
Abstract. The asymmetry of the relativistic addition law for
noncollinear velocities under the velocity permutation leads to
two modified triangles on a Euclidean plane depicting the addi-
tion of unpermuted and permuted velocities and the appearance
of a nonzero anglex between two resulting velocities. A particle
spin rotates through the same angle x under a Lorentz boost
with a velocity noncollinear to the particle velocity. Three
mutually connected three-parameter representations of the an-
gle x, obtained by the author earlier, express the three-para-
meter symmetry of the sides and angles of two Euclidean
triangles identical to the sine and cosine theorems for the sides
and angles of a single geodesic triangle on the surface of a
pseudosphere. Namely, all three representations of the angle
x, after a transformation of one of them, coincide with the
representations of the area of a pseudospherical triangle ex-
pressed in terms of any two of its sides and the angle between
them. The angle x is also symmetrically expressed in terms of
three angles or three sides of a geodesic triangle, and therefore it
is an invariant of the group of triangle motions over the pseudo-
sphere surface, the group that includes the Lorentz group.
Although the pseudospheres in Euclidean and pseudo-Eucli-
dean spaces are locally isometric, only the latter is isometric

to the entire Lobachevsky plane and forms a homogeneous
isotropic curved 4-velocity space in the flat Minkowski space.
In this connection, relativistic physical processes that may be
related to the pseudosphere in Euclidean space are especially
interesting.

1. Introduction

The velocity addition law in special relativity follows from the
Lorentz transformation of velocity, under which the trans-
formed velocity is the sum of the velocity undergoing the
transformation and the velocity of the Lorentz transforma-
tion (boost). As a result, the addition of two relativistic
velocities is most easily presented in terms of 4-velocities and
is reduced to the vector sum of spatial parts of the
corresponding 4-velocities in which, however, the spatial
part of the boost velocity is stretched. This relativistic
velocity addition law is represented on a Euclidean plane as
a modified velocity addition triangle. The vector sum of
spatial parts of 4-velocities is changed when permuting the
added velocities because the velocity that was regarded as
undergoing the transformation before the permutation
becomes the boost velocity and acquires stretching, while
the old boost velocity becomes the velocity that undergoes
transformation and enters the sum without stretching.
Ultimately, the relativistic sum of two velocities is not
symmetric under the permutation of added velocities if they
are noncollinear. Permutation of such velocities leads to two
different modified triangles depicting the velocity addition on
a Euclidean plane.

Mathematically, this asymmetry is related to the non-
communicativity of Lorentz boosts with noncollinear velo-

V I Ritus Lebedev Physical Institute, Russian Academy of Sciences,

Leninskii prosp. 53, 119991 Moscow, Russian Federation

Tel. (7-499) 132 64 26

E-mail: ritus@lpi.ru

Received 14 April 2008

Uspekhi Fizicheskikh Nauk 178 (7) 739 ± 752 (2008)

DOI: 10.3367/UFNr.0178.200807d.0739

Translated by K A Postnov; edited by A M Semikhatov

METHODOLOGICAL NOTES PACS numbers: 03.30.+p, 02.40.Ky

Permutation asymmetry of the relativistic velocity addition law

and non-Euclidean geometry

V I Ritus

DOI: 10.1070/PU2008v051n07ABEH006631

Contents

1. Introduction 709
2. Velocity addition triangle on a Euclidean plane 710
3. Particle spin rotation angle under a Lorentz transformation of its velocity 711
4. Transforming an asymmetric system of expressions for the angle x into a symmetric one 712
5. Permutation of added velocities and the three-parameter symmetry of x 712
6. Theorems of sines and cosines in the geometry of geodesic triangles on a pseudosphere 714
7. A pseudosphere in Euclidean space 714
8. The area of a geodesic triangle on a pseudosphere 715
9. A pseudosphere in the pseudo-Euclidean space 716

10. The metric of the surface of a pseudosphere 717
11. Pseudospheres in Euclidean and pseudo-Euclidean spaces 718
12. The Hilbert theorem 719
13. A pseudosphere in Euclidean space as an arena for extended relativistic objects 720
14. Conclusion 721

References 721

Physics ±Uspekhi 51 (7) 709 ± 721 (2008) # 2008 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



cities. The relativistic sum of two velocities can be represented
as the velocity given to a particle at rest by two boosts. Hence,
the velocities given to a particle at rest by noncollinear boosts
depend on the boost order. As a result, the velocity
permutation of two noncollinear velocities yields two vector
sums that have the same value but different directions. The
angle o between these directions is considered in detail in the
present paper. It is through this angle that the spin of a
particle directed along its velocity rotates when the particle
velocity is changed by a noncollinear Lorentz boost.

In the most general case, the angle o is determined by
three scalar parameters: the absolute values of the added
velocities and the angle between them. It can also be
represented through three similar parameters of any two
velocities of the three connected by a Lorentz transforma-
tion. As a result, for any Lorentz transformation of velocity,
there are three representations for the angle o determined by
symmetric scalar functions of two vectors taken as indepen-
dent variables from three velocities connected by the Lorentz
transformation. The symmetry of these functions under the
permutation of their vector arguments means, in particular,
that o is independent of the permutation of the velocity
undergoing transformation and the boost velocity. Therefore,
one of the three representations for o is shared by two
Lorentz transformations that differ by the above permuta-
tion. Correspondingly, it is shared by both modified velocity
addition triangles.

Two other representations of o, which are related to one
addition triangle by a simple but important algebraic
transformation, are converted into two representations of o
related to another triangle. It then turns out that all three
representations ofo can be described by one symmetric scalar
function o�a; b� that depends on two vectors having the
meaning of the boost velocity and the velocity undergoing
transformation (or the inverse boost velocity and the
transformed velocity) in one addition velocity triangle or
another.

Thus, two representations of the angle o contain all the
information about the sides and angles of both addition
velocity triangles. This information can be formulated in the
following statement: the absolute values of three non-
stretched velocities in two Euclidean triangles and their
opposite angles satisfy the sine and cosine theorems for the
sides and angles of one geodesic triangle on the surface of a
pseudosphere (the surface of constant negative Gaussian
curvature). Moreover, three-parameter representations for
the angle o coincide with representations of the area S of this
geodesic triangle measured in units of the inverse curvature,
and hence, according to the geometry on a pseudosphere,
with the defect of the sum of its angles A, A1, and A2:

o � jK jS � pÿ Aÿ A1 ÿ A2 :

In this way, another three-parameter representation of the
angle o appears, this time in terms of the inner angles of the
geodesic triangle (i.e., angles adjacent to boost velocities in
two Euclidean triangles). Moreover, the angleo (an invariant
of the relativistic velocity addition under permutation)
acquires a purely geometric interpretation as being an
invariant of the group of motions of the geodesic triangle on
the surface of a pseudosphere. This group ofmotions contains
the Lorentz group.

In Euclidean and pseudo-Euclidean three-dimensional
spaces, two-dimensional surfaces with constant negative

Gaussian curvature (pseudospheres) have the same internal
geometry (metric), but differ substantially in terms of their
realizations in these spaces.

A pseudosphere in a pseudo-Euclidean space is a space-
like surface, a sheet of a two-sheet hyperboloid with the
rotation axis aligned with the time axis. It has an infinite
area, and is regular, homogeneous, and isotropic at all of its
points; its metric coincides with that of the entire Loba-
chevsky hyperbolic plane. Space and time coordinates of a
point on the surface of the pseudosphere differ from the space
and time components of a 4-velocity only by the factor
jK jÿ1=2.

