamic fields with a
nondegenerate quadratic term. Their equations of motion
give

j � 1

H c 0 ; B � 1

H c� E 0 : �62�

The miracle is that after these expressions are substituted in
action (62), integration by parts yields a vanishing quadratic
Lagrangian, L

�2�
EH�L�c;E � � 0, where, again, the equations

for background were used. Therefore, c and E are arbitrary
functions of xm, while j and B are related to them via (62).
These configurations are pure gauges of form (56) and (57).
To verify this, we again use equations for the background (in
particular, H0 � H 2).

This miracle of course happens because of gauge invar-
iance. Once gauge invariance is broken explicitly by the
graviton mass terms, miracles do not happen, and the
Boulware ±Deser mode appears.

We introduce the mass term generalized to a curved
space ± time,

Sm � Sm�gmn; Zmn� :

There is much arbitrariness at this stage: general covariance is
explicitly broken, and Sm may contain various combinations
of gmnZmn, g mnZmn,

���
g
p

, etc. The discussion that follows is not
sensitive to the particular form of the mass term; it is only
assumed to be independent of the derivatives of the metric, to
become the Fierz ± Pauli term in theMinkowski limit, and, for
simplicity, to be proportional to a single mass parameter m 2

G.
To illustrate the general analysis, we use the simplest general-
ization of the Fierz ± Pauli mass term,

Sm � 1

2
M 2

Pl

�
d4x

�
ÿm 2

G

2
ZmlZ nr�gmn ÿ Zmn�

� �glr ÿ Zlr� �
m 2

G

2

�
Zmn�gmn ÿ Zmn�

�2�
: �63�

We stress that this form is used for illustration purposes only.
There is a coordinate frame where Zmn �

diag �1;ÿ1;ÿ1;ÿ1�, and we assume that the background
space ± time is homogeneous and isotropic in this frame.
Then the metric has the general Friedman ±Robertson ±
Walker form (plus perturbations)

ds 2 � a 2�t��n 2�t� �1� h00� dt 2 � 2n�t� h0i dtdxi

� �ÿdi j � hi j� dx i dx j
�
:

In this frame, the background is characterized by two metric
functions, a�t� and n�t�. It is still convenient to work with the
conformal time Z, that is, to perform the change of variables
dZ � n�t� dt. In other words, we work in the conformal frame
where the background metric has form (55). Consistency of
the field equations implies an equation relating n�Z� and a�Z�,
which generically has the form n 0 � f �n; a� a 0 (see the
Appendix). We note, however, that its solution is not
unique: at a given instant of time, n and a can be chosen
arbitrarily.

Once the mass term is added, the quadratic part of the
action in the cosmological background has a very general
structure,

S
�2�
EH�L�mG

� 2M 2
Pl

�
d3x dZa 2

�
ÿ 2jDcÿ 2c 0DB

� 2c 0DE 0� 3cc 00ÿcDc�H�2jDBÿ2jDE 0�6jc 0�

�
�
m 2

j

2
j2 ÿm 2

B

2
�qiB�2 �m 2

E

2
�DE�2 �m 2

c

2
c2

� m1jc� m2jDE� m3cDE
��

: �64�
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The terms in the last two lines have a three-fold origin. First,
there are terms that do not vanish in the limit m 2

G ! 0; these
are the terms in the last line of Eqn (64). Second, the
background equations no longer coincide with Eqn (61),
and hence the last two lines in (58) do not vanish. Finally,
there are contributions due to themass term Sm itself. We give
a more detailed treatment of the last two contributions in the
Appendix.

There are generically no specific relations between the
terms in the last two lines of (64). The fields j and B are still
nondynamical, but integrating over them no longer gives zero
action for c and E. Instead, the action contains terms with
two time derivatives of c and E, some of which are explicit in
(64) and some emerge after j and B are integrated out (we
note that the terms in (64) proportional to j and B do not
contain second time derivatives of c and E, and hence higher
time derivatives of these fields do not appear). Both c and E
are dynamic fields, and hence the scalar sector has two
propagating modes. This is in contrast to the theory in the
Minkowski background, with a single propagating mode in
the scalar sector. The extra mode is precisely the Boulware ±
Deser degree of freedom.

We now specify the near-Minkowski background,

H 2 5m 2
G ; jaÿ 1j5 1 ; jnÿ 1j5 1 :

In this limit, H coincides with the standard Hubble para-
meter. We are interested in relatively high momenta,
p 2 4m 2

G. A detailed analysis reveals the following features.
First, the properties of the scalar perturbations are different
in the two ranges of momenta:

1� p 2 5
m 4

G

H 2
;

2� p 2 4
m 4

G

H 2
: �65�

Hence, the high-momentum limit and the Minkowski limit
do not commute. We discuss range 1) in the Appendix and
here we briefly summarize the results. There are indeed two
propagating modes. One of them is the Fierz ± Pauli mode,
whose dispersion relation remains o 2 � p 2, up to small
corrections. The second mode is a ghost or tachyon-ghost
(tachyon and ghost at the same time). Being a ghost means
that the energy is unbounded from below; if the mode is
simultaneously a tachyon, it exponentially increases in
time.

We now consider range 2), i.e., the high-momentum
limit. To integrate over nondynamic fields, we solve
equations obtained by varying the action with respect to j
and B. These equations are written explicitly in the
Appendix [see Eqns (167) and (168)]. We need the expres-
sion for j in the leading order in derivatives and the
expression for B in both the leading and subleading order;
the reason is that there are cancellations. The corresponding
expressions are

j � 1

H c 0 ;

B � 1

H c� E 0 ÿ m 2
j

2H 2

1

D
c 0 ÿ 3

D
c 0 ÿ m2

2H E :

Substituting these in action (64) and integrating by parts, we
arrive at the action for dynamic fields,

S
�2�
EH�L�mG

�2M 2
Pl

�
d3x dZa 2

�
ÿ
�
1ÿ H

0

H 2
� m 2

B

2H 2

�
qic qic

�
�
3� m 2

j

2H 2

�
�c 0�2 � m2 ÿm 2

B

H c 0DE

ÿm 2
B

2
qiE 0 qiE 0 �m 2

E

2
�DE �2

�
: �66�

We note that the terms with the highest derivatives, c 0DE 0,
have canceled.

We now see explicitly that there are two propagating
modes. We also see that their action (66) is singular in the
Minkowski limit.15 Indeed, comparing (64) with the
Lagrangian in Minkowski space ± time [Eqn (12) with
a � ÿb � ÿm 2

G ] shows that in the Minkowski limit,

m 2
B ! ÿ

m 2
G

2
; m2 ! ÿm 2

G ; �67�

andm 2
E andm

2
j tend to zero. Thus, the first and the third terms

in (66) have coefficients that diverge in the Minkowski limit,
in which H ! 0. Furthermore, for H 2 5m 2

G, the first term
in (66) has an overall positive sign (because of the first relation
in (66)), which corresponds to negative energy. This energy is
unbounded from below, and hence there is a ghost or a
tachyon in the spectrum. We show in the Appendix that in
model (67), one of the modes still has the dispersion relation

o 2 � p 2 ;

while the other mode is tachyonic or nontachyonic depending
on the relation between aÿ 1 and nÿ 1.

2.6.2 The St�uckelberg treatment. A lesson from the above
analysis is that once the gauge invariance is dropped, there are
two scalar propagating modes in curved backgrounds,
irrespective of how close these backgrounds are to Min-
kowski space ± time. The Minkowski limit is singular, and
for a nearly Minkowski space ± time, one of these modes is
necessarily pathological. Another lesson is that the explicit
analysis of this Boulware ±Desermode is rather cumbersome.
At the same time, the Boulware ±Deser phenomenon is
relatively straightforward to see in the St�uckelberg formal-
ism [41, 44, 57, 67].

We consider backgrounds that only slightly differ from
Minkowski space ± time. In this case, the perturbation theory
in hmn is adequate. The quadratic Lagrangian has been
discussed in previous sections. Generically, in the cubic
order, we have the following contributions to the Lagrangian:

m 2
G

�
l1�h m

m �3 � l2h m
m hnlh

nl � l3hmnhnlh
lm� ; �68�

with l1;2;3 of the order of unity. For a nontrivial background,
the field hmn � gmn ÿ Zmn has a nonzero background part h

�c�
mn .

To perform the St�uckelberg analysis, we change the variables

15 According to the above discussion, this is the limit in which p2 is taken to

infinity, and only then the background metric tends to the Minkowski

metric.

August 2008 Infrared-modiéed gravities and massive gravitons 771



in the way dictated by (43),

gmn�x�� �gmn�x� x��qmxl �gnl�x� x� � qnx
l �gml�x� x�

� qmx
l qnx

r �glr�x� x� ; �69�

where

�gmn�x� x� � Zmn � h�c�mn �x� x� � �hmn�x� x�

� Zmn � h�c�mn �x� � �hmn�x�

� qlh�c�mn �x� xl � ql �hmn�x� xl � . . . :

Here, �hmn and xm are perturbations, and �hmn�x� is meant to be
gauge fixed. As before, the Einstein ±Hilbert action does not
contain the field xm. Concentrating on the longitudinal
St�uckelberg field xm � qmf and inserting decomposition (69)
into both the quadratic Fierz ± Pauli term and cubic term (68),
we obtain the quadratic action for f as

m 2
G

�
3

8
m 2

Gqmf q mf� ~l1h�c�mn q
m q nf&f� ~l2h�c� mm �&f�2

�
;

�70�

where we keep Fierz ± Pauli contribution (32) that is indepen-
dent of h

�c�
mn , as well as the part that is proportional to the

background h
�c�
mn and has the largest number of derivatives.

Omitting other terms is legitimate for studying slowly varying
backgrounds and perturbations whose momenta obey o 2,
p 2 4m 2

G.
One point to note is that any configuration obeying

&f � 0 solves the field equation following from (70). This
explains why we have always found a mode with the
dispersion relation o 2 � p 2 when studying the theory in the
cosmological background. More important is the fact that
Lagrangian (70) is of the fourth order in the derivatives of f,
and therefore there is a ghost in the spectrum. To see this
explicitly and to estimate the mass of the ghost, we consider a
simplified version of (70),16

m 2
G

�
m 2

Gqmfq
mf� ~l h�c��&f�2� :

This Lagrangian is equivalent to

m 2
G

�
m 2

Gqmfq
mf� 2~l h�c�qmwq mfÿ ~l h�c�w 2

�
� m 2

G

�
m 2

G

�
qmf� l

mG
h�c�qmw

�2

ÿ
� ~lh�c�

mG

�2

�qmw�2 ÿ ~lh�c�w 2

�
;

where w is a new field. The first term in the last expression
corresponds to the modified Fierz ± Pauli mode
�f� �l=mG� h�c�w �, and the second term is the kinetic term
for the Boulware ±Deser mode w. This term has a negative
sign, and hence the Boulware ± Deser mode is a ghost
(depending on the sign of ~lh�c�, it may be a tachyon-ghost at

sufficiently lowmomenta). The local value of itsmass squared
is of the order of

m2
BD '

m 2
G

h�c�
: �71�

This explains why the high-momentum limit and the
Minkowski limit do not commute, as we have seen explicitly
when studying the theory in the cosmological background.

The mass in (71) diverges as the background approaches
the Minkowski limit. This property might raise the hope that
the Boulware ±Deser instability is not very dangerous. If the
mass of the ghost turns out to be larger than the UV scale
LUV, the above analysis becomes unreliable, since an
unknown UV completion of the theory must be considered
at energies exceeding LUV. This observation, however, does
not save the Fierz ± Pauli theory [57]. Indeed, away from an
astrophysical source of massM, we have

h�c� ' M

M2
Plr

;

and hence

m2
BD '

r

r 3�
; �72�

where r� is the radius given by (46). Hence, the Boulware ±
Deser instability definitely occurs in the interval
�r�LUV�2r� > r > r�, in which mBD < LUV and at the same
time the linear approximation is valid. This interval is not
empty unless Lÿ1UV0r�. We recall that the value of r� for the
Sun is of the order of 10 pc. Hence, the Fierz ± Pauli theory
withLÿ1UV0r� is unreliable in the Solar System; if the graviton
had a Lorentz-invariant mass, we would either encounter
rapid instabilities or have to deal with an unknown UV
completion instead of the effective Fierz ± Pauli theory.

To conclude, Lorentz-invariant massive gravities in four
dimensions are full of pathologies. One way towards bypass-
ing these pathologies is to drop the Lorentz invariance.

3. Lorentz-violating theories: generalities

3.1 Lorentz-violating mass terms
In this and the following sections, we study a class of theories
with Lorentz-violating mass terms. We assume that Min-
kowski space ± time is a solution of the corresponding field
equations and that the Euclidean symmetry of 3-dimensional
space is not explicitly broken in the perturbation theory
related to this background. Then the quadratic action for
perturbations on the Minkowski background is

S �2� � S
�2�
EH � Sm ; �73�

where S
�2�
EH is the quadratic part of the Einstein ±Hilbert term,

explicitly given by (3), and Sm is the graviton mass term. The
Lagrangian of the latter is

Lm � 1

4
�m 2

0 h00h00 � 2m 2
1 h0ih0i ÿm 2

2 hi jhi j

�m 2
3 hi ihj j ÿ 2m 2

4 h00hi i� : �74�
Here, as before, hmn are perturbations of the Minkowski
metric. The Fierz ± Pauli Lagrangian is obtained when all

16 The argument below is straightforwardly generalized to the case in (70).

Using the spatial Fourier representation, we write the Lagrangian in the

form A �f 2 � B _f 2 � Cf 2, where coefficients depend on p. Second-order

time derivatives are eliminated by introducing a new field w; the resulting
structure of the kinetic terms is B _f 2 � 2A _w _f. This structure implies that

there is a ghost [cf. (21)].
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masses in Eqn (74), except m0, are taken to be equal,

FP : m 2
0 � 0 ; m 2

1 � m 2
2 � m 2

3 � m 2
4 � m 2

G :

This property explains the conventions used in Eqn (74). In
what follows, we let m denote the overall scale of the masses
m0; . . . ;m4.

