
Abstract. The theory of electron cooling of ions and positrons is
reviewed. Formulas describing the retarding force of ions in an
electron beam with an `oblate' velocity distribution, which is
typical for electron cooling, are considered for arbitrary inten-
sities of a magnetic field. Considered for positrons are the cases
of intermediate and strong magnetic fields, which are of the
greatest practical interest. The friction force and the compo-
nents of the positron velocity diffusion tensor are calculated.
Also discussed is the relaxation of positrons in their electron
cooling in positron storage rings and their transition to the
stationary distribution. The stationary velocity distribution
function for positrons is shown to practically coincide in this
case with that for electrons. The feasibility of lowering the
transverse electron temperature is analyzed, which is required
for decreasing the positron spread in momentum.

1. Introduction

The electron cooling method [1] (see also reviews [2, 3]) has
been validly applied to decrease the phase volume for beams
of particles with mass

M4m ; �1�

where m is the electron mass. Hereinafter, these particles will
be referred to as M particles, and their charge denoted by q.
The problem of cooling positrons, when themasses satisfy the
condition

M � m ; �2�

is new. This problem arose in projects aimed at obtaining
antihydrogen and positronium atoms and studying their
properties (see review [4] as well as Refs [5, 6]).

One of the key quantities subject to calculation is the
friction force F experienced by a particle moving relative to an
electron cloud (beam). This review is concerned primarily
with the cooling of light particles (positrons). For the sake of
completeness of the picture, given at the beginning is a brief
analysis of the theory of cooling of heavy particles (1), which
has been well elaborated up to the present time. When
inequality (1) holds, collective (cooperative) effects and
binary collisions make comparable contributions to the
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friction force [3, 4]. However, when equality (2) is valid,
collective effects play the leading role. The corresponding
computation is more arduous, and this is supposedly the
reason why the theory of cooling has not been completed for
positrons, with only a few papers published on this subject
[4 ± 9]. In view of the significance of cooling positrons in the
projects drawn up in Refs [4 ± 6], in this review we return to
this issue to critically analyze the published results, as well as
to summarize and supplement the data required for planning
experiments on positrons and positronium atoms.

We discuss in this review the methods for calculating the
positron velocity �V� distribution function F�V; t�. This
function contains exhaustive information about the positron
cooling process. Of special interest is the stationary positron
velocity distribution functionF�V�, which sets in as a result of
relaxation, and ways to decrease the positron spread in
momentum.

Powerful methods have been elaborated in plasma
physics, which may be applied validly to the analysis of the
range of phenomena under consideration, and one of the
objectives of our review resides in demonstrating this.
Another objective lies in giving a list of formulas sufficient
for the practical calculations of positron moderation kinetics,
along with brief derivations of the formulas. The author
endeavored to supplement the formal derivations with
qualitative estimates and discussions of the physical meaning
of the results obtained. Lastly, the third objective is to outline
new results pertaining to a rather interesting field Ð the
physics of anisotropic plasmas.

2. Main effects in the electron cooling
of heavy particles

Prior to addressing ourselves to the discussion of the theory of
positron cooling, we recall the main ideas advanced and
effects predicted theoretically and discovered in the course
of investigations into the electron cooling of heavy particles.

An electron cloud is confined by the combination of
external electric and magnetic fields which compensate for
the Coulomb repulsion between the electrons and thereby are
a substitute for the background of positive ions present in
ordinary quasineutral plasma. As a result, practically all
properties of a cloud coincide with those of the ordinary
plasma [1 ± 4].

For a nonzero magnetic field �H 6� 0�, the particle
trajectories are helical, with the radii equal to the Larmor
radii:

rHM � V?
oHM

; rH � v?
oH

; oHM � qH

Mc
;

�3�
oH � eH

mc
; V? � jV?j ; v? � jv?j :

Here, the vectors V? and v? are the respective components of
the velocities V and v of the particle M and the electron that
are perpendicular to the direction of magnetic field h � H=H
(considered here and almost everywhere below is the rest
frame of the beam, so that V and v are the velocities in this
reference system). Calculations of the friction force F for
helical paths are quite cumbersome, and so as a preliminary
step we will analyze the limiting cases most important for
practical applications: the cases of a weak (the definition is
given below) and an ultimately strongmagnetic field (in beam
physics, the latter case is also referred to as `magnetized

plasma'). The electron plasma is assumed to be ideal:

x � K

U
4 1 ; �4�

where K and U are the average values of the kinetic and
potential energies of the electrons. Furthermore, when
describing electron cooling it would suffice to consider the
nonrelativistic case:

D �
�����
T

m

r
5 c ; �5�

V5 c : �6�
In relations (4) ± (6), the following notation was used:

U � e 2

R
; �7�

T � 2K=3 is the effective electron temperature, R � nÿ1=3 is
the average interelectron distance, and n is the electron
number density [in cmÿ3] in the rest frame of the beam.

From inequality (4) there follows a conclusion on the
smallness of the particle scattering angle yscat:

yscat 5 1 �8�

for a typical collision in an ideal plasma. The duration of the
interaction for particlesM andm in a collision with an impact
parameter q is defined by the time tcoll � r=u, where r � jqj,
u � juj, and u � Vÿ v is their relative velocity. In this case,
the particle m experiences acceleration am � qe=�mr 2� and
becomes displaced by a distance lm � amt 2coll � qe=�mu 2�,
and therefore

y �m�scat �
lm
r
� e 2

rmu 2
� U

K
5 1 :

It should also be noted that

lm 5 r : �9�

The force of friction is conveniently resolved into two
components:

F � Fb � Fc ; �10�

where Fb is the contribution from the binary collisions of
particle Mwith the electrons, and Fc is the contribution made
by collective interactions, when particle M interacts, under
condition (4), simultaneously with a large number of
electrons, which is on the order of the number of electrons
ND in the Debye sphere �ND � x 3=2�.

First, we discuss the case of a weak magnetic field
�H! 0�. Let us consider the inertial reference system in
which particle M is at rest prior to collision [we emphasize
that when condition (1) is satisfied particle M remains
practically motionless in this reference system after a
collision, as well]. As a result of the interaction with M,
particle m acquires the transverse momentum Dp? �
2qe=�ru� and is deflected by an angle y �m�scat � Dp?=�mu� �
2qe=�rmu 2�. The momentum Dp?, which is transverse
relative to the vector u, is of no concern to us, because it
vanishes on averaging over collisions with different directions
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of the vector q. The change in the longitudinal momentum
component of particle m, caused by its deflection, is expressed
as Dpmk � mu�1ÿ cos y �m�scat � � mu�y �m�scat �2=2, or in a vector
form as Dpmk � �2q 2e 2=mu 3r 2�û. Due to the Galilean
invariance, these formulas are valid in any frame of
reference, including the laboratory frame. On the strength of
momentum conservation we conclude that the change in the
momentum of particle M, caused by the deflection of particle
m, is given by

Dp �1�M � ÿDpmk � ÿ
2q 2e 2

mu 3r 2
û : �11�

The number density of electrons with velocities v in the
element d3v is expressed as dn � n f �v� d3v, where f �v� is
their distribution function normalized to unity:

�
f �v� d3v� 1.

The number of such electrons traversing an impact parameter
ring with an area of 2pr dr per unit time is dn u 2pr dr,
whence we obtain [10, 11]

Fb �
�
dn u 2pr drDp �1�M � 4pne 2q 2Lb

m
HVF�V� ; �12�

where F�V� is `the first Trubnikov potential' defined as

F�V� �
�

f �v� d3v
u

; �13�

Lb is the Coulomb logarithm for the binary collisions of
particles M with the electrons:

Lb � ln
R

RT
; �14�

and RT is the Thomson radius:

RT � e 2

T
: �15�

The main contribution to Fb is made by collisions with
impact parameters r < R. Formula (12) is logarithmically
accurate up to � 1=Lb. For an isotropic distribution
F�V� � F�V �, one finds HVF�V� � F 0�V �V̂, and V̂ � V=V.
In particular, for the Maxwellian isotropic distribution
f �v� � �m=2pT �3=2 exp �ÿmv 2=2T �, we arrive at

F 0�V � � ÿ
����
2

p

r
1

D3V 2

� V

0

dv v 2 exp

�
ÿ v 2

2D2

�
:

In the limiting cases, we thus obtain

F 0�V � � ÿ
Vÿ2 ; V4D ;

Dÿ3V
2
���
2
p

3
���
p
p ; V5D :

8<: �16�

In the calculation of Fc, ideal plasma characterized by
condition (4) may be treated, in view of inequalityND 4 1, as
a continuous medium whose response to an electromagnetic
perturbation with frequencyo and wave vector k is described
by the permittivity tensor [11 ± 17]

eab�k;o� � dab �
o2

p

o

�
va qf �v�=qvb
o� i0ÿ kv

d3v ; �17�

where op �
�������������������
4pne 2=m

p
is the plasma frequency.

In the nonrelativistic case (5), one may neglect the
transverse electromagnetic field and consider only the long-
itudinal electric field [11 ± 17]. In this limiting case, for
arbitrary intensities of the magnetic field the plasma is
similar to an isotropic medium with the permittivity

e�k;o� � eab�k;o�k̂ak̂b � ek ; �18�

where k̂ � k=k. We elucidate this conclusion, because it is of
importance for the subsequent discussion. In the nonrelati-
vistic case (5) we have

E�r; t� � ÿHj�r; t� ÿ 1

c

qA�r; t�
qt

� ÿHj�r; t� ;

and the electric field is therefore longitudinal:

E�k;o� �
�
d3r dt exp �ÿikr� iot�E�r; t� � ÿikj�k;o� :

�19�
The Maxwell equations in the plasma may be represented in
the form coincident with the form of the equations for a
dielectric medium [11 ± 18]. In particular, one finds

HD�r; t� � 4prex�r; t� ; Da�k;o� � eab�k;o�Eb�k;o� ;
�20�

where rex�r; t� is the density of charge introduced into the
plasma. From expressions (19), (20) we obtain ikaDa�k;o��
4prex�k;o�, i.e., ikaeab�k;o�

ÿÿikbj�k;o�� � 4prex�k;o�,
and therefore

j�k;o� � 4prex�k;o�
e�k;o� ;

�21�
E�k;o� � ÿ 4pik

k 2e�k;o� rex�k;o� ;

where

rex�k;o� �
�
d3r dt exp �ÿikr� iot� rex�r; t� :

Formula (21) is the generalization of the ordinary Coulomb
formula

E�r; t� � 1

e

�
rÿ r 0

jrÿ r 0j3 rex�r 0; t� d3r 0 ;

which is valid for a dielectric medium in the absence of
dispersion (i.e., for e independent of k, o).

For physical reasons we rewrite formula (21) in the form

E�k;o� � Ec�k;o� � Ep�k;o� ;

where Ec�k;o� � ÿ�4pik=k 2� rex�k;o� is the strength of an
intrinsic field of the charge, and Ep is the strength of an
electric field, defined as

Ep�k;o� � ÿ 4pik
k 2

rp�k;o� ; �22�

of the charges with density

rp�k;o� � rex�k;o�
�

1

e�k;o� ÿ 1

�
; �23�
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induced in the plasma (the `Debye' cloud) by the initial charge
of density rex.

For a point charge q proceeding along a trajectory
r � R�t� we have

rex�r; t� � qd
ÿ
rÿ R�t�� ;

rex�k;o� � q

� �1
ÿ1

dt exp
ÿ
iotÿ ikR�t�� : �24�

The force acting on the charge is expressed as

Fc�t� � qEp

ÿ
r � R�t�; t�

� q

�
d3k do

�2p�4 exp
ÿ
ikR�t� ÿ iot

�
Ep�k;o� : �25�

For an immobile charge placed at the origin �R � 0� and
H! 0, from expressions (21) and (23), in view of relation-
ships

rex�r; t� � qd�r� ; rex�k;o� � 2pqd�o� ; �26�

we obtain for an isotropic electron distribution:

E�r� � ÿHj�r� ; j�r� � q
exp �ÿr=rD�

r
;

1

r 2D
� o2

p

�
1

v 2

�
� 4po2

p

�1
0

dv f �v� ; �27�

rp�k; t� �
q

1� k 2r 2D
; rp�r; t� �

q exp �ÿr=rD�
4pk 2r 2Dr

;

where rD is the Debye radius:

rD �
�������������

T

4pne 2

r
�28�

(for the Maxwellian distribution, the last relation is exact).
Therefore, rD is the characteristic radius of the Debye cloud.
For a uniformly moving charge, one finds

R�t� � X�t� bV ; X�t� � Vt ; r�k;o� � 2pqd�oÿ kkV � ;
�29�

where kk � kbV.
In an ideal plasma, the following ratio would hold:

rD

R
� x 1=2 4 1 : �30�

The main contribution to the collective term Fc, as to Fb, is
made by the domain of large k values:

1

rD
< k <

1

R
; �31�

which corresponds to the interaction range R < r < rD.
Whence, and from the expression e�k;o � 0� �
1� 1=�k 2r 2D�, one can see that

jeÿ 1j5 1 ; �32�

and in formula (23) we can therefore put

1

e
ÿ 1 � 1ÿ e : �33�

Then, Fc is expressed in terms of Im e and, with a logarithmic
accuracy �� 1=Lc�, we have

Fc � 4pq 2e 2nLc

m
HVF�V� ; Lc � ln

rD

R
: �34�

The physical meaning of formula (34) is as follows. For
V < D, the Debye cloud lags behind the particle by a distance
x � rDV=D. The total charge of the Debye cloud is equal in
modulus and opposite in sign to the particle charge: qD � ÿq
(otherwise, at a long distance from the charge there would be
an electric field �q� qD�=r 2 slowly decreasing with distance,
which would lead to charge redistribution and eventually
result in the compensation for the charge). Assuming for an
estimate that the charge qD is uniformly distributed over the
Debye cloud, we obtain from expression (25) the relation
Fc � q�x=rD��q=r 2D� � q 2V=�Dr 2D�, V < D, which is consis-
tent with expression (34).