In the three-dimensional Euclidean space, as was proved
by Hilbert, there is no two-dimensional smooth surface
isometric to the entire Lobachevsky plane. A pseudosphere
in this space (the Beltrami surface) has a finite area and is
isometric only to some region of the Lobachevsky hyperbolic
plane. Such constraints on a pseudosphere in Euclidean space
come from the impossibility of covering its surface by an
infinite Chebyshev network of coordinate lines x; y whose
network angle f�x; y� would be a regular solution of the
nonlinear equation

q2f
qx qy

� sinf ;

satisfying the condition 0 < f < p.
Although pseudospheres in the Euclidean and non-

Euclidean space are locally isometric and allow representing
the relativistic velocity addition by geodesic triangles with
identical metric properties on their surfaces, they are arenas
of substantially different physical processes. The nonhomo-
geneity and anisotropy of a pseudosphere in Euclidean space
leads to nonlinear wave processes, in contrast to linear
processes pertaining to the homogeneous and isotropic
surface of a pseudosphere in pseudo-Euclidean space.

2. Velocity addition triangle
on a Euclidean plane

As is well known (see, e.g., æ 5 in [1]), the velocity v of a particle
is transformed by a Lorentz boost v1 to the velocity v2 with the
components

v2x � vx � v1
1� vv1

; v2y � vy
�1� vv1�g1

; v2z � vz
�1� vv1�g1

;

g1 �
1��������������

1ÿ v 2
1

q �1�

if v1 is directed along the x axis. These formulas can be
combined into one vector relation

v2 � 1

1� vv1

�
v1

�
vv1

v 21

�
1ÿ 1

g1

�
� 1

�
� v

g1

�
; �2�

as was done in [2] or in the author's paper [3]. Here and below,
we use the notation from that paper. The asymmetry of the
expression for v2 under the permutation of v and v1 is obvious.

However, a more compact expression for the velocity
transformation can be obtained if we use spatial parts

u � vg ; u1 � v1g1 ; u2 � v2g2 �3�

and time components g, g1, and g2 of the corresponding
4-velocities u a � �u; g�, g � �������������

u2 � 1
p

, and analogously for u a
1 ,

710 V I Ritus Physics ±Uspekhi 51 (7)



and u a
2 . Then formula (2) and the inverse transformation

become

u2 � u� u1
C1

; u � u2 ÿ u1
C1

; u1 � �u2 ÿ u�C1 ; �4�

where the coefficient

C1 � g1 � 1

g� gg1 � uu1
� g1 � 1

g2 � g2g1 ÿ u2u1
� g� g2

1� gg2 � uu2
�5�

is expressed in terms of three independent parameters, the
absolute values of any two velocities participating in the
Lorentz transformation and the angle between them. This
coefficient coincides with C introduced in [3] but is marked
with subscript 1 to stress the permutation asymmetry due to
the Lorentz boost velocity u1.

For the Lorentz boost velocity u1 in (4), it is natural (but
not necessary) to take the last representation in (5) as the
coefficient C1, such that the right-hand side of u1 depend
only on u and u2. A similar argument also applies to
expressions for the velocities u2 and u in Eqn (4), in which
the first and the second representations from (5) can be
respectively used as C1.

We also give expressions for the time components of
4-velocities u a, u a

1 , and u a
2 in terms of the spatial parts of the

other two velocities participating in the Lorentz transforma-
tion:

g2 � gg1 � uu1 ; g � g2g1 ÿ u2u1 ;

g1 �
�g� g2�2

1� gg2 � uu2
ÿ 1 :

�6�

The last expression allows representing C1 as a function of
only the absolute values of all the three velocities:

C1 � g1 � 1

g� g2
: �7�

We note that in passing from the direct to the inverse
Lorentz transformation, i.e., under changing u1 $ ÿu1,
u$ u2, the expressions for the velocities u2 and u in Eqn (4)
transform into each other, and the expression for u1 trans-
forms into itself. A similar asymmetry holds for the
corresponding expressions for time components (6), as well
as for expressions (5) for C1.

Formulas (4) and (5) represent the relativistic velocity
addition law, whose only difference from the ordinary
addition of 3-vectors is that only one added velocity (the
Lorentz boost one) enters stretched by 1=C1 times. The
bottom part of Fig. 1 shows the relativistic velocity addition
triangle for u and u1 when their values and the angle between
them are u � 2, u1 � 1, and y � 60�. Then the dilation factor
is 1=C1 � 2:65. It is easy to see that this triangle describes all
formulas (4) for a corresponding change in the directions of u1
and u.

Thus, the relations derived above demonstrate the
peculiar active role of the Lorentz boost velocity u1, which
is proportional to the difference between the transformed
velocity and the velocity undergoing transformation. This
special role disappears in the nonrelativistic approximation,
when g � g1 � g2 � 1 and u, u1, and u2 are small compared
to 1. Then C1 � 1 and the above formulas become
v2 � v� v1.

3. Particle spin rotation angle
under a Lorentz transformation of its velocity

Wigner showed that the angle between the spin of a massive
particle and its velocity is not Lorentz invariant [4, 5]. For
example, if a particle has a velocity v and the spin directed
along v, and a Lorentz boost gives it a velocity v1 in the
direction normal to v, then the particle velocity rotates
through the angle #,

sin# � v1
v2
� u1g

u2
; �8�

and becomes equal to v2, while the spin rotates through the
smaller angle

o � #ÿ d � arcsin
uu1

1� gg1
; sin d � u1

u2
�9�

(see Refs [4, 5]). But if the particle moves with the speed of
light, v � v2 � 1, then d � 0 and the spin rotation angle
coincides with the velocity rotation angle. In this case, the
angle between spin and velocity is Lorentz invariant, as is the
value of the spin itself along the particle motion direction.

In the more general case where the velocities v and v1 are
not orthogonal, the spin rotation was considered by Stapp [6],
the author [7], and some others. We here give three closely
related representations for the angleo obtained in [7]. Each of
them is explicitly expressed in terms of three independent
parameters, the absolute values of any two velocities among
u, u1, u2 connected by the Lorentz transformation, and the
angle between these two velocities:

o � 2 arctan

���uu1���
�g� 1��g1 � 1� � uu1

� 2 arctan

���u1u2���
�g1 � 1��g2 � 1� ÿ u1u2

� 2 arctan

���u2u���
�g2 � 1��g� 1� � u2u

: �10�

All three formulas are given as Eqns (32), (36) ± (38) in [7], and
Eqns (20) ± (22) in [3]. They are directly related to the non-
Euclidean geometry on the surface with negative constant
Gaussian curvature, i.e., to the Lobachevsky geometry. We
consider this relation in what follows.

O

u

C

u1
C1

u00

u

u1

u2

y

y

#

pÿ y

pÿ y

pÿ y0

d

o

1

1

2

2

3

Figure 1. Velocity addition triangles corresponding to formulas (4) and

(16).
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4. Transforming an asymmetric system
of expressions for the angle x
into a symmetric one

Wewrite three expressions foro in terms of the internal angles
pÿ y and pÿ y 0 of the Euclidean velocity addition triangle
(see Fig. 1, the lower triangle). In this case, the asymmetry
produced by the Lorentz boost velocity u1 is more evident:

tan
o
2
� uu1 sin �pÿ y�
�g� 1��g1 � 1� ÿ uu1 cos �pÿ y�

� u2u1 sin �pÿ y 0�
�g2 � 1��g1 � 1� ÿ u2u1 cos �pÿ y 0�

� uu2 sin#

�g� 1��g2 � 1� � uu2 cos#
: �11�

Indeed, in the first two expressions for o, the cosines of the
internal angles pÿ y and pÿ y 0 of the triangle adjacent to the
active side enter with a negative sign, but in the third formula,
the cosine of the internal angle # opposite to the active side
enters with a positive sign.

This asymmetry of the expressions for o is related to the
special role of the Lorentz boost velocity u1 in the Euclidean
velocity addition triangle u1 � �u2 ÿ u�C1. Changing the
boost velocity sign preserves the active role of this velocity
and only changes the roles of u and u2 as the velocity
undergoing the transformation and the resultant velocity,
without changing their values or directions [see Eqn (4)]. The
velocities u and u2 play a passive role in the considered
triangle. In the first case, the active vector u1=C1 acts on the
passive vector u and transforms it into the passive vector u2.
In the second case, the active vector ÿu1=C1 acts on the
passive vector u2 and transforms it into the passive vector u
(see Fig. 1, the lower triangle).

