
Abstract. Changing from the mass ± length ± time to the en-
ergy ± length ± time system of units is suggested as a means by
which a number of problems in physics, mechanics, and geophy-
sics can be more easily and conveniently solved using similarity
analysis and dimensional methods. Eight examples are pre-
sented, with the derivations of the Stefan ±Boltzmann radia-
tion law, total kinetic energy of a hurricane, cosmic ray energy
spectrum, etc.

Excellent books exist with descriptions of the substantiation
of the similarity and dimensional methods and with practical
formulas for using them [1, 2]. If a complete set of equations
and initial or boundary conditions for them are not available,
the parameters defining the sought-for quantity can be chosen
by applying physical (or intuitive) arguments. This quantity
possessing some dimension is sought as a monomial from a
product of dimensions of the defining parameters, each of
which is raised to some power. Equating power exponents on
the left and on the right, we obtain a set of linear algebraic
equations. The solution of this set specifies themonomial that
determines the sought-for quantity in the case where the
number of independent measurement units coincides with
the number of parameters defining the problem. If the
number of these parameters is greater than the number of
measurement units, similarity parameters arise and this
typically dictates the range of applicability of the results
obtained.

It is standard practice to choose formeasurement units the
units of massM, length L, and time T. Then, for example, the
dimension of energy is �E � �ML 2Tÿ2, density �r� �MLÿ3,
pressure �p� �MLÿ1Tÿ2, energy flux density �q� �MTÿ3,
etc.As our first example, we shall consider themost frequently
used method of dimensions, as applied to the problem of a
high-power explosion.

Example 1. It is assumed that at the initial instant of time
an explosion in a medium with density r releases energy E.
We need to find the radius and velocity of the generated

shockwave as a function of time t. The size of the explosive
device is assumed small in comparison with the shockwave
radius (to be found)Ð that is, times close to the initial instant
are not considered. The solution is meaningful as long as the
pressure jump in the wave remains large in comparison with
the ambient pressure which is considered negligible here.

We will limit the consideration to searching for the wave
radius; in compliance with standard formulas, we seek it in
the form r � Ear bt c, or in terms of dimensionality as

L � �ML2Tÿ2�a �MLÿ3�b Tc :

Setting the dimensions equal on both sides, we obtain
a� b � 0 with the dimension of mass, 2aÿ 3b � 1 with the
dimension of length, and ÿ2a� c � 0 with the dimension of
time. This linear system of algebraic equations has a unique
solution, as its determinant equalsÿ5 6� 0, and takes the form
a � 1=5 � ÿb, c � 2=5, so that

r�t� �
�
Et 2

r

�1=5

: �1�

At the same time, however, classics showed [1, 2] that the
system of units can be chosen arbitrarily. It is convenient to
make a choice in such a way that measurement units enter a
minimum possible number of key parameters. This is clarified
by the example of choosing the following system of units: time
T, energy E, length L Ð the TEL system of units. Then, the
dimension of energy is �E � � E, density �r� � ET 2Lÿ5, radius
�r� � L, and time �t � � T. Nowwe canwrite out expression (1)
right away by looking at the dimension of density. Indeed, we
need to exclude the dimensions of energy and time in the
expression for a shockwave radius, which is done by dividing
energy by density, multiplying the quotient by t 2, and taking
the fifth root of the radicand.

Example 2. Finding the expression for the constant in the
Stefan ±Boltzmann radiation law in terms of the Planck
constant �h and speed of light c. Temperature Y will be
measured in energy units �Y� � E. The dimensionality of the
Planck constant in our new TEL system of units is ��h� � ET,
and that of the speed of light is �c� � LTÿ1, as before. The
dimensionality of radiation flux is �q� � ELÿ2Tÿ1. Since the
dimension of length enters only the speed of light, we have
q � cÿ2 . . ., but now the numerator gains in addition a factor
T 2. The dimensionality of Tÿ3 can be obtained by dividing
the expressions by �h 3: q � cÿ2�hÿ3; . . . . Replacing E 4 in the
numerator by the quantity Y 4, we ultimately arrive at
q � cÿ2�hÿ3Y 4. If temperature is measured in degrees kelvin,
we need to introduce the Boltzmann constant k �
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1:38� 10ÿ25 J Kÿ1 and then, taking into account that
Y � kT, we obtain

q � k 4T 4

c 2�h 3
: �2�

Obviously, the Stefan ±Boltzmann radiation law has been
derived formore than a century nowby integrating the Planck
distribution function over frequency, which gives the numer-
ical factor p 2=60 in the law (2). Nevertheless, in view of its
clarity we consider our derivation methodically useful.