For V > D, the charge resides at the edge of the cloud
whose size is L � Vtp � V=op (the electrons respond to the
charge field in a time tp, during which the charge traverses a
distance L). Under the action of the electric field E � q=L2 of
the charge, the electrons are displaced by a distance
S � aet 2p=2 from their initial positions, where ae � E=m is
the characteristic electron acceleration. The charge qD is
formed when the electrons enter the Debye domain from its
near-surface layer of thickness � S. They make up a charge
qD � ÿeneSL2 � ÿq (as indicated above, the rigorous result
is qD � ÿq). Consequently [see expression (25)], Ep � qD=L

2,
Fc � qEp � q 2e 2n=�mV 2�, V > D, which is also consistent
with formula (34). Later on, these qualitative estimates will be
helpful in elucidating themore complicated cases of a nonzero
magnetic field.

Formulas (10), (12), and (34) lead to a well-known
remarkable conclusion: the intermediate dimension R does
not enter into the expression for the total force of friction:

F � 4pq 2e 2nL
m

HVF�V� ;
�35�

L � Lb � Lc � ln
R

RT
� ln

rD

R
� ln

rD
RT

:

For this reason, it is unnecessary to strictly define the value of
the boundary impact parameter separating the binary and
collective processes.

Now let us take into account the `oblateness' of the
electron velocity distribution function [19, 20]

f �v� � Ge�v?� g�vk� ; Ge�v?� � 1

2pD2
?
exp

�
ÿ v 2

?
2D2
?

�
;

g�vk� � 1������
2p
p

Dk
exp

�
ÿ
v 2k
2D2
k

�
;

�36�

which is always inherent in coolers' electron beams and plays
a critical role in the formation of ultralow-temperature ion
beams [2, 3]. In formulas (36) we introduced the notation

D? �
�������
T?
m

r
; Dk �

������
Tk
m

r
; �37�

where T?and Tk are the temperatures characterizing the
electron motion across and along the magnetic field lines
that the electron beam travels along. The oblateness emerges
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due to the effect of kinematic cooling of the accelerated
electron beam, which is a corollary of Louiville's theorem.
Starting from the cathode with a velocity u0, the electron
traverses a region with a potential drop U, and its velocity
becomes equal to

u �
�������������������
u 2
0 �

2eU

m

r
�38�

(we consider the nonrelativistic electron beams which are
employed at the present time). If the initial velocities of two
electrons differ by Du0, their final velocities will differ
according to formula (38) by

Du � u0Du0
u

: �39�

Clearly, these relations pertain to the longitudinal motion,
and therefore from formula (39) and an estimate jDu0j � u0 �������������
Tc=m

p
, where Tc is the cathode temperature, there follows

the approximate relationships:

Tk � T 2
c

e
; e � mu 2

2
� eU ; T? � Tc : �40�

For typical values of Tc � 1000 K and U � 10 kV, from
formulas (40) we obtain Tk � 0:3 K. Lower values of Tk
cannot be attained in reality, because the electrons in the
beamwould necessarily move relative to each other. By virtue
of the virial theorem, one finds

Tk � e 2

R
� T 2

c

e
: �41�

To speed up the electron cooling rate, the beam should be as
dense as possible; however, owing to Coulomb repulsion the
density of a stable beam cannot exceed the value of

n � 109 cmÿ3 : �42�

In this case, e 2=R � 1K, and therefore, in the typical case, the
following estimates hold true:

T? � Tc � 1000 K ; Tk � 1 K : �43�

So, we next assume that

T?
Tk

4 1 : �44�

It should be noted that for the values given in expression (43)
Tk � e 2=R, and as regards the longitudinal electron motion
the cloud therefore represents a nonideal plasma:

x � 1 ; ND � 1 : �45�

For this reason, some results will evidently be accurate to an
order of magnitude. All calculations will nevertheless be
conducted assuming the fulfilment of the ideality criterion
(4), which is written out for an anisotropic plasma as

xk �
TkR
e 2

4 1 : �46�

Let us consider the problem of the screening of a point
charge q by an electron cloud with an oblate distribution (36).

Then, from expressions (17), (18), and (23) for the Fourier
component of the charge density in the Debye cloud we
obtain [compare with expressions (27)]

rp�k� �
q

1� k 2
kR

2
k � k 2

?R
2
?
; �47�

whereRk andR? are the `longitudinal' and `transverse'Debye
radii defined as

Rk �
�������������
Tk

4pne 2

r
� Dk

op
; R? �

�������������
T?

4pne 2

r
� D?

op
: �48�

Since Rk5R?, the surfaces of equal charge density
rp�k� � const in the k-space are strongly elongated along
the magnetic field (hereinafter, the z-axis). This signifies that
the Debye charge distribution rp�r� in ordinary space will be
strongly flattened along the z-axis (the direction `k'):

rp�r� �
�

d3k

�2p�3 rp�k� exp �ikr� �
q

4pRkR 2
?

exp �ÿS�
S

; �49�

where

S �
�
z 2

R 2
k
� r 2?
R 2
?

�1=2

; z � hr ; r? � rÿ hz :

For Rk � R?, expression (49) coincides with expression (27).
According to expression (49), theDebye cloud of an immobile
charge is a strongly flattened ellipsoid of rotation with
thickness � 2Rk along the axis of rotation (the z-axis):

R?
Rk
� D?

Dk
�

�������
T?
Tk

s
� 30 : �50�

For fast particles with the velocities

V > D? ; �51�

for any mass of particle M we have

rHM > rH ; �52�

rH � D?
oH

; �53�

and therefore in the calculation of F the trajectory of particle
M may be thought of as being rectilinear. Furthermore, in
expression (13) we may put f �v� � d�v�, so that

F�V� � 1

V
; HVF�V� � ÿ

bV
V 2

: �54�

Owing to a decrease in F with increasing V, the longest phase
comprises the moderation of fast particles, and therefore
formulas (12), (34), and (54) are sufficient for estimating the
slowing-down time for particles with an initial velocity
satisfying inequality (51):

td � MmV 3

12pne 2q 2L
: �55�

When defining td more precisely, the effect of a magnetic field
on the electron motion must be taken into account (see
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Sections 3 and 4). If the condition

V < D? �56�

is fulfilled, the rectilinear trajectory approximation still holds
for the heavy particles M (1) and breaks down for positrons
(2). For this reason, the velocity range (56) for the positrons
will be considered later (beginning with Section 5), while here
and in Sections 3 and 4 the motion of particles M is assumed
to be rectilinear. In Sections 3 and 4, we will thereby restrict
ourselves to the case of heavy particles (1) as well as to case
(2), (51) of fast positrons. Jumping ahead, we note that
interval (56) (to be more precise, V? � D?, Vk � Dk) is of
greatest importance for the positrons, because this is precisely
the range that accommodates the stationary velocity distribu-
tion of the positrons, which sets in as a result of their
moderation.

The case specified by

rH > R? �57�

will be referred to as the weak-magnetic-field limit. Expres-
sion (49) may be rewritten in the form

H < H1 ;
H 2

1

4p
� mc 2n :

With the parameters defined by expression (42), from
inequality (57) results the estimate

H < H1 � 40 G : �58�

In this case, the effect of a magnetic field on the friction force
may be neglected and it is defined by expressions (10), (12),
and (34). If we take advantage of an analogy with electro-
statics, according to expression (13) the vectorÿHVF defined
in the velocity space is similar to the electric vector of the field
produced by a unit charge distributed by law (36). Conse-
quently, for

Dk < Vk < D? ; V? < D? ; �59�

the `field' ÿHVF is analogous to the electric field near the
plane of a uniformly charged disk (with surface density s):

j ÿ HVFj � 2ps ; s � 1

pD2
?
:

Hence, one obtains

F � Fc � nq 2e 2

mD2
?
; Dk < V < D? ; H < H1 : �60�

For the subsequent discussion it might be beneficial and
instructive to obtain estimate (60) proceeding directly from
the shape of the Debye cloud (49), (50), which may be
represented approximately as a uniformly charged disk of
charge qD � ÿq, radius � R?, and thickness � 2Rk:

F � Fc � qEp � q 2

R 2
?
; Vk � Dk ; H < H1 ; �61�

which coincides with expression (60). Therefore, estimate (60)
gives the magnitude of the friction force for a particle velocity

Vk � Dk, when the particle resides at the edge of the Debye
cloud owing to its lag.

With an increase in magnetic field intensity, relation (57)
between the parameters is replaced by the following one:

Rk < rH < R? ; �62�

which corresponds to magnetic field intensities (this domain
will be referred to as the `medium field domain')

H1 < H < H2 ; �63�

where

H 2
2

4p
� T?

Tk
mc 2n ; H2 � 1200 G : �64�

The electron motion in the direction transverse �?� to the
magnetic field is restricted to a range � rH, and therefore the
lateral dimension of the Debye cloud decreases as the
magnetic field is strengthened. Under conditions (62), (63),
this dimension is � rH, and in lieu of expression (61) we
therefore obtain

F � Fc � q 2

r 2H
; Vk � Dk ; H1 < H < H2 : �65�

Finally, whenH > H2, the following inequality holds true:

rH < Rk ; �66�

and the electrons are therefore `attached' to themagnetic field
lines and, like beads on a thread in tension, may execute only
one-dimensional motion along these lines. This motion leads
to a redistribution of the electrons along the magnetic field,
with the consequence that their concentration is described by
the Boltzmann formula

n�r� � n exp

�
ÿ u

Tk

�
� n

�
1ÿ u

Tk

�
; u � ÿej ; �67�

where j � j�r� is the electric potential. From formula (67)
and the Poisson equation forj it follows that theDebye cloud
under condition (66) is spherically symmetric and described
by formulas (27), (28), in which Rk should be substituted for
rD. Hence it follows that

F � Fc � q 2

R 2
k
� nq 2e 2

mD2
k
; Vk � Dk ; H > H1 : �68�

Since the field strengthEp attains its maximum at the edge
of the Debye cloud, the friction force peaks for Vk � Dk.
Estimates (61), (65), and (68) may be combined by means of
interpolation:

Fmax � F�Vk � Dk� � q 2

�
1

R 2
k � r 2H

� 1

R 2
?

�
: �69�

These relationships are plotted in Fig. 1: for weak fields (58),
the force of friction is independent of H; for medium fields
(63), Fmax increases proportionally to the square of the
magnetic field intensity; lastly, in the magnetized plasma
(66), the force of friction becomes the most strong and ceases
to depend onH. The rectilinear trajectory approximation for
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particle M is assumed to hold true, and therefore Fig. 1
applies only to the case of a heavy particle (in Section 7, we
will show that dependences similar to those plotted in Fig. 1
are also valid for positrons, though not for the modulus
F � jFj, but for the projection of the force of friction on the
direction of magnetic field Fk).

To avoid misunderstanding, it should be mentioned that
the term `magnetized plasma' in conventional plasma physics
[11 ± 16] implies collisionless plasma: oH 4 n, where n is the
frequency of electron Coulomb collisions with electrons and
ions. Alternatively, condition (66) is implied in our case
covering the physics of charged particle beams. The increase
�� H 2� in the force of friction in the velocity (59) and
magnetic field (63) domains (this is referred to as the
`electron magnetization effect' [2, 3]) is extremely important
for the electron cooling of beams, because it leads to the
shortening of the cooling time, i.e., to a reduction in the
coolers' dimensions. As discussed earlier, the collective
contribution Fc to the force of friction increases due to the
reduction in the Debye cloud dimension arising from the
increase in magnetic field intensity. Similarly, the Fb con-
tribution caused by binary collisions also increases (see
Section 3), although its physical reason is different. With
shortening rH, the electron motion perpendicular to the
magnetic field is `confined' to a circle of short radius, and
therefore particle M interacts with an electron like with a
point particle traveling along the magnetic field at the low
velocity vk � Dk. When Vk � Dk, the relative velocity u of the
particles is also low and the interaction time is long. That is
why, in every collision the particles exchange a greater
momentum, i.e., Fb increases.

Thus, the oblateness of velocity distribution function (36)
forH > H1 leads to an increase in friction force.

3. Fb contribution to the friction force
from binary collisions
in the rectilinear particle trajectory
and electron magnetization approximations

This section, which is partly methodical in character, is
dedicated to a rigorous derivation of the formula for the
force of friction due to binary collisions in a magnetized
plasma. Here (and in Section 4), the trajectory of particleM is
assumed to be rectilinear, which is practically always true,
both in case (1) and in case (2) for velocities satisfying

inequality (51). Furthermore, it is assumed that

rH < R ; �70�
which is why the Larmor radius may be thought of as being
zero. Relation (70) will be termed the electron magnetization
condition with respect to binary collisions. For parameters
(42), (43), this condition is fulfilled when H > 500 G. Binary
magnetized collisions comprise collisions with an impact
parameter r (the minimal distance between particle M and
the electron) satisfying the condition

rH < r < R ; �71�

ordinary binary conditions are those with

r < rH ; �72�

and collective collisions are those with

r > R : �73�

In this section, we consider cases (71) and (72), with case (71)
being considered first.