To reveal the hidden symmetry in (11), it is significant that
the third expression for o in Eqn (11) can be identically
transformed into the first two with the old velocities u and u2
but the new angle d � #ÿ o instead of # and with the minus
sign before cos d:

tan
o
2
� uu2 sin d
�g� 1��g2 � 1� ÿ uu2 cos d

; d � #ÿ o : �12�

Indeed, because

tan
o
2
� sino

1� coso
� uu2 sin#

�g� 1��g2 � 1� � uu2 cos#
; �13�

we have

�g� 1��g2 � 1� sino� uu2 cos# sino

� uu2 sin#� uu2 sin# coso

or

�g� 1��g2 � 1� sino � uu2 sin �#ÿ o�
� uu2 sin �#ÿ o� coso� uu2 cos �#ÿ o� sino ;

whence

sino
��g� 1��g2 � 1� ÿ uu2 cos �#ÿ o��
� uu2 sin �#ÿ o��1� coso� ;

which is formula (12). Thus, the last expression in (11) can be
substituted by Eqn (12) such that all three representations for
tan �o=2� eventually differ only by a cycle change of variables:
�u; u1; pÿ y� ! �u1; u2; pÿ y 0� ! �u2; u; d� : �14�

We note that the sum of the angles here is pÿ o, i.e., smaller
than p.

5. Permutation of added velocities
and the three-parameter symmetry of x

In the plane of vectors u and u1, we introduce a vector u
00 with

the length u 00 � u2 directed at the angle d to u; this allows
rewriting formula (12) in the form

tan
o
2
�

���u 00u���
�g 00 � 1��g� 1� ÿ u 00u

: �15�

The appearance of such a formula is not accidental. It
emerges if we the permute the velocities u and u1 in velocity
addition law (4), i.e., if we consider u as the Lorentz boost
velocity and u1 as the velocity undergoing the transformation.
Obviously, instead of addition rule (4), we then find the
addition law

u 00 � u1 � u

C
; u1 � u 00 ÿ u

C
; u � �u 00 ÿ u1�C ; �16�

in which the new vector u 00 plays the role of the velocity
undergoing transformation and the coefficient C is given by

C � g� 1

g1 � gg1 � uu1
� g� 1

g 00 � gg 00 ÿ uu 00
� g1 � g 00

1� g1g 00 � u1u 00
;

�17�

which differs from (5) by the change u$ u1, u2 $ u 00. The
coefficient C, similarly to the boost velocity u in (16), has no
index but differs from C introduced in Ref. [3], which is now
denoted as C1 (see above). For C, the following expression
also holds:

C � g� 1

g1 � g2
�18�

[cf. Eqn (7)].
We note that the product of two dilatations 1=C and 1=C1

is always greater than or equal to one:

1

CC1
� �g1 � g2��g� g2�
�g� 1��g1 � 1� 5 1 ; �19�

which is not the case for each of them separately.
Velocity addition law (16) is also demonstrated by a

modified triangle in Fig. 1 (the upper triangle) with the same
velocity values u � 2, u1 � 1 and the angle between them
y � 60� as used in rule (4). But now the boost velocity u
participates in this triangle stretched by 1=C � 1:72 times, in
contrast to 1=C1 � 2:65 for the boost velocity u1 in the
triangle corresponding to rule (4).

In Eqns (17) and (18), we again have

g � g1g2 ÿ u1u2 ; g2 � g 00 � gg1 � uu1 ; �20�
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and g1, in contrast to Eqn (6), takes the form of the scalar
product of two 4-vectors,

g1 � gg 00 ÿ uu 00 ; �21�

if we use u 00. This is the standard form of the time component
of the 4-velocity u1; g1 undergoing transformation expressed
in terms of the 4-velocity u; g of the Lorentz boost and the
4-velocity u 00; g 00 transformed in accordance with law (16).
The more complicated expression (6) for g1 is due to addition
law (4), in which g1 is the time component of the 4-velocity
u1; g1 of the Lorentz boost and not of the 4-velocity under-
going the transformation or the transformed one.

As a result, velocity addition law (16), like law (4), is
characterized by the same angle o, which is now represented
by the expressions

o � 2 arctan

���uu1���
�g� 1��g1 � 1� � uu1

� 2 arctan

���uu 00���
�g 00 � 1��g� 1� ÿ u 00u

� 2 arctan

���u 00u1���
�g 00 � 1��g1 � 1� � u 00u1

: �22�

Under the permutation u$ ÿu, u1 $ u 00, which does not
change addition law (16), the first and the second expressions
for o transform into each other, while the third expression is
preserved.

These three formulas for o are related to the correspond-
ing representations of o in Eqn (10) by the permutation
u$ u1, u

00 $ u2, with the first of them, as functions of u, u1,
being simply identical due to the symmetry under this
permutation. We emphasize again that the third expression
for o in (10) or (11) obtained for the velocity triangle
u1 � �u2 ÿ u�C1 is identically transformed into the second
formula for o in Eqn (22) obtained for the velocity triangle
u � �u 00 ÿ u1�C. Similarly, it can be shown that the third
formula for o in Eqn (22) is identical to the second formula
for o in Eqn (10) or (11).

Thus, the global symmetry ofo under all possible velocity
permutations is reflected by three expressions: by the first and
second ones in (10) and by the second one in (22). Each of
them is represented by the same scalar function o�a; b�
symmetrically depending on two velocity vectors:

o�a; b� � 2 arctan

���ab���
�a 0 � 1��b 0 � 1� � ab

;

a 0 �
��������������
a 2 � 1

p
; b 0 �

��������������
b 2 � 1

p
:

�23�

The symmetry can then be expressed as the chain of three
equalities:

o�u; u1� � o�u2;ÿu1� � o�u 00;ÿu� � o�u1; u� : �24�

Indeed, the first equality reflects the symmetry of addition
law (4) under the permutation u1 $ ÿu1, u$ u2 relating the
direct and inverse Lorentz transformations with velocities
�u1. The second equality reflects the symmetry under the
permutation u1$ u, u2 $ u 00 relating addition laws (4) and
(16). Finally, the third equality reflects the symmetry of
addition law (16) under the permutation u$ ÿu, u 00 $ u1,
i.e., the direct and inverse Lorentz transformations with
velocities �u. At the same time, this permutation brings us

back to the original function with permuted arguments,
which confirms its symmetry.

We note that the arguments ofo in equalities (24) have the
meaning of the velocity undergoing the transformation and
the boost velocity belonging to one velocity addition triangle
or another.

The function o�a; b� can be regarded as the function

o�a; b; z� � 2 arctan
ab sin z

�a 0 � 1��b 0 � 1� � ab cos z
�25�

of three variables: the absolute values a and b of two velocities
and the angle z between them, which is external in the
corresponding Euclidean velocity triangle if one of the a, b
velocities is active, and internal if both the a, b velocities are
passive. Such a functionwas used by the author in Eqns (36) ±
(38) in [7]. Three terms in equality (24) are written in terms of
this function as

o�u; u1� � o�u; u1; y� ; �26�
o�u2;ÿu1� � o�u1; u2; y 0� ; �27�
o�u 00;ÿu� � o�u2; u; pÿ d� ; u 00 � u2 ; �28�

where y, y 0, and pÿ d are the external angles of twoEuclidean
velocity triangles (see Fig. 1). Equality (24) itself is now
rewritten as an equality of the right-hand sides of formulas
(26) ± (28).

Below, however, instead of the external angles y, y 0, and
pÿ d, it is more convenient to use the internal angles adjacent
to them, pÿ y, pÿ y 0, and d of the same triangles. Then, after
expressing o�a; b; z� through `another' function f �a; b; pÿ z�
depending on the angle adjacent to z,

o�a; b; z� � f �a; b; pÿ z�

� 2 arctan
ab sin �pÿ z�

�a 0 � 1��b 0 � 1� ÿ ab cos �pÿ z� ; �29�

three-parameter symmetry (24) can be represented by the
equality of three expressions for the angle o:

o � f �u; u1; pÿ y� � f �u1; u2; pÿ y 0� � f �u2; u; d� : �30�

Each of these expressions is determined by three independent
parameters: the absolute values of the passive and active
velocities and the internal angle between them, i.e., by the
parameters of the two Euclidean velocity triangles (4) and
(16). It is essential that three parameters determining the
function f in Eqn (30) determine two other three parameters
uniquely owing to three equations (34), (35) given below.