We again use the (3+1)-decomposition in (5). This
formalism is particularly appropriate here because it fully
respects the 3-dimensional Euclidean invariance, the only
symmetry that is not explicitly broken by the general mass
term. The Lagrangian in the tensor sector is the sum of kinetic
term (7) and the mass term

Lm;T � ÿm 2
2

4
hTTi j hTTi j :

Hence, there are two propagating tensor modes with the
relativistic dispersion relation

o 2 � p 2 �m 2
G ;

where

mG � m2 �75�

is the mass of tensor gravitons. The requirement that these
modes not be tachyonic gives

m 2
2 5 0 :

We assume in what follows that this is the case.
In the vector sector, the quadratic Lagrangian is the sum

of the Einstein ±Hilbert part in (8) and the mass term

Lm;V � m 2
1

2
SiSi ÿm 2

2

2
qiFj qiFj :

Anovelty here, with respect to the Fierz ± Pauli case, occurs at
the special valuem1 � 0. In this case, the field Si is a Lagrange
multiplier, leading to the constraint F � 0. Hence, there are
no propagating modes in the vector sector, unlike in the
Fierz ± Pauli theory,

m1�0 : no propagating vectormodes. (76)

For m1 6� 0, the analysis of the vector modes parallels that in
Section 2.1. For m 2

1 > 0, the vector sector contains two
normal propagating modes. The canonically normalized
propagating field is now

F i�p� �MPlm1

�����������������
p 2

p 2 �m 2
1

s
Fi�p�

with the dispersion relation

o 2 � m 2
2

m 2
1

�p 2 �m 2
1 � :

In the cases m 2
1 < 0 and m2 6� 0, the modes are ghosts or

tachyons at high spatial momenta, and we therefore impose
the restriction

m 2
1 5 0 :

We now turn to the scalar sector. The full quadratic
Lagrangian is

L
�2�
S � 2

�
qkcqkcÿ 3q0cq0c� 2�qkjqkc� qkBq0qkc

� q0DEq0c�
�� �m 2

0

2
j 2 �m 2

1

4
�qiB�2

� 3�3m 2
3 ÿm 2

2 �
2

c 2 ÿ �3m 2
3 ÿm 2

2 �cDE

� 1

2
�m 2

3 ÿm 2
2 � �DE �2 �m 2

4j�3cÿ DE �
�
: �77�

For general masses, there are two propagating modes, one of
which is a ghost. Indeed, form1 6� 0, integrating over the field
B results in the following contribution to the Lagrangian
[cf. (18)]:

LB � 8

m 2
1

_cD _c : �78�

The field j can also be integrated out, and the corresponding
contribution to the Lagrangian of the dynamic fields c and E
does not contain time derivatives. Hence, the terms with time
derivatives in the resulting Lagrangian forc andE again have
structure (21), implying that there is a ghost. Generally, the
ghost exists at all spatial momenta and frequencies, and the
observations to be made in Section 3.6 do not help. The ghost
mode must be eliminated.

3.2 Eliminating the second scalar mode
While the theory is not healthy in general, the ghost mode
does not exist at special values of masses. This is the case, in
particular, if either j or B or both remain the Lagrange
multiplier(s). The point is that the corresponding constraint
suppresses the second mode in the scalar sector, while the
remaining mode, if it exists, may well be normal. The two
choices of the mass pattern that do the job are m0 � 0 and
m1 � 0. We discuss them in turn.

3.2.1 m0 � 0. In the case m0 � 0, the field j is a Lagrange
multiplier, leading to the constraint

2Dc � m 2
4 �3cÿ DE � : �79�

Assuming thatm1 6� 0 andm4 6� 0, we integrate over the field
B with result (78) and express DE in terms of c using
constraint (79). Then c is the only remaining dynamic field.
The terms in its Lagrangian that are relevant at highmomenta
and frequencies, o 2; p 2 4m 2, are

Lc�4

�
2

�
1

m 2
4

ÿ 1

m 2
1

�
q0qic q0qicÿm 2

2 ÿm 2
3

m 4
4

�Dc�2
�
� . . . ;

where the omitted terms have at most two derivatives. This
Lagrangian is healthy at o 2; p 2 4m 2 if

m 2
1 > m 2

4 > 0 ; m 2
2 > m 2

3 :

We see below, however, that this case is problematic.
Within the class of theories with m0 � 0, there are

subclasses in which more conditions are imposed on the
masses. As an example, it already follows from the above
analysis that the case m4 � 0, the case m4 � m1, and the case
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m2 � m3 are all special. A detailed study of these `boundaries'
is given in Ref. [40].

3.2.2m1 � 0.Form1 � 0, the field B is a Lagrange multiplier.
The corresponding constraint is _c � 0, implying c � 0 for
propagating modes. Inserting c � 0 into the action, we find
that there remain no terms with time derivatives, and hence
there are no propagating modes in the scalar sector. The
vector sector has the same property [see (76)]. Thus, the only
propagating modes in the theory with m1 � 0 are tensor
gravitons with mass (75). We discuss this theory in detail in
Section 5.

3.2.3 m2 � m3, m4 � 0. Inspecting Lagrangian (77) reveals
onemore special case,m2 � m3 and simultaneouslym4 � 0. It
is now the field E rather than the nondynamic fields j and B
that plays a special role. The field DE enters the Lagrangian
linearly, and the corresponding field equation is

2 �c� �3m 2
3 ÿm 2

2 �c � 0 :

Thus, there are no high-frequency modes of c, irrespective of
spatial momenta. If we are interested in high-frequency
modes only, we must set c � 0, which leads to a Lagrangian
without time derivatives. Hence, there are no propagating
modes of high frequencies in this case.

We thus see that there are special cases where Lorentz-
violating massive gravity does not contain ghosts in the
linearized theory on the Minkowski background. Further
analysis of numerous issues raised in Section 2 is conveniently
performed in the St�uckelberg formalism.

3.3 Symmetries vs fine tuning
As we saw in Section 2.6, eliminating the second scalar mode
in the Minkowski background is by itself insufficient for
making the theory healthy. In the Lorentz-invariant theory,
the absence of the second mode in the Minkowski back-
ground is due to the fine-tuning relation a � ÿb imposed on
the mass term in Lagrangian (2). This fine tuning is,
however, destroyed in curved backgrounds, and the second,
Boulware ±Deser, mode reappears. Likewise, similar fine-
tuning relations are problematic in Lorentz-violating the-
ories. This can be seen explicitly in the theory with m0 � 0
and no other relations between the masses. It is convenient
to use the St�uckelberg formalism and proceed in analogy to
Section 2.6.2. In the quadratic order, the St�uckelberg part of
metric (69) that contains the derivatives of x is

gmn � Zmn � hmn � Zmn � qmxn � qnxm � qmx
lqnxl : �80�

We concentrate on the terms involving the field x0. In the
Minkowski background, these come from the second and
fifth terms in Lagrangian (74) and are given by

Lm � 1

2
m 2

1 �q0xi � qix0��q0xi � qix0� ÿm 2
4 q0x0qixi � . . . ;

where omitted terms contain xi only. Upon integrating the
second term by parts, we see that x0 is not a dynamic field, and
hence there is at most one propagating degree of freedom in
the scalar sector, the longitudinal part of xi. This is in
accordance with the discussion in Section 3.2.1.

Once the background is slightly different from the
Minkowski one, g

�c�
mn � Zmn � h

�c�
mn , the last property is lost.

Indeed, due to the quadratic term in (80), the mass terms

themselves include the combination

ÿ 1

2
m 2

4 h00h
�c�
i i � ÿ

1

2
m 2

4 �q0x0�2h�c�i i � . . . :

The field x0 becomes dynamical, the second mode reappears,
and in some backgrounds (with the appropriate sign of h

�c�
ii ),

this mode is a ghost.
There is an elegant way out of this fine-tuning problem,

however [40]. Relations between the masses, instead of being
results of fine tuning, may be consequences of unbroken
gauge symmetries, which are parts of the gauge symmetry of
general relativity. These residual gauge symmetries may then
be expected to protect the theory from becoming pathological
when it is extended to curved backgrounds and/or generalized
to include possible UV effects (these are to be discussed in
what follows). In several cases, this approach leads to healthy
infrared-modified gravities.

Various residual gauge symmetries can be imagined [40].
In this review, we discuss only a few of them, which either are
known to give rise to interesting theories or serve as examples
of the failure of this approach. The first unbroken symmetry
we consider is

x i ! x i � z i�x i; t� : �81�
This symmetry implies that all masses exceptm0 vanish; this is
the symmetry of the ghost condensate theory [38].

The second symmetry to be discussed is

t! t� z 0�x i; t� : �82�
This symmetry leads to the constraintm0 � m1 � m4 � 0.We
see in Section 3.5 that the corresponding theory has problems
with the stability against UV effects.

The third symmetry is

x i ! x i � z i�t� : �83�

This symmetry is sufficient to ensure thatm1 � 0, while other
masses are unconstrained. We found in Section 3.2.2 that the
linearized theory in the Minkowski background is free of
pathologies in this case. We see in what follows that the
corresponding theory [40 ± 42] is healthy both in the nearly
Minkowski and in the general cosmological backgrounds. It
is UV-stable as well. In fact, as we discuss in Section 5, this
theory is quite interesting from the phenomenological
standpoint.

3.4 Lorentz-violating scalars
A convenient way to analyze the behavior of an infrared-
modified gravity of the type we discuss in this review, and also
to promote the perturbation theory on Minkowski back-
ground to a full low-energy effective theory, is to start with a
generally covariant theory with additional scalar fields fa,
a � 0; 1; 2; 3, which we call Goldstone fields. Breaking of the
Lorentz invariance occurs when these fields acquire back-
ground values that depend on space ± time coordinates. In
this approach, the Lorentz invariance is broken sponta-
neously, because the original action of the theory is Lorentz
invariant, but the background is not.

For example, in Minkowski space ± time, the background
fields are

�f0 � aL2t ;

�fi � bL2x i ; �84�
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whereL is a parameter with the dimension of mass, and a and
b are coefficients of the order of unity. In our convention, the
fields fa have the dimension of mass. Background fields (84)
are solutions of the equations of motion if the Lagrangian
contains their derivatives only. This property automatically
implies that the Lagrangian is invariant under the shift
symmetry fa�x� ! fa�x� � la with constant la. This means
that the translational symmetry of �3� 1�-dimensional
space ± time is unbroken by background (84) because the
translation can be compensated by shifting the fields fa.
Likewise, to preserve the spatial rotation symmetry, we
require that the Lagrangian be invariant under SO�3�
rotations of the fields, fi ! L i

jf
j. Thus, we are led to

consider theories whose actions, at the one-derivative level,
have the general form

S � SEH � Sf ; �85�

where SEH is the Einstein ±Hilbert action and

Sf �
�
d4x

�������ÿgp
L4F �X;Vi;Yi j;Q� ; �86�

with

X � 1

L4
g mnqmf

0qnf
0 ;

Vi � 1

L4
g mnqmf

0qnf
i ;

Yi j � 1

L4
g mnqmf

iqnf
j ;

Q � 1

L8

1�������ÿgp E mnlrEi j kqmf
0qnf

iqlf
jqrf

k : �87�

Internal indices i; j; k are to be contracted in action (86) with
either di j or Ei j k. Hereafter, to simplify power counting, we do
not use convention (4) when writing the Lagrangian for the
Goldstone fields. The combination Q is in fact not indepen-
dent (apart from possible subtleties related to the presence of
the E symbol): its square can be expressed in terms of X, Vi,
andYi j. In what follows, we therefore consider only functions
F depending on the first three combinations.

The energy ±momentum tensor of configuration (84)
vanishes in Minkowski space ± time, and hence Minkowski
space ± time is a legitimate background, if a and b are such
that

ÿ 1

2
F� a 2 qF

qX
� 0 ;

1

2
Fdi j � b 2 qF

qYi j
� 0 ;

qF
qVi
� 0 �88�

with X � a 2, Yi j � ÿb 2d i j, and Vi � 0. In what follows, we
often set a � b � 1 by field redefinition.

The theory with action (86) is to be considered an effective
field theory valid at low energies only.17 TheUV cutoffLUV in

this theory must be somewhat below L (cf. Section 2.5).
Indeed, expanding the fields on background (84),

fa � �fa � pa ;

we obtain the following structure of the Lagrangian for
perturbations:

Lp � �qp�2 � 1

L
�qp�3 � . . . ; �89�

implying that LUV9L. In this regard, an important point is
the UV stability of the theory [40]. In low-energy effective
theories, there is no reason to think that the low-energy
Lagrangian contains terms with first derivatives only. There-
fore, the effects of higher-derivative terms such as
Lÿ2g mng lrqmqnf

aqlqrf
a must be taken into account.

Naively, these terms are suppressed below the cutoff scale,
i.e., for p 2;o 2 5L2. But if the kinetic terms in (89) have a
special structure, the higher-derivative terms may become
important. We encounter examples of this sort in what
follows.