Example 3. Derivation of the equation of state of an ideal
gas, i.e., pressure as a function of the number of particles n
and temperature. The dimensions are as follows: �p� � ELÿ3,
�n� � Lÿ3, �T � � E. It is immediately clear that

p � nY ; �3�

or, if temperature is measured in kelvins, one finds

p � nkT : �3 0�

Example 4. The formula for the square of the (isothermal)
speed of sound is also obvious:

c 2 � p

r
� ELÿ3

ET 2Lÿ5
� L 2Tÿ2 : �4�

Example 5. The kinetic energy K of hurricane. Hurricanes
in the tropics stretch across the entire troposphere, i.e., to
altitudes of 15 to 18 km and masswise involve nearly three-
fourths of the mass M1 of the atmospheric column. The
dimension is �M1� � ET 2Lÿ4. The convection intensity is
dictated by the buoyancy flux b � grÿ1h r 0w 0i, where g is
the acceleration of gravity, and r 0 and w 0 are the fluctuations
of density and vertical velocity, respectively. The dimension
of interest is �b� � L 2Tÿ3, and the value typical of hurricanes
is on the order of 3� 10ÿ2 m2 sÿ3. The emerging convective
column sucks in air from the surrounding area of hundreds
and even thousands of kilometers in diameter, thereby
concentrating the angular momentum of air masses on the
rotating planet. This causes the buildup of the tangential
component of wind and increases heat release from the
surface of the ocean, which enhances convection, and so
forth. The friction of wind on the surface of sea water poses a
limit on the process. The corresponding characteristic on a
rotating planet is the Coriolis parameter lC � 2o sin y, where
y is the latitude, and �lC� � Tÿ1. The dimension of energy is
present only in the dimension of mass of the atmospheric
column, which needs to be multiplied by b 2 to eliminate the
dimension of Lÿ4; now the denominator contains only Tÿ4,
which is eliminated by dividing by l 4C. As a result, we have

K �M1b
2lÿ4C : �5�

Formula (5) was first obtained in Ref. [3], where the
results of studying convection in rotating fluid were used,
containing the velocity squared scaleU 2 � blÿ1C , and the area
scale S � blÿ3C . These scales multiplied by the massM1 give us
formula (5). For y � 20�

Ê
, we have lC � 0:5� 10ÿ4 sÿ1, and

for b � 3� 10ÿ2 m2 sÿ3 and M1 � 104 kg mÿ2 we find
K � 2� 1018 J. Hurricanes occur at high latitudes as well,
where they are considerably smaller: lC � 1:37� 10ÿ4 sÿ1 at
the latitude 70�

Ê
, i.e., nearly three times larger than in the

tropics, even though the wind force at the 70�
Ê
latitude may

also exceed the hurricane force of 33 m sÿ1.
Example 6. The kinetic energy K0 of circulation of the

entire planetary atmosphere. This quantity is calculated [4]
from the mean density of solar energy flux q with the
dimension ELÿ2Tÿ1, the heat capacity of the atmosphere cp
with the dimension L 2Tÿ2Kÿ1, whereK has the dimension of
temperature in degrees kelvin, the size of the planet (its
diameter) r, and the s constant in the Stefan ±Boltzmann
radiation law that ensures a stable temperature regime of the
planet: �s� � ETÿ1Lÿ2Kÿ4. We seek �K0� � E. We wish to
compose combinations that successively eliminate the dimen-
sions of K, T, and L. We will write out the result as a product
of factors implementing this procedure:

E �
�
s1=4

cp

�1=2

�q7=4�1=2r 3 �
�
s1=4q 7=4

cp

�1=2

r 3 : �6�

If we followed the familiar formula in the MLTK system
of units, wewould have a linear set of four algebraic equations
with four unknowns. In fact, our TEL system is simpler and
can serve as a test for the standard procedure. For planets that
rotate sufficiently fast, formula (6) must be multiplied by a
rotation scaling parameter P � or=c, where c is the speed of
sound [4].

