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Electron transport in graphene

S V Morozov, K S Novoselov, A K Geim

1. Two-dimensional crystals

Carbon is an amazing chemical element that produces the
most diverse structures. In addition to graphite and diamond,
known since time immemorial, the attention of the scientific
community is now focused on the recently discovered full-
erenes [1 ± 3] and nanotubes [4]. Unfortunately, experimen-
ters could only work with three-dimensional (graphite,
diamond), one-dimensional (nanotubes), and zero-dimen-
sional (fullerenes) forms of carbon because all attempts to
prepare specimens of two-dimensional carbon were unsuc-
cessful until recently.

This mysterious two-dimensional form (planar hexagonal
packing of carbon atoms) was called graphene and surpris-
ingly happened to become perhaps the most studied among
all carbon allotropes: indeed, graphene is the starting point
for all calculations related to graphite, fullerenes, and
nanotubes. At the same time, the numerous attempts to
synthesize such two-dimensional crystals all failed, with only
nanometer-scale crystallites obtained [5]. This was not
surprising, however, in view of the prevailing opinion that
truly two-dimensional crystals cannot exist [6 ± 10] (in
contrast to familiar quasi-two-dimensional systems). Indeed,
graphene seeds should have a very high perimeter-to-surface-
area ratio in the course of synthesis, which should facilitate
transformation to other carbon allotropes.

This continued until 2004, when a group of researchers in
Manchester and Chernogolovka employed a surprisingly
simple and even naive approach to prepare graphene
(Fig. 1), which made graphene one of the hottest topics in
modern solid state physics [11, 12]. A separate plane (of
monatomic thickness) was segregated from a three-dimen-
sional graphite crystal using so-called micromechanical
cleavage (graphite is a spectacularly lamellar material and
can be treated as a stack of two-dimensional graphene crystals
only weakly bonded to one another). Furthermore, two-
dimensional crystals of other materials were also obtained
by this technique [12], e.g., boron nitride, some dichalcogen-
ides, and a high-temperature superconductor Bi ± Sr ±Ca ±
Cu ±O. In fact, a new class of materials was bornÐtwo-
dimensional crystals, stable in the free state.
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Remarkably, this relatively simple method led to prepar-
ing sufficiently large crystallites (up to 100 mm) and immedi-
ately stimulated great experimental activity [13]. Moreover,
the quality of the obtained material proved to be so high that
it was possible to implement ballistic transport [11, 14] and to
observe the quantum Hall effect [15, 16]. The properties of
this new material allow characterizing it as a very promising
candidate for future microelectronic devices, such as the
ballistic field transistor. However, even though the technique
that we proposed does provide the best available graphene in
laboratory conditions, industrial application demands more
productive technologies. Today, the technology of cleaving
using graphite intercalation [17 ± 21] and epitaxy of graphene
by sublimation of silicon off the surface of a SiC substrate [22,
23] are more successful.

2. Linear dispersion

By its electron properties, graphene is a two-dimensional
semiconductor with a zero-width band gap (Fig. 2). Quasi-
particles in graphene are formally described by theDirac-type
Hamiltonian H � ÿi�hvFsHH, where vF � 106 m sÿ1 is the
Fermi velocity and r � �sx; sy� are the Pauli matrices [24 ±
27]. This description, which is theoretically correct if we
ignore multiparticle effects, was confirmed in experimental
measurements [15] of the cyclotron mass of charge carriers in
graphene as a function of their energy (Fig. 3). These
measurements confirmed that quasiparticles in graphene
obey a linear dispersion law. The observation of the
relativistic analog of the integral quantum Hall effect is
perhaps the most impressive manifestation of this; we discuss
it in Section 4.

The fact that charge carriers in graphene are described not
by the Schr�odinger equation, which is more standard in solid
state physics, but by the Dirac equation results from the
symmetry of the graphene crystal lattice, which consists of
two equivalent carbon sublattices A and B (see Fig. 2).
Electron subbands formed by a symmetric and an asym-
metric combination of wave functions on these two sub-
lattices overlap at the edge of the Brillouin zone, which

results in a cone-shaped energy spectrum close to the `Dirac'
points K and K0. As a consequence, quasiparticles in
graphene, like massless relativistic particles, have the linear
dispersion law E � �hkvF, where the Fermi velocity
vF � c=300 plays the role of the speed of light. In view of the
linearity of the spectrum, we can expect the behavior of
quasiparticles in graphene to be principally different from
the behavior of quasiparticles in ordinary metals and
semiconductors, where they have parabolic dispersion and
behave like free electrons.