Turning on gravity, still in Minkowski space ± time and in
background (84), we observe that the gauge transformation
x m ! x m � zm�x� corresponds to the following transforma-
tion of the fields pa:

pa�x� ! pa�x� � L2z a�x� :

Hence,

xa � Lÿ2pa �90�

are the St�uckelberg fields of the previous sections. In the
unitary gauge pa � 0, we have X � 1ÿ h00, V

i j � ÿ1ÿ hi j,
etc., and hence the part of the action quadratic in the hmn
contains mass term (74), the scale of graviton masses being

m � L2

MPl
; �91�

which agrees with (49). Hence, the class of theories (85) indeed
has all the expected properties of Lorentz-violating massive
gravity. A convenient feature of this construction is that the
behavior of the theory for p 2;o 2 4m 2

G in or near the
Minkowski background can be analyzed by studying the
Goldstone sector only. Also, the theory away from the
Minkowski background is well defined.

Needless to say, for the general Lagrange function F, the
theory is pathological. As we discussed in Section 3.3, it may
not be pathological if a part of the gauge symmetry of general
relativity remains unbroken. In that case, Goldstone action
(86) does not have the generic form. For example, the residual
gauge invariance t! t� z 0�x i; t� [see (82)] in the Goldstone
language implies that the Lagrange function F is invariant
under the change of variables

f0 ! f0 � X 0�fi;f0� �92�

with an arbitrary functionX 0�fi;f0�. Indeed, only in this case
is background (84) invariant under the gauge transformation
t! t� z 0�x i; t� accompanied by a field redefinition. It is in
this way that the Lagrangian, and hence graviton mass terms,
become constrained by the requirement of residual gauge
invariance in the Goldstone framework.

17 What is exactly meant by low energies becomes clear after the effects of

higher-order terms are understood: these are energies and/or momenta at

which higher-order terms increase sharply. Because the actions we discuss

are Lorentz invariant, the way theUV cutoffL enters the action is dictated

by the Lorentz invariance. On the other hand, the energy value at which

the low-energy theory ceases to work may be different from the spatial

momentum value, due to a spontaneous Lorentz violation by background

scalar fields.
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3.5 An example of a UV unstable theory
To illustrate the problem with the UV stability that may be
encountered in an otherwise healthy theory, we consider the
model with residual gauge symmetry (82), implying the
constraint on the Lorentz-violating graviton masses
m0 � m1 � m4 � 0. In the Goldstone language, this symme-
try translates into field transformation (92). This can be a
symmetry of Goldstone action (86) only if the field f0 is
absent altogether. Hence, the Goldstone sector of the theory
has three fields fi and at the one-derivative level, the action is

Sf �
�
d4x

�������ÿgp
L4F �Yi j� ;

where Yi j�fi� is given by (87). As pointed out in Section 3.3,
the general Lagrangian for the theory of Goldstone fields,
viewed as a low-energy effective theory, contains higher-order
terms, e.g.,

DF � 1

L 4
g mng lrqmqnf

iqlqrf
i : �93�

We see in what follows that in the model discussed here, these
terms are important and, in fact, lead to pathologies in the
spectrum.

We consider this theory in the Minkowski background,
temporarily discarding higher-order terms. The Lorentz
invariance is broken by the background

�fi � L2x i ; �94�

which satisfies the field equations for the Goldstone fields.
Expanding the fields near this background, fi � �fi � pi, we
obtain the quadratic Lagrangian for the St�uckelberg fields pi.
This Lagrangian involves the first and second derivatives of
the Lagrange function F evaluated at Yi j � Yi j��fi� � ÿdi j,
which we parameterize as

qF
qYi j

��f� � F1di j ;

q2F
qYi jqYk l

��f� � F21di jdk l � F22�di kdj l � di ldj k� :

The quadratic Lagrangian is

Lp � F1qmpiq
mpi � 2F21qipiqjp j

� 2F22�qip jqip j � qip jqjpi� : �95�
At first sight, this Lagrangian describes three scalar fields
with a healthy kinetic term. But this is inconsistent with the
absence of propagating modes in the vector sector form1 � 0
[see (3.1)]. The resolution of this discrepancy is related to the
requirement that the energy ±momentum tensor of back-
ground field configuration (94) vanish, and hence the
Minkowski metric be a solution of the complete set of field
equations. The corresponding conditions are read off from
Eqns (88), which in the absence of the combinationsX andVi

yield

F � 0 ;
qF
qYi j

� 0 at fi � �fi :

Hence, F1 � 0 in (95), and therefore the one-derivative action
actually corresponds to a theory with no propagating modes:
at this level, all St�uckelberg fields enter the action without
time derivatives, and none of them is a dynamic field.

Once the higher-order terms are added, the situation
changes. Terms like (101) contain time derivatives, and there
is no symmetry that would forbid them. In terms of the fields
pi, these contributions have the structure

DLp � 1

L2

��q20pi�2 ÿ �q0qi p j �2 � . . .
�
: �96�

These contributions dominate at high frequencies, precisely
because Lagrangian (95) does not contain time derivatives,
i.e., precisely because the fields pi are not dynamical at the
one-derivative level. With the higher-order terms included,
the fields pi become propagating, and their dispersion
relation is

o 4 � const p 2L2 :

This means that at least one of the modes for each pi is
tachyonic, and the corresponding `frequency' is high even at
moderate spatial momenta (being, nevertheless, smaller than
the cut-off scale LUV). The model is therefore unacceptable.

Hence, fields that are nondynamical in the Minkowski
background and at the level of the one-derivative Lagran-
gian are potentially dangerous. They may become propagat-
ing in curved backgrounds and/or due to higher-order terms
in the Lagrangian. We refer to the first possibility as the
Boulware ±Deser instability, while the second is called the
UV sensitivity [40].

To conclude the discussion of the model studied here, we
note that in the language of metric perturbations, the UV
sensitivity is the sensitivity to derivative terms in the
Lagrangian for hmn. For example, the first, most unwelcome
contribution to (96), in terms of metric perturbations,
corresponds to the term

DSh �
�
d4xL2

�
1

2
qih00 ÿ q0h0i

�2

�M 2
Pl

�
d4xm 2

G

1

L2

�
1

2
qih00 ÿ q0h0i

�2

;

where we recall relation (90), which implies the correspon-
dence h ' Lÿ2qp, and use (91). This term is invariant under
residual gauge transformations (82) and is suppressed by the
anticipated UV scale (49) as compared to the graviton mass
terms, and therefore there is no reason for it to be absent.
Thus, we have found that the theory with two nonvanishing
graviton masses m2 and m3 has tachyons in the spectrum,
once generic one-derivative terms in hmn consistent with
symmetry (82) are added.

3.6 Not-so-dangerous instabilities
To conclude this section, we digress to a more phenomen-
ological discussion of instabilities in Lorentz-violating the-
ories. In these theories, tachyons and/or ghosts are allowed if
they exist at low frequencies (particle energies) only. In viable
theories, the frequency cutoff Ltc for tachyons can be
somewhat higher than the present Hubble scale H0; for
ghosts, the cutoff Lgh can be many orders of magnitude
higher than H0. We discuss this in some detail, assuming
that ghosts and tachyons are coupled to the ordinary matter
only gravitationally.

We consider tachyons first, and suppose, as an example,
that the dispersion relation is

o 2 � ÿp 2 ; �97�
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for jpj5Ltc, and the frequency is normal, o 2 > 0 for
jpj > Ltc (an example of such a dispersion law is
o 2 � ÿp 2 � Lÿ2tc p

4). Then, in an expanding universe, o
scales for jpj5Ltc as��o�t��� � O

a�t� ;

where O is a constant conformal frequency. There is a
characteristic time instant tL in the history of the Universe
at which

H�tL� � Ltc :

Before that instant, would-be tachyonic modes with
o�t�9Ltc are over-damped and do not develop, and hence
an exponential growth of any mode is possible only after tL.
The largest growth factor corresponds to modes that become
tachyonic just at the instant tL, i.e., the modes with

o�tL� � O
a�tL� ' Ltc :

Indeed, modes of higher conformal frequencies still oscillate
at t � tL, while modes of lower conformal frequencies still do
not develop at t � tL. At present, the largest growth factor for
the field amplitude is

exp

�� t0

tL

a�tL�
a�t� Ltc dt

�
;

where t0 denotes the present time. The inhomogeneities in the
tachyon field produce gravitational potentials comparable to
those of ordinary matter with the energy density perturba-
tions

dr ' L4
tc exp

�
2

� t0

tL

a�tL�
a�t� Ltc dt

�
;

where we estimated the preexponential factor on dimensional
grounds and neglected the energy redshift in writing this
factor. The bound on Ltc comes from the requirement that
this inhomogeneous energy density not exceed the observa-
tionally allowed value, e.g., 10ÿ4rc (the exact number is
unimportant here). Approximating the cosmological expan-
sion by a / t 2=3 (which corresponds to the Universe domi-
nated by nonrelativistic matter), we find

dr � L4
tc exp �3t 1=30 t

2=3
L Ltc� � L4

tc exp

�
4

�
Ltc

H0

�1=3 �
:

Requiring that dr910ÿ4rc � 10ÿ4M 2
PlH

2
0 , we have

Ltc

H0
9

1

64

�
ln

�
10ÿ4

M 2
Pl

H 2
0

��3
� 3� 105 :

We conclude that the frequency cutoff for tachyons with
dispersion relation (97) must be of the order of Ltc � 105H0

or lower.
The bound on Ltc rather strongly depends on the form of

the dispersion relation for tachyons. In any case, it is
somewhat higher, but not very much higher, than H0.

We now turn to ghosts. The instability in this case is due to
pair creation of ghosts and usual particles from the vacuum,

the process allowed by the energy ±momentum conservation
due to the negative energy of ghost particles. The strongest
bound [68] on the frequency cutoff Lgh comes from the
process

vacuum! f� f� g� g ; �98�

where f and g respectively denote a ghost and a photon. We
assume that ghosts experience gravitational interactions only.
Then this process is described by Fig. 2 and its rate per unit
volume is estimated on dimensional grounds as18

G ' L8
gh

M 4
Pl

:

We note that all particles in (98) are on-shell, and henceLgh is
the cutoff of energy, not the usual UV cutoff of momentum
transfer. In Lorentz-invariant theories, Lgh � 1 and the rate
is infinite. This corresponds to an infinite volume of the
Lorentz group. In other words, in Lorentz-invariant the-
ories, process (98) with certain momenta of outgoing
particles has its boosted counterparts, and the phase space is
therefore infinite. This is not the case in Lorentz-violating
theories. There, photons created in process (98) have energies
Eg9Lgh, and their number density in the present Universe,
and hence the flux near the Earth, is of the order of

F ' Gt0 :

The flux per energy interval is

dF

dEg
�Eg � Lgh� '

L7
gh

M 4
Pl

t0 :

This flux has to be smaller than the EGRET differential flux,

dF

dEg
� 7� 10ÿ9

�
Eg

450 MeV

�ÿ2:1
cmÿ2 sÿ1 srÿ1 MeVÿ1 :

This requirement gives [68]

Lgh9 3 MeV :

Hence, the frequency cutoff in Lorentz-violating theories
with ghosts may be relatively high.

18 We assume here that the 3-momentum cutoff is also of the order of Lgh.

g

g

g

f

f

Figure 2. The decay of the vacuum into two ghosts and two photons via

creation of a virtual graviton.
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4. Ghost condensate: modification of gravity
without graviton mass

We now consider an example of a UV-stable theory, the
`ghost condensate' model [38]. The questions discussed
aboveÐ the absence of the extra scalar mode near Min-
kowski space ± time, protection by a residual symmetry
against its reappearance in curved backgrounds and due to
higher-derivative correctionsÐplay a key role in the con-
struction of this model. Although the graviton remains
massless in the ghost condensate model, the simplicity of
this model makes it a good introduction to more complicated
models of massive gravity.

As we discussed in Section 3.2, a convenient way to
modify the gravitational interaction in the infrared range is
to introduce additional scalar fields. In the simplest case, this
is just a single scalar field f (cf. Section 3.4) with the action
reminiscent of Eqn (86),

Sf � L4

�
d4x

�������ÿgp
F �X � ; �99�

with X given by the first equation in (87), X�g mnqmfqnf=L4.
The field equation derived from this action is

1�������ÿgp qm
�
FX�X � �������ÿgp

g mnqnf
� � 0 ; �100�

where FX � qF=qX. In Minkowski space ± time and with
gravity switched off, this equation has a solution linearly
growing in time (`ghost condensate'),

fv � aL2t ; �101�

where a is an arbitrary constant. This background obviously
breaks the Lorentz symmetry. Time translations are also
broken, but the diagonal combination of time translations
and shifts of f by a constant remain a symmetry, and hence
the energy is conserved. In the `unitary' gauge f � fv, the
variable X reduces to X � a 2g 00 and action (99) becomes a
function of g 00. This action is invariant under space ± time-
dependent transformations of spatial coordinates

x i ! ~x i � ~x i�x i; t� ; �102�

as discussed at the end of Section 3.3 [see Eqn (81)]. This
symmetry plays an important role in the construction of the
ghost condensate model.

Once the back reaction of ghost condensate on gravita-
tional background is switched on, the parameter a is no longer
arbitrary. For the Minkowski space to be a solution of the
Einstein equations for f � fv, the energy ±momentum
tensor of fv must vanish,

Tmn �
�
2qmfqnfFX ÿ ZmnF �f�fv

� 0 :

This equation leads to the two conditions [cf. (88)]

2a 2FX�a 2� ÿ F �a 2� � 0 ;

F �a 2� � 0 :
�103�

The second of these two conditions is the usual tuning of the
cosmological constant to zero. When this condition is

satisfied, the first of Eqns (103) implies that FX�a 2� � 0. We
assume in what follows that extrema of F �X� occur at X 6� 0.
Thus, a is nonzero, and the field can be redefined such that
conditions (103) are satisfied for a � 1.