Let us evaluate the contribution dFb from the magnetized
collisions (71) of particle M with the electrons having
velocities in the interval �vk; vk � dvk�. According to expres-
sions (36), the concentration of these electrons equals

dn � ng�vk� dvk : �74�

Since T?4Tk, we should accept the following expression for
the Thomson radius (15) in the case of distribution (36):

RT � e 2

T?
: �75�

For r � RT, the angle of electron scattering by particle M is
large: yscat � 1. With parameters (42), (43) and a magnetic
field strength

H � 1000 G ; �76�

typical for the Low Energy Particle Toroidal Accumulator
experiment (Joint Institute for Nuclear Research, Dubna)
[4 ± 7], the characteristic dimensions [in cm] are as follows:

RT � 1:5� 10ÿ6 ; rH � 1� 10ÿ3 ; R � 2� 10ÿ3 ;

R? � 3� 10ÿ2 ; Rk � 1� 10ÿ3 : �77�
One can see that the Thomson radius is short in comparison
with the other dimensions. Consequently, yscat 5 1 in a
typical collision. This signifies that the contributions to Fb

from different electrons are independent:

Fb �
�
dFb : �78�

To calculate dFb we move to the reference system K 0

moving alongHwith a velocity vk. In the reference systemK 0,
the group of electrons under consideration is immobile and
particle M moves with a velocity u � Vÿ vkh. The equations
of the particles' motion are of the form

M�rM � ÿqe r

r 3
; m�ze � qe

z

r 3
; �79�

1

2

3

F

Dk D? V

Figure 1. Qualitative form of the velocity dependence of the friction

force for a heavy particle �M4m� for H < H1 (curve 1), H1 < H < H2

(curve 2), and H > H2 (curve 3).
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where ze � hre, rM and re � zeh are the respective coordinates
of particle M and the electron, r � rM ÿ re and z � hr. From
Eqns (79) it follows that

�z � ÿqe z

mr 3
; �r? � ÿqe r?

Mr 3
; �X � 0 ; �80�

whereX � �MzM �mze�=�M�m�, and m �Mm=�M�m� is
the reduced mass of the particles. We rewrite the first two of
equations (80) as

�xa � ÿqeAab
xb
r 3
; �81�

where xa is a component of vector r, and

Aab � 1

M
dab � 1

m
hahb ; �82�

it is assumed that summation is performed over repeating
indices.

As stated in Section 2, the interparticle interaction may be
thought of as being weak owing to the smallness ofRT, and so
we will solve equations (80) by the method of successive
approximations, neglecting quantities of the third (and
higher) order of smallness:

xMa � �rM�a ; xMa � x
�0�
Ma � x

�1�
Ma � x

�2�
Ma � . . . ; �83�

x
�0�
Ma � �q� ut�a � x �0�a ;

where q is the impact parameter, and q? u. We write out the
formulas for the M-particle coordinates

zM � X� m

M�m
z ; rM? � r?

in the form

xMa � Xha � Babxb ; Bab � dab ÿ M

M�m
hahb : �84�

Since _X � const [see expression (80)], then according to
formulas (84) the velocity variation of particle M due to the
collision is expressed, correct to the uncertainty accepted
above, in the form

DVa � DV �1�a � DV �2�a ; DV �1�a � BabD _x
�1�
b ; �85�

DV �2�a � BabD _x
�2�
b :

From expressions (85) it follows that

_x �1�a �t� �
dx
�1�
a

dt
� ÿqeAab Jb�t� ; �86�

D _x �1�a � _x �1�a ��1� � ÿ
2qe

ur
Aab r̂b ;

Jb�t� �
� t

ÿ1
dt 0

x
�0�
a �t 0�
r 3�t 0� � f ûa � kr̂a ; �87�

f � ÿ 1

ur
; k � 1

ur

�
1� ut

r

�
;

q̂ � q

r
; û � u

u
; r � r�t� �

��������������������
r 2 � u 2t 2

p
;

D _x �2�a � ÿqeAab

� �1
ÿ1

dt x �1�g �t�
q
qxg

�
xb
r 3

�
: �88�

In the reference system K 0, the electrons of the selected
group are at rest prior to the interactionwith particleM,while
particle Mmoves with a velocity u. We calculate the variation
in the velocity of particle M in a path L, i.e., during the time
Dt � L=u:

dVa �
X
L

DVa � dn

�
dVDVa ; �89�

where summation is performed over the electrons of group
(74), which reside in a cylinder of height L and infinite radius,
with a symmetry axis coinciding with the unperturbed particle
trajectory x

�0�
a �t�, and dV is a volume element. Upon

integration over the azimuthal angle dj contained in the
element of volume

dV � Ld 2r ; d2r � r dr dj ; �90�

the term DV �1�a in expressions (85) vanishes. We next perform
integration by parts in expression (88). For the velocity
variation we obtain, in view of Eqn (86), the expression

DVa � ÿq 2e 2BabAbgAdZ

� �1
ÿ1

dt Pgd�t� JZ�t� ; �91�

where

Pgd�t� �
� t

ÿ1
dt

q
qxg

�
xd
r 3

�
� adgd � b�ûgr̂d � ûdr̂g� � cûgûd � d r̂d r̂g ;

a � 1

ur 2

�
1� ut

r

�
; b � r

ur 3
;

c � t

r 3
ÿ 1

ur 2

�
1� ut

r

�
; d � ÿ t

r 3
ÿ 2

ur 2

�
1� ut

r

�
:

In expression (91) we perform averaging over the
directions of the unit vector r̂ perpendicular to the cylinder
axis:

Pgd�t� JZ�t�

� � f ûZ

�
adgd� cûgûd� 1

2
d�dgdÿ ûgûd�

�
� bk

2
SgZd ;

�92�
SgZd � ûg�dZd ÿ ûZûd� � ûd�dZg ÿ ûZûg� : �93�

This averaging emerges in the integration over the angle j in
expressions (89), (90):�

dj . . . � 2ph. . .i : �94�

The terms odd in t, which make a zero contribution to
expression (91), should be discarded in expression (92),
following which the expression in the square brackets on the
right-hand side of expression (92) vanishes:

hDVai � ÿq 2e 2BabAbgAdZ
1

u 3r 2
SgZd : �95�

From expressions (82), (84), and (95) it follows that

MhDVai � ÿ q 2e 2

u 3r 2
�Aûa � Bĥa� ; �96�
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where

A � 2

M
� 1

m

�
1ÿ 2�ûh�2

�
; B � 1

m
ûh :

By summing up the contributions from electrons with
different velocities vk [see formula (78)], we obtain from
expressions (89), (90), (94), and (96) the following expression
for the contribution to Fb from magnetized binary collisions
(71):

FMb�V� �
X
L

M dV
Dt

� ÿ2pnq 2e 2LMb

� �1
ÿ1

dvk g�vk�
u 2

�Aû� Bh� ; �97�

where LMb � ln �R=rH�. In particular, for V4Dk, one
obtains

FMb�V� � ÿ 2pnq 2e 2LMb

V 2
�AbV� Bh� ; �98�

here and in expressions forA and B, bV � V=V should be used
in lieu of û. For V4Dk andM4m, we arrive at

FMb�V� � ÿ 2pnq 2e 2LMb

mV 2

hbVÿ1ÿ 2�bVh�2�� h�bVh�i ; �99�
or in components:

F
k
Mb � hFMb � ÿ 4pnq 2e 2LMb

mV 3
Vk

V 2
?

V 2
;

�100�

F ?Mb � ÿ
2pnq 2e 2LMb

mV 3
V?

V 2 ÿ 2V 2
k

V 2
:

The total contribution from binary collisions is defined by the
equation

Fb � FMb � Fsb ; �101�

where the contribution Fsb due to simple binary collisions (72)
is given by formula (12) in which Lsb � ln �rH=RT� should be
substituted for Lb, and RT is defined by formula (75).

From formulas (12), (60), and (98) result the conclusion
that the following relation holds for velocities satisfying
inequalities (59):

FMb

Fsb
� T?

Tk
4 1 ; �102�

which is a consequence of the strong anisotropy of electron
distribution (44) and the electronmagnetization effect (see the
end of Section 2) which manifests itself in binary collisions in
the case (59). We therefore may put

Fb � FMb : �103�

Clearly, the method of successive approximations
employed in this section may also be applied to the
derivation of formula (12). This formula is simpler to derive
by considering the center-of-mass system of particleM and an
electron of group (74): in the center-of-mass system, owing to
the interaction, the particle momenta rotate through some
angle, remaining opposite in direction and equal in modulus
mu.

4. Fc contribution to the friction force
from collective interactions in the rectilinear
particle trajectory approximation

In this section, we will obtain the expression for Fc in the case
of the rectilinear motion of particle M andH 6� 0.

According to expressions (22), (25), and (29), for recti-
linear uniform motion one has

Fc � ÿ iq 2

2p2

�
d3k

k

k 2

�
1

e�k; kV� ÿ 1

�
� q 2

2p2

�
d3k

k

k 2
Im

1

e
; �104�

where use was made of the property e�ÿk;ÿkV� � e ��k; kV�.
Formula (104) is valid under the conditions specified in
Section 3, as well as in the cases where the main contribution
to the integral in formula (104) is made by the collective
interaction domain k < 1=R. As in the case of H � 0
described by formula (34), the main logarithmic contribution
to Fc is made by the `nonresonance' domain (31) in which
approximation (33) is valid, and therefore

Fc � Fn � Fr : �105�
Here, Fn is the `nonresonance' term:

Fn � ÿ q 2

2p2

�
d3k

k

k 2
Im e ; �106�

and Fr is the `resonance' term:

Fr � ÿ iq 2

2p2

�
res

d3k
k

k 2

1

e
�107�

which emerges due to the pole

e�k;o� � 0 : �108�
Under the action of the field of particle M, consistent,

collective motion of the electrons occurs. A part of the energy
of this motion is converted to the energy of their chaotic
thermal motion by the Landau damping mechanism [11 ± 16],
which gives rise to the force of friction (106). Force (107)
emerges due to the Cherenkov radiation of collective waves
by the particle, the waves carrying away its energy into the
plasma interior.

In formula (104), one may perceive an analogy with
ionization losses and losses due to Cherenkov radiation in
the travel of a charged particle through a material [18]. For
nonrelativistic (in the rest frame of the beam) velocities (6),
only longitudinal waves, wherebyE�k;o� k k, can be emitted,
and their frequency and wave vector therefore obey the
dispersion relation (108) [11 ± 18]. The emission of Langmuir
plasma waves makes the main contribution to the force Fr:

o � op : �109�
The emission of high-frequency �o � oH 4op� cyclotron

wavesmay be neglected (see Section 5). According toRefs [12,
13], it can be shown that

Im e�k;o� � ÿ po2
p

k 2

X1
l�ÿ1

�
d3v J 2

l

�
k?v?
oH

�

� d�oÿ loH ÿ kkvk�
�
kk

qf
qvk
� loH

v?
qf
qv?

�
; �110�
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where Jl is the Bessel function. Since

k?v?
oH

<
v?

oHR
� rH

R
; �111�

the terms with l 6� 0 in expression (110) for magnetized
electrons may be omitted in accordance with inequality (70):

Im e�k;o� � pmo2
po

Tkjkkjk 2
g

�
o
kk

�
:

Hence, and from expression (106), it follows that

Fn � ÿ
q 2o2

p

2pD2
k

�
d3k

k�kV�
k 4jkkj g

�
kV

kk

�
; �112�

where the function g�vk� was defined by formula (36). In the
spherical coordinate system in the k-space, the volume
element is d3k � k 2 dk dOk, and therefore we perform, in
view of k � k̂k, integration over dk in expression (106):�

dk

k
� ln

Rk
R
� Ln ; �113�

where we accepted, in agreement with inequality (31) and the
reasoning about the character of Debye screening outlined at
the end of Section 2, the following limits of integration:

kmax � 1

R
; kmin � 1

Rk
: �114�

Finally, we arrive at

Fn � ÿ 2q 2e 2nLnV

mD2
k

I ; �115�

I �
�
dOk

k̂�k̂bV�
jk̂hj

1������
2p
p

Dk
exp

�
ÿ �k̂V�

2

2D2
kk̂

2
k

�
: �116�

For V k H, it is readily shown that

Fn � ÿ 2
������
2p
p

q 2e 2nLn

mD3
k

V exp

�
ÿ

V 2
k

2D2
k

�
: �117�

For V4Dk, the main contribution to expression (115) is
made by those directions of k̂ for which jk̂bVj5 1. Let the axis
kz be directed parallel to V. From formula

�k̂bV� exp�ÿ V 2k 2
z

2D2
kk

2
k

�
� ÿ

����
p
2

r
Dkjkkj
kV

d 0�kz� ;

which is valid for V4Dk, we find

Fnk � ÿ 4pnq 2e 2Ln

mV 2

V 2
?

V 2
Vk ; �118�

Fn? � ÿ 2pnq 2e 2Ln

mV 2

V 2
? ÿ 2V 2

k
V 3

V? : �119�

Expressions (118) and (119) were obtained by Derbenev and
Skrinskii [21] in a different way.

Comparing formulas (100), (103) and (118), (119) we
notice that effect (35) of the vanishing of the intermediate
dimensionR from the expression for the total force of friction
takes place in the presence of a magnetic field, as well.