The linear dispersion law is the most important but
definitely not the only specific feature of quantum transport
that follows from the Dirac equation. Current-carrying states
at positive energies (above the Dirac point) are similar to
electrons and are negatively charged. If the valence band is
not fully occupied at negative energies, then quasiparticles
behave as positively charged particles (holes) and can be
treated as a solid-state analog of positrons.We note, however,
that in solid state physics, electrons and holes are typically
described by independent Schr�odinger equations, each with
its own effective mass (in accordance with the Seitz sum rule).
In contrast to this, electrons and holes in graphene are
interrelated and display properties of charge-conjugation

a b

c

50 mm

Figure 1. (a) A photograph of the first Hall transistor made on thin

graphite film. Electron microscope image of cleaved graphite microdisks

(b) and and Hall transistor (c) (channel width: 1 mm).

K0 K

a b

Figure 2. (a) The crystal structure of graphene. Two sublattices aremarked

by different colors. (b) Graphene band structure: the conduction band and

valence band touch at the points K and K0.
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Figure 3. Experimental curves of the cyclotron mass of electrons and holes

as functions of the charge carrier concentration in graphene. The square

root dependence is an indication of a linear dispersion law.
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symmetry. In graphene, this follows from the symmetry of its
crystal lattice and from the fact that quasiparticles in
graphene are described by a two-component wave function
based on sublattices A and B. The two-component descrip-
tion of graphene is analogous to the description in quantum
electrodynamics (QED) involving spinor wave functions, but
in the case of graphene, the `spin' index stems from its
belonging to different sublattices and not to the `real' spin of
ordinary electrons, and is usually referred to as pseudospin s.

Other similarities with QED exist. The conical shape of
the dispersion law in graphene is a result of overlapping of
subbands due to superlatticesA andB. Therefore, electrons at
an energy E moving in the positive direction belong to the
same branch of the spectrum as holes at the energy ÿE
moving in the opposite direction. This means that electrons
and holes sitting on the same branch of the spectrum have the
same pseudospin, which is parallel to the quasimomentum for
electrons and antiparallel to it for holes. This allows the
introduction of chirality [27], which is the projection of the
pseudospin onto the direction of motion and has positive sign
for electrons and negative sign for holes.

The same effects can be described semiclassically in terms
of the so-called Berry phase. Because the wave functions of
electrons are two-component spinors, they switch sign when
an electron follows a closed path.Wave functions thus gain an
additional Berry phase equal to p.

3. The effect of an electric field

Most experimental groups have so far used specimens
prepared by the original micromechanical cleavage techni-
que [11, 12], which allows producing high-quality two-
dimensional crystals up to 1000 mm2 in area; this is sufficient
for most experiments. The key to the success of this method
lies in graphene becoming visible in an optical microscope
when it is placed on a plate of oxidized silicon with a precisely
chosen thickness of the SiO2 layer: this creates a contrast,
albeit a weak one, with the clean substrate [28].Were it not for
this rather simple but efficient method of scanning the
substrate in search of individual graphene crystals, graphene
would most probably still remain undiscovered. Even if we
forget about earlier theoretical arguments that put the
existence of two-dimensional crystals in doubt in principle,
the current research methods of studying one-atom-thick and
small objects (e.g., scanning atomic force microscopy) have
unacceptably low productivity for locating scarce and
isolated graphene crystals. Scanning electron microscopy
has a higher productivity but can hardly distinguish between
crystals of different thicknesses. We note, however, that
Raman spectroscopy does distinguish between graphene and
multilayer crystals and can be used to identify it [29, 30], even
though it requires preselection by optical means.