In the expanding universe, the ghost condensate is
automatically driven to the point FX � 0. This follows from
field equation (100). Indeed, this equation can be regarded as
the covariant conservation equation for the current

J m � FX�X � g mnqnf :

In the cosmological setting, the field f is consistently taken to
depend on time only, and hence the only nonvanishing
component of this current is the density J 0. Its covariant
conservation implies that, like other densities, it decays in
time,

J 0 / 1

a 3
;

which means that FX�X � becomes negligibly small at late
times.

In the unitary gauge and at the quadratic level in metric
perturbations hmn, action (99) in the Minkowski background
becomes

S
�2�
f � L4 FXX

2

�
d4xh200 �

1

2
M 2

Plm
2
0

�
d4xh200 ; �104�

where FXX � � d2F=dX 2��a � 1� is a constant. With the
Einstein ± Hilbert part of the action added, this yields
Eqn (74) with all masses equal to zero except m0. Thus, at
the level of the two-derivative action, there are no propagat-
ing degrees of freedom (cf. Section 3.2).

The same can be seen in the St�uckelberg language by
replacing h00 ! 2�MPlm0�ÿ1q0p in Eqn (104). The resulting
action for the St�uckelberg field p,

2

�
d4x�q0p�2 ; �105�

has no gradient term and describes amodewith the dispersion
relation

o 2 � 0 : �106�

If the action of the ghost condensate model contained
contribution (99) only, its effect would simply be a
(partial) gauge fixing of general relativity, and therefore in
the sector with the initial condition X � 1, the theory would
describe the Einstein gravity in a particular gauge. This
situation is specific to the ghost condensate model; we see in
the next section that in the general case, modifications to
gravity already arise from the first term in the derivative
expansion of the action.

The degeneracy of action (105) (the absence of spatial
gradient terms) signals that the nonpropagating St�uckelberg
mode can become propagating once higher-derivative correc-
tions are added. These corrections are routine in the effective
low-energy theories, but they play a crucial role here.
Symmetry (81) restricts the general form of these correc-
tions. In the Goldstone language, the next-order contribution
to the action contains higher derivatives acting on the
Goldstone field f, such as q2f and qmqnf, suppressed by
powers of L. When expanded in the quadratic order in p,
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these terms modify action (105) to

2

�
d4x

�
�q0p�2 � c0

L2
�q20p�2 �

c1

L2
q20pq

2
i p

� c2

L2
�q2i p�2 � . . .

�
;

where ci are numerical coefficients roughly of the order of
unity. The dispersion relation for the St�uckelberg mode
becomes

o 2 � c0

L2
o 4 � c1

L2
o 2p 2 � c2

L2
p 4 : �107�

There are two solutions of this equation. The first one is

o 2 � L2

c0
�O�p 2� :

This solution is irrelevant because it falls outside the region of
validity of the low-energy effective theory, which is o5L.
The second solution represents a modification of the disper-
sion relation o 2 � 0, which becomes

o 2 � c2

L2
p 4 �O

�
p 6

L4

�
: �108�

This solution describes a slowly propagating mode [38] that is
nontachyonic if c2 > 0. According to (105), this mode is not a
ghost for FXX�a � 1� > 1. Hence, the theory is healthy at high
spatial momenta.

Mode (108) modifies the gravitational interaction (in
particular, the Newtonian potential) at distances longer
than rc � 1=m0. On the other hand, the time scale at which
these modifications build up is parametrically larger,
tc � L=m 2

0 [40]. The reason is again that the modification of
gravity only occurs in the next-to-leading order in the
derivative expansion. As the mass m0 tends to zero, the
scales rc and tc tend to infinity, and the modifications are
smoothly switched off. In this sense, the van Dam±Velt-
man ±Zakharov phenomenon is absent in the ghost con-
densate model. We note, however, that according to (104),
the mass m0 is related to the UV scale as

m 2
0M

2
Pl � FXXL4 :

Hence, the limit of vanishing mass corresponds to the limit
L! 0 (at fixed MPl), and therefore the validity region of the
low-energy effective theory shrinks to zero in this limit.

The ghost condensate model does not exhibit the Boul-
ware ±Deser instability either. In contrast to the example
considered in Section 3.5, the only scalar field p present in
the theory has, in a flat background, dispersion relation (108),
which is a consequence of residual symmetry (102). In a
slightly curved background, this dispersion relation may
acquire additional terms with small coefficients controlled by
the background curvature. The appearance of new contribu-
tions to the dispersion relationÐ for instance, a term
proportional to p2 with a negative coefficientÐmay cause a
tachyonic instability at low spatial momenta. This is precisely
what happens in some cosmological backgrounds [69]
(although this instability is not particularly dangerous). On
the other hand, the terms induced by a slightly curved
background cannot change the sign of the leading o2 term,
and hence a propagating mode does not become a ghost. The

situation is therefore different from the case of the Boulware ±
Deser mode of Section 2.6, where one of the scalar modes is
necessarily a ghost in the curved background.

The ghost condensate model and its modifications have
unusual properties. Some of these properties are potentially
interesting from the standpoint of phenomenology and
cosmology, while others serve as examples of novel phenom-
ena that may emerge once the Lorentz invariance is broken.
We briefly describe some of them.

Due to the Lorentz violation and mixing of the slowly
propagating field p with metric perturbations, gravitational
fields of moving sources are different from gravitational fields
of sources that are at rest with respect to the ghost condensate.
In particular, there is a memory effect: moving bodies leave
`star tracks' in the ghost condensate [70, 71].

The ghost condensate itself may be regarded as matter
with rather unusual properties. In particular, lumps of this
matter can in principle antigravitate [38]. More generic is the
property that the presence of the ghost condensate in space
leads to an instability of the Jeans type with the time scale that
is parametrically large compared to ordinary fluids of the
same energy density [38]. This property is again related to the
presence of the slowly propagating mode p.

The nonlinear dynamics of the ghost condensate are
also quite rich. An evolving ghost condensate tends to form
caustics [72], much in common with caustics in some other
scalar theories [73]. Away from the caustics, the ghost
condensate dynamics are the same as the dynamics of a fluid
with the equation of state p / r 2. Another possible effect is
the nonperturbative instability of background (101), leading
to the formation of microscopic negative-energy `holes' [74].

Lorentz violation makes the physics of black holes
considerably different from that in general relativity. The
least dramatic effect is the accretion of the ghost condensate
onto black holes [75, 76].More exotic are the possibilities that
black hole systems may violate the second law of thermo-
dynamics [77], signals may escape from black holes [78], and
black holes may have hair [79].

A cosmologically interesting class of models is obtained
by adding a potential term to the action, such that instead of
(99), the action is chosen as

Sf � L4

�
d4x

�������ÿgp �
F�X � ÿ V�f�� :

Then both the kinetic term F�X � and the potential term V�f�
contribute to the energy ±momentum tensor. The field f is
still growing, albeit not quite according to (101). This may be
used for constructing models of inflation with the ghost
condensate serving as the inflaton [80] and models for dark
energy driving the present accelerated expansion of the
Universe [81, 82]. Interestingly, the field f grows even if the
potential increases as f increases; in this case, the field f rolls
up the potential. This gives rise to phantom behavior [69, 83]
in which the energy density grows in time, and the equation of
state is p � wr with w < ÿ1 (and w depends on time in
general). This is one of a few examples of phantom matter
without UV pathologies: in most other cases, a phantom
equation of state is obtained in theories with unacceptable
tachyons and/or ghosts in the UV range (see, however,
Refs [84, 85]). If phantom behavior occurs at the inflationary
stage of the cosmological evolution, the consequence is the
blue-tilted spectrum of primordial tensor perturbations (as
opposed to the red-tilted spectrum predicted by theories
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where the inflaton is an ordinary scalar field). The dark
energy driving the present accelerated expansion may also
have a phantom equation of state, the feature potentially
detectable by future observations of SNe1a (see, e.g.,
Ref. [86]). Perhaps the most striking possibility is that a
phantom may give rise to bouncing cosmology: in general
relativity, the relation p < ÿr implies that

_H > 0 ;

where H is the Hubble parameter, and hence the transition
from a contracting to an expanding universe (from H < 0 to
H > 0) becomes possible. Indeed, solutions of this sort have
been found [69, 87] and explored [88, 88] in ghost condensate
models with suitable potentials V�f�. The bounce in these
models occurs in a controllable and self-consistent way.

5. The minimal model of a massive graviton

5.1 The linearized theory
An interesting theory [40 ± 42], without obvious pathologies
and with massive gravitons, is obtained by considering the
case of residual gauge symmetry (83), which leads to the
condition m1 � 0. This symmetry, x i ! x i � z i�t�, translates
into the symmetry of the Goldstone Lagrangian

fi ! fi � X i�f0� ; �109�

with three arbitrary functions X i. At the one-derivative level,
there are two combinations of the Goldstone fields that
respect this symmetry,

X � 1

L4
g mnqmf

0qnf
0 ;

Wi j� 1

L4

�
g mnqmf

iqnf
j ÿ g mnqmf

0qnf
i g

lrqlf
0qrf

j

L 4X

�
� Yi j ÿ ViV j

X
;

where Yi j and Vi are defined in (87). Hence, at this level, the
Goldstone action is

Sf �
�
d4x

�������ÿgp
F �X;Wij � ; �110�

where the indices i; j are contracted using di j.
We first discuss this theory at the linearized level on the

Minkowski background. The background Goldstone fields
are given by (84). By field redefinitions, we set a � b � 1 and
write the background fields simply as

�f0 � L2t ; �111�

�fi � L2x i : �112�

It follows from (88) that the energy ±momentum of this
configuration vanishes if

ÿ 1

2
F� qF

qX
� 0 ; �113�

1

2
F di j � qF

qWij
� 0

with X � 1 and Wij � ÿd i j. Switching metric perturbations
on and using the unitary gauge fa � �fa, we find that the
theory on the Minkowski background is gravity with
Lorentz-violating mass terms (74), with the only constraint

m1 � 0 :

The other mass parameters are independent of each other,
and are expressed through F and its first and second
derivatives at X � 1, Wi j � ÿdi j. Hence, at the level of the
one-derivative Goldstone action, neither the vector nor the
scalar sector contains propagating modes, as we discussed in
Section 3.2.2, and tensor gravitons (two degrees of freedom)
have the mass mG � m2. In this sense, the model can be
regarded as the minimal model of a massive graviton.

It is instructive to switch off gravity and consider the
Goldstone sector of this theory on the Minkowski back-
ground but away from point (113). The quadratic Lagrangian
for the perturbations pa � fa ÿ �fa is obtained from (110) and
has the general form

Lp � a

2
� _p 0�2 ÿ b

2
�qip0�2 � c _p0qipi

� d1
2
�qipi �2 � d2

2
�qip j�2 ; �114�

where b � 2�qF=qX ���f�, and the constants a, c, d1, and d2
contain second derivatives of F at f � �f. It is easy to see that
the fields pi are nondynamical. Their equations of motion in
the vector sector give pTi � 0, where pTi is the transverse part,
qipTi � 0. Hence, there are no nontrivial modes in the vector
sector even for a general linearly increasing background. The
equation of motion for the longitudinal part of pi gives

pi � const
qi
D

_p0 :

Substituting this expression in the equation of motion for p0

gives

~a�p0 ÿ bDp0 � 0 ;

where ~a is a combination of the constants a, c, d1, and d2. For
a general linearly increasing Goldstone background, the
dispersion relation is o 2 � const p 2. It follows that with a
suitable choice of parameters, this mode is neither tachyon
nor ghost [40, 41].

At the point

qF
qX
� 0 ; �115�

the dispersion relation is o 2 � 0 at the level of the one-
derivative action. In fact, this special point is basically
coincident with Minkowski point (113), because we neglect
gravity here and cannot therefore discriminate between
different values of F at f � �f. Overall, the situation in the
scalar and vector sectors is very similar to that in the ghost
condensate theory.

The absence of propagating modes associated with the
fields pi (rather than p0) is by no means an accident. Given
background (111), symmetry (109) implies that the theory is
invariant under the infinitesimal transformations

pi ! pi � X i�t� :
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This means that at the one-derivative level, the Lagrangian
does not contain time derivatives of the fields pi, and hence
these fields are not dynamical. This is, of course, explicit in
(114). Thus, the dispersion relation p 2 � 0, characteristic of
nonpropagating modes, is protected in this model by
symmetry (109).

The last observation is useful in discussing the UV
sensitivity issue in this model. Under the assumption that
higher-derivative terms respect symmetry (109), these terms
cannot contain q20f

i (in the reference frame where the
background �f0 has form (111)), and in terms of the
perturbations pa, they are quadratic combinations of

Lÿ1q0qjpi ; Lÿ1qjqkpi ; Lÿ1q20p
0 ;

Lÿ1q0qjp0 ; Lÿ1qjqkp0 :

Once these terms are added to Lagrangian (114), the fields pi

formally become dynamical, but it is straightforward to see
that the equation for the corresponding dispersion relation
has the form

p2
�
o 2 ÿ constL2 �O�p 2�� � 0 :

Hence, the would-be new propagating modes have the
dispersion relation

o 2 � constL2 �O�p 2� :

Because the frequencies are of the order of the UV cutoff,
these modes are actually absent in the low-energy theory. In
this sense, the theory is UV stable: upon switching on higher-
derivative terms, only the mode with the dispersion relation
p 2 � 0 remains.