Let us calculate Fr for V4Dk for magnetized electrons
obeying inequality (66). It this case, we may put Tk � 0 and,
in addition, assume that the electrons can travel only along
the magnetic field lines, which is described by the system of
equations

m
dv

dt
� e

qj
qz

;
qn
qt
� q
qz
�nv� � 0 ; Dj � 4pe�nÿ n0� ;

where the z-axis is aligned with H, and j is the electric
potential. Upon linearization with the result that
dv=dt � qv=qt, n � n0 � n1 and moving to the Fourier
components �k;o� we obtain

v � ÿiox � ekz
mo

j � ie

mo
Ez ; �120�

where x is the electron displacement along the direction of the
magnetic field. From formula (120) we find the electric
induction vector

D � E� 4p�ÿe�nxh � Eÿ o2
p

o2
hEz :

Hence we obtain the expressions for the permittivity tensor of
the magnetized electron cloud:

eab�k;o� � dab ÿ
o2

p

o2
hahb ; �121�

and the longitudinal permittivity (18):

e�k;o� � 1ÿ o2
p

o2
cos2 a ; �122�

where a is the angle between k and H. Expression (122) may
easily be obtained from the permittivity tensor of a cold
plasma [11 ± 18]:

exx � eyy � 1ÿ o2
p

o2 ÿ o2
H

; ezz � 1ÿ o2
p

o2
; exz � eyz � 0 :

From here we find

e�k;o� � 1ÿ o2
p

�
sin2 a

o2 ÿ o2
H

� cos2 a
o2

�
: �123�

In the typical case of a nonideal plasma with the parameters
(45), we have Rk � R, and therefore from relationship

oH

op
� D?

rHop
� Rk

rH

D?
Dk

we conclude that

oH

op
4 1 : �124�

For themost significant frequencies (109), from formula (123)
and inequality (124) there follows the resultant expression
(122). The derivation given earlier makes it more lucid.

According to the causality principle, the poles of e�k;o�
may lie only in the lower semiplane ofo [18], and therefore the
pole in expression (107) should be detoured by the rule

o! o� i0 ; �125�
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whence we arrive at the expression for the friction force

Fr � ÿ q 2

2p

�
d3k

k�kV�2 sign �kV�
k 2

d
�
�kV�2 ÿ o2

p

�kh�2
k 2

�
:

�126�

Here, the d function is representative of the plasmon emission
with the dispersion law

o�k� � opjk̂hj � op

jkkj
k

; �127�

which follows from formulas (108) and (122). Let the kz-axis
be directed along V, and the ky-axis perpendicular to the
vectors H and v. We next move to spherical coordinates and
perform integration over dk to obtain

k � op

V

jk̂hj
jk̂bVj ; �128�

Fr � ÿ q 2e 2n

mV 2

�
dOk k̂ sign �kV� �kh�

2

�k̂bV�2 ; V > Dk : �129�

From expression (126) and relations V > Dk, Rk � Dk=op

result the conclusion that

k <
1

R
; �130�

which corresponds to the range of distances r > R, i.e., the
collective interaction range. Therefore, the calculation of Fr is
noncontradictory. When

V k H ; �131�

from expressions (100), (118), (119), and (129) we obtain

FMb � Fn � 0 ; Fsb 5Fr ; �132�
F � Fr � ÿ 2pq 2e 2n

mV 2
bV ; V k H ; V4Dk :

Therefore, the friction force induced in the particle
motion along the field in a magnetized plasma is almost
completely determined by the Cherenkov radiation of
plasmons. To understand the physical cause of this effect we
will consider the collision of two particles, which is described
by the equations

M�z1 � ÿ qez

r 3
; m�z1 � qez

r 3
; �133�

where z � z1 ÿ z2, r � r1 ÿ r2, and r �
����������������
r 2 � z 2

p
. In equa-

tions (133) we separate off the center-of-mass motion to
obtain

V0 � _X � const ; X �Mz1 �mz2
M�m

;
m _z 2

2
� qe

r
� const :

From these equations it follows that for q > 0 (the case
considered in our review) the energies of the particles which
experience collisions remain invariable: E 01 � E1, E

0
2 � E2,

where E1 �M _z 21 =2, and E2 � m _z 22 =2. A typical binary
collision takes place for an impact parameter r � R. During
the strongest interaction of these particles, which proceeds for
r � R, at a distance of about R from them there is at least
one, a third, particle, the interaction withwhichmust be taken
into account for this reason. It interacts with the fourth one,

etc. Therefore, particle M generates a collective excitation Ð
a plasmon, with the consequential change in the particle's
energy.

For an arbitrary direction of V and for V > Dk, it can be
shown that

�Fr�z � bVFr � ÿ 2pq 2e 2n

mV 2

��
L1 ÿ 3

2

�
sin2 b� 1

�
;

�Fr�x � ÿ
4pq 2e 2nL1

mV 2
sin b cos b ;

where L1 � ln
�
V=�opR �

�
, b is the angle between the vectors

V andH, and the orientation of coordinate axes was specified
above.

Formula (132) is important from the standpoint of
determining the stationary positron distribution over long-
itudinal velocities; that is why inAppendix A1 it is derived in a
simpler and physically more lucid way in comparison with the
permittivity formalism employed above. The results obtained
in this section will be applied to the analysis of positron
motion.

5. Friction force acting on a light particle
in an isotropic plasma

Prior to turning our attention to the complicated case of a
nonzero magnetic field, in this section we will consider a
substantially simpler case of light particle deceleration in an
isotropic plasma �T? � Tk � T � at a zero magnetic field.

For a light particle �M � m�, an additional term F �2� in
the force of friction emerges, which is associated with its
trajectory changing due to interaction with electrons. To
calculate the required force of friction, we shall reason in
much the same way as we did in Section 2.

Let us consider an inertial reference system `m' in which
particle m is at rest prior to a collision. By virtue of inequality
(9) it may be assumed that the particle resides at the origin of
this system throughout the collision time. In the same fashion
as in the derivation of formula (11) we can find Dp �2�M �
ÿ�2q 2e 2=�Mu 3r 2��û, and for the total variation of the
momentum of particle M we therefore have

DpM � Dp�1�M � Dp�2�M � ÿ
2q 2e 2

mu 3r 2
û : �134�

The result for the binary-collision contribution to the force of
friction is as follows:

Fb � F
�1�
b � F

�2�
b � 4pne 2q 2Lb

m
HVF�V� : �135�

Here, F
�1�
b is the `dynamic' force of friction, which is given by

formula (12), and

F
�2�
b � 4pne 2q 2Lb

M
HVF�V� :

The force F
�1�
b acts on an infinitely heavy particle �M!1�,

and the electrons therefore exert no effect on the motion of
this particle.

We now evaluate the collective term Fc for a light particle:

Fc � q
h
E 0
ÿ
R�t�; t�� Ep

ÿ
R�t�; t�i : �136�
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Unlike the calculation performed in Section 2, here account is
taken of the plasma fluctuation electric fieldE 0

ÿ
R�t�; t�which

acts on the particle at its location R�t�. The particle travels
according to the lawR�t� � r�t� � n�t�, r�t� � �0; 0;Vt� � Vt,
where n�t� is a small deflection caused by the fluctuation field.
We retain in expression (136) the quantities of the zero- and
first-order of smallness in fluctuations to obtain

�xa�t� �
q

M
E 0a
ÿ
r�t�; t� : �137�

Therefore, we have an expression similar to expression (135):
Fc � F �1�c � F �2�c . Here, F �1�c is the dynamic force defined by
relationships (22) ± (25), (34); F �2�c is the fluctuation term:

F �2�c � �0; 0;F �2�cz � ; �138�
F �2�cz � q



E 0z
ÿ
R�t�; t�� � q

�
xa�t�

�
qE 0z
qxa

�
r�t�; t

�
:

In expression (138), statistical averaging over a plasma state
unperturbed by the field of a particle is performed in
connection with the fact that we consider the motion of a
beam of particles M as a whole, rather than the motion of
every particle in it. From expressions (137) and (138), on
passing to the Fourier components of the function n�t� and
the electric field strength

E 0a�r; t� �
�
dQE 0a�k;o� exp �ikrÿ iot� ; dQ � d3kdo

�2p�4 ;

we obtain the expression

F �2�cz � ÿ
iq 2

M

�
dQkk
�Oÿ i0�2 �E

2�k;o �M
qDzb�V �

qVb
: �139�

Here, O � oÿ kkV, kk � kV=V, Dab is the tensor of the
diffusion coefficients of particle M in the velocity space in
the isotropic plasma considered in this section ([14, 22]; see
also Appendices A4±A6):

Dab�V� � ÿ iq 2

M 2

�
dQEab�k;o� 1

Oÿ i0

� q 2

2M 2

�
d3k

�2p�3
kakb
k 2
�E 2�k; kV

� 2nq 2e 2

M 2

�
d3v f �v�

�
d3k

kakb d�ku�
k 4
��e�k; kV���2

�
����
2

p

r
nq 2e 2

M 2D

�
d3k

kakb

k 5
��e�k; kV���2 exp

�
ÿ �kV�

2

2k 2D2

�
; �140�

and u � Vÿ v. In expressions (139) and (140) we introduced
the correlation function for the components of an electric
field strength (see Appendix A3)

Eab�k;o� � kakb
k 2
�E 2�k;o ; �141�

�E 2�k;o � ÿ
8pT
o

Im
1

e�k;o�

� 32p3ne 2

k 2
��e�k;o���2

�
d3v f �v� d�ku� :

Account was also taken of the property Eab�k;o� �
E �ab�ÿk;ÿo� and the Sokhotskii formula

1

O� i0
� P

�
1

O

�
ÿ pid�O� : �142�

According to papers [12, 14 ± 16] [see also formulas (17) and
(18)], the longitudinal permittivity of an isotropic electron
plasma is given by

e�k;o� � 1� o2
p

k 2

�
d3v

ÿ
kHv f �v�

�
oÿ kv� i0

� 1�mo2
p

Tk 2

�
1ÿ Z

�
o���
2
p

kD

��
: �143�

Here, the notation was introduced as follows:

Z�x� � X�x� ÿ iY�x� ;

X�x� � 2x exp �ÿx 2�
� x

0

dt exp t 2 ; �144�

Y�x� � ���
p
p

x exp �ÿx 2� :

Let us present an asymptotic expression required for the
subsequent discussion:

X�x� � 1� 1

2x 2
; x4 1 : �145�

We point out an analog of the Einstein relation in the velocity
space:

�F �1�c �a � ÿ
M 2

T
DabVb ; �146�

which follows from expressions (22) ± (25), (140), and (141)
[see also formula (104)].

Formula (140) is simplified for an ideal plasma satisfying
condition (4). For brevity of writing, we assume a priori that
the main contribution is made by the range of wave numbers
k5 1=rD, which corresponds to the range of impact para-
meters r4 rD. Then, putting e�k; kV� � 1 in accordance with
inequality (32), in view of the relation d�ku� � d�kk�=u, where
kk � kû, we arrive at the expression contained in the Landau
collision integral (for details, see Lifshitz and Pitaevskii [15,
æ 46]):

Bab � 2q 2e 2

u

�
d2k?

k?ak?b
k 4
?
� 2pq 2e 2Lc

u
�dab ÿ ûaûb� ;

Dab�V� � n

M 2

�
d3v f �v�Bab � 2pnq 2e 2Lc

M 2

q2hui
qVa qVb

:
�147�

Here, hui � � d3v f �v�u is the second Trubnikov potential.
From expression (139) we then obtain

�F �2�c �a �M
qDab�V �

qVb
� F �2�c

bVa ;
�148�

F �2�c � 4pne 2q 2Lc

M
F 0�V � :

Assumption (31) is correct provided that Lc 4 1, which is
fulfilled for ideal plasmas. From expressions (28) and (148) we
find the collective force of friction:

Fc � 4pne 2q 2Lc

m
HVF�V� : �149�

656 L I Men'shikov Physics ±Uspekhi 51 (7)



From formulas (135) and (149) we obtain the resultant
expression for the total force of friction:

F � 4pne 2q 2L
m

HVF�V� : �150�

Two remarkable facts are worthy of mention:
(A) the vanishing [compare with expression (35)] of the

intermediate dimension R from the total force (150), and the
appearance of the resultant Coulomb logarithm L;

(B) the union of the masses of the particle being
decelerated (M) and the plasma particles (m) into the
reduced mass m in the formula for the total force of friction.

Fact A is well known in plasma physics [10 ± 16]: every
plasma particle resides in the fluctuation electric field
produced by all other particles, while binary collisions may
be treated as the shortest-term fluctuations. By comparing the
volumes of the calculations presented in Sections 3 and 4, it
may be concluded that this property is methodically impor-
tant: it permits considering only collective interactions which
are simpler to evaluate. Binary collisions then are automati-
cally included if the cutoff in the resultant logarithmically
diverging expressions is performed not at the shortest
`collective' dimension R, but at the shortest `binary' dimen-
sionRT [as indicated earlier, rH should be taken instead ofRT

in the conditions of fulfilling inequality (44)]. This substan-
tially simplifies calculations in the most complicated and
practically important case of a nonzero magnetic field
�H 6� 0�, for which the applicability of this procedure was
proved byMontgomery et al. [23]. Furthermore, it is shown in
Section 7 that the role played by binary collisions becomes
progressively less significant in the very cases most important
for positron moderation: (1) with increasing the magnetic
field intensity; (2) with an increase in the degree of anisotropy
T?=Tk, and (3) with a decrease in the mass of particle M.