We note that the function f of the same arguments as in
Eqn (30) has already appeared in the two equations (11) and
(12) as the term tan � f=2�. The third representation for the
angleo in Eqn (11), written aso�u2; u; #�, is transformed into

o�u2; u; #� � o�u2; u; pÿ d� � f �u2; u; d� ; d � #ÿ o

�31�

using Eqns (12) and (29). The first equality here is nontrivial.
Essentially, it is a functional equation for o. It relates passive
velocities and the internal angle between them in velocity
addition triangle (4) and the passive and active velocities and
the external angle between them in velocity triangle (16).
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6. Theorems of sines and cosines in the geometry
of geodesic triangles on a pseudosphere

The numerators of the arctan arguments in Eqns (10) and (22)
are the lengths of equal vectors

�uu1� � �u2u1� � �uu2�C1 � �uu 00� � �u 00u1�C ; �32�

and the denominators are the equal quantities

�g� 1��g1 � 1� � uu1 � �g2 � 1��g1 � 1� ÿ u2u1

� C1

ÿ�g� 1��g2 � 1� � uu2
� � �g 00 � 1��g� 1� ÿ u 00u

� C
ÿ�g 00 � 1��g1 � 1� � u 00u1

�
; �33�

where u and u2 are related by the Lorentz transformation with
the velocity u1 [see Eqn (4)], and u1 and u 00 are related by the
Lorentz transformation with the velocity u [see Eqn (16)].

The equality of the lengths of vectors, which do not
contain C1 and C in Eqn (32), can be expressed as

u

sin �pÿ y 0� �
u1
sin d

� u2 � u 00

sin �pÿ y� : �34�

On the other hand, the quantities in Eqn (33) are different
representations of the sum 1� g� g1 � g2, g2 � g 00 in terms of
the lengths of two vectors and the angle between them;
therefore, it follows from Eqn (33), in particular, that

g � g1g2 ÿ u1u2 ; g1 � gg 00 ÿ uu 00 ; g2 � g 00 � gg1 � uu1 :

�35�

Because u, u1, u2, and u 00 are the spatial parts of 4-velocities
and g, g1, and g2 � g 00 are their time components, these
quantities can be characterized by hyperbolic angles a, a1,
and a2 such that

u � sinh a ; g � cosh a ; u1 � sinh a1 ; g1 � cosh a1 ;

u2 � u 00 � sinh a2 ; g2 � g 00 � cosh a2 : �36�

Then, Eqn (34) takes the form of the `theorem of sines' for a
triangle in the hyperbolic Lobachevsky geometry (the
geometry on a pseudosphere),

sinh a
sin �pÿ y 0� �

sinh a1
sin d

� sinh a2
sin �pÿ y� ; �37�

and the three relations in (35) take the form of the `theorem of
cosines' in this geometry:

cosh a � cosh a1 cosh a2 ÿ sinh a1 sinh a2 cos �pÿ y 0� ;
cosh a1 � cosh a2 cosh aÿ sinh a2 sinh a cos d ; �38�
cosh a2 � cosh a cosh a1 ÿ sinh a sinh a1 cos �pÿ y� :

These two theorems uniquely determine the geodesic velocity
triangle on the surface of a pseudosphere up to its motions as
a whole along the surface (i.e., without cuts or folds and with
the lengths and angles preserved).

7. A pseudosphere in Euclidean space

A pseudosphere, or the Beltrami surface, is the surface of
constant negative curvature formed by rotation of a planar

curve, the tractrix, around its asymptote. The tractrix (or the
equitangential curve) is the curve with an asymptote and a
cusp, and has the property that the segment of the tangent
from the cusp to the asymptote has a constant length, denoted
by a in Fig. 2 and below.

In cylindrical coordinates z; r;j, the equation of a
pseudosphere with the rotation axis along z can be written as

z � �
�
a ln

a�
����������������
a 2 ÿ r 2

p
r

ÿ
����������������
a 2 ÿ r 2

p �
;

0 < r4 a ; ÿp < j4 p :
�39�

For a constant j and variable r, this equation describes the
meridians of the pseudosphereÐ tractrices that are also
geodesic arcs; for a constant r and variable j, it describes
the parallels of the pseudosphereÐ circles (Fig. 3). The
Gaussian curvature of the pseudosphere is ÿ1=a 2. The
surface area and volume of the pseudosphere are 4pa 2 and
�2=3�pa 3, respectively. Below, however, we mostly consider
the upper half of the pseudosphere, for which z > 0. The area
and volume of this Beltrami funnel are 2pa 2 and �1=3�pa 3.

Equation (39) for the pseudosphere can also be written in
the parametric form

x � a sin u cosj ; y � a sin u sinj ;

z � a

�
ln cot

u

2
ÿ cos u

�
; 0 < u < p ; ÿp < j4 p

�40�
if the radius of the latitudinal circle is represented as
r � a sin u, where 0 < u < p. Then the upper and lower
Beltrami funnels, which constitute a pseudosphere, corre-
spond to values u in the respective ranges 0 < u4 p=2 and

2

z

1

0

ÿ1

ÿ2

1

a

a

r

Figure 2. A tractrix with the parameter a � 1.
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p=24 u < p, and their common latitudinal circle r � a (the
cuspidal edge) corresponds to u � p=2. Although all func-
tions (40) determining the surface are analytic in the
parameter range of u and j (and even in the extended interval
ÿ1 < j <1 forj), the surface is not regular at the cuspidal
edge, it cannot be extended beyond the cuspidal edge
continuously with a continuous change of the tangent plane.

A geodesic triangle on the pseudosphere with the
Gaussian curvature K � ÿ1=a 2 (i.e., a triangle whose sides
are geodesic arcs) with the internal anglesA � pÿ y 0,A1 � d,
and A2 � pÿ y has opposite sides with the lengths aa, a1a,
and a2a, where the hyperbolic angles a, a1, and a2 and the
anglesA,A1, andA2 satisfy theorems (37) and (38) (see Fig. 3).

Mapping the Euclidean velocity triangle u1 � �u2 ÿ u�C1

on the pseudospherical surface preserves the internal angles
of the triangle pÿ y and pÿ y 0 that are opposite to its passive
sides u2 and u, as well as the lengths of these sides, which are
measured by the hyperbolic angles a2 and a. This means that
they are identically mapped into the angles A2 � pÿ y and
A � pÿ y 0 and their opposite sides a2a and aa of a geodesic
triangle on the pseudospherical surface. At the same time, the
angle # that is opposite to the active side u1=C1 of the
Euclidean triangle, and the length of this side are not
conserved; they are transformed into the angle A1 � d �
#ÿ o and the length a1a of the opposite side of the geodesic
triangle.

Similarly, the Euclidean velocity triangle u � �u 00 ÿ u1�C
is mapped onto the surface of a pseudosphere such that its
internal angles pÿ y and d that are opposite to the passive
sides u 00 and u1, and the lengths of these sides measured by
the hyperbolic angles a2 and a1 are mapped identically into
the angles A2 � pÿ y and A1 � d and their opposite sides
a2a and a1a of the geodesic triangles. But the angle yÿ d
opposite to the active side u=C of this triangle and its length
are not preserved and are transformed into the angle A �
yÿ dÿ o � pÿ y 0 and the length aa of its opposite side of
the geodesic triangle.

Therefore, two Euclidean velocity triangles are mapped
into one geodesic triangle on the pseudosphere surface with
the internal angles A2 � pÿ y, A1 � d, and A � pÿ y 0 and
the lengths a2a, a1a, and aa of their opposite sides. This is a
direct consequence of the fact that the angles and velocities of
two Euclidean triangles that differ by the permutation of
added velocities u1 $ u, satisfy the theorems of sines in (37)
and cosines in (38) for the geometry on a pseudosphere.