At this point, it is worth discussing the physical inter-
pretation of modes with the dispersion relation p 2 � 0. They
can be considered the degrees of freedom with infinite
propagation velocity (unlike the ghost condensate mode,
which has zero velocity at the one-derivative level and
acquires a small velocity due to higher-derivative terms).
Physically, they describe sound waves propagating through
the rigid coordinate frame selected in spaceby the functionsfi.
The rigidity of this frame is ensured by symmetry (83) and the
SO�3� symmetry of the Goldstone action, which allow
moving and rotating this frame only as a whole. Infinitely
fast propagatingmodes do not imply the causality violation in
the absence of Lorentz invariance, but allow instantaneous
transfer of information. This leads to a number of unusual
effects related to black hole physics [77, 79]. A detailed
discussion of the properties of these modes in a simplified
QED model can be found in Refs [90, 91].

The higher-order terms are also important for the
remaining dynamic field p0 if the background satisfies
Eqn (115). In that case, the one-derivative dispersion relation
o 2 � 0 is transformed into

o 2 � const
p 4

L2
: �116�

Therefore, the spectrum of the low-energy effective theory is
the same as in the ghost condensate case, except that tensor
gravitons are massive in the model discussed here.

Symmetry (109) protects the theory from the Boulware ±
Deser instability as well. In a nearly Minkowski space ± time,
and for a background nearly the same as in (111) and (112), a

reference frame can be chosen such that the background �f 0

has precisely form (111). In that frame, the above analysis
retains its validity: the fields pi are nondynamical in the low-
energy effective theory, at least for o 2, p 2 4m 2

G, and one
dynamic mode associated with the field p0 remains. Its
dispersion relation coincides with (116), modulo corrections
proportional to the deviation of the background from
Minkowski space.

To conclude this part, we digress to mention that a
theory that shares a number of properties inherent in the
model considered here was obtained in [92] in quite a
different context of bi-gravity theories [93]. It contains two
symmetric tensor fields, g1 mn and g2 mn, with their own
Einstein ±Hilbert actions, and involves a nonderivative
coupling between them,

Sint �
�
d4x�g1g2�1=4V�g1 mn; g2 lr� : �117�

The entire theory is taken to be invariant under space ± time
diffeomorphisms. With fine tuning that sets the cosmological
constant equal to zero, this theory allows a Lorentz-violating
solution, forwhich the twometrics are flat butnotproportional
to each other [92]; in a certain reference frame, g1 mn �
diag �1;ÿ1;ÿ1;ÿ1� and g2 mn � a 2 diag �c 2;ÿ1;ÿ1;ÿ1�.
Mixing term (117) gives rise to Lorentz-violating mass terms
in the action for perturbations about this background. In the
tensor sector of perturbations, there are two transverse
traceless gravitons, one massless and one with a nonvanish-
ing mass, which at high enough momenta propagate with
different velocities v1 � 1and v2 � c, andoscillate fromone to
the other. Interestingly, the diffeomorphism invariance of the
original theory imposes a number of constraints on the mass
terms, one of which is analogous to the constraint m1 � 0
defining the model we discuss in this section. As a result, there
are no propagating modes other than the two transverse
traceless gravitons, unless derivative terms are added to
action (117). At the linearized level, the gravitational
potential between massive bodies in this bi-metric theory on
a Lorentz-violating background generally has form (132), but
the linearly increasing part can be eliminated by imposing a
certain dilatation symmetry. All these features are direct
counterparts of the properties of the model we consider in
this section.

5.2 Phenomenology
By analogy to conventional field theory, it may be expected
that a nonzero graviton mass leads to an exponential
suppression of the gravitational potential at distances greater
than the inverse graviton mass. That mass would then be
constrained by the experimental data. This is not the case in
the model described by action (110), the reason being the
violation of Lorentz invariance. We see below that the
gravitational potential remains unchanged at the linear
level, at least in some region of the parameter space. In this
region, the behavior of the model is similar to general
relativity in many respects and may be phenomenologically
acceptable. At the same time, there may exist a number of
interesting and potentially detectable effects, the nonzero
graviton mass being one of them.

5.2.1 Newton's law. Newton's law emerges from general
relativity in the linear approximation. To derive its analog in
the model described by action (110), it is instructive to return
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to the unitary gauge, where the perturbations of the Gold-
stone fields are absent and the only perturbations are those of
the metric. This simplifies the comparison with general
relativity. As in Section 2.1, it is convenient to decompose
the metric perturbations in accordance with Eqn (1). The
quadratic part of the action is then given by

L�2� � L
�2�
EH � Lm � Ls ; �118�

where L
�2�
EH, Lm, and Ls respectively come from the Einstein ±

Hilbert, mass, and source terms. The Einstein ±Hilbert term
is given by Eqn (6), and the mass and source terms are

Lm �M 2
Pl

�
ÿ 1

4
m 2

2 �hTTi j �2 ÿ
1

2
m 2

2 �qiFj�2 �m 2
0j

2

� �m 2
3 ÿm 2

2 ��DE �2 ÿ 2�3m 2
3 ÿm 2

2 �cDE

� 3�3m 2
3 ÿm 2

2 �c 2 � 2m 2
4DEÿ 6m 2

4jc
�
; �119�

Ls � ÿT00

ÿ
j� q0Bÿ q20E

�ÿ Ti ic

� �Si � q0Fi�T0i � 1

2
hi jTi j : �120�

The notation for the masses is the same as in (74); the masses
m 2

i are combinations of the first and second derivatives of the
function F, the parameter L, and the Planck mass. As
discussed above, their overall scale is m � L2=MPl. The
source term contains an external energy ±momentum tensor
Tmn, which we assume to be conserved. All combinations
coupled to the components of Tmn are gauge invariant. The
one multiplying T00,

F � j� q0Bÿ q20E ;

plays the role of theNewtonian potential in the nonrelativistic
limit of general relativity.

In the tensor sector, only the transverse traceless perturba-
tions hTTi j are present (two degrees of freedom). Their field
equation is that of amassive field with the massmG � m2. We
note that the massive tensor field does not necessarily have
five polarizations in a Lorentz-violating theory. Examples of
this phenomenon have already been discussed in the previous
sections.

In the vector sector, the field equations are

ÿ D�Si � q0Fi� � ÿT0i ; �121�

q0D�Si � q0Fi� �m 2
2DFi � q0T0i : �122�

Taking the time derivative of Eqn (121) and adding it to
Eqn (122) gives

Fi � 0

if m 2
2 6� 0. Thus, the vector sector of the model behaves the

same as in the Einstein theory in the gauge Fi � 0. There
are no propagating vector perturbations and the interac-
tion of sources is not modified in the vector sector unless
nonlinear effects or higher-derivative terms are taken into
account.

The interaction potential between static sources (the
Newtonian potential) is determined by the scalar sector of

the model. The field equations for scalar perturbations are

2Dc�m 2
0j�m 2

4DEÿ 3m 2
4c �

T00

2M 2
Pl

; �123�

2DFÿ 2Dc� 6q20cÿ �3m 2
3 ÿm 2

2 �DE
� 3�3m 2

3 ÿm 2
2 �cÿ 3m 2

4j �
Ti i

2M 2
Pl

; �124�

ÿ 2Dq20c� �m 2
3 ÿm 2

2 �D2Eÿ �3m 2
3 ÿm 2

2 �Dc

�m 2
4Dj � ÿ

q20T00

2M 2
Pl

; �125�

2Dq0c � q0T00

2M 2
Pl

: �126�

Equation (126) implies

c � 1

D
T00

4M 2
Pl

� c0�x i � ; �127�

where c0�x i � is an arbitrary time-independent function.
Equations (123) and (125) imply that

j � 2m 2
2m

2
4

M
c� 2�m 2

3 ÿm 2
2 �

M
Dc0 ; �128�

DE �
�
3ÿ 2m 2

0m
2
2

M

�
cÿ 2m 2

4

M
Dc0 ; �129�

where

M � m 4
4 ÿm 2

0 �m 2
3 ÿm 2

2 � :

Finally, substituting Eqns (127) ± (129) in Eqn (124), we find
the gauge-invariant potential

F � 1

D
T00 � Ti i

4M 2
Pl

ÿ 3
q20
D2

T00

4M 2
Pl

�
�
3ÿ 2m 2

0m
2
2

M

�
� m 2

2

D

�
1

D
T00

4M 2
Pl

� c0

�
�
�
1ÿ 2m 2

2m
2
4

M

�
c0 : �130�

The first two terms in the right-hand side of Eqn (130) are the
standard contributions in the Einstein theory, the first one
becoming theNewtonian potential in the nonrelativistic limit.
Thus, except for the c0-dependent terms, the gauge-invariant
potentials F and c differ from their analogs in the Einstein
theory FE and cE by the mass-dependent third term in the
right-hand side of Eqn (130),

c � cE ;

F � FE �
�
3ÿ 2m 2

0m
2
2

M

�
m 2

2

D2

T00

4M2
Pl

:
�131�

The second term in Eqn (131) vanishes if all masses uniformly
tend to zero, and hence, in the massless limit, both potentials
c and F become the same as in general relativity. This means
the absence of the vDVZ discontinuity in the model.

For a static source, Eqn (131) leads to a modification of
the Newtonian potential of a point mass M, which in
coordinate space takes the form

F � GNM

�
ÿ 1

r
� m 2r

�
; �132�
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where

m 2 � ÿ 1

2
m 2

2

�
3ÿ 2m 2

0m
2
2

M

�
: �133�

Because the potential is increasing, the perturbation theory
breaks down at distances r01=�GNMm 2�. This would be
unacceptable for relatively large graviton masses. But the
modification of the potential is absent in the case
3M � 2m 2

0m
2
2 (and M 6� 0). We see in what follows that this

condition can be ensured by a particular dilatation symme-
try,19 which is automatically enforced at the cosmological
attractor, i.e., at late times of the cosmological evolution.

The freedom in choosing the time-independent function
c0�x� that enters the above gravitational potentials corre-
sponds to the presence of the scalar mode with the dispersion
relation o 2 � 0. As discussed in Section 5.1, this mode is an
analog of the ghost condensate mode and becomes dynamical
with the higher-derivative terms in the action taken into
account, acquiring the dispersion relation o 2 / p 4. The
value of c0 is determined by the initial conditions. In the
linear regime, a nonzero value of c0 would mean the presence
of an incoming `ghost condensate wave.' Hence, for the
purpose of finding the potential between sources, the
physical choice is c0�x i � � 0. We note, however, that this
choice is not so evident in the cosmological context.

5.2.2 Cosmological solutions. At the time of writing this
review, only spatially flat cosmological solutions are known
in model (110). The flat cosmological ansatz is20

ds 2 � dt 2 ÿ a 2�t� dx 2
i ;

f0 � f�t� ; fi � L2x i :
�134�

For this ansatz, Wi j � ÿaÿ2d i j, and hence the function F in
Eqn (110) depends only onX and a, F � F�X; a�. The Einstein
equations reduce to the Friedman equation,�

_a

a

�2

� 1

6M 2
Pl

�
rm � 2L4XFX ÿ L4F

	
� 1

6M 2
Pl

�
rm � r1 � r2

	
; �135�

where rm is the energy density not including Goldstone fields.
The field equation for f0 is

qt
ÿ
a 3

����
X
p

FX

� � 0 : �136�

The field equations for fi are satisfied automatically. In
principle, it is straightforward to solve this system of
equations for any given function F �X; a�. Upon integration,
Eqn (136) gives an algebraic equation that determines X as a
function of the scale factor a. This makes Eqn (135) a closed
equation for the scale factor a�t�.

From the standpoint of cosmological applications, of
particular interest are solutions where the scale factor a�t�
tends to infinity at late times. Because the graviton masses are
linear combinations of the function F �X; a� and its deriva-
tives, the question arises as to whether they remain finite or
tend to zero in this limit and whether the effective-theory
description remains valid. Indeed, Eqn (136) implies that
either X or FX tends to zero at late times, which suggests that
the graviton masses might tend to zero as well.

We consider a particular class of functions F such that
X�a� found from Eqn (136) asymptotically tends to some
power of a at large a. This is not a very restrictive assumption:
for instance, it is satisfied by any algebraic function F �X; a�.
Then there exists a real constant g such that the combination
X g=a 2 tends to a nonzero value as a!1. Equation (136)
implies that XFX � const

����
X
p

=a 3; this determines the depen-
dence of the energy component r1 on the scale factor,

r1 � const
1

a 3ÿ1=g : �137�

This relation generalizes the behavior found in the ghost
condensate model, where the energy density of the ghost
condensate scales as 1=a 3 [38] (this behavior is recovered from
Eqn (137) as g!1).

For g > 1=3, the energy density r1 behaves like the dark
energy component with negative pressure. Its equation of
state varies between that of cold dark matter, w � 0 (for
g � �1), and that of the cosmological constant, w � ÿ1 (for
g � 1=3). For 0 < g < 1=3, the term r1 increases with a. This
corresponds to the energy density component with a highly
negative equation of state, w < ÿ1. Without fine tuning, this
contribution cannot be canceled by the term r2, and hence the
Hubble rate diverges as a!1, leading to the breakdown of
the low-energy effective theory and rapid instabilities [94]. In
what follows, we assume that g does not belong to this range.
For g < 0, the energy density r1 corresponds to a fluid with
positive pressure.

To see that the graviton masses remain finite and the
effective field theory description is valid in the limit a!1, it
is convenient to replace X by the new variable Z � X g=a 2.
The function F �X; a� becomes a function of Z and a,
~F �Z; a� � F �Z 1=ga 2=g; a�. We note that it satisfies the rela-
tion gZ ~FZ � XFX, where ~FZ � q ~F=qZ. With this notation,
Eqn (136) becomes

ga 3ÿ�1=g�Z 1ÿ�1=2g� ~FZ�Z; a� � A ; �138�

where A is an integration constant. This equation determines
Z as a function of a. By construction, this dependence is such
that Z�a!1� � Z0, where Z0 is some constant.