Fact B is rather surprising, because it is also valid for
collective interactions whereat particle M interacts simulta-
neously with a large number of plasma particles. The reason
lies with the specific character of Coulomb interaction. In
Section 6 it is shown, however, that the effect of electron-mass
replacement by the reduced mass takes place only in the
absence of a magnetic field.

6. Kinetics of the electron cooling
of light particles. Initial equations

For a nonzero magnetic field, the motion of particles is
substantially complicated and it is required to find a rigorous
approach to their moderation analysis with a view of strictly
taking into account the momentum conservation which leads
to the appearance of a reduced mass in the formulas. All
necessary information about moderation kinetics is con-
tained in the distribution function F�V; t� in particle
velocities V. The starting point when writing the equation
for the function F�V; t� is assumption (46) of anisotropic
plasma ideality. According toNNBogoliubov's fundamental
conclusion [24], the system of collisionless Vlasov ±Maxwell
equations, i.e., the self-consistent field approximation, is
applicable in this case to the description of plasma and the
charged particles in it owing to the long-range nature of
Coulomb interactions. According to Rostoker [25] as well as
Klimontovich and Silin [26], this field may be resolved into
two components Ð the large- and small-scale components Ð
and averaging may be performed over the fast fluctuations of

the small-scale field, which gives a collisional term in the
Landau form on the right-hand side of the Vlasov equation.
With the inclusion of plasma polarization, i.e., the larger-
scale field, this term may be represented in the form of the
Balescu ± Lenard collision integral. The Vlasov equation
reduces to the Fokker ± Planck equation (see, for instance,
Aleksandrov and Rukhadze [14, æ 9.4] and Lifshitz and
Pitaevskii [15, æ 47], which is due to the smallness of velocity
variations DV in individual scattering events. This is exactly
the desired equation for F�V; t�:

qF�V; t�
qt

� q

M
�V�H�HVF�V; t� � St �F� ;

�151�
St �F� � ÿ q ja

qVa
;

where ja is the flux density of particlesM in the velocity space:

ja � Aa�V�F�V; t� ÿDab�V� qF�V; t�qVb
; �152�

Aa�V� � F
�1�
a

M
; �153�

where F �1��V� is the dynamic force introduced earlier.
Indeed, let us consider a beam of particles M with the

initial distribution

F�V 0; t � 0� � d�V 0 ÿ V� : �154�

At the instant of time t > 0, the beam velocity equals

V�t� � hV 0i �
�
d3V 0 V 0F�V 0; t� ;

and the acceleration is expressed as

�a�a �
d
ÿ
V�t��a
dt

� �F�a
M
� d

dt

�
d3V 0 V 0aF�V 0; t�

�
�
d3V 0 V 0a

qF�V 0; t�
qt

� ÿ
�
d3V 0 V 0a

q jb
qV 0b
�
�
d3V 0 ja

�
�
d3V 0

�
Aa�V 0�F�V 0; t� ÿDab�V 0� qF�V

0; t�
qV 0b

�

�
�
d3V 0 Aa�V 0�F�V 0; t� �

�
d3V 0 F�V 0; t� qDab�V 0�

qV 0b
:

Hence, and from expression (154) at t � 0, it follows that

�a�a �
�F�a
M
� Aa�V� � qDab�V�

qVb
: �155�

By comparing this relation with the results outlined in
Section 5, we ascertain the meaning of vector A�V� and its
linkage (153) with the dynamic force.

The components Dab�V� of the M-particle diffusion
tensor in the velocity space, which are highly compli-
cated in form for H 6� 0, were calculated by Rostoker
and Rosenbluth [27]. However, it is unnecessary here to
know all of the components, because we are concerned
with the case of azimuthal and axial symmetries: F �
F�V; t� � F�V?;Vk; t� � F�V?;ÿVk; t�. We write down
equations (151) and (152), in view of the relationship
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�V�H�HVF�V?;Vk; t� � 0, in the form

qF�V; t�
qt

� St �F� ; �156�

St �F� � ÿ q ja
qVa
� ÿ q jk

qVk
ÿ 1

V?
q

qV?
�V? j?� ; �157�

jk � AkF�V; t� ÿDk
qF
qVk
ÿDLT

qF
qV?

;
�158�

j? � A?F�V; t� ÿD?
qF
qV?

ÿDLT
qF
qVk

:

Here, Ak and A? are the longitudinal and transverse
`dynamic' accelerations; Dk � Dabhahb and D? �
Dab bV?a bV?b are the coefficients of positron diffusion in the
longitudinal and transverse velocities, and DLT � Dab bV?ahb
is the nondiagonal element of the matrix of diffusion
coefficients Dab, which is responsible for the longitudinal ±
transverse relaxation and describes the establishment of
equilibrium between the longitudinal and transverse degrees
of freedom in positron motion. It is shown in Section 10 that
the terms with DLT in equations (158) may be neglected in
the case of interest (44), and hereinafter we therefore assume
that

jk � AkF�V; t� ÿDk
qF
qVk

; j? � A?F�V; t� ÿD?
qF
qV?

:

�159�

To determine the relations for an axially symmetric
distribution, which are analogous to relations (153) and
(155), in lieu of distribution (154) we should consider the
initial velocity distribution

F�V 0k;V 0?; 0� �
1

2pV?
d�V 0k ÿ Vk� d�V 0? ÿ V?� : �160�

This distribution corresponds to particles with equal values of
�Vk;V?�. We repeat the calculation to obtain

a?�Vk;V?� �
F?�Vk;V?�

M
� d

dt
hV?it� 0

� A?�Vk;V?� � 1

V?
q

qV?

ÿ
V?D?�Vk;V?�

�
;

�161�
ak�Vk;V?� �

Fk�Vk;V?�
M

� d

dt
hVkit� 0

� Ak�Vk;V?� �
qDk�Vk;V?�

qVk
:

Hence, it is clear that F
�1�
? and F

�1�
k are the dynamic forces

defined as

F
�1�
? �Vk;V?� �MA?�Vk;V?� ; �162�

F
�1�
k �Vk;V?� �MAk�Vk;V?� ;

which will be calculated in Section 7.

7. Dynamic force for a positron

In the positron storage ring of the LEPTA experiment [6], a
volume of � 104 cm3 will contain � 108 positrons. Since the

particle number density in the positron beam is rather high,
viz.

N � 104 cmÿ3 ; �163�

above all it is required to elucidate how the positrons are
decelerated: as a single beam, collectively, or independently of
one another. In other words, it is necessary to investigate the
possibility of emerging a beam instability accompanied by a
strong enhancement of the deceleration of positrons which
would excite the electron Langmuir oscillations. The disper-
sion law o � o�kk� governing these oscillations for cold
electron and positron beams is obtained from the equation
[11, 15, 16]

o2
p

o2
� O 2

p

�oÿ kkV0�2
� 1 ; �164�

whereOp �
��������������������
4pNe 2=m

p
, andV0 is the positron beam velocity

(as usual, in the rest frame of the electron beam). Owing to the
typical temperatures involved (43), the cold electron approx-
imation is justified (since V0 k H, it is only the longitudinal
temperature Tk that matters). The generalization of formula
(164) for an arbitrary distribution F�Vk� of the positrons in
longitudinal velocities Vk takes the form

o2
p

o2
� O 2

p

�1
ÿ1

dVk
F�Vk�

�oÿ kkVk�2
� 1 ; �165�

where the function F�Vk� is normalized by the condition� 1
ÿ1 dVk F�Vk� � 1. Expression (165) may be obtained from
the Vlasov equation written out for electrons and positrons.
For a positron velocity distribution of the form

F�Vk� � D

p
��Vk ÿ V0�2 � D2

� ;
from expressions (125) and (165) we obtain

o2
p

o2
� O 2

p

�oÿ kkV0 � ikkD�2
� 1 : �166�

With a variation in kk, the roots o � o 0 � io 00 of equation
(166) move as depicted in Fig. 2. The electric field of the
Langmuir oscillations excited by the positron beam depends
on the time as exp �ÿiot�, and therefore the instability
develops if only one of the roots takes the positive value:
o 00 > 0. The instability increment is g � max

�
o 00�kk�

�
. An

instability emerges when the particle trajectory with the
greatest imaginary part o 00 is tangent to the o 0-axis (see

o 00

o 0

Figure 2. Qualitative form of the trajectories of the roots o � o�kk� of
equation (166) with varying kk.
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Fig. 2):

o 00�kk� � 0 ;
do 00�kk�

dkk
� Im

�
do
dkk

�
� 0 : �167�

From the three equations (166), (167), it follows that this
critical trajectory emerges for the parameter value

D � V0

�����
N

n

r
: �168�

The critical trajectory is tangent to the o 0-axis for a wave
vector kk � op=�V0

���
2
p � at a point o 0 � op=

���
2
p

. Therefore,
the condition for the development of the beam instability is as
follows:

D < V0

�����
N

n

r
: �169�

From formulas (42), (163), and (169) results the conclusion
that the positrons in the LEPTA experiment, which is
characterized by fulfilling the condition V0 � D, are deceler-
ated independently of each other, because beam instability is
absent.

In this section we will consider positrons with velocities
from the range (56) which accommodates their stationary
distribution. Therefore, for a typical e� � eÿ collision [see
formulas (3), whereM � m in this case] one has

rHp � rH : �170�

That is why, owing to inequality (70), there are two
characteristic domains, depending on the Larmor-circle
impact parameter r0 (the distance between the straight lines
described by the Larmor circles prior to the electron ±
positron collision), which are specified as follows:
the collective interaction domain, viz.

r0 > R ; �171�
and the binary collision domain, viz.

r0 < R : �172�

The latter may be additionally divided into two domains:
the one pertinent to nonoverlapping Larmor circles, viz.

rH < r0 < R ; �173�
and the other with overlapping Larmor circles, viz.

r0 < rH : �174�

Formula (10) is valid in this instance because positrons
experience collisions of a different type. In this section we
will calculate the collective force Fc which corresponds to the
interactions specified by inequality (171).

A positron moves along a helical line R�t� �
Vkt h� R?�t�, for which it follows from expressions (24) that

r�k;o� � 2pq
X1

S�ÿ1
d�Oÿ oHS� JS�k?rHp� ; �175�

whereO � oÿ kkVk, and JS is the Bessel function. Due to the
smallness of the positron Larmor radius and the electron
magnetization [see condition (170)], we may retain in

expression (175) only the monopole �S � 0� and dipole
�S � �1� terms and discard the quadrupole and higher
terms �jSj5 2�:

r�k;o� � rM � rd : �176�

Here, rM is the charge density for the zero size of the positron
Larmor radius:

rM�k;o� � 2pqd�O� ; �177�

and rd is the charge density produced by the rotating dipole
moment of the Larmor positron motion:

rd�k;o� � 2pqJ1�k?rHp�
�
d�Oÿ oH� � d�O� oH�

�
: �178�

In accordance with expressions (177) and (178), one has

Fc � FcM � Fcd : �179�

Below we shall show that the main contribution to FcM

is made by the entire collective interaction domain (130),
i.e., k? � jkkj < 1=R. That is why, owing to relations (70)
and (170) for positrons we arrive at the relation
k?rHp < rH=R5 1 that is similar to inequality (111) for
electrons, which allowed putting equal to zero the argument
of the Bessel function in expression (177). We will ascertain
that the main contribution to the force Fcd is made by only a
part of domain (130), namely

k? � 1

rHp
� 1

rH
; jkkj5 k? ; �180�

which is why the Bessel function is retained in expression
(178).