In the geometry on a pseudosphere, it is proved that the
area S of a geodesic triangle is proportional to the defect of
the sum of its angles [8]:

S � a 2�pÿ Aÿ A1 ÿ A2� : �41�

Because the sum of the angles of a Euclidean velocity triangle
u1 � �u2 ÿ u�C1 is p �pÿ y� pÿ y 0 � # � p�, the defect of
the sum of angles of the geodesic triangle is positive and is
equal to

pÿ Aÿ A1 ÿ A2 � pÿ �pÿ y 0� ÿ dÿ �pÿ y� � #ÿ d � o ;

�42�
i.e., coincides with the angle o between the vectors u2 and

u 00 (see Fig. 1) that emerged because the relativistic velocity
addition law for u and u1 is not symmetric under their
permutation,

u2 � u� u1
C1

; u 00 � u1 � u

C
; �43�

or, alternatively, because of the noncommutativity of Lorentz
boosts with noncollinear velocities.

Thus, the angle o reflecting the asymmetry of the
relativistic velocity addition law on a Euclidean plane is
represented symmetrically by the defect of the sum of angles
of the geodesic triangle on a pseudosphere.

8. The area of a geodesic triangle
on a pseudosphere

Another important three-parameter formula for the area S of
a triangle in the Lobachevsky space, i.e., the area of a geodesic
triangle on the surface of a pseudosphere with the curvature
ÿ1=a 2, can be found in [9]. In our notation, this formula can
be written as

sin
S

2a 2
� sinh �a1=2� sinh �a2=2� sinA

cosh �a=2� : �44�

Two other formulas for S are obtained from here by cyclic
permutation of the hyperbolic angles a, a1, a2 and the angles
A, A1, A2. However, these formulas express S=a 2 in terms of
four parameters, although in fact only three of them are
independent. In addition, halves of the hyperbolic angles

A

A1

a2a

a1a

aa

A2

Figure 3. Pseudosphere in Euclidean space with a geodesic triangle

AA1A2.
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enter here, which is inconvenient for the relation with
velocities [see Eqn (36)].

Nevertheless, using Eqn (44) allows obtaining the corre-
sponding expression for

cos
S

2a 2

� 1

cosh �a=2�
�
cosh

a1
2

cosh
a2
2
ÿ sinh

a1
2

sinh
a2
2

cosA

�
;

�45�
which also contains four parameters, and then the expression
for

tan
S

2a 2

� sinh �a1=2� sinh �a2=2� sinA
cosh �a1=2� cosh �a2=2� ÿ sinh �a1=2� sinh �a2=2� cosA ;

�46�

which contains only three parameters. Next, to pass from the
hyperbolic half-angles to the whole angles, it is sufficient to
multiply both the numerator and the denominator of the last
expression by 4 cosh �a1=2� cosh �a2=2� and then use the
known formulas for double angles. We thus obtain

tan
S

2a 2
� sinh a1 sinh a2 sinA
�cosh a1 � 1��cosh a2 � 1� ÿ sinh a1sinh a2 cosA

:

�47�

This expression and two others, which are obtained from
it by a cyclic change of the hyperbolic and ordinary angles,
coincide with the first two expressions for tan �o=2� in
Eqn (11) and Eqn (12), considering parameterization (36) of
the components of 4-velocities by the hyperbolic angles. The
equality S=a 2 � o of the geodesic triangle area to the angleo
is also demonstrated by formula (30).

Thus, two of the three three-parameter representations of
o (the rotation angle of the spin of a particle under noncol-
linear Lorentz transformations) obtained in [7] coincide
identically with the two representations for the area S=a 2 of
the velocity triangle on the pseudospherical surface, and the
third one coincides identically with the third representation
for S=a 2 after transforming the angle # to the angle
d � #ÿ o, as we did above. At the same time, just the third
representation in Eqn (11) is special due to its asymmetry with
respect to the first two representations, because it contains the
angle # opposite to the Lorentz boost velocity, which is the
source of asymmetry in the Euclidean velocity addition
triangle (see Fig. 1). None of the angles of the geodesic
triangle has the physical meaning similar to that of the angle
#, the rotation angle of a particle velocity under the Lorentz
transformation with the velocity noncollinear to the particle
velocity. Hence, this representation directly answers the most
interesting question on the relation of a particle spin rotation
angle to its velocity rotation angle under a Lorentz transfor-
mation of the velocity.

We note two important particular cases that follow from
the third representation.

1. The boost changes the particle velocity only in
direction. Then u � u2 and

o � 2 arctan
sin#

�g� 1�=�gÿ 1� � cos#
: �48�

If the angle # is small, then

o �
�
1ÿ 1

g

�
# : �49�

2. The particle speed is close to the speed of light. Then
u � u2 � g � g2 4 1 and

o � 2 arctan
sin#

1� cos#
� # ; �50�

irrespective of the angle #, i.e., the spin and velocity of an
ultrarelativistic particle rotate through the same angle.

9. A pseudosphere in the pseudo-Euclidean space

In the three-dimensional Euclidean space, a two-dimensional
sphere with a radius a centered at the coordinate origin is
described by the equation

x 2 � y 2 � z 2 � a 2 : �51�

In the pseudo-Euclidean space, to which we can pass via the
replacement z! it, this surface is transformed into a one-
sheet hyperboloid

x 2 � y 2 ÿ t 2 � a 2 ; �52�

which is sometimes referred to as a real-radius sphere in a
pseudo-Euclidean space [10].

Making the radius a purely imaginary, a! ia, yields the
equation

x 2 � y 2 ÿ t 2 � ÿa 2 ; �53�

describing a sphere with a purely imaginary radius in the
pseudo-Euclidean space. It is also referred to as a pseudo-
sphere of radius a in the pseudo-Euclidean spaceR3

1 (see [11]).
Equation (53), rewritten in the more customary form

t 2 � a 2 � x 2 � y 2 ; �54�

represents a two-sheet hyperboloid in three-dimensional
space (Fig. 4).

5
t
4

3

2

1

0

ÿ5
0x

5 ÿ4 ÿ2 0

0

2 4 y
x1; y1

x2; y2

a

A

A1

s2
s

s1

A2

Figure 4. The nothern sheet t �
���������������������������
a 2 � x 2 � y 2

p
of a pseudopshere in

pseudo-Euclidean space with the geodesic triangle AA1A2. The vertex A is

placed at the pole x � y � 0, t � a. The angles are denoted by the same

letters as the vertices, and s, s1, and s2 are pseudospherical arc lengths. The

parameter a � 1.
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For an ordinary sphere, the length of a geodesic arc (the
arc of a large circle) s connecting two arbitrary points A1 and
A2 on the surface, the spherical radius a, and the angle a
between the radius vectors r1 and r2 from the center of the
sphere x � y � z � 0 to these points are related as

a � s

a
; cos a � r1r2�����

r 21

q �����
r 22

q � r1r2
a 2
� x1x2 � y1y2 � z1z2

a 2
:

�55�

Passing to the pseudo-Euclidean space, z1z2 ! ÿt1t2, and to
the imaginary-radius sphere, a! ia, yields

a! ÿi s
a
� ÿia ;

�56�
cos a! cosh a � t1t2 ÿ x1x2 ÿ y1y2

a 2
� g1g2 ÿ u1u2

instead of Eqn (55). This formula gives the shortest distance s
between the points A1 and A2 on a pseudosphere in the
pseudo-Euclidean space.