The SiO2 substrate is also an insulation layer. Conse-
quently, doped silicon acts as a gate and helps control the
concentration of charge carriers in graphene. The charge
carrier type can thus be changed from electron to hole
(Fig. 4). Charge carrier concentrations up to 1013 cmÿ2 can
be achieved in electric fields at which electric breakdown of
the insulator sets in. High carrier mobility (up to
20,000 cm2 Bÿ1 sÿ1), depending only weakly on temperature,
is still sustained in the entire range of concentration [11]. As a
result, ballistic transport on a submicron scale is realized even
at room temperature. Charge carrier mobility, which is
limited in current specimens of graphene by impurities or

the nanorippling of crystals, can potentially be improved
enormously: by our experimental evaluations, it is bounded
above by 200,000 cm2 Bÿ1 sÿ1 due to phonon scattering [31].

Another unusual feature of graphene is that its conductiv-
ity remains finite even as the charge carrier concentration n
tends to zero; moreover, its value approaches the conductivity
quantum 4e 2=h [15]. It must be emphasized that in contrast to
other familiar quantum transport effects, it is the conductivity
which is quantized, not conductance. The minimum of
quantum conductivity for Dirac fermions was predicted in
theoretical papers [32 ± 38]. In some of them, the key moment
is the density of states tending to zero in the vicinity of the
Dirac point on the linear two-dimensional spectrum. At the
same time, two-monolayer graphene with the parabolic
dispersion law of quasiparticles also displays conductivity
that has a minimum of the order of 4e 2=h, which specifically
points to the importance of chirality and not of the linear
spectrum [39]. Furthermore, most theories predict a mini-
mum conductivity lower by a factor of p than the experimen-
tally observed value. This contradiction is known as `the
mystery of the missing pi' and it is still unclear whether this is
a consequence of theoretical approximations or stems from
the limited parameters of experimental specimens. Thus,
experiments show that at low concentrations (< 1011 cmÿ2),
charge carriers in graphene break into a network of `puddles'
of electrons and holes. This microscopic inhomogeneity must
definitely be present near the Dirac point but has not yet been
taken into account in theoretical papers. Also, macroscopic
inhomogeneities may play an important role in experiments
(on a scale exceeding the free path length). Available
experimental experience indicates that in more homogeneous
specimens, e.g., for smaller sizes or after soft annealing, the
spread of the minimum conductivity 4e 2=h is smaller.

4. The quantum Hall effect in graphene

The main experimental effort following the discovery of
graphene was aimed at studying the electric properties of
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Figure 4. The ambipolar effect of an electric field in graphene. Positive

(negative) gate voltage induces electrons (holes) with the concentration

n � aVg where a � 7:2� 1010 cmÿ2 Bÿ1 for the SiO2 insulating gate layer

thickness 300 nm.
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graphene that would confirm that the quasiparticles in it are
indeed described by QED. Two new (`chiral') effects of a
quantum Hall effect (QHE) type were among the most
spectacular manifestations of this.

Figure 5 illustrates the QHE in graphene. The QHE in
monolayer graphene is observed as a series of equidistant
steps of the Hall conductivity sxy, which passes through zero
at the point of electric neutrality (the Dirac point), where the
hole conductivity changes to the electron type. The sequence
of plateaus has the expected step height but is shifted by 1/2
compared with the `standard' curve, such that the Hall
conductivity takes the form

sxy � 4
e 2

h

�
N� 1

2

�
;

where N is an integer and the factor 4 reflects the double spin
and valley degeneration. In monolayer graphene, we thus
have the `half-integral' QHE. This unusual behavior is well
understood now: it occurs because of the specifics of
quantization of Dirac fermions in graphene with linear
dispersion in the magnetic field B, and is described by the
expression EN � �vF

��������������
2e�hBN
p

, where � and ÿ respectively
refer to electrons and holes [26, 27, 40 ± 42]. The essential
observation is that there is the zeroth Landau level at E � 0
(Fig. 6), which simultaneously belongs to electrons and holes;
this explains the unusual quantization of the Hall conductiv-
ity [39, 41,42].

An alternative interpretation of the reasons for the half-
integer QHE starts with the fact that the superposition of
pseudospin and orbital motion results in giving electrons an
additional Berry phase of p; it is accumulated along the
cyclotron trajectory. The additional phase results in a half-
period phase shift of quantum oscillations and a shift of Hall
plateaus by 1/2 after the transition to the quantumHall effect
mode [15, 16].

