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Yu E Lozovik, S P Merkulova, A A Sokolik

1. Introduction

Carbon is one of the most interesting chemical elements. It
not only forms the basis of the vast kingdom of organic
substances but itself forms various crystals and nanostruc-
tures. This plethora of forms stems from the ability of carbon
atoms to connect to one another in different ways and to
create very different lattices and chains.

As a result of hybridization of s- and p-orbitals of four
valence electrons, a carbon atom can form covalent bonds
with its neighbors, such that different ways of hybridization
result in different orientations and different numbers of
bonds.

In the case of sp3 hybridization, carbon atoms join to form
a three-dimensional system, the tetrahedral crystalline lattice
of diamond, and the sp2 hybridization results in a two-
dimensional planar structure, the graphene, whose crystal
lattice looks like a hexagonal honeycomb. The most conven-
tional form of carbonÐgraphiteÐcan be regarded as a
stack of graphene sheets bound together relatively weakly
by van der Waals forces.

Carbon also forms quasi-one-dimensional structuresÐ
carbon nanotubes whose different types can be regarded as
graphene sheets rolled into tubes in various ways (see, e.g.,
reviews [1]). A quasi-zero-dimensional carbon nanostruc-
tureÐa fullereneÐcan be considered to result from `tiling'
a sphere by a `honeycomb'-type graphene lattice. By virtue of
Euler's theorem, at least 12 `defects' need to be introduced
into this lattice; their role is played by pentagonal cells (see,
e.g., [2]). In some sense, therefore, graphene is a key quasi-
two-dimensional system, which generates quite diverse
structures from the viewpoint of classification: three-dimen-
sional graphite, quasi-one-dimensional nanotubes, and
quasi-zero-dimensional fullerenes.

The weak coupling and relative independence of graphene
layers in graphite crystals (the property that is used in
ordinary pencils) were a hint to researchers that graphene
could be prepared as an isolated object, a membrane one
atom thick [3]. In addition to the inevitable technical
complications, there were certain doubts that graphene as a
two-dimensional planar structure could be stable at all. As
followed from Peierls's and Landau's arguments [4], logarith-
mic divergence of long-wave fluctuations of atomic two-
dimensional displacements from lattice sites made long-
range order impossible in a purely two-dimensional system.
However, it became clear after the classic results of Berezins-
kii [5] and Kosterlitz and Thouless [6] that although there is
no crystalline ordering in a two-dimensional system, a quasi-
long-range power-law order exists in the low-temperature
phase; this order preserves the principal property of the
crystal, the long-wavelength shear modulus (it disappears
upon melting, which occurs as a phase transition that
uncouples pairs of dislocations [7]). The statements above
are strictly valid for ordering in a purely two-dimensional
system, and doubt stemmed from something different: is an
isolated graphene sheet stable as a two-dimensional mem-
brane in three-dimensional spaceÐ in other words, would
displacement fluctuations perpendicular to the sheet trans-
form graphene into a crumpled ball?

The new era for graphene started in 2004, when it was
prepared by Novoselov, Geim, Morozov, et al. [8, 9] using
micromechanical graphite cleavage. In this method, the
surface of graphite is tightly rubbed on a smooth surface
of silicon covered with a layer of oxide, on which it leaves
numerous flakes of different thicknesses. The silicon oxide
surface was chosen because flakes of even monatomic
thickness can be viewed on it with an optical microscope.
In their first experiments, Novoselov, Geim, Morozov, et al.
obtained specimens of one-, two-, and multilayer graphene
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and studied their transport properties [10]. Graphene was
found to be stable in air at room temperature. It is
mechanically stable on a substrate, although small local
curved nanosized patchesÐ `ripples'Ðare formed on it [11].

Graphene preparation by micromechanical techniques
proved to be a fairly cumbersome process, because every
sufficiently thin flake had to be investigated by an atomic
force microscope in order to ascertain that it indeed had a
monatomic thickness. It was later shown, however, that the
number of graphene layers in a specimen can be readily
determined, e.g., by studying the spectrum of Raman
scattering [12]. We also mention the invention of an
alternative, now widely used method of graphene prepara-
tionÐepitaxial growth [13], in which graphene layers are
formed on the surface of an SiC crystal heated in a vacuum to
a high temperature.

The news of graphene preparation created quite a stir and
reached a high pitch after the unique properties of this system
were experimentally discovered. From the standpoint of
applications, graphene is interesting, first of all, as a material
for building nanoelectronic devices. Being a two-dimensional
system, graphene provides the absolute limit of miniaturiza-
tion, at least in one dimension, and ideally suits today's planar
technologies of building integrated circuits. Using nanolitho-
graphy, arbitrarily shaped pieces can be cut out of graphene,
and contact or contactless electrodes can be mounted on
them [14]. Furthermore, various structures with a periodic
superlattice that may have interesting properties can be
created using a graphene sheet as the base (e.g., by depositing
an ordered layer of adatoms [15] or by making periodically
spaced orifices [16]). The mobility of charge carriers in pure
graphene specimens has reached record high values [17] and is
almost independent of concentration, which is also a valuable
property for potential applications (including ballistic elec-
tronics, which differs in principle from the traditional
transistor electronics). We note that the gap between Landau
levels in graphene in the typical laboratory magnetic fields
10 ± 20 T reaches several thousand degrees, which allows
observing the quantum Hall effect and using it for designing
resistance standards operating even at room temperature [18].

Graphene is interesting not only in view of possible
applications but also from the fundamental standpoint, in
view of its unique electron properties. Electrons in graphene
close to the Fermi level have linear dispersion and the energy
gap between the valence and conduction bands is zero, and
hence electrons canbedescribed by the two-dimensionalDirac
equation for massless particles. This remarkable fact was
established 60 years ago in the classic paper by Wallace [19].
The wonderful poet Rainer Maria Rilke was perhaps right
when he said that whatever ourmind draws frommemory will
some day turn into a blessing. Themodel of the graphene band
structure has served as a launching pad for studying the
properties of graphite, but the interaction between layers in
multilayer stacks significantly changes the properties of
graphene. Only after 2004, after it was possible to isolate
individual graphene sheets, did it become clear that this system
actually allowed studying a new type of particleÐcharged
massless quasiparticles that do not exist anywhere else in
nature [20]. The properties of these particles such as two-
dimensionality, a spinor nature, and zeromass and zero gap in
the spectrumgive rise to a number of electron phenomena that
have no analogs in any other physical system.

We begin with a brief review of the main features of the
one-particle (Sections 1 ± 3) and collective (Section 4) proper-

ties of graphene (see also review papers [21 ± 23]) and then
present our original results concerning certain collective
electron phenomena (Sections 5 ± 9). In the concluding part,
Section 10, we discuss the fundamental problems of graphene
physics and prospects for its future uses.

2. The Dirac equation for electrons in graphene

Each carbon atom in graphene is surrounded by three nearest
neighbors and has four valence electrons. Three electrons
form sp2 hybridized orbitals at 120� to one another that
constitute covalent bonds with neighboring atoms oriented in
the same plane. The fourth electron, represented by a 2pz
orbital oriented perpendicularly to this plane, can hop from
one atom to another and forms a half-filled p band
responsible for electron properties of graphene (Fig. 1).

The theoretical analysis of electron properties of graphite
started by considering the band structure of its elementary
block, graphene. This was first considered byWallace in 1947.
In the simple tight-binding approximation with the interac-
tion with the nearest neighbors taken into account, Wallace
was able to show [19] that the dispersion of graphene electrons
close to the Fermi level is linear and there is no gap. It was
shown later that the linear nature of dispersion follows from
the symmetry group of the graphene crystal lattice, regardless
of the approximation used [24]. The band theory of graphene
was subsequently improved and detailed [25, 26], but in
connection with experimental studies of intercalated gra-
phite [27] interest was stimulated in some of the multiparticle
aspects of the electron properties of graphene (such as
impurity screening [28], plasmons [29], and quasiparticle
lifetimes [30]). Furthermore, interesting papers appeared on
the effects of disorder [31] and on Landau levels in a magnetic
field in graphene [32].

We now outline the main points of the band theory of
graphene [19, 24, 33] that led to the conclusion that the
effective equation for electrons in graphene is indeed the
Dirac equation for massless particles. The graphene crystal
latticeÐ the `hexagonal honeycomb'Ðcan be presented as a
combination of two interpenetrating Bravais lattices A and B,
with the unit cell forming a parallelogram (Fig. 2). The period

z

2pz

Figure 1. Three sp2 hybridized orbitals of the carbon atom at 120� to one

another, forming covalent bonds with neighboring atoms and a 2pz orbital

perpendicular to them.
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of these lattices is a � 2:46 A
�
and their first Brillouin zone is a

hexagon with the side 4p=3a. Since the periodic potential of
the lattice is created by two sublattices shifted relative to one
another, the wave function of the electron in this potential is a
linear combination of two Bloch waves built on these
sublattices:

c�r� � cA�r�XA�k; r� � cB�r�XB�k; r� ; �1�
where k is the quasimomentum of the electron. The expansion
coefficients cj � j � A;B� are envelopes of the Bloch waves
and play the role of the effective electron function that obeys
the effective equationÐan analog of the `effective mass'
approximation. Because there are two such envelopes in the
case of graphene, the effective wave function of the electron is
two-component.

Wave function (1) must satisfy the Schr�odinger equation�
ÿ �h 2H 2

2me
�U�r� ÿ E

�
c�r� � 0 ; �2�

where U�r� is a periodic potential. The operator of kinetic
energy results in a number of terms in which the differentia-
tion operator H acts on the functions cj�r� and Xj�k; r�. An
important role in the subsequent analysis is played by the
kp-approximation [25] in which the effective equation for the
envelopes is derived under the assumption that the electron
quasimomentum lies in the neighborhood of the selected
point K of the Brillouin zone. Strictly speaking, the depen-
dence of the envelopes on the coordinate cj already suggests
that the electron no longer has a definite quasimomentum
(e.g., if it is in an external field). But the kp-approximation
assumes that the uncertainty in the quasimomentum is small
compared with the size of the Brillouin zone (the vector of the
reciprocal lattice) or, in other words, envelopes change
insignificantly on the scale of the lattice constant. This allows
neglecting terms of the form Xj�H 2 cj� because they are small
in comparison with the other terms, and setting the quasimo-
mentum in formula (1) equal toK. This results in the equationX

j�A;B

�
cj�r�

�
ÿ �h 2H 2

2me
�U�r� ÿ E

�
Xj�K; r�

� 1

me

�ÿ i�hHXj�K; r�
	�ÿ i�hHcj�r�

	� � 0 : �3�

Wemultiply (3) from the left first byX �A�K; r� and then by
X �B�K; r�, and each time integrate with respect to r over a
region much larger than the lattice constant but such that the
envelopes do not yet change significantly within it. We take

into account that the expression in brackets in (3) `sand-
wiched' between the functions Xk and Xj yields dj k�EK ÿ E�
after integration, where EK is the energy of the electron with
the quasimomentum K. This gives two equations for
k � A;B:X

j�A;B

�
ÿ i�h

me



XkjHjXj

��ÿi�hH� � dj k�EK ÿ E �
�
cj�0 : �4�

As noted above, the first Brillouin zone of graphene is a
hexagon. In undoped graphene, electrons with quasimo-
menta at the hexagon vertexes have the Fermi energy [19].
Hence, to allow expansion in the vicinity of the Fermi energy,
K has to be chosen in the vertexes of the hexagon. It is readily
shown by restructuring the Brillouin zone [24] that the Fermi
surface in undoped graphene degenerates into two non-
equivalent points (Dirac points) that entirely belong to the
first Brillouin zone, and therefore it is sufficient to select any
two vertexes of the hexagon to describe the states of the
electron (Fig. 3). The presence of two valleys K and K 0 of the
conduction band effectively doubles the number of fermions
in graphene (two `flavors' of electrons).

The diagonal matrix elements of momentum hXjjHjXji are
zero. The nondiagonal elements are most simply calculated in
the nearest-neighbor approximation when hops between 2pz
orbitals of only the nearest atoms of the neighbor sublattices
are taken into account. We then obtain


XAj ÿ i�hHjXB

� � 
XBj ÿ i�hHjXA

�� / ex ÿ iey :

As a result, set of equations (4) is now written as

ÿi�hvF
0

q
qx
ÿ i

q
qy

q
qx
� i

q
qy

0

0BB@
1CCA cA

cB

� �
� E

cA

cB

� �
;

or, in a compact form, as an equation for a two-component
spinor c:

vF�rp�c � Ec : �5�

Here, vF � 106 cm sÿ1 is the speed of electrons on the Fermi
surface determined by the lattice parameters, and r �
fsx; syg is a two-dimensional vector of Pauli matrices. If an
electron is in an external potential V�r� that varies smoothly
over distances of the order of the lattice constant, it enters
equation (5) as an addition (diagonal in the sublattices) to the
kinetic energy vF �rp�.