The term (177) describes a point charge q moving with
velocity Vk along the magnetic field, and therefore formula
(104) holds true, in which o � Vkkk:

FcM � FcMh ; FcM � q 2

2p2

�
d3k kk
k 2

Im
1

e
: �181�

Let us calculate FcM for magnetized electrons (66) at an
arbitrary value of Vk. Formulas (121), (122) are easily
generalized to the case of Tk 6� 0:

eab�k;o� � dab � hahb Q�k;o� ;
e�k;o� � 1� cos2 aQ�k;o� ; �182�

Q�k;o� � o2
p

o

�1
ÿ1

dvk vk
o� i0ÿ kkvk

dg�vk�
dvk

:

The quantities eab are calculated, as in the derivation of
formulas (121) and (122), on the basis of the Vlasov kinetic
equation for the distribution function f �vk; r; t� of magne-
tized electrons:

qf
qt
� vk qfqzÿ

eEk�r; t�
m

qf
qvk
� 0 ;

and the relationship

qx�r; t�
qt

� vk�r; t� �
�
dvk vk f �vk; r; t� :
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Formulas (182) also follow from the rigorous expression for
e � ek, which is valid for arbitrary values of the magnetic field
intensity [12, 13, 28]:

e�k;o� � 1� o2
p

k 2

X1
l�ÿ1

�
d3v J 2

l

�
k?v?
oH

�

� kk qf=qvk � loH=v? qf=qv?
oÿ i0ÿ loH ÿ kkvk

; �183�

where f is the electron velocity distribution function. For an
`oblate' distribution, f is defined by formulas (36). In the
frequency range joj � op, which is most significant for the
force FcM, the terms with l 6� 0 in expression (183), which are
exponentially small, may be neglected, whence we obtain
formulas (182). From these formulas we have

e�k; kkVk� � 1ÿ o2
p

VkD2
kk 2

�1
ÿ1

dvk v 2k g�vk�
Vk ÿ vk � i0 sign kk

: �184�

Hence, it is clear that Im e and, consequently, Im �1=e� are the
odd functions of kk, and therefore expression (181) is brought
to the form

FcM � 2q 2

p
Im

� �1
0

dkk kk

�1
kk

dk

ke�k�
�
; �185�

where it was taken into account that owing to azimuthal
symmetry it is possible to perform integration over the angles,
which reduces to the change: d3k! 2pk? dk?kk, and use was
made of the relation k? dk? � k dk valid at kk � const.
According to formula (184), for kk > 0 it is easily shown that

e�k� � 1� a

k 2
; �186�

where

a � 1

VkR 2
k

�1
ÿ1

dvk g�vk�v 2k
vk ÿ Vk ÿ i0

� 1

R 2
k

�
1ÿ X

�
Vk���
2
p

Dk

�
� iY

�
Vk���
2
p

Dk

��
; �187�

and functions X and Y are defined by formulas (144).
In expression (185) we perform integration by parts:

FcM � q 2

p
Im

�1
0

dkk kk
e�kk�

� q 2

p
Im

�1
0

dkk kk

�
1

e�kk� ÿ 1

�
� ÿ q 2

p
Im

�
a

�1
0

dkk kk
k 2
k � a

�
:

From inequality (130) it is clear that the upper integration
limit 1 should be replaced by the quantity 1=R, then one
finds

FcM � ÿ q 2

p
Im �a ln p� ; �188�

where p � ln
�
1� 1=�aR 2��. According to expression (187),

the quantities a and p are complex functions of the real
parameter x � Vk=�

���
2
p

Dk�. The qualitative form of the
trajectory p � p�x� � p1�x� � ip2�x� is plotted in Fig. 3. In

the limiting case of Vk5Dk, one has

a � 1

R 2
k

�
1� i

���
p
p

Vk���
2
p

Dk

�
;

FcM � ÿ
������
2p
p

q 2e 2nVk
mD3

k
ln

�
1�

R 2
k

R
2

�
:

For longitudinal velocities Vk4Dk (see Fig. 3), ln p � ÿpi,
and in accordance with formula (132) we therefore arrive at

FcM � ÿ 2pq 2e 2n

mV 2
k

: �189�

For arbitrary values of Vk, the force FcM is calculated by the
following formulas:

FcM � ÿ 2q 2e 2n

mD2
k

�
ÿj�1ÿ X � � 1

2
Y ln � p 2

1 � p 2
2 �
�
;

j � p
2
ÿ arctan

p1
p2
; p1 � 1�

R 2
k �1ÿ X �
R

2
D

;

p2 �
R 2
kY

R
2
D
; D � �1ÿ X �2 � Y 2 :

Let us now evaluate the force Fcd. We begin by calculating
the work done by this force in a unit time:

dE

dt
� dE?

dt
� dEk

dt
� qhVEpi ;

where

E? � mV 2
?

2
; Ek �

mV 2
k

2
;

�190�
dE?
dt
� qhV?Epi ;

dEk
dt
� qhVkEpki ;

and Ep is the plasma electric field strength at the positron
location [see formula (25)]. The angular brackets in formulas
(190) denote averaging over the Larmor period, which gives
relationships (see also Shafranov [12])

dEk
dt
� VkFcM ; �191�

dE?
dt
� V?Fcd

� 4pq 2
X1

S�ÿ1
oHS

�
d3k

�2p�3
1

k 2
Im

�
1

eS

�
J 2
S�k?rHp�

� 4pq 2oH

�
d3k

�2p�3
1

k 2
R�k� J 2

1 �k?rHp� ; �192�

p2

2

1

p1

Figure 3.Trajectory of the value of function p � p�x�. Point 1 corresponds
to x � 0 (at this point p1 � 1� R 2

k =R
2
and p2 � 0). Domain 2 in the

curve corresponds to x! �1.
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where eS � e�k; kkVk � oHS�, and

R�k� � Im

�
1

e1
ÿ 1

eÿ1

�
: �193�

In this calculation, use wasmade of expressions (22), (23), and
(175). On averaging over the Larmor period there remains a
nonzero contribution to Eqn (191) from only the term with
S � 0, i.e., from themonopole charge density (177). Themain
contribution to Eqn (192) is made by the terms with S � �1,
i.e., the dipole density (178). The simplifications in Eqn (192)
were made in view of relation (176).

Therefore, the friction force FcM is aligned with the
magnetic field [see formulas (181) and (189)], and it therefore
lowers the energy Ek of longitudinal positron motion. The
averaged force Fcd exerts no effect onEk and lowers E?, i.e., it
is directed transversely to the magnetic field:

Fcd � Fcd
bV? ; bV? � V?

V?
;

�194�
Fcd � 4pq 2oH

V?

�
d3k

�2p�3
1

k 2
R�k� J 2

1 �k?rHp� ;

where use was made of relationship (192). The main
contribution to the magnitude of eS is made by the resonance
term with l � S in expression (183). However, the resultant
expression remains highly complicated, and so first we
consider the limiting case of Vk4Dk, where we may put
Tk ! 0, which gives expression (123). Hence, in view of
expressions (124) and (125), by neglecting the terms of order
o2

p=o
2
H we obtain

Im
1

e�k;o� � ÿp sign �o�op sin a d
ÿ
o2 ÿ O 2�k�� ; �195�

where O�k� is the dispersion law for `fast' cyclotron waves:

O�k� �
������������������������������
o2

H � o2
p sin

2 a
q

� oH �
o2

p

2oH
sin2 a ; �196�

in the limiting case [11 ± 13, 16, 17, 29]. From relations (193) ±
(195) we have

R�k� � ÿ po2
p sin

2 a

2oHVk

�
d�kkÿ p� � d�kk� p�� ; p � o2

p sin
2 a

2oHVk
;

�197�
Fcd � ÿ 4pq 2e 2n

mV?Vk
f0 ; �198�

where

f0 �
�1
0

dk? k 3
?

�k 2
? � p 2�2 J 2

1 �k?rHp� :

We take into consideration that a � p=2 [see expressions
(202)] and then obtain

p � o2
p

2oHVk
; prHp �

o2
pV?

2o2
HVk

:

For a steady-state positron distribution in the typical case (see
Section 9), namely

V? � D? ; Vk � Dk ; �199�

in view of inequality (124) we therefore arrive at

prHp �
Dk
D?

5 1 : �200�

Consequently, we may put p � 0 in formula (198), which
gives f0 � 1=2, and also

Fcd � ÿ 2pq 2e 2n

mV?Vk
: �201�

According to formulas (197) and (198), the main contribution
to Fcd comes from the domain in the wave-vector space
defined by the relations

k? � 1

rHp
� 1

rH
; jkkj � p5 k? ; sin2 a � k?

k
� 1 : �202�

This domain corresponds to the spatial domain in which the
distance r0 between the orbit centers of the interacting
positron and electron and the distance z between them along
the magnetic field satisfy the relations

r0 � rHp � rH ; jzj � 1

p
� d � 2oHVk

o2
p

: �203�

Consequently, such electrons reside within a thin cylinder of
radius� rHp at a distance� d4 rHp from the positron. Since
d4R, these electrons are located in the collective interaction
domain, which lends validity to result (201) obtained under
the assumption of a continuous electron liquid. The physical
interpretation of this cylindrical domain is discussed in
Appendix A2. Hence, it is also clear that this domain
contains a large number of electrons, which jointly make up
the force Fcd, thereby testifying to its collective nature.

The asymptotic expressions (189), (201) were first
obtained by Artamonov and Derbenev [9] in a different way
in comparison with that devised in this section, which justifies
presenting at length the derivation of these formulas, which
are significant to the subsequent discussion. Equally impor-
tant is the elucidation of the limits of validity of these
formulas and their substantiation given in our work, which
is not done in due measure in Ref. [9]. In particular, formula
(201) proves to be correct for velocities Vk4Dk ln �T?=Tk�
and, furthermore, forV?4D?. Consequently, formula (201)
is inapplicable in the most important domain (56), and
therefore we will derive a more general formula below.

To analyze the positron moderation kinetics requires
knowing the force Fcd for arbitrary values of Vk and V? (as
well as FcM and the diffusion coefficients Dk and D? in the
velocity space). From the property

e�k;o� � e ��ÿk;ÿo� �204�

and formulas (193), (194) it follows that

Fcd � 2pq 2oH

pV?

�1
0

dk?
k?

J 2
1 �k?rHp�A0 ; �205�

A0 �
�1
ÿ1

dkk Im
�
1

e1
ÿ 1

�
; �206�

where it was taken into account that k 2 � k 2
? according to

expressions (202). In the expression e�k;oH � kkVk� � e1,
we retain the term with a resonance denominator [see
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formula (183)]:

e1 � 1ÿmo2
p

k 2
?

�
d3v J 2

1

�
k?v?
oH

�
f �v�L ; �207�

L � kkvk=Tk � oH=T?
kk�Vk ÿ vk� � i0

: �208�

We assume a priori that the main contribution to Fcd (205) is
made by the `tube' (202), (203) (which will be borne out
below) and notice that the first term in the numerator of
formula (208) may be neglected in the case (66) of magnetized
plasma of interest. Indeed, the estimates give

jkkvkjT?
TkoH

� DkT?
dTkoH

� r 2H
R 2
k
5 1 : �209�

Integration in expression (207) with respect to d2v? [see
formulas (36)] is performed by the formula�

d2v? G�v?� J 2
1

�
k?v?
oH

�
� exp �ÿb 2� I1�b 2� ; �210�

where b � k?rH. The subsequent integration with respect to
the longitudinal electron velocity dvk gives

e1 � 1ÿ b0
kk
; b0 � xÿ isY

d
P1�b 2� ; �211�

where the functions X and Y are defined by formulas (144),
s � sign kk, the parameter d is given by formula (203), and

P1�x� � 2 exp �ÿx� I1�x�
x

; �212�

where I1 is the modified first-order Bessel function of the first
kind. We bring expression (206) to the form

A0 �
�1
0

dkk Im
�

b0
kk ÿ b0

� b �0
kk � b �0

�
:

For the upper limit we must take kkmax � 1=rH:

A0 � Im

�
b0 ln

�
1ÿ 1

b0rH

�
ÿ b �0 ln

�
1� 1

b �0 rH

��
: �213�

With a logarithmic accuracy �� 1= ln �T?=Tk��, we may put
P1�b 2� ! 1 in the arguments of the logarithms in expression
(213) and obtain

Fcd � ÿ 4q 2e 2n

mV?Vk
F
�
V?
D?

�
G1

�
Vk���
2
p

Dk

�
;

G1�x� � X�x��j1 ÿ j2� � Y�x��k1 � k2� ;

j1 �
p
2
� arctan

Xÿ �X 2 � Y 2�d=x
Y

;

j2 � arctan
Y

�X 2 � Y 2�dY=x� X
; �214�

k1 � 1

2
ln

(�
1ÿ Xx

�X 2 � Y 2�d
�2
�
�

Xx

�X 2 � Y 2�d
�2)

;

k2 � 1

2
ln

(�
1� Xx

�X 2 � Y 2�d
�2
�
�

Xx

�X 2 � Y 2�d
�2)

;

d � o2
pD?

2
���
2
p

o2
HDk

; F�z� � 2

�1
0

db

b 3
J 2
1 �zb� exp �ÿb 2� I1�b 2� :

It should be noted that d � Dk=D?5 1. In the limiting cases,
the functions G1 and F from formulas (214) reduce to the
expressions

G1 � p ; Vk4Dk ; G1 �
����
p
2

r
Vk
Dk

ln

�
T?
Tk

�
; Vk5Dk ;

F � 1

2
; V?4D? ; F � 1

4

�
V?
D?

�2

; V?5D? :

8. Estimate of the contribution
from binary positron ± electron collisions

Let us discuss here binary collisions (172) which are described
by the equations

�r1 � oH�_r1 � h� ÿ e 2

m

r

r 3
; �r2 � ÿoH�_r2 � h� � e 2

m

r

r 3
;

�215�

where r1 and r2 are the respective radius vectors of the
positron and the electron, and r � r1 ÿ r2 � �x; y; z�.

We separate off the center-of-mass motion:

v � _r1 ÿ _r2 ; Vc � _r1 � _r2
2

:

From equations (215) there follow the equations

Vc�t� � 1

2
oH�r� h� � V0 ; �216�

where V0 � V0? � V0k � const is the constant of integration,
and

_v � 2oH�Vc � h� ÿ 2e 2

m

r

r 3
: �217�

The constant V0k corresponds to the center-of-mass uniform
motion along the magnetic field. To find theV0? constant, we
will consider the motion of the particles during the time
t! ÿ1, i.e., prior to collision, when they travel along two
approaching Larmor orbits still unperturbed by the Coulomb
interaction of the particles. Let the center of the positron orbit
initially travel along the z-axis, and the center of the electron
orbit travel along the straight line parallel to the z-axis and
intersecting the x-axis at a point x � r0. By writing out in
explicit form the time dependence of the coordinates of the
particles, it is easy to obtain the relations

Vcx � 1

2
oH y ; Vcy � ÿ 1

2
oH�x� r0� : �218�

Hence, and from Eqn (216), it follows that

V0x � 0 ; V0y � ÿ 1

2
oHr0 ; V0 � V0kh� 1

2
oH�q0 � h� ;

which, in view of Eqns (216) and (217), gives

Vc � 1

2
oH�R? � h� � V0kh ; �219�

�R? �
�
o2

H �
2e 2

mr 3

�
R? � 2e 2

m

q0
r 3
; �220�

r �
����������������
z 2 � r 2?

q
�

���������������������������������
z 2 � �q0 ÿ R?�2

q
; �z � ÿ 2e 2

m

z

r 3
;

�221�
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where a two-dimensional radius vector R? � r? � q0 is
introduced in place of the radius vector r? � �x; y�.
Equation (217) is preferably written in the form (220) for
distant binary collisions satisfying condition (173):R?5 r0,
r � �z 2 � r 2

0 �1=2. In the collision of Larmor circles, the
Coulomb particle interaction potential jU j � e 2=rH may be
treated as a weak perturbation, because for a typical collision
[see expressions (77)] the following estimate holds true:

jU j
E1
� jU j

T?
� RT

rH
� 1:5� 10ÿ3 : �222�

Typically, such a collision lasts for a time tc � r0=Dk � rH=Dk
and constitutes an adiabatic process:

x0 � oHtc � oHrH
Dk
� D?