The linear spectrum in graphene and the high value of the
Fermi velocity result in enormous orbital splitting. The
distance between the N � 0 and N � 1 Landau levels equals
DE � 400 �K� ����Bp , where B is the magnetic field in teslas. This
means that the splitting of the first levels at B � 30 T is
approximately 2200 K, which exceeds room temperature by

almost an order of magnitude. Moreover, very weak
dependence of the carrier mobility on temperature in
graphene creates conditions for the inequality mB4 1 to
hold already for B of only several teslas. As a result, it is
possible to observe the quantum Hall effect even at room
temperature [43]; this may prove important for metrology.

In quantum electrodynamics, chirality is directly related
to the relativistic nature of particles and correspondingly to
the linear dispersion law for massless particles. The discovery
of graphene gives us a possibility of studying another
principally new type of particle: chiral quasiparticles with a
parabolic (nonrelativistic) dispersion law that we find in two-
monolayer graphene [39]. According to theoretical calcula-
tions [39, 44], two-monolay graphene is a semiconductor with
a zero band gap but, in contrast to multilayered graphene, its
valence band and conduction band are parabolic and touch at
the points K and K0 of the Brillouin zone. At the same time,
quasiparticles in two-monolay graphene, just as in monolayer
graphene, have chirality but also gain the Berry phase 2p (and
not p). The exact quantum mechanical solution [39, 44] for
quasiparticles of this type gives the following values of energy
for Landau levels: EN /

��������������������
N�Nÿ 1�p

. Therefore, at zero
energy, we again find a Landau level, but the multiplicity of
its degeneration is twice that of the other levels. Landau levels
beyond the ultraquantum limit (N4 1) are practically
equidistant in energy, just as they are in the case of constant-
mass electrons. As a result, the QHE of two-monolayer
graphene differs from the QHE both in graphene monolayers
and in the two-dimensional electron gas of ordinary semi-
conductors.

As noted in Section 2, the Dirac description of quasipar-
ticles in graphene stems directly from two-component wave
functions of quasiparticles reflecting the symmetry of the
crystal lattice of multilayer graphene, and from the presence
of two superlattices A and B. The situation in two-monolayer
graphene is to a large extent similar but the superlattices are
now separated into different monolayers. In that case, we are
offered a unique chance of influencing these superlattices
differently and separately. Thus, an external perpendicular
electric field removes degeneracy at the K points and creates a
band gap [44 ± 46]. This effect manifests itself in the QHE
regime as the zero plateau emerging in the Hall conductivity
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Figure 5. Longitudinal magnetoresistance and Hall conductivity in

graphene as functions of gate voltage. Half-integral quantization con-

firms that quasiparticles in graphene are massless Dirac fermions.
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Figure 6. Landau levels for massless Dirac electrons in monolayer

graphene (a), for massive chiral electrons in two-monolayer graphene (b),

and for Schr�odinger electrons with two parabolic zones tangent at the

point of zero energy (c).
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[46]. It is important that the gap width in achievable electric
fieldsmay vary from 0 to 0.3 eV, whichmay be very promising
for applications.

5. Conclusion

Graphene became the first and is so far the most vivid
representative of a new class of materialsÐ two-dimensional
crystals. In fact, graphene opened a new scientific para-
digmÐ `relativistic' solid state physics in which quantum
relativistic phenomena, some of which cannot be implemen-
ted even in high-energy physics, can be studied under
ordinary laboratory conditions. What makes the electron
properties of graphene unique is the fact that charge carriers
in it resemble massless relativistic fermions and are described
by the relativistic Dirac equation, not the Schr�odinger
equation. This is the first time that we can study all the
subtleties and the rich variety of quantum electrodynamics in
solid-state experiments.

Graphene immediately emerged as a realistic candidate
for the role of one of the main materials for microelectronics
in the post-silicon era. Suffice it to mention the first
prototypes of future graphene-based devices. These are
room-temperature field transistors with ballistic transport,
extremely sensitive gas sensors [47], one-electron graphene
transistors [48], liquid-crystal displays and solar batteries (in
which graphene is used as a transparent conducting elec-
trode) [49], spin transistors [50], andmany others. Graphene's
history is short but is undoubtedly at the very start of its
climb.
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