2.46 A
�

A

B

Figure 2. Two-dimensional honeycomb-type crystal lattice of graphene as

a combination of two interpenetrating sublattices A and B.

K

4p
3a

K 0

Figure 3. The first Brillouin zone of graphene in two equivalent represen-

tations: as a hexagon and as a rhombus. The two Dirac points lie entirely

within this zone.
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If the potential changes abruptly in space and therefore
affects each sublattice in a different way, Eqn (5) acquires
terms nondiagonal in the sublattices. When an electron is in a
smoothly varying external magnetic field, the field enters
Eqn (5) in a standard gauge-invariant manner, through the
minimal substitution p! p� �e=c�A.

Equation (5) gives a dispersion relation for free particles
E � � vFjpj, which is typical of particles with zero mass. To
establish a more thorough analogy with Dirac ±Weyl equa-
tions that describe neutrinos [34], we recall that there are two
valleys of the conduction band. The equation for two spinors
cK and cK 0 corresponding to electrons in different valleys are
written as vF�rp�cK � EcK and ÿvF�rp�cK 0 � EcK 0 (the
change of the sign of the kinetic energy reduces to a gauge
transformation). By combining cK and cK 0 into a four-
component bispinor c, we arrive at the Dirac equation for a
massless particle 1:

pmgmc � 0; m � 0; 1; 2; �6�

with the `covariant' momentum pm � fE=vF;ÿpg and gamma
matrices

g 0 � 0 I
I 0

� �
; g 1; 2; 3 � 0 sx; y; z

ÿsx; y; z 0

� �
:

By analogy with quantum electrodynamics, we can introduce
the chirality operator [36]

g 5 � ig 0g 1g 2g 3 � ÿI 0
0 I

� �
:

Hence, electrons from different valleys correspond to states
with opposite chiralities. If the mass is zero, states with
opposite chiralities are independent; a nonzero mass would
result in mixing them.

It must be remembered that the equation for electrons in
graphene differs from the relativistic equations for massless
fermions in several important respects:

1) the equation for electrons in graphene is two-dimen-
sional;

2) representation (6) only holds at low momenta, much
smaller than the reciprocal lattice vector and correspondingly
only in smoothly varying external fields;

3) equation (6) holds in the lattice-at-rest reference frame
and is not invariant under either Galilei or Lorentz transfor-
mations.

This last point calls for some clarification. The effective
equation for electrons in graphene is derived from nonrelati-
vistic Schr�odinger equation (2), which is invariant under
Galilei transformations (and hence describes nonrelativistic
electrons). This invariance is lost in the derivation of effective
equation (6) just as it is lost in deriving any `effective mass'
equation [37]. As regards the Lorentz transformations, the
transition to a moving reference frame transforms the
coordinate vector xm by a formula that includes the speed of
light c. The speed of light also enters the gauge-invariant
substitution p! p� �e=c�A in (6), which is required for
describing graphene in a magnetic field. At the same time,
the spatial and temporal components of the momentum
vector pm are related via the Fermi velocity vF � c=300. This
mismatch of velocities destroys relativistic invariance.

3. Peculiarities of relativistic dynamics

The first experimental studies on graphene already con-
firmed that electrons behave as massless Dirac particles [10].
Data of the Shubnikov ± de Haas oscillations showed that
the electron dispersion is indeed linear and that the
measured electron velocity vF agrees with the calculations
in the framework of the energy-band model. The anomalous
integral quantum Hall effect discovered in graphene was a
more spectacular feature. The energies of relativistic Landau
levels of graphene in a strong magnetic field H are
E�n � ��hvF

��������������������
2neH=��hcp � [32]. An important factor is the

zero energy level n � 0, of which one half belongs to the
valence band and the other half to the conduction band. As
a result of this peculiarity of the n � 0 level, the Hall
conductivity of a graphene sheet in the quantum Hall
regime assumes half-integral values in units of the con-
ductivity quantum [38] sxy � �4e 2=h��n� 1=2�, where n is an
integer and the factor 4 corresponds to degeneracy in spin and
valleys. This sequence of Hall plateaus discovered in experi-
ment [10] was conclusive evidence of the `ultrarelativistic'
nature of electrons in graphene.

The band structure of graphene was also studied in the
most straightforward way, by angle-resolved photoemission
spectroscopy, which allows establishing the distribution of
electrons in the momentum± energy space [39]. This investi-
gation showed that although the dispersion close to the Dirac
point is approximately linear, the interaction may distort it
considerably. If graphene is strongly doped, the electron ±
electron, electron ± phonon, and electron ± plasmon interac-
tions result in kinks on the dispersion curve at energies about
1 eV [40, 41].

The technique of controlling the charge concentration in
graphene with an electric field [8] proved very convenient in
its study. Graphene obtained by mechanical cleavage of
graphite is placed on an oxidized silicon substrate covered
by a layer of SiO2, d � 300 nm thick. A voltage Vg between
the graphene sheet and the substrate creates a capacitor with
the capacitance per unit area C=S � e=�4pd�, where e � 4:5 is
the dielectric permittivity of SiO2. The surface charge density
on the plates of such a capacitor is

n � CVg

eS
� e

4ped
Vg : �7�

By applying voltage of different polarity, it is possible to dope
graphene with either electrons or holes. This controlling of
the type of charge carriers and their concentration is very
important from the standpoint of nanoelectronic applica-
tions. Furthermore, it is also important from the theoretical
standpoint, because the ground state of doped graphene
differs from the vacuum state as it is commonly understood
in quantum electrodynamics. In the case of graphene, we can
in some sense `restructure' the vacuum.

We consider the free electron states in graphene; they
serve as starting points for solving multiparticle problems.
The eigenvector satisfying Eqn (5) and corresponding to the
electron with a momentum p has the form cp�r� �
exp�ipr=�h� fp; g, which represents a plane wave times a spinor,

fp; g � 1���
2
p

exp

�
ÿ i

2
jp

�
g exp

�
i

2
jp

�
0BBB@

1CCCA : �8�
1We note that theDirac equation formassive particles was widely used for

descriptions of narrow-band semiconductors (see [35] and the references

therein).
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Here, g � �1 is the index of the band in which the electron is
located; if g � 1, then the electron with the energyE � vFjpj is
in the conduction band and if g � ÿ1, then it is in the valence
band and its energy isE � ÿvFjpj. Expression (8) is an explicit
function of g and of the azimuthal angle jp of momentum.
This angular dependence of the vectors of one-particle states
is an important feature of graphene. It manifests itself in all
expressions that describe transitions of electrons from one
state to another. The transition amplitudes jp; gi ! jp 0; g 0i
are multiplied by expressions of the type f�p 0; g 0 fp; g that depend
on the angle between the vectors p and p 0.

The spinor nature of electrons in graphene also manifests
itself in that their Berry phase is equal to p: an electron
following a closed path in the momentum space enclosing one
of the two Dirac points changes the sign of its wave function.
Indeed, expression (8) changes sign when the vector p rotates
through 360�. In particular, the presence of n � 0 Landau
levels (`zero modes') can be interpreted as a manifestation of
the Berry phase [20]. The Berry phase is seen especially clearly
in the effect of weak localization of electrons in random fields.
Indeed, weak localization arises in ordinary two-dimensional
systems as a result of constructive interference of amplitudes
of electron waves scattered by impurities and moving in
opposite directions along closed paths. In the case of
graphene, the Berry phase causes an additional phase shift
by p between the amplitudes of these waves, which transforms
their constructive interference into a destructive one, resulting
not in a weak localization but in an opposite effect, a weak
antilocalization [42]. However, factors such as scattering by
ripples and specimen edges and the disruption of spectrum
isotropy at high momenta destroy the Berry phase. Conse-
quently, weak localization andweak antilocalization compete
in real graphene specimens [43].

The analogy between the dynamics of electrons in
graphene and quantum electrodynamics gives hope that
quantum-electrodynamic effects such as, for example, the
Klein paradox will also be detected in graphene [44, 45]. This
paradox manifests itself in electrons allowed to tunnel with
high probability through a potential barrier whose height is
larger than 2mec

2, which is related to the contribution of the
`lower' underbarrier continuum. The creation of such barriers
in quantum electrodynamics involves the presence of very
strong electric fields, andhence theKlein paradox couldbe felt
only in exotic situations (in collisions of superheavy nuclei, in
the evaporation of black holes, etc.). In graphene, the effective
mass is zero and therefore the Klein paradox should be
detectable in tunneling through any barrier. A simple calcula-
tion shows [44] that for normal incidence on a potential step,
the probability of transmission for an electron is strictly unity.
That there is no backscattering in graphene has been known
for quite some time in nanotubes; this is directly connected
with the Berry phase [46]. This absence of backscattering can
also be explained in terms of conservation of the `pseudohe-
licity' �rp�=jpj in smoothly varying external fieldsÐ the
projection of the electron momentum on its `pseudospin'
emerging due to the presence of two sublattices in graphene
[44]. When an electron wave is incident on a one-dimensional
potential barrier, the probability of wave transmission may
reach unity at certain values of the incidence angle different
from the normal incidence conditions.

The transparency of barriers, at least at certain incidence
angles, results in the absence of strong localization under the
conditions of applicability of the Dirac equation for envel-
opes [47]. This means that in a smoothly varying external

field, an electron in graphene can form only quasi-bound
states with a finite lifetime [48]. Conversely, bound states can
be formed on `pointlike' objects such as lattice defects [49].
Furthermore, the lifetime of quasi-bound states may be
considerably increased by applying an additional magnetic
field [50].

Klein tunneling can be used as a qualitative explanation of
the emergence of a minimum in the conductivity of graphene
[10, 51], which is not found in other quasi-two-dimensional
systems. The conductivity of doped graphene is proportional
to the concentration of electrons or holes, but when charge
carrier concentration (7) passes through zero, the conductiv-
ity does not decrease below the universal nonzero value
4e2=h. The conductivity of even `dirty' graphene never
decreases below this value, which may be connected with the
absence of localization for ultrarelativistic electrons.

Another analog of a quantum electrodynamic effect that
can be studied in graphene is the spontaneous creation of
electron ± positron pairs around a supercritical charge. In
quantum electrodynamics, the critical charge of the atom at
which the energy level of the ground state belongs to the
`lower' continuum is Z � 170 [52]. However, according to
some estimates, Z � 2 is already supercritical in graphene.
Unusual resonance electron states must arise in the neighbor-
hood of such a charge, and charge screening must also display
anomalous features [53, 54].

In addition to single-layer graphene, experiments have
produced specimens consisting of several layers [10]. The
most interesting among them are two-layer graphene speci-
mens for which the effective low-energy Hamiltonian is
written as [55]

H � 1

2m �
0 � px ÿ ipy�2

� px � ipy�2 0

 !
; �9�

where m � � 0:033me. Electrons with this Hamiltonian have
the Berry phase 2p, which reveals itself in an unusual form of
the quantum Hall effect [56] and in specific features of Klein
tunneling: normal incidence on a potential step in two-layer
graphene produces total reflection, but incidence at certain
angles results in transmission with probability one, as in one-
layer graphene [44].

The dispersion law in two-layer graphene has the form
E � �p 2=2m �, which corresponds to two parabolic bands
that touch each other. Such `massive chiral fermions' do not
exist in the traditional quantum field theory and constitute a
unique feature of two-layer graphene. The possibility of
creating a controlled gap in the spectrum of two-layer
graphene under the application of a potential difference
between two layers [57] is interesting and promising. The
crystal band structure is usually fixed quite rigidly and is very
stable under external influences, and hence the chance of
controlling the gap width appears rather attractive from the
standpoint of potential applications [58].

4. Peculiarities of collective phenomena
in graphene

The characteristic features of the band structure of gra-
pheneÐa linear dispersion and the bands touching at the
Dirac pointÐare responsible for its unusual electron proper-
ties. If graphene is doped with a low concentration of Dirac
electrons or holes, they interact both among themselves and
with the filled valence band. The valence band is strongly
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coupled to the conduction band because by virtue of (8),
electrons in the valence band differ from those in the
conduction band only in different relations between the
amplitudes of the Bloch waves from which their wave
functions are formed. Assuming that the valence band is
filled to infinitely large momenta, some perturbation-theory
diagrams of the electron ± electron interaction diverge. In
reality, the valence band is filled to momenta pc, of the order
of the reciprocal lattice vector, which are greater by several
orders of magnitude than any other momenta encountered in
problems involving electron properties. As a result of this
factor, some diagrams make finite but still very large
contributions to the perturbation theory series.