The last expression in Eqn (56) relates the coordinates of
the points A1 and A2 on the pseudosphere directly to the
dimensionless components of 4-velocities:

u1x � x1
a
; u1y � y1

a
; g1 �

t1
a
; �57�

and similarly for �u2; g2�.
Placing A2 at the `north pole' of the pseudosphere,

N �x � y � 0; t � a�, we use Eqn (56) to obtain

cosh a1 � g1 ; u1 � e1 sinh a1 ; e 21 � 1 : �58�

Similarly, placing the point A1 at the pole N, we obtain

cosh a2 � g2 ; u2 � e2 sinh a2 ; e 22 � 1 �59�

fromEqn (56). Vectors e1 and e2 have unit length and lie in the
Euclidean plane tangent to the pseudosphere at the point N.
Therefore, the distances of the points A1 and A2 from the
north pole N are s1 � a1a and s2 � a2a, and the distance
between the points is s � aa.

Placing the vertex A of the triangle AA1A2 at the north
pole N of a pseudosphere and letting A denote the angle
between the vectors e1 and e2, we obtain

cosh a � cosh a1 cosh a2 ÿ sinh a1 sinh a2 cosA �60�

from Eqns (56), (58), and (59). This is the first line of the
`theorem of cosines' for the triangle AA1A2 on a pseudo-
sphere.

A surface of constant Gaussian curvature (positive or
negative) has one important property. The motion of any
figure completely lying on such a surface, for example, the
triangle AA1A2, preserves all lengths and values of all angles,
in spite of possible deformation of the moved figure.

By moving the triangle AA1A2 along the surface of the
pseudosphere such that the vertexA1 coincides with the north
pole x � y � 0, t � a (instead of the vertex A), we find the
second line of the theorem of cosines:

cosh a1 � cosh a2 cosh aÿ sinh a2 sinh a cosA1 : �61�

Similarly, moving the triangle AA1A2 such that the vertex
A2 coincides with the north pole of the pseudosphere yields

the third line of the theorem of cosines:

cosh a2 � cosh a cosh a1 ÿ sinh a sinh a1 cosA2 : �62�

Using the theorem of cosines, it is straightforward to
obtain the theorem of sines in (37). Indeed, using cosA from
Eqn (60), we can represent the ratio sinA=sinh a as

sinA

sinh a
�

����������������������
1ÿ cos2 A
p

sinh a

�
���������������������������������������������������������������������������������������������������������������������
1� 2 cosh a cosh a1 cosh a2ÿ cosh2 aÿ cosh2 a1ÿ cosh2 a2

p
sinh a sinh a1 sinh a2

;

�63�

i.e., as a totally symmetric expression in a, a1, a2; the same
must be true for the other two terms in the theorem of sines.

In turn, formula (63) allows finding one more three-
parameter representation for the angle o, symmetric with
respect to the hyperbolic angles a, a1, and a2 or the time
components g, g1, and g2:

o � 2 arctan
uu1 sinA2

�g� 1��g1 � 1� ÿ uu1 cosA2

� 2 arctan

�����������������������������������������������������
1� 2gg1g2 ÿ g 2 ÿ g 21 ÿ g 22

q
1� g� g1 � g2

: �64�

Each of these expressions for the angle o is explicitly
represented in terms of either the lengths of two sides and
the angle between them or the lengths of three sides of the
geodesic triangle, i.e., the parameters that are invariant under
the motion of the triangle over the pseudospherical surface.
Therefore, o is an invariant of this group of motions, which
contains the Lorentz group. This statement also follows from
the representation for o in (42) in terms of the angles of the
geodesic triangle.

10. The metric of the surface of a pseudosphere

The quantity g � g1g2 ÿ u1u2 � ÿu a
1 u2a, being the scalar

product of two 4-velocities, is clearly Lorentz invariant. The
length u �

�������������
g 2 ÿ 1

p
of the spatial part of the 4-velocity

u a � �u; g� is also Lorentz invariant. The ratio v � u=g can
be regarded as the invariant value of the relative 3-velocity of
two particles with velocities u a

1 and u
a
2 (see æ12 inRef. [1]). The

same is true for the values g1 and g2 � g 00 in Eqn (35).
We consider the square of the length of u in the case where

the vector u2 is very close to u1: u2 � u1 � du1. It is easy to see
that the invariant g then differs from unity by a value of the
second order in du1:

g � g1g2 ÿ u1u2 � g1

��������������������������������
1� �u1 � du1�2

q
ÿ u 2

1 ÿ u1 du1

� 1� 1

2

�
du 2

1 ÿ
�u1 du1�2
1� u 2

1

�
� . . . : �65�

Because u 2 � g 2 ÿ 1, using parameterization (36) for u and
the relation s � aa, we obtain

ds 2 � a 2

�
du 2

1 ÿ
�u1 du1�2
1� u 2

1

�
: �66�
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With u1 regarded as an N-dimensional vector, formula
(66) for the square of the length element ds 2 represents the
metric of an N-dimensional homogeneous and isotropic
surface with the negative Gaussian curvature K � ÿ1=a 2.
This surface is embedded into a flat �N� 1�-dimensional
pseudo-Euclidean space with the metric

ds 2 � dx 2 ÿ dt 2 �67�
(see æ3, chapter 13 in [12] and æ111 in [1]). In our case, N � 2,
and for clarity it is convenient to write metric (66) in the
`polar' coordinates

u1x � r

a
cosj ; u1y � r

a
sinj : �68�

Then,

ds 2 � a 2 da 2 � dr 2

1� r 2=a 2
� r 2 dj 2 ; �69�

and hence the ratio of the circumference 2pr of the latitudinal
circle to the distance from this circle to the pole,

s �
� r

0

dr��������������������
1� r 2=a 2

p � a arsinh
r

a
; �70�

is greater than 2p.

11. Pseudospheres in Euclidean
and pseudo-Euclidean spaces

We now consider the relation between the pseudosphere in a
Euclidean space (PSE) and the pseudosphere in a pseudo-
Euclidean space (PSPE). Both pseudospheres have the same
constant Gaussian curvature K � ÿ1=a 2. The coordinates
x; y; t of the PSPE surface are directly related to the
components of 4-velocities [see Eqn (57)], but the relation of
the PSE surface coordinates to velocities has yet to be
established. For this, we compare the basic metric form of a
PSE written in cylindrical coordinates r;j; z � z�r� [see
Eqn (39)],

ds 2 � a 2

r 2
dr 2 � r 2 dj 2 ; 0 < r4 a ; ÿp < j4 p ;

�71�
with the PSPE metric in (66).

Changing coordinates r;j to x; Z,

r � a 2

Z
; j � x

a
; �72�

we can rewrite metric (71) in the form

ds 2 � a 2 dx 2 � dZ 2

Z 2
; �73�

which is the metric of the Klein model in Lobachevsky
geometry [11]. In this model, metric (73) is defined on the
Euclidean halfplane ÿ1 < x <1, Z > 0 with the Cartesian
orthogonal coordinates x; Z. The Euclidean halfplane
endowed with this metric turns out to be a complete metric
manifold with the constant negative curvature K � ÿ1=a 2.
At the same time, the PSE surface, which has the same
curvature, is isometrically mapped only onto the part

ÿpa < x � aj4 pa ; a4Z � a 2

r
<1 �74�

of the Euclidean halfplane x; Z > 0 bounded by the lines
x � �pa and Z � a.

If we now relate the coordinates x; Z to the coordinates
x; y; t on the PSPE surface by the transformation

x
a
� y

t� x
;

Z
a
� a

t� x
; t �

���������������������������
a 2 � x 2 � y 2

p
; �75�

it is straightforward to show that in the new variables, the
metric

ds 2 � dx 2 ÿ �x dx�
2

a 2 � x 2
; x � xi� yj ; �76�

coincides with the PSPE metrics in (66). We note that metric
(76) is determined by the Cartesian coordinates x; y on the
entire Euclidean plane of these coordinates. At the same time,
the coordinates r and j of metric (71) are in the range

0 <
r
a
� t� x

a
< 1 ; ÿp < j � y

t� x
4 p : �77�

This means that the PSE surface is isometrically mapped to
only some part of the PSPE surface, or, in other terms, only to
the interval

ÿ1 < x < 0 ; jyj < p�t� x� ; �78�
of the entire Euclidean x; y plane endowed with the PSPE
metric.