Dk
4 1 : �223�

The attraction of circles (221) decreases tc by only a factor of
� 1:5, and therefore the conclusion about adiabaticity, due to
which the Larmor circles can hardly exchange their internal
energy, remains valid:

DE?
E?
� exp �ÿx0�5 1 : �224�

It is pertinent to note that the oscillator model considered in
Appendix A2 [see formula (A2.20)] turns out to be incorrect
in this respect. According to formula (A2.21), in a system of
two interacting oscillators there are two close eigenfrequen-
cies o1; 2, which gives rise to the beating effect.

The beating is due to the resonance exchange of internal
energy occurring in a time � 1=jo1 ÿ o2j. The two frequen-
cies correspond to two types of natural oscillations of the
oscillators: in-phase �x1 � x2� and antiphased �x1 � ÿx2�
oscillations. Two opposite charges rotating in the magnetic
field oscillate relative to one another only in antiphase, and
like charges oscillate in phase. That is why, as is clear from
Eqn (220), in these cases there is only one eigenmode and,
consequently, the beating effect reflecting the resonance
energy exchange is absent.

So, both in the case (173) and in the case (174), the
transverse-energy exchange in a typical binary collision is
negligible, which is also true of the longitudinal-energy
exchange [see the reasoning following formula (133)]. The
energy exchange in binary collisions (172) takes place only in
the case (174) as a result of infrequent hard collisions with
r � RT (`Thomson' collisions), which make a contribution
(12) to the friction force. In this case, due to themagnetization
of binary collisions (66), rH must be taken instead of R in
formula (11): Lb � ln �rH=RT�. This conclusion is consistent
with the data of numerical computations [7]. Owing to the
smallness of RT and the high transverse particle energy
e? � T?, this contribution is small in comparison with the
collective contribution (179) and can be neglected:

Fc?
Fb?
�

�������
T?
Tk

s
;

Fck
Fbk
� T?

Tk
:

To summarize this section, we add that the positron
trajectory in the domain of typical velocities Vk �
Dk5V? � D? (see Section 3) is a short-pitch helix:

l � 2pVk
oH

� 2pDk
oH

;
l

rHp
� 2pDk

oHrHp
� Dk

D?
5 1 :

Since l=RT � 100, despite the shortness of the pitch l of helix
the particles can experience only one Thomson encounter in
the collision of Larmor circles (174), and therefore multiple
collisions of close particles in the helical trajectories cannot
occur.

9. Qualitative discussion of the stationary
positron velocity distribution U�V�
According to the conclusions arrived at Refs [8, 9, 21, 30] (see
Sections 7 and 8), the principal mechanisms responsible for
the loss of longitudinal positron energy Ek are the Cherenkov
emission of plasmons and the Landau damping of the
perturbations generated in the plasma by a moving positron.
As a result of the inverse process Ð plasmon absorption Ð
positrons will gain energy. The combined effect of these two
oppositely directed processes leads to the establishment of
stationary distribution over longitudinal velocities Vk. It is
worth noting here that the positron residence time in the
storage ring is long enough for the stationary velocity
distribution to set in. By contrast, the initial distribution
(36) of electrons, which execute only about a half turn in the
ring, is hardly changed.

The plasmon frequency is estimated as op � 4� 108 sÿ1,
its energy �hop � 3� 10ÿ3 K5Ek, and therefore classical
mechanics applies to the description of these processes [the
evaluation of the direct process (see Section 7) was made in its
framework]. Like everywhere above, the plasma is assumed to
be ideal. For the velocity distribution (36), plasma ideality
criterion (4) is written out as inequality (46). Owing to
criterion (46), the number of electrons in the Debye sphere is
also large:

ND � nR 3
k � x 3=2

k 4 1 : �225�

The equilibrium, thermal, plasma oscillation spectrum is
established in a characteristic time oÿ1p � 10 ns, which is
short in comparison with the time of cooperative motion of
electrons and positrons in a cooler (� 400 ns for the LEPTA
experiment). The plasma oscillations are characterized by the
time, length, and volume scales defined, respectively, as

tp � 1

op
; l � Rk ; Vp � R 3

k : �226�

In ideal plasma satisfying inequality (46), the particles are
virtually free to move, and therefore particle number
fluctuations in a volume Vp are of the order of dN � �������

ND

p
.

Consequently, the characteristic fluctuation amplitudes of
the electric potential and field strength in the plasma are given
by

dj � e
�������
ND

p
Rk

�
�������
Tk
Rk

s
; E � dj

Rk
�

T
1=2
k

R
3=2
k

: �227�

We initially consider particle M of large mass (1). For an
estimate we assume that the electric field (227) exists for a time
� tp, following which it changes direction Ð and everything
is repeated. Under the action of this field, particle M executes
Brownian motion in the velocity space with the diffusion
coefficient

D � �DV�
2

tp
� ne 4

M 2Dk
; �228�
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where jDVj � eEtp=M is the particle velocity variation in one
fluctuation `period'. The contribution to D from binary
collisions with electrons is smaller than estimate (228) by a
factor of D?=Dk owing to the smallness of the Thomson
radius (75). If initially at t � 0 the particle is at rest, its velocity
will increase with time by the law

V 2 � Dt �229�

characteristic for Brownian movement until its increase is
suppressed by the force of friction. According to Refs [9, 30],
whose results were outlined in Section 7, for V < Dk and
magnetized electrons this force is estimated as

F � ÿ ne 4V

mD3
k
: �230�

According to expressions (229), (230), the average particle
energy varies according to the law

dE

dt
� d

dt

�
MV 2

2

�
� hMDi � hFVi � ne 4

MDk
ÿ ne 4

mD3
k
V 2 :

�231�

From this results the conclusion that the steady-state
�dE=dt � 0� energy is given to an order of magnitude by [2, 3]

E � Ek � E? � Tk : �232�

Estimate (232) applies to both degrees of freedom in the
heavy-particle case (1). For positrons [case (2)], formula (230)
is valid only for Fk, and therefore

Ek � Tk : �233�

According to the results presented in Section 7, for positrons
moving with transverse velocities V? < D?, one finds

F? � ne 4V?
mD2

?Dk
; V? < D? ; jVkj � Dk : �234�

To estimate the coefficient D? of diffusion in the velocity
component V?, we take advantage of the physical notion
outlined in Appendix A2. Owing to screening, a positron
interacts only with the electrons located in the `tube'. Let us
consider one of these electrons. Its field is also screened, and
at the location of the positron it is defined by formula (A2.15)
in which in lieu of exp �ÿioHt� we must borrow exp �ÿiot�,
thereby taking into account their frequency mismatch

Do � o2
p

oH
�235�

[see expressions (A2.17), (A2.18), and (A2.26)]. Therefore, the
total electric field strength at the location of the positron is
expressed in the form

E?�t� �
X
a

Ea cos �oat� ja� ; �236�

where Ea � E0 � e=�d0rH� [see expression (A2.15)], and ja is
the phase of the Larmor gyration of the ath electron, the total
number of electrons in the tube being

Nt � nVt � x 3=2
k

oH

op
4 1 : �237�

Owing to the frequency mismatch for oa [see expression
(235)], it may be assumed that the electric field E?�t� consists
of independent trains of length tc � 1=Do. From the
oscillator model [see formula (A2.3)] it follows that the
positron velocity V? changes in a time tc by

DV? � eE0tc
P

a cosja

m
;

and thus

D? � DV 2
?

tc
� e 2E 2

0 tc
m 2

Nt � ne 4

m 2Dk
: �238�

The square of electric field amplitude E 2
0 is found from the

estimate

E 2
? � E 2

0Nt � ne 2

d0
: �239�

As would be expected, owing to the randomness of the phases
ja the electrons located in the tube make independent
contributions to the positron diffusion coefficient D?, as
well as to E 2

?. From expressions (234) and (238) and the
equation

dE?
dt
� h2mD?i � hF?V?i

we obtain

V 2
? � D2

? ; E? � T? : �240�

Estimates (233) and (240) were first given (without proof) in
Ref. [9].

In concluding this section we explain the relationE? � Tk
[see estimates (232)] valid for heavy particles. The transverse
electron degree of freedom will be considered as a heater with
a temperature T?, and the longitudinal one as a cooler with a
temperature Tk. If the friction force is `disengaged', the ions
will heat up to a temperature T? in a time th defined by
relation (229): Dth � T?=M. Hence, one finds

th �
MmDkD2

?
ne 4

: �241�

If diffusion is `disengaged' �D! 0�, the ion velocity accord-
ing to relation (230) will diminish by the law

M
dV

dt
� ÿ ne 4V

mD3
k
;

whence we obtain an estimate for the time of ion cooling to
the temperature Tk:

tcool �
MmD3

k
ne 4

: �242�

In the general case, the average energy E? of the ion motion
perpendicular to the magnetic field obeys the equation

dE?
dt
� lh�T? ÿ E?� ÿ lcool�E? ÿ Tk� ; �243�
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where lh � 1=th, and lcool � 1=tcool. In the stationary case
defined as dE?=dt � 0, it is apparent that

E? �
lhT? � lcoolTk

lh � lcool
;

DE?
Tk
� lh

lh � lcool

T? ÿ Tk
Tk

;

DE? � E? ÿ Tk :

Since lh=lcool � Tk=T?5 1, then E? � Tk. In other words,
because the ion cooling proceeds much faster than the
heating, the transverse ion temperature E? turns out to be
close to the cooler temperature.

10. Stationary positron distribution function

In the stationary state, the velocity distribution function is
F�V; t� � F�V�, and therefore

St �F� � 0 : �244�

According to estimates (233) and (240), one has

Ek5E? ; �245�

and so from expressions (159) and (244) there follows the
relation

j jkj �
Dk
D?
j j?j5 j j?j : �246�

Owing to inequalities (245) and (246), the approximate
solution of Eqn (244) is written in the form

F�V� � G�V?� g0�Vk;V?� ; �247�

where the longitudinal velocity distribution function
g0�Vk;V?� of the positrons satisfies the equation

Ak�Vk;V?� g0�Vk;V?� ÿDk�Vk;V?�
qg0�Vk;V?�

qVk
� 0

�248�

and the normalization condition�1
ÿ1

g0�Vk;V?� dVk � 1 :

The semicolon in the argument of g0 emphasizes the
circumstance that jqg0=qVkj4 jqg0=qV?j, which underlies
the emergence of the solution to Eqn (244) in the form of
expression (247).

In essence, approximation (247) corresponds to the
method of separation of fast and slow variables (by way
of example, see the problem of an atom in an ultrastrong
magnetic field [31, 32]). The equation for the positron
distribution function G�V?� in transverse velocities is
obtained by integrating equation (244) with respect to
dVk:

A?�V?�G�V?� ÿD?�V?� dG�V?�
dV?

� 0 ; �249�

where

A?�V?� �
�1
ÿ1

dVk g0�Vk;V?�

�
�
A?�Vk;V?� �

qD?�Vk;V?�
qV?

�
ÿ dD?�V?�

dV?
;

D?�V?� �
�1
ÿ1

dVk g0�Vk;V?�D?�Vk;V?� :

The solution of equation (248) assumes the form

g0�Vk;V?� � B�V?� exp
�� Vk

0

Ak�V 0k;V?�
Dk�V 0k;V?�

dV 0k

�

� B�V?� exp
�� Vk

0

F
�1�
k �V 0k;V?�

MDk�V 0k;V?�
dV 0k

�
; �250�

where B�V?� is the normalization constant which depends on
V? as a parameter. Expression (250) takes into account
relation (162). Similarly, from equation (249) we have

G�V?� � C0 exp

�� V?

0

dV 0?
A?�V 0?�
D?�V 0?�

�
� C0 exp

�� V?

0

dV 0?
F
�1�
? �V 0?�

MD?�V 0?�
�
; �251�

where C0 is another normalization constant defined by the
condition�

G�V?� d2V? � 2p
�1
0

G�V?�V? dV? � 1 :

In the anisotropic case (44), simplemanipulations with the
use of formulas (162), (181), and (183), as well as (A2.17),
(A2.19), and (A5.16), lead to the conclusion that the
coefficients Ak, Dk, A?, D? obey the relationship similar to
relationship (146):

Ak�Vk;V?� � ÿ
MVk
Tk

Dk�Vk;V?� : �252�

Similarly proven is the formula

A?�V?� � ÿMV?
T?

D?�V?� : �253�

From formulas (250) ± (253) we conclude that the stationary
positron velocity distribution �M � m� coincides with the
electron one and is given by the expression [30]

g0�Vk;V?� � g�Vk� �
�

M

2pTk

�1=2

exp

�
ÿ
MV 2

k
2Tk

�
;
�254�

G�V?� � Ge�V?� � M

2pT?
exp

�
ÿMV 2

?
2T?