For instance, the simplest exchange diagram for the
electron self-energy gives [59]

S� p� � e 2

e
p ln

pc
p
; �10�

where e is the dielectric permittivity of the medium surround-
ing graphene (if graphene is sandwiched between two
different media with permittivities e1 and e2, then e is replaced
with �e1 � e2�=2). This results in an unusual logarithmic
renormalization of the Fermi velocity in the range of small
momenta. It was shown that this result persists in higher
orders of the perturbation theory [60].

As follows from the linear dispersion of electrons in
graphene, the density of states behaves as N / jE j and
vanishes at the Dirac point E � 0 (in contrast to N � const
in a quasi-two-dimensional system with a parabolic disper-
sion law). The chemical potential in undoped graphene is at
the Dirac point. Then, any external perturbation not only
affects charge carriers but also creates these carriers by
polarizing the filled valence band. Consequently, the
response of undoped graphene to external perturbations
must be of a nonlinear type. For example, the static screening
calculated for undoped graphene in the linear-response
approximation is of the semiconductor type [61]. But going
beyond the linear approximation shows that in reality the
screening is strong and essentially nonlinear [28, 62].

The zero gap between the valence band and the conduc-
tion band points to the possibility of restructuring the ground
state of the electron system as a result of the spontaneous
formation of a condensate of electron ± hole pairs, resembling
the state of an excitonic insulator [63]. Papers [64] considered
how the possibility of this instability of the ground state of
graphene depends on the parameter N, the number of spin
components of electrons. It was shown that although a phase
transition does not occur at the realistic value N � 2, the
closeness to this value may lead to appreciable fluctuations in
the corresponding order parameter.

Another feature of multiparticle effects in graphene stems
from the linear dispersion because it causes the kinetic energy
of the electron gas in graphene per particle to be �hvF=l by an
order of magnitude, where l is the mean distance between
particles. The potential energy of the Coulomb interaction is
e 2=�el� by the order of magnitude. The dimensionless
parameter rs determining the ratio of the typical values of
the Coulomb and kinetic energies of a quantum system takes
the following form in the case of graphene:

rs � e 2

e�hvF
� 2:19

e
:

As we see, this parameter is independent of the concentration
of the electron gas! The only way of affecting it is to somehow

change the ambient dielectric permittivity e. The parameter rs
can vary in a fairly limited range (e.g., if graphene is on a
substrate of SiO2 with e � 4:5 and is surrounded by air on the
other side, then rs � 1, and if graphene is immersed in HfO2

with e � 25, then rs � 0:1).
We note for comparison that the mean kinetic energy in a

two-dimensional or three-dimensional electron gas with the
quadratic dispersion is proportional to lÿ2. Consequently,
rs / l and decreases with increasing the density, and the
Coulomb interaction energy in a sufficiently dense gas can
be regarded as a small correction to the kinetic energy. If we
consider only realistic values of rs, the applicability of the
perturbation theory conditions to graphene is still doubtful.
Moreover, it is impossible to achieve very high values of rs in
graphene, and therefore impossible to create strongly
correlated states, including the Wigner crystallization, with-
out amagnetic field [65] (however, amagnetic field can induce
Wigner crystallization in graphene [66] and in a quasi-two-
dimensional electron gas [67]).

The possibility of varying rs by placing graphene into
media with different values of the dielectric permittivity e
suggests that this method may allow controlling its collective
electron properties. Furthermore, the electron ± electron
interaction in graphene, whose strength is inversely propor-
tional to e, renormalizes the Fermi velocity [68] (by some
estimates [69], it amounts to 15 ± 20% of the bare value). As a
result, the Fermi velocity must be rather sensitive to the
properties of the ambient medium, and this may be used for
creating contactless sensors.

Collective effects in graphene placed in a magnetic field
are also rather special. The magnetic field of a strength H
determines the `magnetic length' lH � ��hc=eH�1=2, a para-
meter with the dimension of length, corresponding to the
radius of cyclotron orbits of electrons. The characteristic
Coulomb energy per particle is of the order of e 2=elH. In a
quasi-two-dimensional electron gas, the distance between
Landau levels that corresponds to the characteristic kinetic
energy is �heH=�mc�. Therefore, the kinetic energy dominates
in sufficiently strong magnetic fields and the Coulomb
interaction energy is a weak perturbation. Hence, the mixing
of different Landau levels in a quasi-two-dimensional elec-
tron gas in strong magnetic fields is negligible and each level
can be considered isolated [70, 71]. The effective mass of the
electron in graphene is zero and therefore the distance
between Landau levels is determined by the magnetic length;
it is of the order of �hvF=lH. As can be readily shown, the ratio
of the potential energy to the kinetic energy is independent of
the field strengthH and can be regulated only by the dielectric
permittivity e of the ambient medium. Therefore, in dealing
with graphene, the concept of `strongmagnetic fields' must be
used with care.

5. Bardeen ±Cooper ± Schrieffer pairing
in an electron ± hole bilayer

In this section, we consider superfluidity related to the
electron ± hole pairing in a graphene bilayer (see [72]). In this
context, we define a bilayer not as two-layer graphene but as
two parallel graphene sheets separated by an insulating layer
of thickness D (D is sufficiently large to allow ignoring
tunneling between the sheets). The prescribed concentration
of charge carriers and the corresponding chemical potential m
in each of the layers can be established by using two
independent electrodes (Fig. 4). We here consider the case of
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equal carrier densities when the chemical potential in the
upper layer has a value m > 0 and charge carriers are
electrons, while in the lower layer, the chemical potential is
ÿm < 0 and the charge carriers are holes.

This electron ± hole system is shown to be unstable with
respect to the interlayer pairing of electrons and holes owing
to their Coulomb attraction. Closely analogous to this
pairing are the pairing of electrons with opposite spins in
conventional superconductors as described by the Bardeen ±
Cooper ± Schrieffer (BCS) theory [73], and the electron ± hole
pairing in excitonic insulator [63], where there is in fact no
superfluidity of pairs because the phase of the order
parameter is fixed (it is related to interband transitions).
The problem of electron ± hole pairing in a system of two
coupled quantum wells that contain a quasi-two-dimen-
sional electron gas with a quadratic dispersion was analyzed
theoretically in [74, 75].

We consider the effective Hamiltonian of the system
responsible for the pairing of electrons in the upper graphene
layer with holes in the lower layer. The effect of the part of the
Hamiltonian that corresponds to the interaction between
electrons and holes within individual layers manifests itself
through interlayer screening of the electron ± hole interaction.
The effective Hamiltonian corresponding to the pairing of
quasiparticles with opposite momenta has the form

H � gsgv
X
p

xp�a�p ap � b�p bp� �
gsgv
S

�
X
p; q

V�q� 1� cosj
2

a�p�qb
�
ÿpÿqbÿpap ; �11�

where ap and bp are annihilation operators for Dirac electrons
and holes with momentum p, xp � vFjpj ÿ m is the energy of
particles relative to the Fermi level,V�q� is the potential of the
screened electron ± hole interaction, q is the momentum
transferred in an act of scattering, j is the angle between p
and p� q, that is, the scattering angle of the electron and hole,
andS is the area of the system. The angle factor �1� cosj�=2,
specific for graphene, appears as a result of folding of the
electron and hole wave functions of form (8) over spinor
components in the states before and after the scattering event
(see Section 3). The coefficients gs � gv � 2 represent degen-
eracy of electron states in spin and valleys.

Diagonalization of Hamiltonian (11) using a Bogolyubov
transformations gives a self-consistent equation for the gap,

Dp � ÿ 1

4p2

�
dqV�q� 1� cosj

2

Dp�q
2Ep�q

; �12�

where Ep � �x 2
p � D 2

p �1=2. We note that two specific features
distinguish Eqn (12) from its analog in coupled quantum
wells. The first is the linear dependence of xp on p instead of
the quadratic one in coupled quantum wells. The second
feature is the presence of the angle factor �1� cosj�=2 that
suppresses backscattering in graphene. In the case of weak
coupling, this coefficient differs only slightly from unity
because small scattering angles dominate in the integral in
Eqn (12); however, it may weaken the pairing in the case of
strong coupling.

The main contribution to the integral in Eqn (12) is
obtained in the vicinity of the Fermi energy in which the
dynamically screened interlayer electron ± hole interaction
V�q;o� is attractive. In the linear-response approximation,
we have

V�q;o� � ÿvq exp �ÿqD�
1ÿ vq�P1 �P2� � v 2

qP1P2

�
1ÿ exp �ÿ2qD�� ;

�13�

where P1 and P2 are dynamic polarization operators of the
upper and lower layers of graphene. In the case of equal
densities, polarizability of both layers of graphene is identical
owing to the symmetry between electrons and holes:
P1 � P2 � P. The equation obtained by setting the denomi-
nator in (13) equal to zero describes two branches o��q� of
plasmon dispersion in the bilayer; the branches correspond to
plasma oscillations that are in-phase and anti-phase in the
two layers of graphene [61, 74, 76].

Theweak-coupling (or BCS) regime is realized if the width
of the pairing region near the Fermi energy is small in
comparison with the Fermi energy. In this case, we can
decouple the radial integration in the variable x � xp�q in
Eqn (12) for the gap and the integration over the polar
angle j. In the spirit of the BCS theory, we integrate over x
in the region restricted by the cutoff energy �h~o, where
dynamically screened interaction (13) is attractive. We now
assume that the main contribution to the integral in j comes
from small q that do not exceed the values of ~q at which the
static interaction V�q� � V�q; 0� decreases by a factor of two,
V�~q� � V�0�=2, by more than an order of magnitude. The
explicit form of V�q� is determined by the static polarizability
[61, 62, 77]

P�q; 0� � ÿ gsgvm

2p�h2v 2
F

� ÿ e
pe 2a

; �14�

where a is the Thomas ±Fermi screening length in graphene.
We introduce the Fermi momentum k0 � m=�hvF and the

dimensionless parameter

a � 2e�hvF
gsgve 2

� 1

2rs
� 0:23 e :

The system under consideration has three characteristic
lengths: a,D, and the mean distance l � 1=k0 between charge
carriers in each of the graphene layers. The behavior of the
system depends on the relative values of a, D, and l. It can be
shown that a=l � a and D=l � k0D. Hence, the behavior of
the system is determined by two dimensionless parameters, a
and k0D.

Graphene

Vg

D

ÿVg

Graphene
Dielectric

Electrode

Electrode
�m

ÿm

Figure 4. Schematic diagram of a system for implementing the pairing of

spatially separated electrons and holes in a graphene bilayer. The right-

hand side of the figure shows the positions of the chemical potential in two

layers of graphene controlled by two gate voltages Vg and ÿVg.
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It follows from (13) and (14) that the value of the
characteristic momentum ~q is determined either by the cutoff
owing to the presence of the factor exp �ÿqD� in the
numerator of (13) or by the Thomas ±Fermi screening in the
denominator:

~q � min

�
4k0
a
;
2

D

�
: �15�

The cutoff energy �h~o is determined by the characteristic
frequency of the lower branch of plasma oscillations and can
be estimated as �h~o � �hoÿ�~q�. In the first order in the
electron ± electron interaction, the dynamic polarizability for
q! 0 and o > vFq is [61, 77]

P�q;o� � gsgvmq 2

4p�h2o 2
: �16�

For a5 k0D, we have oÿ�q� � vFq �k0D=a�1=2 and
o��q� � vF�2k0q=a�1=2. Hence, the cutoff energy equals
�h~o � 2m=�k0Da�1=2. In the case a4 k0D, approximate
expression (16) cannot be used because the lower branch of
plasma oscillations found from (16) falls into the range of
one-particle excitations o < vFq. Indeed, in this case,
oÿ�q� � vFq and o��q� � vF�2k0q=a�1=2, and the cutoff
energy equals �h~o � 4m=a.

The size of the electron ± hole Cooper pairs is of the order
of 1=~q in the direction parallel to the graphene layers. The
weak-coupling regime requires the mean distance between
neighbor pairs to be small in comparison with the size of a
single pair, that is, ~ql5 1. Using (15), we can conclude that
the weak-coupling regime occurs when at least one of the
parameters a or k0D is much greater than unity.

In our case, pairing need not necessarily be s-wave.
Because of the spatial separation of electrons and holes, the
Pauli principle does not impose any constraints on either the
mutual orbital momentum or the spins and valleys of pairing
particles. We seek the l-wave solution of (12) assuming that
Dp � D exp �iljp� for jxj4 �h~o and Dp � 0 for jxj > �h~o. The
approximate solution has the form

D � 2�h~o exp

�
ÿ 4pa

Vl

�
: �17�

The dimensionless l-wave harmonic of the potentialV�q�with
the angle factor incorporated takes the form

Vl �
� 2p

0

exp �ÿk0Dx��1� cosj�=2
x� 4=a� 4

�
1ÿ exp �ÿ2k0Dx��=a 2x

� exp �ÿilj� dj ; �18�

where x � q=k0 � 2 sin�j=2�.
Condensation occurs at a value of l at which the harmonic

Vl is the largest. We found numerically that the s-wave
pairing dominates for all values of a and k0D even though the
difference between the values ofVl and the neighboring values
of l becomes very small if the coupling is very weak. In what
follows, we consider only the s-wave pairing.We calculate the
gap width for different ratios of a, k0D, and unity by deriving
asymptotic expressions for Vl and substituting them in (17).