If we assume further that the function ~F �Z; a� is regular as
a!1, then at late times we have

F �X; a� � ~F �Z; a� ! F0�Z � : �139�

In terms of the original variables, this means that in the limit
a!1, the function F �X;Wij � depends only on the
combination X gWij . This corresponds to the following
dilatation symmetry of the Goldstone action:

f0 ! lf0 ;

fi ! lÿgfi ; �140�

19 Like other symmetries discussed in Secttion 3.3.3, this dilatation

symmetry, Eqn (140), may be regarded as an unbroken part of the

diffeomorphism invariance.
20 In principle, a more general time-dependent ansatz for the scalar fields

can be written, namely,fi � L2C�t� x i, whereC�t� is an arbitrary function
of time. For models respecting symmetry (140), which we mainly consider

in what follows, this ansatz leads to the same cosmological evolution as

ansatz (134) (see Ref. [41] for the details).
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which is equivalent, in the unitary gauge, to the unbroken part
of the diffeomorphism invariance, t! lt, x i ! lÿgx i. In this
case, we have

r2 � ÿL4F0�Z0� ;

which behaves like a cosmological constant (assuming
F0�Z0� 6� 0). Likewise, as a!1, the graviton masses
become functions of Z0 and remain finite in general.

Themodels obeying Eqn (139) have an interesting feature,
which is a consequence of symmetry (140). It is straightfor-
ward to verity that Eqn (140) implies the following relations
among the graviton masses in Minkowski space:

m 2
0 � ÿ3gm 2

4 ; g�m 2
2 ÿ 3m 2

3 � � m 2
4 : �141�

These relations ensure that the parameter m 2 defined by
Eqn (133) is zero, i.e., the correction to the Newtonian
potential (the last term in Eqn (131)) vanishes. Thus, at late
times, apart from the effects of the higher-derivative terms,the
only modification of gravity at the linear level is the nonzero
mass of the two polarizations of the graviton.

A particularly simple case occurs if the function F depends
only on the combination

Zi j � X gWij : �142�

If g > 1=3 or g < 0, the evolution drives the system to the
point ~FZ � 0, in full similarity with the ghost condensate
model. In the case 0 < g < 1=3 and regular ~F, Zi j diverges at
large a. This breaks the validity of the low-energy effective
theory.

5.2.3Massive gravitons.Weconsider the properties ofmassive
gravitons in more detail; specifically, we consider the
experimental constraints on the graviton mass and the
possibility of graviton creation in the early Universe. For
simplicity, in this section, we limit ourselves to the model with
the action

SG � L4

�
d4x

�������ÿgp
F �Zi j � ; �143�

where the Zi j are given by Eqn (142). In this model, there are
no corrections to the Newtonian potential at the linear level,
and therefore the tests of (linearized) gravity based on the
Solar System and Cavendish-type experiments [95] are
automatically satisfied. The constraints on the graviton
mass come from the emission and/or propagation of gravita-
tional waves.

Observations of the slowdown of the orbital motion in
binary pulsar systems [96] are considered an indirect proof of
the existence of gravitational waves. The agreement of these
observations with general relativity implies that the graviton
mass cannot be larger than the characteristic frequency of the
emitted gravitational waves. This frequency is set by the
period of the orbital motion, which is of the order of
10 hours, implying the following limit on the graviton mass:

mG

2p
� nG93�10ÿ5 Hz � �1015 cm�ÿ1� �70 a:u:�ÿ1: �144�

Thus, the maximum allowed graviton mass is comparable to
the inverse size of the Solar System, which is a very large mass
(short distance) by cosmological standards. Gravitons of such

a mass can serve as dark matter candidates if they can be
produced in the early Universe in sufficient numbers. Indeed,
if the graviton mass is large enough, �mv�ÿ191 kpc �
3� 1021 cm, where v � 10ÿ3 is the typical velocity in the
halo, then massive gravitons may cluster in galaxies and
account for the dark matter in galactic halos.

It is straightforward to estimate the cosmological abun-
dance of relic massive gravitons. The massive gravitons are
described by the transverse traceless perturbation of the
metric, hTTi j . The quadratic action for hi j (we omit the
superscript in what follows) in the expanding Universe has
the form

M 2
Pl

�
d3k dZa 2�Z���h 0i j�2 ÿ �qkhi j�2 ÿm 2

Ga
2�Z� h2i j

�
; �145�

where Z is conformal time and the prime denotes q=qZ.
Equation (145) has the form of the action of a minimally
coupled massive scalar field. Therefore, similarly to scalar
bosons, massive gravitons are produced efficiently during
inflation (cf. Ref. [97]).

To be specific, we consider a scenario where the Hubble
parameter Hi is constant during inflation. This scenario may
be realized, for instance, in hybrid models of inflation [98].
First, it must be verified that the phenomenologically relevant
values of parameters correspond to the regime below the
cutoff scale of the effective theory, i.e.,Hi9L. For the energy
scale of inflation Ei �

��������������
HiMPl

p
, this implies that

Ei < m
1=4
G M

3=4
Pl � 107 GeV �mG � 1015 cm�1=4 : �146�

This value is high enough to be consistent with everything else
in cosmology (in particular, to allow successful baryogenesis),
even for graviton masses of the order of the current Hubble
scale.

We next consider the production of massive gravitons.
With the above scenario of inflation assumed, the perturba-
tion spectrum for massive gravitons is that for the minimally
coupled massive scalar field in the de Sitter space [99],

hh2i ji '
1

4p2

�
Hi

MPl

�2 �
dk

k

�
k

Hi

�2m 2
G
=�3H 2�

: �147�

Importantly, for long enough inflation, the present physical
momenta ofmost of the gravitons are smaller than the present
Hubble scale.

Metric fluctuations remain frozen until the Hubble
parameter becomes smaller than the graviton mass, and
afterwards they start to oscillate with the amplitude decreas-
ing as aÿ3=2. The energy density in massive gravitons at the
beginning of oscillations is of the order of

r� �M 2
Plm

2
Ghh2i ji '

3H 4
i

8p2
;

where we neglected a prefactor, which is roughly of the order
of unity. Today, the fraction of the energy density in massive
gravitons is

Og � r�
z 3� rc

� r�
z 3e rc

�
He

H�

�3=2

; �148�

where z� is the redshift at the start of oscillations,H� � mG is
the Hubble parameter at that time, He � 0:4� 10ÿ12 sÿ1 is

784 V A Rubakov, P G Tinyakov Physics ±Uspekhi 51 (8)



the Hubble parameter at the matter/radiation equality, and
ze � 3200 is the corresponding redshift. Combining all
factors, we obtain

Og � 3� 103�mG � 1015 sm�1=2
�
Hi

L

�4

: �149�

This estimate assumes that the number of e-foldings during
inflation is large, ln Ne > H 2=m 2

G, which is quite natural in
the inflation model considered here.

According to Eqn (149), massive gravitons are produced
efficiently enough to comprise all of the cold dark matter if
the value of the Hubble parameter during inflation is about
one order of magnitude below the scale L. Interestingly, it
follows that Og � 1 when the initial energy density in the
metric perturbations is close to the cutoff scale, r1=4� � L. This
suggests that other mechanisms of production unrelated to
inflation may naturally lead to the same result, Og � 1.

If massive gravitons have been produced in substantial
amounts during the evolution of the Universe, they can be
observed by gravitational wave detectors. At distances
shorter than the wavelength, the effect of a transverse
traceless gravitational wave on test massive particles in the
Newtonian approximation is described by the acceleration
�hi jx

j=2 (see, e.g., Ref. [96] for a review). The same is true for
massive gravitational waves, the only difference being that the
wavelengths are longer in the nonrelativistic case, and
therefore the Newtonian description works for a larger
range of distances. Thus, nonrelativistic waves act on the
detector in the same way as massless waves of the same
frequency.

To estimate the amplitude of the gravitational waves, we
assume that they comprise all of the darkmatter in the halo of
our Galaxy. The energy density in nonrelativistic gravita-
tional waves is of the order ofM 2

Plm
2
Gh

2
i j. Equating this to the

local halo density r0 � 0:3GeV cmÿ3, we obtain

hi j � 10ÿ10
�
3� 10ÿ5 Hz

nG

�
: �150�

At frequencies 10ÿ6 ± 10ÿ5Hz, this value is many orders of
magnitude above the expected sensitivity of the LISA
detector [101]. Thus, LISA may observe massive gravita-
tional waves even if their abundance is much lower than that
required to play the role of dark matter. We note that in the
nearby frequency range 10ÿ9 ± 10ÿ7Hz, there is a restrictive
bound [102] at the level Og < 10ÿ9 on the stochastic back-
ground of gravitational waves, coming from the timing of
millisecond pulsars [103]. Hence, it is possible that the model
can be tested by the re-analysis of the already existing data on
pulsar timing. This re-analysis would have to take into
account that, unlike the usual gravitational waves, relic
massive gravitons produce a monochromatic line at the
frequency equal to the graviton mass. Such a narrow line
with the relative width Dn=n � 10ÿ6 is a distinctive signature
of the model.

Another possible signature is the time delay of a
gravitational wave signal compared to electromagnetic
radiation. In terms of the wave frequency f and the distance
D to the source, the time delay is given by

Dt � D

2

�
mG

2pf

�2

(assuming that f4mG). As an example, we consider gravita-
tional waves emitted during the merger of two massive black

holesÐone of the promising processes from the standpoint
of gravitational wave detection. The frequency of these waves
is of the order of the gravitational radius of the resulting black
hole,

f � Rÿ1S �
M 2

Pl

2M
;

where M is the black hole mass. Thus, for mG � 10ÿ15 cmÿ1,
the time delay is

Dt � D

2

�
MmG

pM 2
Pl

�2

� 5� 10ÿ6
�

D

Mpc

��
M

M�

�2

� s� :

This is probably too small to be detected for solar-mass black
holes, but may be detectable for heavier ones.

5.2.4 Refined cosmological tests: growth of perturbations.
Given that some models of massive gravity pass the most
obvious experimental tests, the question arises whether they
may provide a viable alternative to general relativity in
describing subtler effects. One of these effects is the structure
formation. In the standard cosmology based on general
relativity, the formation of the observed structure in the
Universe is explained by the growth of primordial perturba-
tions, mostly during the matter-dominated stage (see, e.g.,
[104, 105] and the references therein). The conventional
theory is in good agreement with observations if the dark
matter component has the right properties [8, 106, 107]. It is
not obvious that general relativity can be modified without
spoiling this agreement. We demonstrate in this section that
the massive gravity model described by action (143) is an
example of such a modification, i.e., this model successfully
passes the structure formation test even though the graviton
mass is very large by cosmological standards. This again
illustrates the fact that in a Lorentz-violating theory, the mass
of a transverse traceless graviton has very little to do with the
properties of 3-dimensionally scalar modes.

Perturbations relevant for structure formation are
3-dimensional scalars. In massive gravity, the scalar sector
contains additional scalar fields thatmay alter the growth rate
and make the model incompatible with observations. With-
out gauge fixing, the scalar sector contains metric perturba-
tions j (not to be confused with the Goldstone fields f0, fi ),
B, c, and E defined in accordance with Eqns (5) and (55),
perturbations of the Goldstone fields p0 and pL (the long-
itudinal part of pi), and perturbations of ordinary matter. In
total, there are 9 scalar perturbations, one of which can form 7
gauge-invariant combinations whose dynamics are responsi-
ble for the structure formation. The complete set of equations
that govern the behavior of these perturbations can be found
in Ref. [108].

The system of equations for perturbations can be reduced
to two equations for the gauge-invariant gravitational
potentials F and C. In general relativity, they satisfy the
relation FÿC � 0. In massive gravity, this relation changes
to

FÿC � #�x i� a 1=gÿ1 ; �151�
where #�x i� is an arbitrary function of spatial coordinates,
which arises as an integration constant. The origin of this
constant is the presence of amode with the dispersion relation
o2 � 0. We have already encountered the appearance of such
a constant in Section 5.2.1.
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The second equation is a closed equation for C,

q2C
qa 2
� 1

a

�
4� 3c 2s �

H 0

H 2

�
qC
qa

� 1

a 2

��
1� 3c 2s

�
� 2

H 0

H 2
ÿ c 2s D

H 2

�
C

�
�
gc 2s D
H 2
ÿ
�
3c 2s �

1

g
� 2

H 0

H 2

��
#a 1=gÿ3 : �152�

In terms of the solutions of this equation, the density contrast
is expressed as

dr � 2M 2
Pl

rm
�gDÿ 3H 2� a 1=gÿ3#

ÿ 2M 2
Pl

a 2rm

�
3H 2

�
1� a

q
qa

�
ÿ D

�
C ; �153�

where # is the same time-independent function of the spatial
coordinates as in Eqn (151).

The standard cosmological perturbations are recovered
by setting the graviton masses to zero, m 2

i � 0. In this case,
FÿC � 0, i.e., #�x i� � 0. Then the equations for perturba-
tions become identical to those in the Einstein theory. We
note that the function # is determined by the initial
conditions. Setting # � 0 would eliminate the #-dependent
terms in Eqns (152) and (153) and bring these equations to the
conventional form, even in the case m 2

G 6� 0. Hence, there
always exist initial conditions such that model (143) exhibits
the standard rate of perturbation growth and is therefore
compatible with observations. Furthermore, at some values
of the parameter g, the part of the perturbations that is
proportional to #�x i� grows more slowly than the conven-
tional part and is therefore subdominant, such that the
agreement with observations is achieved for any function
#�x i� unless it is too large.