To find this part of the Euclidean plane, it is convenient to
use the relation between x; y and x; Z that is inverse to (75):

x � a 2 ÿ x 2 ÿ Z 2

2Z
; y � ax

Z
; t � a 2 � x 2 � Z 2

2Z
: �79�

It is then easy to show that the part of the x; y plane onto
which the PSE is mapped is bounded below with respect to x
by two hyperbolas x1�y�, y0 0, with the common asymptote
y � 0, and is bounded above with respect to x by the parabola
x2�y�:

x1�y� < x < x2�y� ; ÿpa < y < pa ; �80�

where

x1�y� � ÿ p2 ÿ 1

2p
jyj ÿ pa 2

2jyj ; x2�y� � ÿ y 2

2a
�81�

(see also Fig. 5). The hyperbolas and the parabola are the
maps of the boundaries x � �pa and Z � a of the PSE
mapping domain on the Euclidean halfplane in the Klein
model.

The PSPE has the maximum symmetry, i.e., its surface is
isotropic and symmetric: the neighborhoods of any points on
the surface are geometrically similar to each other. This
follows because metric (76) is invariant under rotations
around the t axis and `quasitranslations' (as termed by
Weinberg [12])

x 0 � x� q

� ����������������
a 2 � x 2

p
� qx

1�
�������������
1� q2

p �
; �82�

which take the point x � au into the point x 0 � au 0. In
particular, any point x can be translated to the coordinate
origin x 0 � 0 by choosing q equal toÿx=a. In fact, Eqn (82) is
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the transformation of the velocity u into u 0 by the Lorentz
boost with the velocity q:

u 0 � u� q

Cq
; Cq �

gq � 1

g� ggq � uq
; gq �

�������������
q2 � 1

p
�83�

[cf. Eqns (4) and (5)]. It can be shown straightforwardly that
Lorentz transformation (83) of all velocities determining g, g1,
and g2 in Eqn (35) does not change these factors:

g�u1; u2� � g�u 01; u 02� ; g1�u; u 00� � g1�u 0; u 000� ; �84�
g2�u;ÿu1� � g2�u 0;ÿu 01� :

In accordance with representation (64), this implies that the
angle o is also invariant under transformation (83).

Unlike the PSPE surface, the PSE surface is generally not
isotropic or homogeneous, its principal curvatures k1; k2
being dependent on r:

k1 � r

a
����������������
a 2 ÿ r 2

p ; k2 � ÿ
����������������
a 2 ÿ r 2

p
ar

; ÿp < j4 p ;

�85�

and, moreover, they turn to 0;ÿ1 and 1; 0 for r � 0 and
r � a, although the Gaussian curvature remains constant
everywhere on the surface, being equal toK � k1k2 � ÿ1=a 2.
Hence, the PSE surface is isometric to the PSPE one only in
some region [see Eqn (74)]. The area of this region is 2pa 2,
while the area of the PSPE surface, as the area of the
Lobachevsky planes, is infinite. This is in accordance with
the theorem of Hilbert, who showed that there is no complete
and regular surface in Euclidean space that would be
isometric to the entire Lobachevsky plane [13].

12. The Hilbert theorem

Because the real physical space is pseudo-Euclidean,
representing relativistic velocities by segments of geodesics
and the velocity addition law by the geodesic triangle on a
homogeneous and isotropic PSPE surface seems to be
adequate for the physical reality. The momenta p � mu
and the energies E � mg of free relativistic particles in
pseudo-Euclidean Minkowski space follow just these rules.

And the coordinates x; y; t of a point on the PSPE surface,
where t �

���������������������������
a 2 � x 2 � y 2

p
, are straightforwardly (one can say

directly) related to components of the 4-velocity u a � �u; g�:

ux � x

a
; uy � y

a
; g � t

a
: �86�

On the other hand, a hyperbolic geometry, i.e., a metric
with a constant negative Gaussian curvature, is also induced
on a Beltrami surface embedded into a Euclidean space (we
here return to the surface shown in Fig. 3). Because the
Beltrami surface has the finite area 4pa 2 and the finite
volume �2=3�pa 3, it is interesting to know whether this
means that there are finite Euclidean volumes of the same
order pa 3 in which physical objects are characterized not by
velocities but by purely spatial quantities Ð proper volumes,
distances from each other, and purely spatial distributions.

It is known from differential geometry that if the Cheby-
shev coordinate line network x; y is chosen on a surface in a
Euclidean space, the metric (the first quadratic form) on this
surface is given by

ds 2 � dx 2 � 2 cosf dx dy� dy 2 ; �87�

where the network angle f�x; y� is by definition in the range
0 < f < p [14]. Then, from the famous Gauss formula that
relates the curvatureK to the coefficients of the first quadratic
form, it follows that for the surface with K � ÿ1=a 2 and
metric (87), the network angle satisfies the nonlinear sine-
Gordon equation [13]:

a 2 q2f
qx qy

� sinf : �88�

On the other hand, setting the second quadratic form for
the PSE

N d2r � a

r
����������������
a 2 ÿ r 2

p dr 2 ÿ r
����������������
a 2 ÿ r 2

p
a

dj 2 �89�

to zero yields two families of asymptotic lines on this surface:

j1 � � arcosh
a

r
ÿ c1 � ln tan

u

2
ÿ c1 ;

�90�
j2 � � arcosh

a

r
� c2 � ÿ ln tan

u

2
� c2 :

Here, r � a sin u, 0 < u < p and the upper and lower signs
before arcosh and the ranges 0 < u4 p=2, p=24 u < p
respectively relate to the upper and lower Beltrami funnels.
We recall that

arcosh
a

r
� ln

 
a

r
�

���������������
a 2

r 2
ÿ 1

s !
;

a

r
5 1 :

Using Eqns (90) for the asymptotic lines, we tacitly
assume that the PSE surface, as shown in Fig. 3, is cut by
the meridian j � �p and that infinitely extending sheets of
the so-called universal covering surface of the PSE are glued
to the edges of this cut. This universal covering surface,
which has the same curvature K � ÿ1=a 2, covers the PSE
surface an infinite number of times, with its kth layer
�2kÿ 1�p < j4 �2k� 1�p, where k is any integer, being
considered as lying above the previous �kÿ 1�th one. Thus,

pa�������������
p2 ÿ 1
p pa

p2 ÿ 1

ÿ pa
p2 ÿ 1ÿ pa�������������

p2 ÿ 1
p

ÿ 1

2
p2a

ÿpa

pa

ÿ
�������������
p2 ÿ 1
p

a x

x1�y�

x1�y�

x2�y�

y

0

Figure 5. The region of isometric mapping of the Beltrami funnel (cut

along the meridian) on the x; y plane with pseudosphere metric (76) in the

pseudo-Euclidean space.
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Eqns (90) represent the asymptotic PSE lines on its universal
covering surface.

With the parameter u increasing in the range 0 < u < p,
the asymptotic lines of the two families, by rotating in the
opposite directions, move over the surface of the upper funnel
and approach the cuspidal edge; at u � p=2, they touch it at
the points j1 � ÿc1, j2 � c2, and touch each other if
c2 � ÿc1, and then, as u increases further, go away from the
edge over the surface of the lower funnel by rotating in the
same direction. Intriguingly, the asymptotic lines, while being
spatial curves, have no singularities for all values of the
parameter u in the interval 0 < u < p, although the PSE
surface on which they locate has a singular cuspidal edge at
u � p=2.

It is even more interesting that two asymptotic lines of
the first and second family that go down along the surface of
the upper funnel and have a joint touch point with each
other and with the cuspidal edge (c2 � ÿc1 for these lines)
can be considered a single line that goes down from the
infinity u � 0, j � ÿ1 over the surface of the upper funnel
towards the cuspidal edge as a line of the first family, and
after touching the cuspidal edge goes up over the surface of
the same funnel towards the infinity u � 0, j � �1 as a line
of the second family. As a result, the upper funnel is covered
by a one-parameter network of asymptotic lines that start
and end at u � 0, j � �1 and touch the cuspidal edge at
the points u � p=2, j � c determined by the value of the
parameter c � ÿc1 � c2, ÿ1 < c <1. Thus, the cuspidal
edge is the natural boundary of the asymptotic network for
the upper funnel. The same is true for the asymptotic
network on the lower funnel, because it is mirror symmetric
to the upper one.