If a5 k0D, then

D � 4m

�k0Da�1=2
exp

�
ÿ 8pk0D

�
1� k0D

a

��
: �19�

Expression (19) is applicable for values of a both greater than
unity and much smaller than unity.

If a4 k0D, we distinguish between the cases of small and
intermediate interlayer distances. In the former case, in which
k0D5 15 a, the gap is

D � 8m
a

exp

�
ÿ 2pa
ln�1� a=2�

�
: �20�

In the latter case, that is, when 15 k0D5 a, we have

D � 8m
a

exp

�
ÿ pa=2
ln�a=4k0D� ÿ g

�
; �21�

where g � 0:577 is the Euler constant.
We have considered the case of weak coupling; what if

the coupling is strong? In systems of pairing fermions (e.g.,
in a cooled system of Fermi atoms), the crossover from the
BCS-like state to Bose ±Einstein condensation (BEC) in a
rarefied gas of localized nonoverlapping pairs occurs as the
coupling strength increases [78]. Likewise, in the case of
strong coupling in coupled quantum wells with electrons
and holes at T � 0, crossover occurs to the BEC of the
rarefied gas of localized electron ± hole pairs (or excitons in
a quasiequilibrium state created by laser pumping). If
T 6� 0, both the BCS-like state and the gas of local pairs
are in a superfluid state at temperatures below the
Kosterlitz ± Thouless transition to the normal state [6, 75].
A graphene bilayer cannot have localized electron ± hole
pairs because there is no gap in the energy spectrum. Hence,
the behavior of the graphene electron ± hole bilayer is
radically different from the behavior characterized by the
BCS ±BEC crossover in coupled quantum wells. It can be
expected that what we then obtain would be a kind of
`ultrarelativistic' BCS state with a fairly high critical
temperature.

In recent paper [79], an equation for the gap was
considered taking the cone-shaped band structure of gra-
phene into account but not including the angle factor, in
contrast to (12). The integration in the equation covered both
energy bands, which corresponds to the case of strong
coupling. We considered the case of weak coupling in which
only the conduction band of the upper graphene layer and the
valence band of the lower layer are involved, and hence the
contribution of interband transitions is not accounted for in
the equation for the gap width. However, all four bands must
be taken into account in the case of strong coupling, and
therefore the gap equation must have a matrix form with
respect to band indices (this was not done in [79]).

We consider the conditions of weak coupling for a5 1
and a � 1more carefully. Such values of a can be realized, for
example, with the traditionally used substrate of SiO2

(e � 4:5). The coupling strength is then determined only by
the value of k0D. The Fermi momentum k0 is proportional to
the chemical potential m, which in an electrically doped
graphene can be varied from zero to the maximum value
� 0:3 eV [10]. The weak-coupling regime (k0D4 1) can be
achieved at reasonable concentrations of charge carriers at
interlayer spacingsD > 100 A

�
. On the other hand, the strong-

coupling regime can always be realized by letting m tend to
zero. Therefore, the transition from weak to strong coupling
can always be traced experimentally by varying the gate
voltage.

The case of a4 1 is realized at large values (e > 5) of the
dielectric permittivity e of the ambient medium and can be
observed, for instance, using HfO2 (e � 25). In this case, the
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weak-coupling regime survives even as m! 0, i.e., at
arbitrarily low concentrations of charge carriers; according
to formula (20), the gap then tends to zero as D / m. This
situation differs greatly from that in coupled quantum wells,
where the strong-coupling regime sets in inevitably at vanish-
ingly low charge concentrations.

With a typical value of the chemical potential m � 0:1 eV
and a relatively small interlayer separation D � 50 A

�
and

with e � 7 (the weak-coupling approximation is still suffi-
ciently reliable), we find the gap width D � 4� 10ÿ6 eV,
which is equivalent to the temperature 0.05 K. The maximum
gap width can be obtained in the strong-coupling regime
when a � k0D � 1. Then the gap may reach D � m, up to
several hundred kelvins.

The electron ± hole pairing in a graphene bilayer in the
Hartree ±Fock approximationwas recently considered in [80].
Calculations of the Kosterlitz ± Thouless transition tempera-
ture also showed that it may reach room temperature. But the
situation treated in [80] is definitely the strong-coupling case
and requires both taking dynamic effects into account and
considering the bands not involved in the case of weak
coupling. Nevertheless, the arguments offered above permit
us to hope that in the strong-coupling situation, the super-
conducting transition temperature may indeed reach high
values.

We now evaluate the effect of impurities and disorder. In
the case of traditional phonon-mediated superconductivity,
the presence of magnetic impurities acts destructively on the
BCS state, because they differently influence the electrons
with antiparallel spins forming aCooper pair. In our case, any
impurity in any layer of graphene acts destructively on the
condensate of pairs because it scatters only one component of
the pair. Our calculations show that the critical transition
temperature Tc found using the Matsubara diagram techni-
que (and yielding an upper bound on the Kosterlitz ±
Thouless transition temperature) is given by

Tc � T �0�c ÿ
�h

2pt
;

where T
�0�
c � DT�0=2p is the transition temperature in the

absence of impurities and t is the mean free time [81].
Therefore, the BCS-like state is destroyed when t > �h=D.
The expression for diffusional conductivity [82] yields
t��m=ev 2F�mc, where mc is the mobility of charge carriers in
graphene. Conductivity in `dirty' graphene specimens was
mc � 1000 cm2 Bÿ1 s at room temperature [8] and the mean
free time t � 10ÿ14 s corresponds to the gap D � 0:07 eV.
Contrarily to this, in pure graphene at liquid helium
temperature, mc � 106 cm2 Bÿ1 s, and hence t � 10ÿ11 s cor-
responds to the gap D � 7� 10ÿ5 eV. Comparing this last
value with the above estimates of gap width in different
regimes, we find that the BCS-like state in the weak-coupling
regime can be implemented only in sufficiently pure specimens
of graphene. At the same time, in the case of strong coupling,
the condensate can survive despite a fairly strong disorder.

The creation of a superfluid phase with electron ± hole
pairing can be revealed experimentally by the emergence of
special features in the effect of Coulomb drag caused by
changing the temperature. It was shown for coupled quantum
wells that the condensation of pairs results in an increase in
the drag coefficient [83, 84]. Another method of detecting the
condensate consists in observing effects similar to the
Josephson effect (see [85] and the references therein).
Furthermore, condensation changes the nature of the system

response to an external electromagnetic field. Thus, an
external magnetic field applied parallel to the graphene layer
plane results in the generation of nondecaying currents, which
can be detected in a straightforward manner [74, 85, 86].

6. Bose condensation and superfluidity
of magnetoexcitons in graphene

We now consider an electron ± hole bilayer, the same as in
Section 5 but placed in amagnetic field perpendicular to it. As
we mentioned in Section 5, localized electron ± hole pairs
cannot form in a graphene bilayer because there is no gap in
the band spectrum. In a magnetic field, electrons group at the
Landau levels [38] and a gap emerges in the spectrum such
that localized magnetoexcitons can form [87]. In this section,
we consider Bose condensation and superfluidity of the gas of
magnetoexcitons in the graphene bilayer (see [88]).

A certain concentration of magnetoexcitons in a bilayer
can be created both by an equilibrium method regulating the
degree of filling the Landau levels by the electric field of
control electrodes, and in a quasiequilibrium manner using
laser pumping. Because of a relatively large distance between
the layers, the recombination of charge carriers is greatly
suppressed and we can speak of quasiequilibrium chemical
potentials of electrons and holes.

The role of the net momentum of an electron ± hole pair in
a magnetic field is played by the conserved magnetic
momentum [89] P � pe � ph � �e=c��Ae ÿ Ah� ÿ �e=c��H�
�re ÿ rh��. The conservation of P is caused by the invariance
of the Hamiltonian of the system under two-dimensional
translations combined with simultaneous gauge transforma-
tion [90]. A magnetoexciton state is specified by the indices n1
and n1 of the Landau levels of the electron and hole forming
it, as well as by its magnetic momentum P. The operator of
Coulomb interaction between spatially separated electron
and hole has the form V�r� � ÿe 2=e�r 2�D 2�1=2, where
r�re ÿ rh is the two-dimensional radius vector parallel to
the graphene layers. We now assume that the Coulomb
interaction energy is small in comparison with the distance
between Landau levels (we later establish the applicability
conditions of this approximation); in this case, the energy of a
magnetoexciton can be calculated in the first order of the
perturbation theory [87]:

En1; n2 � 2 dn1 ; 0�dn2 ; 0ÿ2
h
ECQW
jn1j; jn2j � �1ÿ dn1; 0�ECQW

jn1jÿ1; jn2j

� �1ÿ dn2; 0�ECQW
jn1j; jn2jÿ1

� �1ÿ dn1; 0��1ÿ dn2; 0�ECQW
jn1jÿ1; jn2jÿ1

i
: �22�

Here, ECQW
jn1j; jn2j is the energy of such a magnetoexciton in

coupled quantum wells [70, 91] whose electron is at the
jn1jth Landau level and the hole is at the jn2jth level. In the
approximation of a weak Coulomb interaction, this energy
equals the mean value of the operatorV�r� in the eigenstate of
the nonrelativistic Hamiltonian of the electron ± hole pair.
For low magnetic momentum satisfying the conditions
P5 �h=lH and P5 �hD=l 2H, we obtain [91]

ECQW
jn1j; jn2j � E

CQW
jn1j; jn2j �

P 2

2MCQW
jn1 j; jn2j

;

where the binding energy of a `nonrelativistic' magnetoexci-
ton E CQW

jn1 j; jn2j and its effective magnetic mass MCQW
jn1j; jn2 j are
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functions of the parameters H and D of the system.
Substituting this expansion in (22), we can find the effective
massMn1; n2 and the binding energy En1; n2 of the magnetoexci-
ton in a graphene bilayer as functions ofH and D.

The mean-square radius of a magnetoexciton at rest at
moderately large quantum numbers n1 and n2 is of the order
of several magnetic lengths. At large distances between layers,
D4 lH, the binding energy E CQW

jn1j; jn2j and the effective mass
MCQW
jn1j; jn2j of nonrelativistic magnetoexcitons at arbitrary jn1j

and jn2j reach universal asymptotic levels E CQW�ÿe 2=�eD�
andMCQW� eD 3H 2=c 2 � eD 3�h 2=�e 2l 4H�. Therefore, accord-
ing to (22), the binding energy and the effective mass of the
magnetoexciton in a graphene bilayer reach the same
asymptotic levels:

E � ÿ e 2

eD
; M � eD 3�h 2

e 2l 4H
: �23�

Hence, at low P, the magnetoexciton energy referenced to
its binding energy is given by E�P� � P 2=�2M�. IfD is greater
than the mean distance hri between the electron and the hole
in the bilayer plane, the magnetoexcitons can be regarded as
interacting electric dipoles aligned in parallel. In a magnetic
field, there is a link between the motion of the center of mass
of the magnetoexciton and its internal structure [70], resulting
in the expression hri � Pl 2H=�h (in other words, the electric field
E � �v�H�=c emerges in the reference frame of the exciton
moving in the magnetic field at a velocity v and polarized by
this field). If the concentration of magnetoexcitons with the
parabolic dispersion is n, the typical values of magnetic
momenta are P � �h

���
n
p

. Therefore, the relation D4 hri
holds for D4 l 2H

���
n
p

. In this situation, one of the conditions
of applicability of the effective-mass approximation holds:
P5 �hD=l 2H. The second condition P5 �h=lH holds if
lH

���
n
p

5 1. We immediately see that the mean square radius
of the magnetoexciton at rest, equal by an order of magnitude
to lH, is much smaller than the mean distance nÿ1=2 between
particles. Finally, we recall the above condition of smallness
of the Coulomb interaction in comparison with the separa-
tion between Landau levels. This condition implies that
e 2=eD5 �hvF=lH or D4 rslH.

We pointed out in Section 4 that the degree of mixing of
Landau levels in graphene is independent of the magnetic
field strength because the characteristic values of both the
Coulomb energy and the kinetic energy are proportional to
H 1=2. But the characteristic value of the kinetic energy in a
graphene bilayer remains proportional to H 1=2, while the
characteristic energy of the interlayer Coulomb interaction
ceases to depend on H for D4 lH and is determined by the
distance D.