In the case of matter perturbations in a matter-dominated
universe, Eqn (152) reduces to the equation

q2C
qa 2
� 7

2a

qC
qa
�
�
1

g
ÿ 1

�
a 1=gÿ3# � 0 ;

which differs from the standard case by the presence of the
inhomogeneous term proportional to #. The solution of this
equation is given by

C � ÿ 2g
2� 3g

a 1=gÿ1#�x i� � aÿ5=2c1�x i � � c2�x i � ;

where ci�x i � are integration constants. Substituting this
solution in Eqn (153), we find the density contrast

dr �
�
2M 2

Pla

r0
D� 3

�
c1�x i �
a 5=2

� 2

�
aM 2

Pl

r0
Dÿ 1

�
c2�x i �

� 6g
2� 3g

a 1=gÿ1
�
agM 2

Pl

r0
Dÿ 1

�
#�x i � ; �154�

where r0 is the present energy density of matter. The first two
terms in this equation are precisely the ones that appear in the
standard Einstein theory, the second term describing the
linear growth of the perturbations, dr / a. The difference
from the conventional case is in the third term in the right-
hand side of Eqn (154). The perturbations corresponding to
this term increase proportionally to a 1=g. For g > 1 or g < 0,

these `anomalous' perturbations increase more slowly than
the standard ones.

At the epoch of radiation domination, the situation is
similar. For a relativistic fluid, we have c 2s � w � 1=3, and
hence Eqn (152) becomes

q2C
qa 2
� 4

a

qC
qa
ÿM 2

PlD
rr

C�
�
1

g
ÿ 1ÿ a 2gM 2

PlD
rr

�
a 1=gÿ3#�0 ;

�155�

where rr is the present energy density of radiation. For a
generic value of g, the solution of this equation is cumber-
some. For simplicity, we concentrate on the modes that are
shorter than the horizon size, k 2=a 2 4H 2. The density
contrast calculated in accordance with Eqn (153) has the
standard oscillating piece and an extra part proportional to #,

dr � c1�x i � sin y� c2�x i � cos y� 2g
�

rr
k 2M 2

Pl

��1=gÿ1�=2
�
�
ÿ y 1�1=g �

� y

0

dx x 1�1=g sin�yÿ x�
�
# ; �156�

where y � Zk=
���
3
p

is proportional to the scale factor and
ci�x i � are two integration constants. It follows from this
expression that forÿ14g < 0, the #-dependent contribution
to the density contrast decays in time, and hence only the
standard contribution remains. Thus, in this range of g, the
perturbations behave just as predicted by general relativity in
both the matter and radiation-dominated epochs.

Another interesting case is g � 1. This case is special
because the a-dependence of the last term in Eqn (155)
disappears at g � 1. In fact, it can be shown in this case that
the dependence on # cancels in the density contrast, and hence
only the standard part of perturbations remains.

At other values of g, #-dependent contributions to the
perturbations increase in the radiation-dominated Universe.
Whether a model of this sort is compatible with observations
depends on the unknown function (`integration constant')
#�x i �. It is worth noting that this functionmay become slowly
varying in time when higher-derivative corrections to action
(143) are taken into account. It remains to be understood
whether these corrections can drive #�x i � to zero during
inflation, in which case the dependence on the initial value of
#�x i � is eliminated and the model is compatible with
observations at any value of the parameter g.

5.2.5 Nonlinear solutions: black holes. The approach based on
Goldstone fields with action (86) (compared, e.g., to the
Fierz ± Pauli model) is fully nonlinear. We have already used
this fact in Section 5.2.2, where we derived cosmological
solutions in massive gravity. Another interesting question
related to nonlinear gravitational dynamics is the existence
and properties of black holes. Rapid progress in observa-
tional techniques will allow a quantitative study of astro-
physical black holes in the near future, including mapping the
metric near the black hole horizon [109 ± 114]. It is therefore
important to understand what kind of deviations from
general relativity are possible, at least in principle.

Black hole properties are universal in general relativity in
the sense that the black hole metric is uniquely characterized
by the black hole mass and angular momentum. This
property is related to the causal structure of the black hole
space ± time and is a consequence of the `no-hair' theorems
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[115 ± 118]. Thus, properties of black holes are extremely
`resistant' to modifications of gravity theories. For example,
they remain unchanged in scalar ± tensor theories [115, 116,
119. 120]. Constructing an alternativemodel of a black hole is
therefore a challenging problem.

We see in this section that black hole properties in massive
gravity do differ from those in general relativity. In other
words, black holes do have `hair' in massive gravity. The
origin of this hair lies in the instantaneous interaction present
in Lorentz-violating massive gravity. Their existence is thus
related to themode with the dispersion relation p 2 � 0, which
is in turn a consequence of symmetry (83), as was noted in
Section 5.2. For simplicity, we again limit our discussion to
the particular class of models with action (143). Because the
presence of the instantaneous interaction is a generic property
of Lorentz-violating massive gravities (in particular, models
with action (110)), we expect our conclusions to apply to a
wider class of models than considered in this section.

Themost straightforward approach to the problemwould
be to try to find black hole solutions explicitly and to see if
they differ from general relativity black holes. But this
appears to be a prohibitively difficult task. The problem
may be simplified by addressing a slightly different question:
does massive gravity have a black hole solution with exactly
the same metric as in general relativity? Answering this
question requires finding a configuration of the Goldstone
fields such that for the given black hole metric, all equations
of motion (the Einstein equations and the equations of
motion of the scalar fields) are satisfied. If this is possible,
then the solution with the given metric exists. Alternatively, if
this is not possible, black hole solutions are modified in
massive gravity.

For the black hole metric to be a solution of the Einstein
equations, the energy ±momentum tensor of the Goldstone
fields f0 and fi must vanish in the exterior of the black hole,

0 � Tmn � ÿgmnF� 2
dF

dWi j

��
g
Wi j

X
� ViV j

X 2

�
qmf

0qnf
0

� X gqmf
iqnf

j ÿ Vi

X

ÿ
qmf

0qnf
j � qnf

0qmf
j
��

; �157�

where gmn is the black hole metric. It is clear from Eqn (157)
that with a possible exception of some very special functions
F, the energy ±momentum tensor does not vanish, because
the vanishing would require 10 equations to be satisfied for
4 unknowns.

We now recall that our model is constructed such that the
energy ±momentum tensor of the Goldstone fields vanishes
inMinkowski space. This is achieved by choosing the vacuum
solutions for the Goldstone fields, Eqns (111) and (112), such
that Eqns (113) are satisfied. Formodel (143), these equations
give

F � 0;
dF

dWi j
� 0

in the Minkowski vacuum, where

Wi j � ÿd i j : �158�

Thus, we canmakeTmn vanish if we find a configuration of the
Goldstone fields such that Eqns (158) are satisfied in the
background metric of the black hole.

There are fewer equations in (158) than in (157), but they
are still too many: system (158) contains 6 differential

equations for only 4 unknown functions f0 and fi. Conse-
quently, if there are no degeneracies, these equations cannot
be satisfied and we expect that the Goldstone fields cannot be
adjusted such that their energy ±momentum tensor is zero.

An equivalent form of Eqn (158) can be obtained by
passing to the unitary gauge. In this gauge, Eqn (158)
becomes

�g 00�ggÿ1i j � ÿd i j: �159�

In geometrical terms, solving Eqn (159) is equivalent to
finding, for a given metric, the coordinate frame in which
the constant-time slices are conformally flat. This reformula-
tion of Eqn (158) is particularly convenient.

In the case of the Schwarzschild black hole, there actually
exists a solution of Eqns (158). Equivalently, there exists a
coordinate frame in which the spatial part of the metric is
conformally êat, the so-calledGullstrand ë Painlev�e frame. In
this frame, the black hole metric has the form

ds 2 � dt 2 ÿ
�
dx i ÿ R

1=2
S

r 3=2
x i dt

�2

;

where RS is the Schwarzschild radius of the black hole and
r �

������
x 2
i

p
, and the scalar field configuration that solves

Eqns (158) is simply

f0 � L2t; fi � L2x i : �160�

Transforming back to the Schwarzschild coordinates, we find

f0 � L2

�
t� 2

��������
rRS

p
� RS ln

� ��
r
p ÿ ������

RS

p��
r
p � ������

RS

p
��

;

with the fi still given by Eqns (160). Thus, Schwarzschild
black holes are solutions of massive gravity as well.

The situation is different in the case of a rotating black
hole: the above miracle does not happen and, as expected,
Eqns (158) and (159) do not have solutions. In fact,
conformally flat spatial slicings are an important ingredient
in the numerical simulations of black hole mergers, and their
existence for various solutions of the Einstein equations has
therefore been extensively studied [121, 122]. In particular, it
was proved that a conformally flat slicing of theKerrmetric is
impossible due to the existence of a nontrivial invariant of the
quadrupole origin [122],

U � ÿ112pJ2 : �161�

Moreover, the results in Ref. [122] imply that not only the
Kerr metric but also an arbitrary axisymmetric vacuum
solution of the Einstein equations with nonzero angular
momentum has a nonvanishing value of U and, conse-
quently, does not allow conformally flat spatial slicings.
Therefore, there are no configurations of the Goldstone
fields such that their energy ±momentum tensor is zero in
the background of the Kerr or any other metric with nonzero
angular momentum. Consequently, rotating black holes in
massive gravity have to be different from those in the Einstein
theory.

The fact that rotating black holes are modified in the
presence of Goldstone fields, as compared to their general
relativity counterparts, is in accordance with the expectation
that black holes may have `hair' in massive gravity. The
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existence of hair can be demonstrated explicitly in a
simplified model of Lorentz-violating electrodynamics with
the action [79]

S � SEH �
�
d4x

�������ÿgp �
F �X � ÿ 1

4
F 2
mn �m 2G mnAmAn

�
;

�162�

where SEH is the Einstein ±Hilbert action, X is given by
Eqn (87), and G mn is the `effective metric'

G mn � g mn ÿ q mf0qnf0

X
:

This model is analogous to massive gravity in that it allows
instantaneous interactions [90] that are responsible for the
presence of black hole hair. Moreover, it can be shown [79]
that the standard charged rotating black holes are not
solutions in this model, in full similarity with rotating black
holes not being solutions in massive gravity.

To demonstrate the existence of electromagnetic hair in
model (162), it must be shown that there exist nontrivial static
finite-energy solutions for the linearized perturbations of the
electromagnetic field in the background of the Schwarzschild
black hole. In the sector with the angular momentum l � 1,
the vector field can be parameterized by 4 real functions of a
radial variable r (see Ref. [79] for explicit expressions). The
equation for the perturbations of the vector field translates
into a coupled system of ordinary differential equations for
the radial functions. It must be shown that there exists a
solution of this system that is regular both at infinity and at
the black hole horizon r! ÿ1.

The existence of a regular solution can be demonstrated
by counting the decreasing and increasing modes in the
asymptotic regions. Here, we only present the results; details
can be found in Ref. [79]. It can be shown that one of the four
radial functions decouples and the corresponding equation
does not have regular solutions. The equations for the
remaining three radial functions can be rewritten as a single
fourth-order equation. Therefore, an arbitrary solution is
parameterized by four real parameters, one of which is the
overall normalization. At the infinity, there are two decreas-
ing and two increasing solutions. Requiring the general
solution to decrease at the infinity fixes two of these three
parameters. At the horizon, there are one singular and three
regular solutions. The remaining free parameter can therefore
be used to eliminate the singular part and obtain the solution
regular everywhereÐ the ``dipole hair.''

Overall, the following picture emerges. Black holes in
massive gravity have no reason to be universal. In particular,
themetric of a rotating black hole can (andmust, according to
the direct analysis) be different from that in the Einstein
theory. The differences between different possible metricsÐ
black hole hair ± depend on the collapse history. It has been
argued [79] that these differences, as well as the deviations
from the standard metric, are of the order of unity only at
distances much larger than the inverse graviton mass mÿ1,
and are likely to be suppressed by the factor � �ml �2 at
distances l5mÿ1, unless the parameters of the model are
tuned. Given the existing constraint on the graviton mass in
(132), the effects of black hole hair in the simplest models are
observable only for the largest black holes, with masses
109 M�.

6. Conclusion

To summarize, Lorentz-invariant massive gravity in 4
dimensions has severe self-consistency problems. It has
either ghosts in the perturbation spectrum about Minkowski
space or an unacceptably lowUV energy scale at which strong
coupling sets in, plus the Boulware ±Deser ghost mode away
from the Minkowski background. Because of the Lorentz
invariance, the pathological ghost modes exist at arbitrarily
high spatial momenta, and therefore the vacuum in this
theory is catastrophically unstable. Presently, no way of
fixing these problems is known, and it appears rather
unlikely that this theory can be made healthy and phenom-
enologically acceptable.

Infrared-modified gravities may be less problematic in
theories with extra spatial dimensions and brane worlds.
Among the most widely discussed models of this sort is the
DGP model, whose normal (as opposed to self-accelerated)
branch does not have ghosts in the spectrum and may or may
not have an acceptably high UV strong-coupling scale.

In this review, we followed another route and discussed
Lorentz-violating theories. Among those, we concentrated on
a subclass of theories that have only the metric as a dynamical
field in the unitary gauge and which haveMinkowski space as
a solution of the field equations. Under these conditions, the
lowest-order terms in the action in the Minkowski back-
ground are mass terms for metric perturbations. Hence, the
emphasis in this review was on Lorentz-violating massive
gravities. There is a plethora of other possibilities, some of
which are reviewed, e.g., in Refs [124, 125].