Example 7. The shape of the integral energy spectrum
of galactic cosmic rays (CRs) in the energy range
104E < 3� 105 GeV. The lower bound on energy emerges
because CRs of solar origin are predominant at lower
energies, while at the upper bound the Larmor radius is
found to be comparable to the thickness of the galactic disk
and particles cease to be effectively confined by the galactic
magnetic field [5]. The primary sources of energy are super-
novas exploding 2 ± 3 times per century. Their power is
G � 3� 1033 W, and �G � � E=T. The bulk energy density w
of CRs is about 0.5 eV cmÿ3, i.e., �w� � ELÿ3, as it is for
pressure. The integral energy spectrumN�5E� is the number
of particles with energy 5E recorded per unit time per unit
area per unit solid angle: �N�5E�� � Lÿ2Tÿ1 andN�5E� �
f �G;w;E �. Only energy density has the dimension of length,
so that N�5E � � w2=3, only power G possesses the time
dimension to the required power, so that N�5E � � w 2=3G,
and to eliminate the energy dimension it is necessary that the
following relation be hold:

N�5E � � w 2=3GEÿ5=3 : �7�

The experimental value of the exponent in the function
N�5E� isEÿ1:7. A complete phenomenological derivation of
the energy spectrumN�5E � using the Fermi mechanism for
accelerating CR particles can be found in Ref. [6]. For the
energy range 3� 105 4E < 108 GeV, the spectrum becomes
steeper and the exponent approaches ÿ2:1. In Ref. [6] its
value was found using an estimate of the bulk density of
energy w for high-energy cosmic rays, which yielded
ÿ19=9 � ÿ�2� 1=9�.

Example 8. The number of tsunamis as a function of the
height of wave breaking on the coast. Tsunamis are generated
by underwater earthquakes (EQs), the majority of which
occur near mid-ocean ridges where the Earth's crust is
thinner. The source of energy in geodynamics is the
geothermal flux of power F � 4:5� 1013 W [7]. The measure
of intensity of an earthquake is the energy E it releases. The
geothermal flux generates convection in the mantle and splits
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the crust into tectonic plates. Owing to the spatial nonunifor-
mity of convection, plate velocities (not faster than several
centimeters per year) create stress at the plate edges and an
EQ is a way of stress relaxation. The dimension of the
cumulative number N�5E � of EQs is that of frequency.
Recalling that �F � � ETÿ1, we immediately obtain

N�5E� � F

E
f �Pi� ; �8�

wherePi are scaling parameters. The basic parameter for EQs
is the ratio of fault length L � �E=s�1=3, where s is the stress
released in the course of the earthquake, to crust thicknessH.
An analysis of EQ catalogues shows that when P �
L=H5O�1�, then the function f �P� ! const. The value of
this constant is close to 0.4 [8]. The oceanic crust is thin, so for
underwater EQs we have N�5E � � Eÿ1. Obviously, other
conditions being equal, the height h of the tsunami wave is
proportional to theEQenergy.Hence, the expected number of
tsunami waves should be N�5E � � hÿ1. Indeed, according
to Ref. [8], the observational data point to a power law with
the exponent equal toÿ1:01.

Cumulative distributions of landslides andmud flows also
have exponents close to ÿ1, depending on their mass M:
N�5M � /Mÿn, where 0:954 n4 1:1, and the number of
lakes depending on their area S: N�5S � / Sÿ0:95, and so
forth. There is a physical explanation: such natural objects
and phenomena are formed in the process of the long-term
reaction of a system to random factors whose correlation time
is short in comparison with the response time of the system.
The correlation function of random forces is then a delta
function, and their spectrum is that of white noise, and we
observe random walk behavior in the momentum space. This
explains many statistical patterns in nature [9], justifies our
dimensional analysis, and makes it possible to establish limits
to its applicability. For instance, this approach elegantly
explains the main results of the theory of locally uniform
and isotropic Kolmogorov ±Obukhov turbulence [9].

It appears that the analysis given here on the basis of the
TEL system of units is advisable on methodological grounds.
The author uses it successfully in his lectures on natural
phenomena at the Physics Department of Moscow State
University and at the Aerocosmic Department of the
Moscow Institute of Physics and Technology. The simplicity
never fails to impress.

This work was partly supported by the RAS Presidium
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and the grant NSh 4166 2006.5 of the President, Russian
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