We therefore derived that ifD4 lH and lH
���
n
p

5 1 (i.e., for
a sufficiently low concentration, large separation between
layers, and a strong magnetic field) magnetoexcitons behave
as dipoles aligned in parallel and have the effective mass M.
Magnetoexcitons interact with one another via the repulsive
dipole ± dipole potential [75, 92] U�R� � e 2D 2=�eR 3�. Both
the overlapping of the wave functions of neighboring excitons
and the mixing of Landau levels are negligibly small, and this
allows projecting the state of the system onto the lower
Landau levels of electrons and holes. As a result, the matrix
Hamiltonian of the electron ± hole pair (over the electron and
the hole sublattices) reduces to its scalar projection onto the
lower Landau levels. Consequently, under the conditions
listed above, magnetoexcitons form a weakly nonideal Bose
gas of repulsive dipoles.

At T � 0, the weakly nonideal Bose gas of magnetoexci-
tons forms a Bose condensate [93]. An adequate approxima-
tion for the rarefied system is the summation of ladder
diagrams for the interexciton dipole ± dipole interaction. By
analogy to [74, 94] (see also [95]), we can write the equation
for the vertex part with the magnetic mass playing the role of
mass and the magnetic momentum playing the role of
momentum:

G�p; p 0;P;O� � ~U�pÿ p 0�

�
�

dq

�2p�h�2
~U�pÿ q�G�q; p 0;P;O�

�K 2=M� � Oÿ P 2=�4M� ÿ q 2=M� id
;

m � n

4
G�0; 0; 0; 0� ; �24�

where m � K 2=2M is the chemical potential of the system,
~U�p� is the Fourier transform of the interaction potential
U�R�, and d! 0�. A simple analytic solution of Eqn (24) can
be obtained for the chemical potential such thatU�K�5 m. In
accordance with the asymptotic expression for the magnetic
mass, this condition is satisfied if �D=lH�5 5 1=�lH

���
n
p �. Then,

m � p�h 2n

M ln
�
�h 4e 2=�2pnM 2e 4D 4�� : �25�

For small magnetic momenta, Eqn (24) yields the acoustic
spectrum of collective excitations E�P� � csP, where
cs �

����������
m=M

p
is the speed of sound and m is given by (25). The

acoustic spectrumarises due to the dipole ± dipole repulsion of
magnetoexcitons and satisfies the Landau superfluidity
criterion, which allows the magnetoexciton superfluidity in a
graphene bilayer at low temperatures. A transition of the two-
dimensional weakly nonideal Bose gas from the normal to the
superfluid state is a Kosterlitz ± Thouless transition [6]. The
temperature TKT of this transition is found from the
expression TKT�p�h 2ns�TKT�=�2kBM�, where ns is the den-
sity of the superfluid component as a function of temperature
and kB is the Boltzmann constant.

The superfluid density can be found as ns � n=4ÿ nn,
where nn is the density of the normal component and the total
density n is divided by 4 to take the additional degeneracy in
valleys into account (additional in comparison with the
degeneracy in coupled quantum wells). The value of nn can
be found using the Landau procedure (see, e.g., [93, 96]) as a
linear response of the total current in the system to the
external velocity field (in this approximation, the normal
component is dominated by the gas of noninteracting
excitations):

nn�T� � 3z�3�
2p�h 2

k 3
BT

3

Mc 4s
; �26�

where z�z� is the Riemann zeta function (z�3� � 1:202).
Ultimately, we arrive at the following expression for the
transition temperature:

TKT � T 0
KT

21=3
1�

����������������������������������������������
32

27

�
4MkBT

0
KT

p�h 2n

�3

� 1

s24 351=3
8><>:

ÿ
����������������������������������������������
32

27

�
4MkBT

0
KT

p�h 2n

�3

� 1

s
ÿ 1

24 351=3
9>=>;: �27�
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Here, T 0
KT � kÿ1B �p�h 2nc 4s M=6z�3��1=3 is an auxiliary quantity

equal to the temperature at which the superfluid density
vanishes in the mean-field approximation, i.e., ns�T 0

KT� � 0.
The temperature T 0

KT as a function of the parameters H
and D of the system can be used to evaluate the crossover
region in which local superfluid density manifests itself for
magnetoexcitons on scales smaller than or of the order of the
mean distance between vortices in the system. The local
superfluid density can manifest itself in local optical or
transport properties. As a function of the magnetic field and
density, TKT is plotted in Fig. 5. According to (27), the
temperature of the transition to a superfluid state at a fixed
density of magnetoexcitons decreases as the magnetic field
strength H and the interlayer distance D increase, which is
explained by the magnetic mass M increasing as a result of
increasing H and D. For D4 lH, the value of TKT decreases
as Hÿ2.

The effective magnetoexciton mass in a graphene bilayer,
not constrained by the masses of its constituent electron and
hole, can be made very small. Because the temperature of the
transition to a superfluid state is inversely proportional to the
mass, studying the BEC of magnetoexcitons in graphene
bilayers may prove to be simpler than in coupled quantum
wells.

7. Collective properties of magnetoexcitons
in a three-layer system

In this section, we discuss the main results in papers [97, 98]
treating BEC and the superfluidity of magnetoexcitons in a
three-layer system.

We consider a system forming a stack of three graphene
layers separated by insulating layers, which prevent rapid
recombination of electrons and holes from different gra-
phene layers. We assume that layers with electrons and
holes alternate (this can be achieved by either electric
doping with gate electrodes or the chemical doping of
graphene layers). In this case, the dipole moments of
magnetoexcitons formed by charges of one pair of layers
are aligned in parallel, and the dipole moments of

magnetoexcitons from the neighboring pairs of layers are
aligned in antiparallel fashion. This situation, typical of a
three-layer system of the e ± h ± e or h ± e ± h type, differs
from the case of the electron ± hole bilayer, in which the
magnetoexciton system is stable owing to the dipole ± dipole
repulsion.

We consider the BEC and superfluidity of magnetobiexci-
tons (i.e., of coupled states of pairs of magnetoexcitons with
oppositely oriented dipole moments). The interaction of
magnetobiexcitons at large distances, as the interaction of
electric quadrupoles, is repulsive and ensures the stability of
their system.

We work in the approximations described in Section 6:
forD4 lH and lH

���
n
p

5 1, magnetoexcitons behave as bosons
of a mass M, whose role is played by the effective magnetic
mass. In the low-density limit, two magnetoexcitons aligned
in the parallel or antiparallel manner at a distance R interact
via the respective potentials U��R� or Uÿ�R�.

The effective Hamiltonian of the system of magnetoexci-
tons in the above approximation can be written as Htot �
H0 �Hint. The effective Hamiltonian H0 of the system of
noninteracting magnetoexcitons has the form

H0 � 1

2

X
p

E0� p�
ÿ
a�p ap � b�p bp � a�ÿpaÿp � b�ÿpbÿp

�
;

where E0�p� � p 2=2M is the energy of noninteracting magne-
toexcitons, p is the magnetic momentum, and ap and bp are
operators of annihilation of magnetoexcitons with dipole
moments respectively oriented upward and downward. The
effective operator of interaction between magnetoexcitons is
written as

Hint � 1

2S

X
p1�p2�p3�p4

�
U��a�p4a�p3ap2ap1 � b�p4b

�
p3
bp2bp1�

ÿUÿa�p4b
�
p3
ap2bp1

�
; �28�

whereU� andUÿ are two-dimensional Fourier transforms of
U��R� andUÿ�R� at p � 0 and S is the area of the system.We
note that the classical turning point of the dipole ± dipole
interaction is a suitable cutoff parameter for the Fourier
transformation. We also note that the cutoff parameter is
much higher for the potentialU��R� than forUÿ�R�. We can
therefore state that U� > 0, Uÿ < 0, and jUÿj > jU�j.

We apply the Bogolyubov approximation at T � 0 and
assume that �NÿN0�=N0 5 1, whereN is the total number of
particles and N0 is the number of particles in the condensate.
The Bogolyubov approximation ignores the interaction
between above-condensate particles and accounts for the
interaction between the particles of the condensate and
between above-condensate particles and those of the con-
densate. The total Hamiltonian then becomes

Htot � 1

2

X
p 6�0

n�
E0�p� � �U� �Uÿ� n

�
� �a�p ap � b�p bp � a�ÿpaÿp � b�ÿpbÿp�

� 2U�n�a�p a�ÿp � apaÿp � b�ÿpb
�
p � bÿpbp�

�Uÿn�a�p b�ÿp � apbÿp � a�ÿpb
�
p � aÿpbp

� a�p bp � a�ÿpbÿp � apb
�
p � aÿpb�ÿp�

o
: �29�
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Figure 5. The Kosterlitz ±Thouless transition temperature TKT as a

function of the magnetic field B in a graphene bilayer separated by SiO2

(e � 4:5). The concentration of magnetoexcitons is n � 4� 1011 cmÿ2.
The separation D between layers is 30 nm (solid curve), 28 nm (dotted

curve), and 27 nm (dashed curve).
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We diagonalize the total Hamiltonian using a unitary
transformation of the Bogolyubov type [99]:

ap �
ap � Apa�ÿp � Bpb

�
ÿp � Cpbp

�1ÿ A 2
p ÿ B 2

p ÿ C 2
p �1=2

;

bp �
bp � Apb

�
ÿp � Bpa�ÿp � Cpap

�1ÿ A 2
p ÿ B 2

p ÿ C 2
p �1=2

;

where the coefficients Ap, Bp, and Cp are found from the
condition that the coefficients with nondiagonal terms in the
Hamiltonian vanish. This gives

Htot �
X
p 6�0

E�p��a�p ap � b�p bp� ;

with the quasiparticle spectrum

E 21 � p� � E 20 � p� � 2nU�E0� p� ;
E 22 � p� � E 20 � p� � 2n�U� �Uÿ� E0�p�:

Because U� > 0 and Uÿ < 0, it follows that p > 0 for
E21�p� > E22�p�. Therefore, only quasiparticles with the spec-
trum E22�p� are excited, because their excitation requires lower
energy than that of quasiparticles with the spectrum E21�p�.
Because U� �Uÿ < 0, we easily see from (4) that the
excitation spectrum becomes purely imaginary at low
momenta p <

��������������������������������
4MnjU� �Uÿj

p
. This means that the system

of weakly interacting indirect magnetoexcitons in a super-
lattice is unstable. This instability is enhanced as the magnetic
field strengthH increases, because this results in an increase in
the magnetic massM and therefore expands the range of p in
which the energy of collective excitations is purely imaginary.

We now consider the ground state of a weakly nonideal
Bose gas ofmagnetobiexcitons formed by pairs of antiparallel
magnetoexcitons located in neighboring pairs of graphene
layers (Fig. 6). If the binding energy of a magnetobiexciton is
much lower than the binding energy of its constituent
magnetoexcitons and the magnetobiexciton radius is much
larger than the size of themagnetoexciton, thenwe can use the
adiabatic approximation and regard magnetoexcitons as
structureless particles. The applicability condition for this
approximation is established below. As follows from the
approximations used above, D is greater than the size of a
magnetoexciton, and therefore the potential energy of
interaction between magnetoexcitons at a distance r has the

form

U�r� � e 2

er
ÿ 2e 2

e�r 2 �D 2�1=2
� e 2

e�r 2 � 4D 2�1=2
: �30�

Magnetoexcitons are attracted for r > 1:11D and repulsed for
r < 1:11D. The potential energy minimum lies at
r � r0 � 1:67D.

To calculate the parameters of the magnetobiexciton,
we consider the problem of a bound state of two
magnetoexcitons in their center-of-mass reference frame.
For estimates, we approximate the potential well in the
neighborhood r0 by a rectangular potential well of the
depth V0�0:04e 2=�eD� and width a � 2D, as shown in
Fig. 7. If the wave function of the relative motion is written
as c�r;j� � exp �imj� f �r�= ��

r
p

, where m is the relative
orbital motion, then the function f �r� obeys the one-
dimensional Schr�odinger equation for a particle with the
equivalent mass m �M=2 placed in the above square
potential well (see Fig. 7) and in an additional centrifugal
potential Ucf�r� � �h 2�m 2 ÿ 1=4�=�2mr 2�. Because the
dimensionless parameter 2mV0a

2=�h 2 � 0:32�D=lH�4 that
characterizes the properties of the well is much greater
than unity for D4 lH, it is possible to show that a large
number of bound states exist in this well (if we ignore the
centrifugal potential). The ground state energy then equals
E � ÿV0 � p2e 2l 4H=�8eD 5� � ÿV0. We can neglect the
centrifugal potential because its value inside the well is of
the order of e 2l 4H=�eD 5� and is much lower than the
binding energy jE j.

The binding energy of amagnetoexciton forD4 lH is thus
approximately equal to 0:04e 2=�eD� and the characteristic
`size' of its wave function is of the order of a � D, while the
binding energy of constituent magnetoexcitons equals
e 2=�eD� and the radii are of the order of lH. The adiabatic
approximation is therefore valid for D4 lH.