Once the spectrum of a theory is not Lorentz invariant,
ghosts and, to lesser extent, tachyons become phenomenolo-
gically acceptable if they exist only at sufficiently low spatial
momenta and energies and only weakly (e.g., gravitationally)
interact with matter. Furthermore, some Lorentz-violating
massive gravities do not have obvious pathologies at all, and
are phenomenologically acceptable even for the relatively
high energy scale of Lorentz violation. Unlike the Fierz ±
Pauli theory that has a vDVZ discontinuity, these theories are
smooth, perturbative deformations of general relativity at the
classical level, while their UV strong-coupling scale at the
quantum level is not dangerously low. The most appealing
among these theories are the ones where some part of the
diffeomorphism invariance of general relativity is unbroken,
the feature that ensures the stability of these theories against
deformation of the background and/or generation of higher-
order terms in the action.

A general problem we must mention in this regard is the
UV completion of these theories. Unlike general relativity,
which is believed to be an effective low-energy theory
descending from string theory, massive gravities do not have
obvious string-theory completions. We believe this issue is
worth investigating in the future.

Massive gravities of the sort we discuss in this review are
conveniently analyzed by using the St�uckelberg ±Goldstone
formalism. This formalism involves scalar fields whose
background values roll along either time-like or space-like
directions, or both. The advantage is that the full general
covariance is restored, and hence at energies and momenta
exceeding the graviton mass scale, the new modes, over and
beyond the gravitons of general relativity, are perturbations
of these scalar fields, which effectively decouple from gravity
(except for the Fierz ± Pauli case). In this way, the spectrum of
the theory is studied rather straightforwardly. Furthermore,
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the Goldstone action can be regarded as a nonlinear general-
ization of the graviton mass terms, and the nonlinear proper-
ties of the resulting theory, such as cosmology and black
holes, can then be studied.

Rolling scalar fields are interesting in many respects, even
though their perturbations may be gauged away such that the
theory involves only the metric in the unitary gauge. In the
cosmological context, rolling scalar fields are capable of
giving rise to the late-time accelerated expansion of the
Universe, with a nontrivial equation of state of the effective
dark energy. It is worth noting that other theories with IR-
modified gravity are often unable to do that. For example, in
theories with vector field condensates, the condensates may
tend to constant values at late times. Then there is a general
argument showing that the late-time evolution of the
Universe is basically the same as in general relativity,21

possibly with the cosmological constant [126, 127]. The
argument is as follows. A spatially flat, homogeneous, and
isotropic metric has the general form

ds 2 � N 2�t� dt 2 ÿ a 2�t� di j dx i dx j :

This form is symmetric under time reparameterizations and
space dilations,

t! t 0�t� ; x i ! lx i ; �163�

with an arbitrary function t 0�t� and an arbitrary constant l.
With the matter fields fixed at their vacuum values (in the
locally Minkowski frame), the only dynamic variables are
N�t� and a�t�, and the action for these variables should respect
symmetries (163). The only action that is local in time, is
consistent with these symmetries, and has no more than two
time derivatives is

S�N; a� � ~M 2
Pl

�
dt

1

N

�
_a

a

�2

ÿ ~L
�
N dt ;

where ~MPl and ~L need not coincide with the genuine Planck
mass and cosmological constant. This action has precisely the
same form as the action of general relativity with the
cosmological constant, specified to homogeneous and iso-
tropic space. No matter what condensates are present in the
Universe, its evolution proceeds according to the Friedman
equation, possibly with modified forms of Newton's constant
and the cosmological constant,22 if the condensates are
independent of the space ± time point (in the locally Min-
kowski frame) and are consistent with the homogeneity and
isotropy of space.

Despite apparent generality, this argument does not apply
to the rolling scalar fields just because their background
values depend on a space ± time point. We gave an explicit
example of a nontrivial late-time cosmological evolution in
Section 5.2.2. More possibilities emerge if a scalar potential
for the rolling field(s) is added, as was discussed at the end of
Section 4.

Lorentz-violating massive gravities have a number of
other interesting features. Massive gravitons are candidates

for darkmatter particles; in this case, dark-matter detection is
a job for future (and maybe even present) gravitational wave
searches. Unlike in Lorentz-invariant theories, black holes
are expected to have rich properties. On the phenomenologi-
cal side, this opens up the possibility of searching for Lorentz
violation by measuring the metrics of black holes in the
vicinity of their horizons. From the theoretical standpoint,
Lorentz-violatingmassive gravities may be used to gain better
insight into both the classical and quantum aspects of black
hole physics. The studies of these fascinating issues have
started only recently, and rapid progress in this area can be
expected.

The authors are indebted to M Bebronne, S Dubovsky,
S Sibiryakov, and M Libanov for their helpful discussions
and reading of the manuscript. The work of V R is supported
in part by the Russian Foundation for Basic Research, grant
08-02-00473. The work of P T is supported in part by Belspo:
IAP-VI/11 and IISN grants.

7. Appendix

In this appendix, we give details of the treatment of small
perturbations about the cosmological background in the
Lorentz-invariant massive gravity. We use the setup and
notation of Section 2.6.1. To give explicit examples, we use
the theory with the particular form of the mass term given by
(63). With the cosmological constant term included, the
background equations in conformal time are, in general,

H 2 � H 2
0 a

2 � E0 ;

2H0 � H 2 � 3H 2
0 a

2 � Es ; �164�
where E0�a; n� and Es�a; n� come from the mass term. As noted
in Section 2.6.1, the consistency of these equations implies an
equation relating n�Z� and a�Z�, which generically has the
form n 0 � f �n; a� a 0, but this is irrelevant for the discussion
here because a and n can take arbitrary values at a given
moment of time. We are interested in nearly Minkowski
backgrounds, for which jaÿ 1j5 1, jnÿ 1j5 1. Because the
mass term is quadratic in metric perturbations of the
Minkowski background, the source functions E0 and Es
vanish for a � 1, n � 1, and near these values, we have

E0; Es � O�aÿ 1� �O�nÿ 1� :

For example, in case (63), the source functions are

E0 � ÿ 1

2
m 2

G�a 2 ÿ 1� n ;

Es � ÿm 2
G

2n

�
2�a 2 ÿ 1� � �a 2n 2 ÿ 1�� : �165�

We begin with the range of momenta 1) in (65). In this range,
the parameters H 2, jaÿ 1j, and jnÿ 1j are the smallest
parameters in the problem; we formally take them to be of
the same order.We use the fact that theMinkowski values for
the parameters entering (64) are the ones in the Fierz ± Pauli
theory, and hence

m 2
c � 3m 2

G �O�H 2� ; m 2
B � ÿ

1

2
m 2

G �O�H 2� ;

m1 � 3m 2
G �O�H 2� ; m2 � ÿm 2

G �O�H 2� ;
m3 � ÿ2m 2

G �O�H 2� ; �166�

21 The condensates may still evolve in the present cosmological epoch,

leading to dark energy with a nontrivial equation of state. This possibility

has been explored in the literature.
22 In fact, the possibility that the `cosmological' form ofNewton's constant

and the `Newton's law' form of Newton's constant may be different is of

phenomenological interest [128] (see also [129]).
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while the rest of the parameters are O�H 2�, meaning that
they vanish in the Minkowski limit. To find the number of
dynamic modes and obtain their dispersion relations, we
write the system of linear equations for perturbations and
calculate its determinant to the order H 2. The equations
are

j : m 2
jj� 2HDB� �ÿ2Dc� 6Hc 0 � m1c�

� �ÿ2HDE 0 � m2DE� � 0 ; �167�

B=D : 2Hj�m 2
BBÿ 2c 0 � 0 ; �168�

c : �ÿ2Djÿ 6Hj 0 ÿ 6qj� m1j� � �2DB 0 � 4HDB�
� �6c 00 ÿ 2Dc� 4Hc 0 � 2qc�m 2

cc�

� �ÿ2DE 00 ÿ 4HDE 0 � m3DE� � 0 ;

E=D : �2Hj 0 � 2qj� m2j� � �ÿ2c 00 ÿ 4Hc 0 � m3c�
�m 2

EDE � 0 ;

where q � H0 � 2H 2 � O�H 2�. We now calculate the deter-
minant of this system to find the number of modes and their
dispersion relations. After passing to Fourier space and using
(166), we find

1

D
Det � m 6

G�3o 2 ÿ 3p 2 ÿ 3m 2
G�

� �12m 2
GH 2 � 2m 2

Gm
2
j�o 4 �O�m 2

GH 2o 2p 2�

�O�m 2
GH 2p 4� : �169�

Here, we assume that p 2 4m 2
G, o

2 4m 2
G, and keep only

those new terms (with respect to Minkowski space) that are
proportional to the highest power of o. We note that
cancelations have occurred: in particular, the terms of the
order H 2p 2o 4 have canceled. These cancelations are a
remnant of the gauge invariance: the terms of the order
H 2p 2o 4 would be independent of the graviton mass, and
would therefore remain in de Sitter space for massless
gravitons, which would be inconsistent with gauge invar-
iance.

Because the determinant is of the fourth order in o, there
are twomodes. One of them has the dispersion relation of (the
longitudinal component of) the massive graviton. This result
is valid in the range of momenta 1) only; indeed, the terms
neglected in (169) are large at high momenta. We discuss the
high-momentum limit later on. In the range of momenta
under discussion here, the second, Boulware ±Deser mode
has o2 4 p 2, and its frequency is given by

o 2 � ÿ 3m 4
G

12H 2 � 2m 2
j

: �170�

The discussion here is valid for an arbitrary mass term, not
necessarily of form (63). For any mass term having the
Fierz ± Pauli form in the Minkowski background, we have
m 2

j � H 2, and therefore there is no smooth Minkowski-
space limit for the frequency of the Boulware ±Deser mode.
This mode can be both tachyonic and nontachyonic; in
example (63), this depends on the sign of aÿ 1. Indeed, in
this example, m 2

j � ÿ6H 2 ÿ 3E0, and the frequency is there-

fore given by

o 2 � m 4
G

2E0

and its sign is opposite to the sign of aÿ 1 [see (165)].
To see whether the Boulware ±Deser mode is a ghost, we

use the fact that its frequency (170) is independent of spatial
momenta if they belong to region 1). Thus, to obtain the
action for this mode, we can omit terms with the Laplacian in
Eqns (167) and (168), except for the terms containing DE
(here, we treatDE as a field, on equal footing withc).We thus
obtain

j � 1

m 2
j

�
2H�DEÿ 3c�0 �m 2

G�DEÿ 3c�� ;
B � 1

m 2
B

�2c 0 ÿ 2Hj� ;

where we used the leading-order expressions m1 � 3m 2
G and

m2 � ÿm 2
G. Substituting these expressions in action (64),

integrating by parts, and again omitting terms with the
spatial Laplacian and terms suppressed by the ratio H 2=m 2

G,
we find the action for the dynamic fields c and DE:

S
�2�
EH�L�mG

� 2MPl

�
d3x dZa 2

�
�
ÿ 6H 2 �m 2

j

3m 2
j

�DE 0 ÿ 3c 0�2 ÿ m 4
G

2m 2
j

� �DEÿ 3c�2 � 1

3
�DE 0�2

�
:

This expression is again valid for any mass term, not
necessarily (63). Here, we neglected the terms m 2

cc
2 and

m3cDE because their contributions to the action for the
Boulware ±Deser mode are suppressed by H 2=m 2

G. It is clear
from this action that the Boulware ±Deser field with disper-
sion relation (170) isDEÿ 3c, and that when this field is not a
tachyon, it is a ghost. Indeed, this field is not a tachyon for
6H 2 �m 2

j < 0, which also implies m 2
j < 0, and the kinetic

term for this field is therefore negative. We also note that the
action for this field is singular in the Minkowski limit, i.e., in
the limitH ! 0, in which m 2

j ! 0 as well.
We repeat that this analysis is valid for p 2 5m 4

G=H 2 only.
Passing to the high-momentum limit using expression (169)
would be incorrect, partly because the terms not explicitly
written in (169) are important at high momenta, partly
because the terms of higher orders inH are potentially higher
order in p 2.

We now proceed to high-momentum limit 2) in (65). The
analysis leading to action (66) applies to any mass term. This
action has the general form

S
�2�
EH�L�mG

� 2MPl

�
d4x a 2

�
AcDc� C�c 0�2

� Bc 0DE�m 2
B

2
E 0DE 0 �m 2

E

2
�DE�2

�
:

To proceed further, we consider the mass term in (63). After
straightforward calculation, we then find

m 2
j � ÿ6H 2 ÿ 3E0 ; m2

B � ÿ3E0 ÿ
1

2
m 2

Ga
2n ;

m2 � ÿ3E0 ÿm 2
Ga

2n ; 1ÿ H
0

H 2
� 3E0 ÿ Es

2H 2
; m 2

E � ÿEs :
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Hence,

A � 1ÿ H
0

H 2
� m 2

B

2H 2
� 1

4H 2
�ÿ2Es ÿm 2

Ga
2n� ;

B � m2 ÿm 2
B

H � ÿm 2
Ga

2n

2H ;

C � 3� m 2
j

2H 2
� ÿ 3E0

2H 2
:

The dispersion relations are obtained by solving the equations
of motion for c and E. There are two modes, one with

o 2
1 � p 2 ;

and the other with

o 2
2 �

Es
3E0

p 2 :

These expressions are valid for all a and n, not necessarily
close to 1.

One of these modes is a tachyon or a ghost. Indeed, the
energy positivity requires

A > 0 ; C > 0 ; m 2
B < 0 ; m 2

E > 0 :

Now,

o 2
2 � 2H 2 A

m 2
B

;

and therefore these requirements imply thato 2
2 < 0, that is, a

tachyon. We note that the second mode is superluminal in
certain backgrounds.
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