Now, if we use the coordinates x; y (instead of cylindrical
coordinates r;j or variables u, j, u 2 �0; p�) defined as

x � 1

2
a

�
ln tan

u

2
ÿ j

�
; y � 1

2
a

�
ln tan

u

2
� j

�
�91�

in length element (71) on the PSE surface and allow the angle
j to range from ÿ1 to �1, this element takes form (87),
where cosf � cos 2u. This means that the variables x and y in
Eqn (91), which according to Eqn (90) form the asymptotic
line network on the PSE surface (more precisely, on its
universal covering surface), coincide with the variables x
and y of the coordinate lines of the Chebyshev network. In
that case, the network angle f�x; y� of the Chebyshev
network must also coincide with the angle between the
asymptotic lines at the same point on the surface. The last
angle can be found using the Euler formula for the normal
curvature in the y direction:

k�y� � k1 cos
2 y� k2 sin

2 y : �92�

Here, k1 and k2 are principal curvatures (85) and the angle y is
referenced to the meridian direction. By definition, the
curvature k�y� vanishes in the asymptotic directions, and for
the angles y1 and y2 of these directions to the meridian, we
obtain

tan y1; 2 � �
���������
ÿ k1
k2

s
� � r����������������

a 2 ÿ r 2
p ;

�93�
y1; 2 � � arctan

r����������������
a 2 ÿ r 2

p :

Thus, the angle between two asymptotic directions on the
PSE surface is

2y1 � 2 arctan
r����������������

a 2 ÿ r 2
p � 2 arcsin

r
a
: �94�

It is determined only by the radius of a latitudinal circle,
irrespective of whether it belongs to the upper or lower
Beltrami funnel, and lies in the range 0 < 2y1 < p.

On the other hand, the equation cosf � cos 2u relating
the Chebyshev angle f to the radius r � a sin u or
the parameter u, which is u � arcsin �r=a� and u �
pÿ arcsin �r=a� for the upper and lower funnels, respec-
tively, has two solutions:

�1� f � 2u ; �2� f � 2pÿ 2u : �95�

Using the first of these solutions for the upper funnel and the
second for the lower funnel, we obtain the same result:

�1� f � 2u � 2 arcsin
r
a
;

�96�
�2� f � 2pÿ 2u � 2pÿ 2

�
pÿ arcsin

r
a

�
� 2 arcsin

r
a
;

coinciding with Eqn (94).
Thus, u increases in the range 0 < u < p, the network

angle f first increases linearly, reaches the forbidden value
f � p for the Chebyshev network at the boundary u � p=2 of
the upper and lower funnels, and then decreases linearly to
zero. Therefore, the Chebyshev network, as well as the PSE
surface itself, has singularities at the boundary of the upper
and lower funnels (a jump of the derivative qf=qu) and
decomposes into two regular networks covering each of the
funnels separately. This fact allowedHilbert to argue that in a
Euclidean space, there is no analytic surface with constant
negative curvature without singularities that is regular every-
where, i.e., which is isometric to the entire Lobachevsky
plane.

Nevertheless, the sine-Gordon equation has an infinite
number of solutions that are regular everywhere on the PSE
surface (more precisely, on its universal covering surface).
However, they no longer have the interpretation of the
network angle of the Chebyshev or asymptotic network. We
mention only one such solution.

13. A pseudosphere in Euclidean space
as an arena for extended relativistic objects

Instead of x and y we introduce the dimensionless variables x
and j using formulas (91):

x� y � a ln tan
u

2
� ax ; yÿ x � aj : �97�

Similarly to x and y, they are Cartesian variables in the
x;j plane. Then sine-Gordon equation (88) takes the form

q2f

qx 2
ÿ q2f
qj 2
� sinf : �98�

Its simplest solution

fb�x;j� � 4 arctan

"
exp

 
e

xÿ bj��������������
1ÿ b 2

q !#
; e � �1 ; �99�
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which is regular everywhere on the plane x;j, is called a
soliton �e � 1� or antisoliton �e � ÿ1�. It contains the
parameter b, jbj < 1, which can be called the velocity of a
soliton (antisoliton) if x and j are respectively interpreted as
space and time coordinates. It seems very significant that the
angle coordinate j of a point on the universal covering PSE
surface plays the role of time. The space coordinate is
determined by the radius of a latitudinal circle and is equal to

x � �arcosh a

r
�100�

for the upper and lower Beltrami funnels. With changing x at
a fixed j, the soliton solution smoothly increases from 0 to 2p
and the antisoliton solution decreases from 2p to 0. Here, the
main change in fb�x;j� occurs in the region x � bj with the
extension Dx � �1ÿ b 2�1=2, which is contracted as the
velocity increases (the Lorentz contraction of the soliton
size). Under the Lorentz transformation with the velocity
b1, the solution fb�x;j�, which is a relativistic scalar,
preserves its functional dependence on the Lorentz-trans-
formed coordinates x 0;j 0 and the Lorentz-transformed
velocity b 0: fb�x;j� � fb 0 �x 0;j 0�, because

xÿ bj��������������
1ÿ b 2

q � x 0 ÿ b 0j 0���������������
1ÿ b 0 2

q ; b 0 � b� b1
1� bb1

: �101�

The transformed velocity b 0 is the relativistic sum of the
velocities b and b1.

Thus, the PSE surface (more precisely, its universal
covering surface) turns out to be the arena of the existence
and motion of extended relativistic objects. Extensive
literature is devoted to this issue (see, e.g., Refs [15, 16]).

Because the sine-Gordon equation appeared in the
geometric problem of embedding a two-dimensional surface
with constant negative curvature into the three-dimensional
Euclidean space, it follows that in physical problems
described by the sine-Gordon equation, the physical variable
playing the role of time and the physical unit of the velocity
measure become interesting. In any case, it is difficult to
expect the dimensionless velocity b occurring in these
problems to be measured in units of the speed of light, which
emerged because the real four-dimensional space is pseudo-
Euclidean.

14. Conclusion

To conclude, we note that the three-parameter representa-
tions of the angleo obtained by the author in 1961 in the non-
Euclidean hyperbolic geometry are representations for the
area (times the curvature) of the pseudospherical triangle of
velocities related by a Lorentz transformation. They demon-
strate the purely geometric non-Euclidean origin of this angle,
which is the object of the internal geometry of a curved
surface, and its relativistic invariance.

But the simplicity of the reflection of the discussed
symmetry by two Euclidean velocity triangles shown in Fig. 1
should not be underestimated. Indeed, the `sine theorems'
corresponding to these two triangles,

u

sin �pÿ y 0� �
u2

sin �pÿ y� �
u1

C1 sin#
; �102�

u1
sin d

� u 00

sin �pÿ y� �
u

C sin �yÿ d� ; �103�

explicitly include the sine theorem

u

sinA
� u1

sinA1
� u2

sinA2
�104�

for one geodesic triangle on a pseudosphere, because u 00 � u2
[see also Eqns (34), (37)]. The three expressions for the `cosine
theorem,'

u 2 � u 2
1

C 2
1

� u 2
2 ÿ 2

u1u2
C1

; �105�

u 2
1 � u 00 2 � u 2

C 2
ÿ 2

u00u
C

; �106�

u 2
2 � u 2 � u 2

1

C 2
1

� 2
uu1
C1

; �107�

with the angles adjacent to the boost velocities in these two
Euclidean triangles, after simple transformations, are reduced
to expressions

g � g1g2 ÿ u1u2 ; g1 � g00gÿ u00u ; g2 � gg1 � uu1 ; �108�

i.e., to the cosine theorem for the same pseudospherical
triangle [see also Eqns (35), (38)].
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