The magnetobiexciton discussed above has the nonzero
quadrupole moment Q0 � 2eD 2 (the larger axis of the
quadrupole is perpendicular to the plane of the graphene
layers). Hence, indirect magnetobiexcitons interact at dis-
tances R4D as repulsive quadrupoles aligned in parallel:
U�R� � 9e 2D 4=�eR 5�. Using the theory of the two-dimen-
sional Bose gas [74, 94] as in Section 6, we calculate the
potential m of magnetobiexcitons in the ladder approxima-

Figure 6. Schematic diagram of the structure of a quasi-two-dimensional

indirect magnetobiexciton composed of two antiparallel indirect magne-

toexcitons located in two neighboring pairs of graphene layers.

0.10

U�r�
e2=eD

0.05

0

ÿ0.05
0 2 4 6 8

r=D

Figure 7. Interaction potential (30) of two magnetoexcitons aligned in an

antiparallel manner (solid curve) and the square potential well approx-

imating it (dashed line).
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tion:

m � 4p�h 2nbex

Mbex ln
�

�h 4=3e 2=3=�8p�9Mbexe 2D 4�2=3nbex�
	 ; �31�

where nbex � n=2 is the magnetobiexciton density and
Mbex � 2M is their mass. The collective spectrum of excita-
tions of the system ofmagnetobiexcitons has an acoustic form
E�p� � csp (cs �

����������������
m=Mbex

p
is the speed of sound) and satisfies

the Landau superfluidity criterion. To evaluate the density of
the superfluid component and the temperature of the
Kosterlitz ± Thouless transition to the superfluid state, we
can use formulas (26) and (27) with the substitutions
n! nbex,M!Mbex andwith the speed of sound correspond-
ing to chemical potential (31). TKT as a function of the
magnetoexciton concentration at different magnetic field
strengths is plotted in Fig. 8.

Therefore, the exciton line in the above three-layer
structure may disappear at low temperatures, while the
magnetobiexciton line may survive. As in the system of
magnetoexcitons studied in Section 6, the temperature of the
Kosterlitz ± Thouless transition to the superfluid state at a
fixed density of magnetobiexcitons decreases as the magnetic
field strength and the interlayer separation increase, owing to
the increasingmagnetic mass. The temperatureTKT decreases
asHÿ2 forD4 lH. The repulsion betweenmagnetobiexcitons
ensures the stability of the system.

8. Superfluid state of the system of composite
fermions in a graphene bilayer

As in Section 6, we consider an electron ± hole bilayerÐ two
electrode-controlled barrier-separated graphene planes (see
Fig. 4) placed in a strong magnetic field; however, the control
parameters (the magnetic field H and the chemical potential
m1 � m2 or m1 � ÿm2) are such that the filling factor of
Landau levels in both graphene sheets is n � 1=2. This system
is largely similar to the one studied experimentally by
Eisenstein's group [100]Ðan electron bilayer in a semicon-
ductor (the difference stems from the spinor nature of the

electron wave function in graphene, the presence of the Berry
phase, etc). With one-half filling factor, it is convenient to
apply the Halperin ±Lee ±Reed gauge transformation [101]
and pass to the composite-fermion representation [102],
which essentially means the following. The filling n � 1=2
corresponds to two magnetic flux quanta per electron. By
assigning two flux quanta to each electron (which corre-
sponds to the Halperin ±Lee ±Reed gauge transformation),
we obtain new quasiparticles, composite fermions.

In the mean-field approximation, that is, with the flux
quanta `tied' to electrons uniformly `smeared,' the magnetic
field leaves electrons unaffected. Therefore, both layers
contain Fermi spheres of composite electrons (or, by virtue
of the electron ± hole symmetry, Fermi spheres of composite
holes). It can be shown [103] that composite electrons of
different layers undergo an effective repulsion, while the
composite electrons of one layer are attracted to the
composite holes of another layer. This creates a situation
similar to the one treated in Section 5 with no magnetic field:
the electron ± hole pairing arises between the layers and a
superfluid system of pairs of composite fermions is formed in
a graphene bilayer (both when the chemical potentials of the
layers are identical and when they have opposite signs).

9. Magnetoplasmons
in graphene-based layered structures

In this section, we present some results concerning the
properties of magnetoplasmons in one-layer graphene, in a
graphene bilayer, and in a superlattice of graphene layers (see
[104]). Magnetoplasmons are collective electron oscillations
whose dispersion relation E�q� satisfies the equation
e�q; E�q�� � 0, where e�q;o� is the dynamic dielectric permit-
tivity that determines the effective interaction between
electrons in graphene.

In the random-phase approximation, the dielectric
permittivity is e�q;o� � 1ÿ v�q�P�q;o�, where v�q� �
2pe 2=�ebq� is the bare Coulomb interaction, eb is the
dielectric permittivity of the ambient medium, and P�q;o�
is the polarization operator. Using the explicit form of the
electron wave functions in one-layer graphene in a magnetic
field (given, e.g., in [87]), we find that

P�q;o� � gsgv

2pl 2H

X
n; n 0

fn ÿ fn 0

�ho� En ÿ En 0 � id
Fn; n 0 �q� �32�

in the linear response approximation, where d! 0�,
En � sgn�n� �hvF

��������
2jnjp

=lH is the energy of the nth Landau
level (n � 0;�1;�2; . . .), and fn is the filling factor of this
level. The overlapping coefficient Fn; n 0 �q� of levels n and n 0 is
given by

Fn; n 0 �q� � 2 dn; 0�dn 0 ; 0ÿ2��jnj ÿ jn 0j�!�2
�
ÿ q 2l 2H

2

�jnjÿjn 0 j
�
�
sgn�n� sgn�n 0� �jnj ÿ 1�!

�jn 0j ÿ 1�!�
jnj!
jn 0j!

�
:

If T � 0, the highest Landau level and all lower levels are
completely filled, while the remaining levels are empty. In our
calculations, only the transitions between the five lowest
Landau levels of the conduction band and the five highest
levels of the valence band were taken into account. Figure 9
plots the solutions of the dispersion equation in one-layer
graphene that correspond to real frequencies (horizontal lines

16

TKT, K

12
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4

0 0.2 0.4 0.6 0.8 1.0
n, 1012 cm ÿ2

Figure 8. The Kosterlitz ±Thouless transition temperature as a function of

themagnetoexciton concentration in the structure of three graphene layers

separated by SiO2 layers (e � 4:5) D � 10 nm thick. The magnetic field B

is 10 T (solid line), 15 T (dotted line), and 20 T (dashed line).
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correspond to one-particle transitions between Landau
levels). In this case, magnetoplasmons are self-sustained
oscillations; however, having reached the region of one-
particle electron ± hole excitations, they acquire a finite
lifetime through Landau damping (a decay of the plasmon
to electron ± hole pairs or, as Ginzburg showed more clearly,
through the inverse Vavilov ±Cherenkov effect). Figure 10
shows solutions of the dispersion equation that correspond to
complex frequencies.

The decaying magnetoplasmon modes have the real
component of the frequency linear in q and exist in those
regions of q where the group velocity of nondecaying
magnetoplasmons is negative. Negative group velocity at
qlH > 1 arises as a response to the magnetic field [105]. We
repeated the calculations for dispersion curves shown in Fig. 9
using a larger number of Landau levels in both bands. This
brought no qualitatively different results, except for a larger
number of one-particle excitation lines. However, lower
branches of collective excitations change insignificantly.

We now consider magnetoplasmons in two-layer gra-
phene for which the electron Hamiltonian has form (9). The
explicit form of the electronwave functions in amagnetic field
is given in [55] and the energies of Landau levels are
E �b�n � sgn�n� �hoc

����������������������jnj�jnj ÿ 1�p
, where n � 0; 1, �2;�3; . . .,

oc � eH=�m �c�, m � � 0:033me. The polarization operator
of two-layer graphene is calculated using (32) and the
substitution En ! E�b�n , as well as the following expression for
the overlapping integral:

F
�b�
n; n 0 �q� � 2 dn; 0�dn; 1�dn 0 ; 0�dn 0 ; 1ÿ2

�
����� � dx exp �ixqx�F jnj�x�F jn 0 j�x� l 2Hqy�

����2 � sgn�n�

� sgn�n 0 �
���� � dx exp �ixqx�F jnjÿ2�x�F jn 0 jÿ2�x� l 2Hqy�j2

�
:

Here, Fn�x� � �2 nn!
���
p
p

lH�ÿ1=2 exp �ÿx 2=�2l 2H��Hn�x=lH� is
the eigenfunction of the one-dimensional oscillator and Hn

is the Hermite polynomial.

The solutions of the dispersion equation for two-layer
graphene that correspond to nondecaying plasmonmodes are
plotted in Fig. 11. As in one-layer graphene, the magnetic
field makes the group velocity negative for a number of values
of wave vectors. Energy transfer between electrons and
collective excitations occurs only when the phase velocity of
the collective mode equals the velocity of one of the electrons.

The dispersion equation for a graphene bilayer in which
tunneling between layers separated by a distance D is
negligible has the form [76, 106]

v�p�P�q;o� �1ÿ exp �ÿ2qD��ÿ 1 � � exp �ÿqD� ; �33�
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Figure 9.Dispersion relations for magnetoplasmons in one-layer graphene

(solutions with real frequencies).
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Figure 11.Real solutions of the dispersion equation for magnetoplasmons

in two-layer graphene with the filling factor n � 1.

740 Conferences and symposia Physics ±Uspekhi 51 (7)



where we assumed that the polarization operator P�q;o�
defined by (32) is the same for both graphene layers. The
interlayer Coulomb interaction results in mixing of plasma
modes of each layer, which produces two dispersion branches.
Solutions of Eqn (33) with real frequencies are plotted in
Fig. 12. We again see regions of magnetoplasmon decay.

Finally, we consider a superlattice composed of graphene
layers parallel to the plane �x; y� and separated by a distance
D along the z axis. The graphene layers are immersed into a
medium with a dielectric permittivity eb and tunneling
between layers is negligibly small. The dispersion equation
for magnetoplasmons in the superlattice has the form [29,
107] 1ÿ v�q�P�q;o�S�q; kz� � 0, where P�q;o� is the
polarization operator of one graphene sheet and S�q; kz� �
sinh�qD�=�cosh�qD� ÿ cos�kzD�� is the structural factor
determining the phase coherence of collective excitations in
different layers. We solved the dispersion equation for the
complex frequency of magnetoplasmons; the results are
plotted in Fig. 13 for kzlH � 0:1 and several values of D.

The results of our numerical calculation for an infinitely
large superlattice show that both magnetoplasmon modes
and excitations corresponding to one-particle electron transi-
tions between Landau levels exist. The collective mode with
the highest energy has an increasing frequency for qlH < 1,
but undergoes Landau damping at large wave vectors.
Figure 13 shows that the imaginary component of the
frequency of the collective mode responsible for its damping
increases in the superlattice, as compared to damping in one-
layer graphene. Furthermore, by virtue of in-phase super-
position of oscillations in individual layers, both the real and
the imaginary frequency components sharply increase. This
effect is enhanced as the ratio D=lH decreases.

The enhanced instability of magnetoplasmons in a super-
lattice can be used for converting the energy of magnetoplas-
mon modes into electromagnetic radiation in the terahertz
range. For example, the magnetoplasmon frequency in the
magnetic field 10 T corresponding to the filling factor n � 1
falls into the range near 3.6 THz. An additional advantage of

such radiation sources consists in the possibility of controlling
the frequency of emitted radiation by changing the magnetic
field strength.

10. Conclusion

Numerous theoretical and experimental results have been
obtained since the experimental discovery of graphene in
2004, with several hundred papers on graphene having been
published. A number of new effects have been discovered that
have no analogs among other substances, and a still greater
number of unusual effects have been predicted theoretically
and await experimental investigation.

It would be difficult to overestimate the importance of the
contribution to fundamental science brought about by study-
ing graphene: this material allows working with massless
charged fermions that have no analogs among elementary
particles. Graphene is not only unique from the standpoint of
its electron properties but is also the closest among all
nanostructures yet produced to the ideal two-dimensional
crystal, because it is just one atom thick and has a clearly
expressed crystal structure. Consequently, the preparation of
graphene produced two breakthroughs simultaneously: one
in fundamental physics and one in the physics of nanostruc-
tures.We can look at the experimental study of the wonderful
properties of graphene as the most spectacular discovery in
the physics of mesoscopic systems in the last 20 years, a
discovery of the same magnitude as those of the integral and
fractional quantum Hall effects.

We note that in addition to graphene, Novoselov, Geim,
Morozov et al. also prepared other two-dimensional crystals
[9], and this opened a new field in the physics of nanostruc-
turesÐ the study of membranes of monatomic thickness.

We now turn to certain important aspects of the funda-
mental physics of graphene that still welcome research. First,
these are the recently detected anomalies in the quantumHall
effect. As we mentioned in Section 3, the Hall conductivity
quantization sxy � ne 2=hwith n � �2;�6; . . ., even though it
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Figure 12.Real solutions of the dispersion equation for magnetoplasmons

in a graphene bilayer at D � lH. Only the highest Landau level in the

valence band is filled.
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Figure 13. Imaginary part of the magnetoplasmon frequency in single-

layer graphene in comparison to the results for an infinite superlattice of

graphene layers at n � 1, kzlH � 0:1, and superlattice constants
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is not typical of conventional two-dimensional systems, is
explainable in terms of the single-particle ultrarelativistic
dynamics of electrons in graphene. But it was discovered in
[108] that newHall steps at n � 0;�1;�4 are formed in strong
magnetic fields (B > 20 T). Subsequent experiments [109]
showed that splittings at n � 0 and n � �4 correspond to
lifting the spin degeneracy and that the widths of the
corresponding gaps are proportional to jBj, exactly as
expected for the Zeeman splitting. In fact, the gap at n � 0,
being located at the Dirac point, has certain specific features
that distinguish it from similar Zeeman gaps at Landau levels
for n 6� 0 [110]. As regards the gaps at n � �1, they are
proportional to

�������
B?
p

, where B? is the field component
perpendicular to the graphene plane, and this points to the
many-body nature of these gaps. Therefore, sufficiently
strong magnetic fields remove the degeneracy of the n � 0
level both in spins and in valleys: n � 0 corresponds to spin
splitting, and n � �1 to some collective electron phenomenon
that breaks the valley symmetry. A number of versions of the
theoretical explanation of this phenomenon have been
suggested (such as the quantum Hall ferromagnetism,
spontaneous mass generation, and the pairing of composite
fermions), but ultimate clarity has not been achieved yet (see,
e.g., [109, 111] and the references therein).

Another unsolved problem is the nature of the minimum
conductivity of graphene, which, according to experimental
data, equals 4e 2=h [10, 51] when the Fermi energy is at the
Dirac point. The existence of a minimum conductivity was
thought for a long time to stem from disorder (such as ripples)
that creates electron ± hole puddles (see, e.g., [112] and the
references therein), but the theory predicts the minimum
conductivity smaller by a factor of p than the experimental
value. It was later shown that the same value of conductivity,
obtained theoretically by considering perfectly pure graphene
[113], is a characteristic property of chiral particles and thus
makes it unnecessary to involve any disorder. Hence, it is
necessary to clarify what roles are played in the formation of
minimum conductivity by chirality, disorder, and electron ±
electron interactions.

The chiral nature of electrons must theoretically manifest
itself in a number of quantum electrodynamics effects, which
must be especially strong in graphene in view of the zero gap
between the conduction and the valence bands. Thus, the
relevant transport measurements [114] were carried out to
study the predicted Klein tunneling across the potential
barrier in graphene [44], but scattering by impurities intro-
duced essential distortion into the results.

Optical studies of graphene are of great interest. In
addition to the marvelous result on the universality of the
absorption coefficient of graphene in a broad spectral range
[115], which is determined by the fine structure constant a and
equals pa, it is interesting to directly study the damping rate of
quasiparticles as a function of their energy using time-
resolved spectroscopy (see, e.g., [116]). This would provide
important information on the properties of the electron
Fermi liquid in graphene and on possible deviations from
the Landau theory [59, 68, 117].

Also unsolved are the aspects connected with the mechan-
ical stability of graphene. Calculations in the harmonic
approximation show that mean-square displacements of
segments of a graphene sheet perpendicular to its plane
diverge as L2, where L is the linear size of the sheet. This
points to an instability with respect to crumpling. However,
taking the effects of anharmonism into account yields the

function Lr with r � 0:6, which in some sense stabilizes the
graphene membrane (see, e.g., [118], as well as [23] and the
references therein). Experiments [11] showed that graphene is
covered with slight local distortionsÐ ripples several nan-
ometers in size. Although numerical modeling [119] gave the
same result, much about the properties of ripples remains
unclear. The mechanical properties of graphene as a two-
dimensional membrane need to be studied further.

We can now discuss the main areas of application-
oriented research on graphene. The most actively consid-
ered nanoelectronic application of graphene is now the
creation of field transistors that use the properties of
graphene such as the high carrier mobility and the ease of
processing and of connecting electrodes. Simple specimens
of field transistors have been designed and their character-
istics measured [120]. Unfortunately, leak currents are large
owing to the presence of minimum conductivity, and hence
the unique band structure of graphene is a hindrance for
designing traditional electronic devices. To improve the
characteristics of such transistors, a gap in the spectrum is
needed; it may appear, for example, following a chemical
modification of graphene [121] or as a result of interaction
with a substrate [122]. Less conventional prototypes of
possible future devices are quantum-dot-based one-electron
transistors, which function using a Coulomb blockade.
Owing to the specifics of the graphene band structure,
distances between energy levels formed in graphene quan-
tum dots as a result of spatial confinement are much larger
than in similar devices based on other materials [14, 123].
This allows one-electron transistors to work at room
temperature.

Unique properties of graphene make it an attractive
candidate as a material for implementing electronic devices
that differ dramatically from conventional ones. For
instance, graphene can be used to design the element basis of
spintronics [124], in which the spin degree of freedom of
electrons is employed. Very weak spin ± orbit coupling and
high charge mobility in graphene allow spin transport at
submicron distances at room temperatures [125]. An addi-
tional (valley) degree of freedom for electrons in graphene can
also be used for signal transfer. Valley degeneration can be
removed under certain conditions, after which valley polar-
ization can be generated and detected [126].

Graphene as a two-dimensional material may be valuable
not only for electronic applications. We mention the storage
of large quantities of hydrogen absorbed on the surface of
graphene [127], the creation of new composite materials [128],
and high-sensitivity graphene-based gas sensors [129]. Gra-
phene can also be used as an almost transparent electrode in
liquid-crystal indicators [130] and as a nanomechanical
resonator permitting detection of ultrasmall masses [131].
The constancy of the optical absorption coefficient of
graphene in a broad spectral range makes it useful for
creating optically neutral coatings and detectors of electro-
magnetic radiation (as stacks of noncontiguous graphene
sheets) whose sensitivity would be independent of the
wavelength in the range from terahertz to far-infrared
frequencies [16]. Of course, this is the right moment to recall
Niels Bohr's maxim, ``Prediction is very difficult, especially
about the future.'' Prospects for technological applications of
graphene are thus greatly dependent on whether its manu-
facturing becomes manageable and economical.

It must be emphasized that graphene holds enormous
potential for building various structures whose properties
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may greatly differ from those of the initial graphene.
Chemical modification may change the geometry [132] and
electronic properties [121] of a graphene sheet. It is also
possible to create various superlattices on graphene sheets in
order to modify its band structure. Such superlattices can be
created by controlled atomic adsorption [15], by lithographic
techniques [133], or by external fields [134].

The original results presented in this talk show that
graphene and graphene-based nanostructures are very inter-
esting subjects for implementing superfluidity and other
coherent effects. High quality and the possibility of manu-
facturing compact multilayer systems are bases for expecting
that collective effects will be easier to observe in them than in
traditional quasi-two-dimensional systems. A specific feature
of graphene, its linear dispersion, leads to new relations
between the kinetic and potential energies of a system of
electrons and thus opens ways of implementing new regimes
of behavior of quantum systems.
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grateful for support to the Dynasty Foundation for Non-
commercial Programs and to the Russian Science Support
Foundation.

References

1. Lozovik Yu E, Popov A M Usp. Fiz. Nauk 177 786 (2007) [Phys.

Usp. 50 749 (2007)]; Saito R, Dresselhaus G, Dresselhaus M S (Eds)

Physical Properties of Carbon Nanotubes (London: Imperial College

Press, 1998)

2. Lozovik Yu E, Popov A M Usp. Fiz. Nauk 167 751 (1997) [Phys.

Usp. 40 717 (1997)]

3. Dresselhaus M S, Dresselhaus G Adv. Phys. 51 1 (2002)

4. Peierls R E Ann. Inst. Henri Poincar�e 5 177 (1935); Landau L D

Phys. Z. Sowjetunion 11 26 (1937)

5. Berezinskii V L Nizkotemperaturnye Svoistva Dvumernykh Sistem s

Nepreryvnoi Gruppoi Simmetrii (Low-temperature properties of

systems with continuous symmetry group) (Moscow: Fizmatlit,

2007)

6. Kosterlitz J M, Thouless D J J. Phys. C: Solid State Phys. 6 1181

(1973); Nelson D R, Kosterlitz J M Phys. Rev. Lett. 39 1201 (1977)

7. Nelson D R, Halperin B I Phys. Rev. B 19 2457 (1979)

8. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,

Dubonos S V, Grigorieva I V, Firsov A A Science 306 666 (2004)

9. Novoselov K S et al. Proc. Natl. Acad. Sci. USA 102 10451 (2005)

10. Novoselov K S, Geim AK,Morozov S V, Jiang D, KatsnelsonM I,

Grigorieva I V, Dubonos S V, Firsov A A Nature 438 197 (2005)

11. Meyer J C et al. Nature 446 60 (2007)

12. Ferrari A C et al. Phys. Rev. Lett. 97 187401 (2006); Gupta A et al.

Nano Lett. 6 2667 (2006)

13. de Heer W A et al. Solid State Commun. 143 92 (2007)

14. �Ozyilmaz B et al. Appl. Phys. Lett. 91 192107 (2007)

15. Chernozatonskii L A, Sorokin P B, Br�uning J W, arXiv:0709.1015

16. Lozovik Yu E, Merkulova S P (to be published)

17. Morozov S V et al. Phys. Rev. Lett. 100 016602 (2008); Bolotin K I

et al. Solid State Commun. 146 351 (2008); Garcia N et al.,

arXiv:0803.2203

18. Novoselov K S et al. Science 315 1379 (2007)

19. Wallace P R Phys. Rev. 71 622 (1947)

20. Katsnelson M I, Novoselov K S Solid State Commun. 143 3 (2007)

21. Katsnelson M IMater. Today 10 (1 ± 2) 20 (2007)

22. Geim A K, Novoselov K S Nature Mater. 6 183 (2007)

23. Castro Neto A H et al., arXiv:0709.1163

24. Slonczewski J C, Weiss P R Phys. Rev. 109 272 (1958)

25. McClure J W Phys. Rev. 108 612 (1957)

26. Painter G S, Ellis D E Phys. Rev. B 1 4747 (1970)

27. Dresselhaus M S, Dresselhaus G Adv. Phys. 30 139 (1981)

28. DiVincenzo D P, Mele E J Phys. Rev. B 29 1685 (1984)

29. Shung KW-K Phys. Rev. B 34 979 (1986)

30. Shung KW-K Phys. Rev. B 34 1264 (1986)

31. Fradkin E Phys. Rev. B 33 3257 (1986)

32. Haldane F DM Phys. Rev. Lett. 61 2015 (1988)

33. Semenoff G W Phys. Rev. Lett. 53 2449 (1984)

34. Bogolyubov N N, Shirkov D V Vvedenie v Teoriyu Kvantovannykh

Polei (Introduction to the Theory of Quantized Fields) 4th ed.

(Moscow: Nauka, 1984) [Translated into English (New York: John

Wiley, 1980)]

35. Volkov B A, Idlis B G, Usmanov M Sh Usp. Fiz. Nauk 165 799

(1995) [Phys. Usp. 38 761 (1995)]

36. Gusynin V P, Sharapov S G, Carbotte J P Int. J. Mod. Phys. B 21

4611 (2007)

37. Kawamura K, Brown R A Phys. Rev. B 37 3932 (1988)

38. Gusynin V P, Sharapov S G Phys. Rev. Lett. 95 146801 (2005)

39. Bostwick A et al. Nature Phys. 3 36 (2007)

40. McChesney J L et al., arXiv:0705.3264

41. Bostwick A et al. New J. Phys. 9 385 (2007)

42. Wu X et al. Phys. Rev. Lett. 98 136801 (2007)

43. Morozov S V et al. Phys. Rev. Lett. 97 016801 (2006); Tikhonen-

ko F V et al. Phys. Rev. Lett. 100 056802 (2008)

44. Katsnelson M I, Novoselov K S, Geim A K Nature Phys. 2 620

(2006)

45. Beenakker C W J, arXiv:0710.3848

46. Ando T, Nakanishi T, Saito R J. Phys. Soc. Jpn. 67 2857 (1998)

47. Nomura K, Koshino M, Ryu S Phys. Rev. Lett. 99 146806 (2007)

48. Silvestrov P G, Efetov K B Phys. Rev. Lett. 98 016802 (2007);

Matulis A, Peeters F M Phys. Rev. B 77 115423 (2008)

49. Pereira V M et al. Phys. Rev. Lett. 96 036801 (2008)

50. De Martino A, Dell'Anna L, Egger R Phys. Rev. Lett. 98 066802

(2007); Chen H-Y, Apalkov V, Chakraborty T Phys. Rev. Lett. 98

186803 (2007)

51. Tan Y-W et al. Phys. Rev. Lett. 99 246803 (2007)

52. Akhiezer A I, Berestetskii V B Kvantovaya Elektrodinamika

(Quantum Electrodynamics) 4th ed. (Moscow: Nauka, 1981)

[Translated into English (New York: Intersci. Publ., 1965)]

53. Fogler M M, Novikov D S, Shklovskii B I Phys. Rev. B 76 233402

(2007)

54. ShytovAV,KatsnelsonMI, Levitov L SPhys. Rev. Lett. 99 236801,

246802 (2007)

55. McCann E, Fal'ko V I Phys. Rev. Lett. 96 086805 (2006)

56. Novoselov K S et al. Nature Phys. 2 177 (2006)

57. McCann E Phys. Rev. B 74 161403(R) (2006)

58. Oostinga J B et al. Nature Mater. 7 151 (2007)

59. Gonz�alez J, Guinea F, Vozmediano M A H Nucl. Phys. B 424 595

(1994)

60. Mishchenko E G Phys. Rev. Lett. 98 216801 (2007)

61. Hwang E H, Das Sarma S Phys. Rev. B 75 205418 (2007)

62. Katsnelson M I Phys. Rev. B 74 201401(R) (2006)

63. Keldysh L V, Kopaev Yu V Fiz. Tverd. Tela 6 2791 (1964) [Sov.

Phys. Solid State 6 2219 (1965)]; Guseinov R R, Keldysh L V Zh.

Eksp. Teor. Fiz. 63 2255 (1972) [Sov. Phys. JETP 36 1193 (1973)]

64. Khveshchenko D V Phys. Rev. Lett. 87 246802 (2001); Herbut I F

Phys. Rev. Lett. 97 146401 (2006); Son D T Phys. Rev. B 75 235423

(2007)

65. Dahal H P et al. Phys. Rev. B 74 233405 (2006)

66. Zhang C-H, Joglekar Y N Phys. Rev. B 75 245414 (2007)

67. Lozovik Yu E, Yudson V I Pis'ma Zh. Eksp. Teor. Fiz. 22 26 (1975)

[JETP Lett. 22 11 (1975)]

68. Gonz�alez J, Guinea F, Vozmediano M A H Phys. Rev. B 59 R2474

(1999)

69. Barlas Y et al. Phys. Rev. Lett. 98 236601 (2007); Rold�an R, L�opez-
Sancho M P, Guinea F Phys. Rev. B 77 115410 (2008)

70. Lerner I V, Lozovik Yu E Zh. Eksp. Teor Fiz. 78 1167 (1980) [Sov.

Phys. JETP 51 588 (1980)]

71. Lerner I V, Lozovik Yu E Zh. Eksp. Teor. Fiz. 80 1488 (1981) [Sov.

Phys. JETP 53 763 (1981)]; J. Low Temp. Phys. 38 333 (1980)

72. Lozovik Yu E, Sokolik AA Pis'ma Zh. Eksp. Teor. Fiz. 87 61 (2008)
[JETP Lett. 87 55 (2008)]

73. Bardeen J, Cooper L N, Schrieffer J R Phys. Rev. 108 1175 (1957)

74. Lozovik Yu E, Yudson V IPis'maZh. Eksp. Teor. Fiz. 22 556 (1975)

[JETP Lett. 22 274 (1975)]; Solid State Commun. 19 391 (1976); Zh.

Eksp. Teor. Fiz. 71 738 (1976) [Sov. Phys. JETP 44 389 (1976)];

July 2008 Conferences and symposia 743



Lozovik Yu E, Nishanov V N, in Vsesoyuz. Soveshchanie po

Dielektricheskoi Elektronike, Tashkent 1973. Tezisy Dokladov (All-

Union Conf. on Dielectric Electronics) (Tashkent: Fan, 1973) p. 70

75. Lozovik Yu E, Berman O L Pis'ma Zh. Eksp. Teor. Fiz. 64 526

(1996) [JETP Lett. 64 573 (1996)]; Zh. Eksp. Teor. Fiz. 111 1879

(1997) [JETP 84 1027 (1997)]

76. Das Sarma S, Madhukar A Phys. Rev. B 23 805 (1981)

77. Wunsch B et al. New J. Phys. 8 318 (2006)

78. Nozi�eres P, Schmitt-Rink S J. Low Temp. Phys. 59 195 (1985)

79. Kopnin N B, Sonin E B, arXiv:0803.3772

80. Min H et al., arXiv:0802.3462

81. Lozovik Yu E, Efimkin D K (to be published)

82. Adam S et al. Proc. Natl. Acad. Sci. USA 104 18392 (2007)

83. Conti S, Vignale G, MacDonald A H Phys. Rev. B 57 R6846 (1998)

84. Lozovik Yu E, Nikitkov M V Zh. Eksp. Teor. Fiz. 116 1440 (1999)

[JETP 89 775 (1999)]

85. Lozovik Yu E, Poushnov A V Phys. Lett. A 228 399 (1997)

86. Balatsky A V, Joglekar Y N, Littlewood P B Phys. Rev. Lett. 93

266801 (2004)

87. Iyengar A et al. Phys. Rev. B 75 125430 (2007)

88. Berman O L, Lozovik Yu E, Gumbs G Phys. Rev. B 77 155433

(2008)

89. Gorkov L P, Dzyaloshinskii I E Zh. Eksp. Teor. Fiz. 53 717 (1967)

[Sov. Phys. JETP 26 449 (1968)]

90. Lozovik Yu E, Ruvinsky A M Phys. Lett. A 227 271 (1997)

91. Lozovik Yu E, Ruvinskii A M Zh. Eksp. Teor. Fiz. 112 1791 (1997)

[JETP 85 979 (1997)]

92. Lozovik Yu E, Berman O L,WillanderM J. Phys.:Condens.Matter

14 12457 (2002)

93. Griffin A Excitations in a Bose-Condensed Liquid (Cambridge:

Cambridge Univ. Press, 1993)

94. Lozovik Yu E, Yudson V I Physica A 93 493 (1978)

95. Lozovik Yu E, Berman O L, Tsvetus V G Phys. Rev. B 59 5627

(1999)

96. Lifshitz E M, Pitaevskii L P Statisticheskaya Fizika (Statistical

Physics) (Moscow: Nauka, 1978) Vol. 2 [Translated into English

(Oxford: Pergamon Press, 1980)]

97. Berman O L, Kezerashvili R Ya, Lozovik Yu E, arXiv:0711.0976

98. Berman OL, Kezerashvili R Ya, Lozovik Yu E Phys. Rev. B 78

035135 (2008), arXiv:0801.1094

99. Moskalenko S A et al. Phys. Rev. B 66 245316 (2002)

100. Eisenstein J P, MacDonald A H Nature 432 691 (2004)

101. Halperin B I, Lee P A, Read N Phys. Rev. B 47 7312 (1993)

102. Heinonen O (Ed.) Composite Fermions: A Unified View of the

Quantum Hall Regime (Singapore: World Scientific, 1998)

103. Lozovik Yu E, Prokhorenko D V (to be published)

104. Berman O L, Lozovik Yu E, Gumbs G Phys. Rev. B 78 085401

(2008)

105. Chiu KW, Quinn J J Phys. Rev. B 9 4724 (1974)

106. Eguiluz A et al. Phys. Rev. B 11 4989 (1975)

107. Das Sarma S, Quinn J J Phys. Rev. B 25 7603 (1982)

108. Zhang Y et al. Phys. Rev. Lett. 96 136806 (2006)

109. Jiang Z et al. Phys. Rev. Lett. 99 106802 (2007)

110. Abanin D A et al. Phys. Rev. Lett. 98 196806 (2007)

111. Shibata N, Nomura K, arXiv:0803.2418

112. Cortijo A, Vozmediano M A H, arXiv:0709.2698

113. Katsnelson M I Eur. Phys. J. B 51 157 (2006); Tworzydlo J et al.

Phys. Rev. Lett. 96 246802 (2006)

114. Huard B et al. Phys. Rev. Lett. 98 236803 (2007)

115. Nair R R et al. Science 320 1308 (2008); arXiv:0803.3718

116. Dobryakov A L et al. Zh. Eksp. Teor Fiz. 119 309 (2001) [JETP 92

267 (2001)]

117. Das Sarma S, Hwang E H, Tse W-K Phys. Rev. B 75 121406(R)

(2007)

118. Le Doussal P, Radzihovsky L Phys. Rev. Lett. 69 1209 (1992)

119. Fasolino A, Los J H, Katsnelson M I Nature Mater. 6 858 (2007);

Abedpour N et al. Phys. Rev. B 76 195407 (2007)

120. Chen Z et al. Physica E 40 228 (2007); Lemme M C et al. IEEE

Electron Device Lett. 28 282 (2007)

121. Echtermeyer T J et al., arXiv:0712.2026

122. Zhou S Y et al. Nature Mater. 6 770 (2007)

123. Stampfer C et al. Appl. Phys. Lett. 92 012102 (2008); Ponomaren-

ko L A et al. Science 320 356 (2008)

124. �Zuti�c I, Fabian J, Das Sarma S Rev. Mod. Phys. 76 323 (2004)

125. Hill E W et al. IEEE Trans. Magn. 42 2694 (2006); Ohishi M et al.

Jpn. J. Appl. Phys. 46 L605 (2007); Cho S, Chen Y-F, Fuhrer M S

Appl. Phys. Lett. 91 123105 (2007)

126. Xiao D, Yao W, Niu Q Phys. Rev. Lett. 99 236809 (2007); Yao W,

XiaoD,NiuQPhys. Rev. B 77 235406 (2008); Rycerz APhys. Status

Solidi A 205 1281 (2008)

127. Boukhvalov DW, KatsnelsonM I, Lichtenstein A I Phys. Rev. B 77

035427 (2008)

128. Stankovich S et al. Nature 442 282 (2006)

129. Schedin F et al. Nature Mater. 6 652 (2007)

130. Blake P et al., arXiv:0803.3031

131. Bunch J S et al. Science 315 490 (2007)

132. Lusk M T, Carr L D Phys. Rev. Lett. 100 175503 (2008)

133. Sevincli H, Topsakal M, Ciraci S, arXiv:0711.2414

134. Park C-H et al. Nature Phys. 4 213 (2008)

PACS numbers: 72.80.Rj, 73.43. ± f, 81.05.Uw

DOI: 10.1070/PU2008v051n07ABEH006575

Electron transport in graphene
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1. Two-dimensional crystals

Carbon is an amazing chemical element that produces the
most diverse structures. In addition to graphite and diamond,
known since time immemorial, the attention of the scientific
community is now focused on the recently discovered full-
erenes [1 ± 3] and nanotubes [4]. Unfortunately, experimen-
ters could only work with three-dimensional (graphite,
diamond), one-dimensional (nanotubes), and zero-dimen-
sional (fullerenes) forms of carbon because all attempts to
prepare specimens of two-dimensional carbon were unsuc-
cessful until recently.

This mysterious two-dimensional form (planar hexagonal
packing of carbon atoms) was called graphene and surpris-
ingly happened to become perhaps the most studied among
all carbon allotropes: indeed, graphene is the starting point
for all calculations related to graphite, fullerenes, and
nanotubes. At the same time, the numerous attempts to
synthesize such two-dimensional crystals all failed, with only
nanometer-scale crystallites obtained [5]. This was not
surprising, however, in view of the prevailing opinion that
truly two-dimensional crystals cannot exist [6 ± 10] (in
contrast to familiar quasi-two-dimensional systems). Indeed,
graphene seeds should have a very high perimeter-to-surface-
area ratio in the course of synthesis, which should facilitate
transformation to other carbon allotropes.

This continued until 2004, when a group of researchers in
Manchester and Chernogolovka employed a surprisingly
simple and even naive approach to prepare graphene
(Fig. 1), which made graphene one of the hottest topics in
modern solid state physics [11, 12]. A separate plane (of
monatomic thickness) was segregated from a three-dimen-
sional graphite crystal using so-called micromechanical
cleavage (graphite is a spectacularly lamellar material and
can be treated as a stack of two-dimensional graphene crystals
only weakly bonded to one another). Furthermore, two-
dimensional crystals of other materials were also obtained
by this technique [12], e.g., boron nitride, some dichalcogen-
ides, and a high-temperature superconductor Bi ± Sr ±Ca ±
Cu ±O. In fact, a new class of materials was bornÐtwo-
dimensional crystals, stable in the free state.
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