�
:

This conclusion comes as no surprise. Indeed, according
to the results presented in Sections 6 and 8, the energy transfer
from transversely moving electrons to longitudinally travel-
ing positrons (LT transitions) may be neglected. [The LT-
transition suppression effect in a strong magnetic field was
discovered at the MOSOL (abbr. from `model of solenoid')
facility at the G I Budker Institute of Nuclear Physics of the
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Siberian Branch of the Russian Academy of Sciences in an
experiment reported by Kudelainen et al. [20].] In this
approximation, the energy exchange takes place only in
longitudinal ± longitudinal (LL) and transverse ± transverse
(TT) transitions. In each of these degrees of freedom, the
electrons have an equilibrium Maxwellian distribution with
the corresponding temperature, which results in the establish-
ment of the same distribution for the positrons.

The case of heavy particles (see the end of Section 9) is
quite a different matter. The trajectories of these particles are
practically rectilinear and the electrons are `magnetized', i.e.,
may travel only along the magnetic field, like beads threaded
on a needle. This picture is correct for magnetized electrons
satisfying inequality (70), when the characteristic distance
between the interacting particle M and electron exceeds the
Larmor radius of the electron orbit. In this case, the ions
exchange their longitudinal and transverse energies with the
longitudinal electron motion, but do not exchange them with
the transverse one. From these considerations it is clear that
the stationary velocity distribution for heavy particles (1) is,
in accordance with estimate (232), of the form

dW �
�

M

2pTk

�3=2

exp

�
ÿ
M�V 2

k � V 2
?�

2Tk

�
d3V : �255�

To summarize this section, let us estimate the uncertainty
of the resultant expressions (254). To the first approximation
in the small coefficient DLT, instead of equation (248) we
obtain

Ak�Vk;V?� g0�Vk;V?� ÿDk�Vk;V?�
qg0�Vk;V?�

qVk

ÿDLT

�
ÿMV?

T?

�
g0�Vk;V?� � 0 : �256�

Owing to adiabaticity criterion (224) of collisions with respect
to the transverse motion, coefficients DLT for magnetized
electrons (66) with an oblate velocity distribution (36) are
exponentially small in distant collisions (see also Ref. [33]).
The main contribution to them is made by collisions with
impact parameters r4 rH, when binary collisions are
possible, in which the adiabatic invariant may not be
conserved. According to the drift approximation [34] (see
also Ref. [15, æ 60]), one has

DLT �
2pnq 2e 2L1V?Vk
M 2�V 2

? � V 2
k �3=2

; L1 � ln
R

rH
: �257�

From Eqns (256) and (252) we obtain the relation for the
longitudinal positron temperature Tpk:

1

Tpk
ÿ 1

Tk
� ÿ DLT

Dk
������������
T?Tk

p :

Hence, and from formulas (257) and (A5.6) (see Appendix
A5), we arrive at an estimate

Tpk ÿ Tk
Tk

�
�
Tk
T?

�3=2

; �257 0�

which signifies that the result (254) is rather accurate. The
coefficientsDLT andDk are determined by pair collisions and
collective processes, respectively, and the expression (257)
provides in essence a quantitative description of how the part

played by binary collisions decreases in importance with
increasing temperature anisotropy T?=Tk.

The resultant expression (254) applies to the magnetized
electron beam (66) with an oblate distribution (36), (44), the
case most interesting from the practical standpoint. Upon
lowering the magnetic field intensity, condition (66) is
violated and in this case the stationary positron velocity
distribution is substantially different from the electron one.

11. Transverse cooling of electrons.
Qualitative analysis

As pointed out earlier, heavy particles under condition (70)
are cooled to a low temperature Tk Ð the lower of two
temperatures, Tk and T?, characterizing the electron beam.
This is like nature's present to accelerator scientists. For
positrons, the attainable longitudinal temperature Tk is low,
but the transverse temperature T? turns out to be high.

For several applications it is desirable to raise the degree
of positron cooling, which reduces to the task of lowering
the transverse electron temperature. The obvious idea is to
make electrons dump the transverse energy in the course of
cyclotron radiation emission. An isolated electron radiates
very slowly: the characteristic time amounts to t �
200�H0=H�2 [s], where H0 � 1000 G. To enhance the
radiation it would be reasonable to employ collective
processes Ð the maser cyclotron instability of the electron
plasma. Many reefs are encountered in the analysis of this
practically important process, and so we will discuss it using
several approaches.

In the development of the cyclotron instability by the
Gaponov-Grekhov mechanism [35, 36] there emerges a
grouping of electrons in phase (angle j) of their Larmor
gyration, which occurs owing to the dependence of the
Larmor frequency on the electron velocity due to relativistic
effects:

OH � oH

g
� oH

��������������
1ÿ v

2

c 2

r
� oH ÿ oHv

2

2c 2

� oH ÿ oHv
2
?

2c 2
� OH�v?� : �258�

The rotating dipole moment of the resultant bunches is
proportional to the number of particles in them, while the
cyclotron radiation intensity, which is proportional to the
square of this number, rises sharply. The process is concluded
by superradiation in which the transverse energy is carried
away by photons [37 ± 41]. It is significant that for coolers
oH=op � 1004 1, and therefore the transverse energy is
really radiated and not transferred to plasma oscillations, as
suggested by the theory of cyclotron waves [29] (a critical
viewpoint is set forth by Parkhomchuk [42]). Let us estimate
the time t of transverse cooling of electrons and the increment
g � 1=t of the maser instability.

The gyrating electrons generate in the plasma a circularly
polarized cyclotron extraordinary wave with a gyrating
electric field, following the electrons, with components
Ed � �Ed cosot;Ed sinot; 0� (the z-axis is aligned with the
magnetic field H). The field amplitude Ed is assumed to be
constant for the present. We consider an individual electron
with the velocity v � �v cosj; v sinj; 0�, where j is the angle
between v and the x-axis [due to inequality (44) we neglect the
longitudinal electron velocity]. The angle between v and E is
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c � jÿ ot. Whenc 6� p=2; 3p=2, the electric field does work

WE � ÿeEdv cosc �259�

in a unit time on the electron by changing its velocity and,
owing to dependence (258), its Larmor frequency. This
changes the c angle. The angle under consideration remains
invariable only in two cases: for c � p=2 (Fig. 4a), and
c � 3p=2 (Fig. 4b). In these cases, the electron, apart from
the specific angle between vectors v andE, should have a quite
specific `resonance' velocity v0, for which it gyrates with the
same frequency as the electric field of the cyclotron wave
generated: OH�v0� � o.

We consider the c � p=2 case. For v > v0, according to
formula (258) one findsOH�v� < o, and therefore the c angle
for this electron decreases, and hence the deceleration regime
sets in, because for 0 < c < p=2 the power is negative:
WE < 0. As a result, the electron velocity lowers to the
resonance value v0. Reasoning of this kind leads to a
conclusion that the state c � p=2 is stable and the state
c � 3p=2 is unstable. Consequently, the electrons group
with time into the states close to c � p=2. This is just the
phasing according to Gaponov-Grekhov.

Let the electrons be uniformly distributed over angle c
and possess equal velocities v � v0 � D? at t � 0. In a time t
they will acquire the characteristic spread jDvj � �eEd=m�t in
velocity and, due to formula (258), in the Larmor frequency:

jDOHj � oHv0jDvj
c 2

� oHv0eEdt
mc 2

: �260�

The phasing, which is the limiting, slowest stage of the entire
maser action [see estimate (271)], will occur in a time
t � 1=jDOHj, which gives, in combination with expression
(260), the desired estimate

g � 1

t
� D?

c
op : �261�

In passing from expression (260) to expression (261) we took
into account the relation Ed � ÿ4pP, where P is the
polarization vector, which reduces to the following estimate

Ed � 4pnerH � 4pne
D?
oH
� 0:5 V cmÿ1 : �262�

The resultant expression (261) is of significance to
subsequent estimates, and so we will derive it in a rigorous
manner, with exact dimensionless factors. The dispersion
relations o � o�k� for plasma waves are derived from the

Vlasov ±Maxwell equations. For a nonzero magnetic field,
these dispersion relations are highly complicated, and there-
fore we will consider the simplest case in which the wave
propagates along the magnetic field: k? � 0, kk � k. For the
transverse cyclotron wave of frequency o we have the
equation (see, for instance, Refs [16, æ 2.7], [29, 43]):

o2 ÿ k 2c 2

� o2
p

2

�
d3v v?

�
oÿ kvz

kvz ÿ o� oH

qf �v�
qv?

� k 2v? f �v�
�kvz ÿ o� oH�2

�
:

�263�
It should be noted that the left-hand side of this equation
already contains the speed of light, which permits putting
OH � oH on the right-hand side. From expressions (36) and
(263) in the limit Dk ! 0 [see inequality (44)] we obtain

o2 ÿ k 2c 2 � o2
po

oÿ oH
� o2

pk
2D2
?

�oÿ oH�2
: �264�

We a priori assume that

o2

k 2c 2
5 1 : �265�

This enables simplifying equation (264) and obtaining the
desired result which confirms initial assumption (265):

o�k� � o 0�k� � ig�k� ; o 0�k� � oH ÿ
o2

poH

2k 2c 2
;
�266�

g�k� � D?
c

op

�����������������������
1ÿ

�
kcr
k

�4
s

; kcr �
�������������
opoH

2cD?

r
:

Therefore, in the anisotropic electron plasma (44) existing
in coolers masing emerges with the emission of waves with
wave vectors k > kcr � 7 cmÿ1 (the corresponding wave-
lengths l < lcr � 1 cm). The transverse electron temperature
decreases by the law

T? � T 0
?�1� g0t�ÿ2 � T 0

?

�
1� x

L

�ÿ2
;

where g0 � �op=c��T 0
?=m�1=2 is the increment for some initial

temperature T 0
?, L � u=g0 is the characteristic cooling length,

t is the time, and x is the distance traversed by the electron
beam.

Let us specify the conditions under which the transverse
cooling of electrons becomes possible. It is possible to select
the most advantageous values of electron velocity and
magnetic field strength H. Under variations in the magnetic
field intensity H and the electron energy e � mu 2=2 (in the
laboratory system of coordinates), the following quantities
are conserved:

nuS � const ; SH � const ;
D2
?
H
� const ;

where S is the beam cross section. Hence, we obtain the
following operational formula:

L � L0

�
e
e0

�3=4

; L0 � 50 m ; e0 � 10 keV : �267�

v

Ed

c

a b
Ed

c

v

Figure 4. Possible mutual orientations of the gyrating electric field Ed and

electron velocity v in stationary states. The magnetic field is pointed

`towards us'. In the laboratory system of coordinates, the electron and the

field rotate counterclockwise.
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We note that the value of L is independent of the magnetic
field. For e � 0:1 keV, from formula (267) we find that
L � 1:5 m. One can see that the possibility for the transverse
cooling of the electron beam exists only very early in its
acceleration.

Now let us ascertain that, as was assumed in this section,
phasing is the limiting stage of the entire masing process.
Consider an electron cloud with diameter D � 1 cm and
particle number density n � 109 cmÿ3, which is embedded in
the magnetic field of intensityH � 1000 G. The length of the
cyclotron waves radiated is l � 2pc=oH � 10 cm. Since

D5 l ; �268�
the time lag in the bunch domain may be neglected. In a time
t � c=D?oH, phasing, i.e., the grouping of electrons in the
cyclotron gyration angle j, occurs. There forms a collective
gyrating dipole moment d � erHN, where N � nD 3 is the
number of particles in the bunch. The particle cloud radiates
the energy [44]

I � 2��d�2
3c 3

� o 4
He

2r 2HN
2

c 2
� o 4

He
2r 2Hn

2D 6

c 2
�269�

per unit time. The cloud energy Ee � mD2
?nD

3 decreases by
the law

dEe

dt
� ÿI�t� ; �270�

and therefore the radiation time is tR � c 3=o2
po

2
HD

3 for a
fully completed phasing. For the time ratio we obtain

t
tR
� opo2

HD
3

c 2D?
� 1004 1 : �271�

Hence, the characteristic time of D? decreasing, i.e., the
sought-for time of the transverse cooling of electrons, as
assumed above, is equal to t. The kinetic energy of the
particles lowers because each of them experiences the force
F � �ÿe�Ec. The collective field Ec � Ed � ER, where Ed is
the total average field (262) produced by the gyrating dipoles,
andER � 2d

...
=3c 3 is the field strength of radiative friction [43].

According to formula (269), the electric field does the work

hW i � 
_r�ÿe�Ec

� � 1

N
h _dERi � 1

c 3N
h _dd

...

i

� ÿ 1

c 3N


� _d�2� � I

N

in a unit time on each particle (for a bunch grouped in phase,
the work of the dipole field Ed is equal to zero).

The cyclotron instability of electrons with the anisotropic
velocity distribution considered in Refs [38, 39] is well known
(see, for instance, Ref. [16]). This instability also develops in
an unbounded plasma. Its emergence does not necessitate
resonators (although, as assumed in Refs [38, 39], their use
may speed up the process). This is the first, and longest, part
of transverse electron cooling, which is linear in a collective
electric field strength. The cooling is concluded with a
nonlinear stage Ð the loss of transverse electron energy in
the superradiation regime [40, 41].

In the preparation of this review, the author found a paper
byGolubev and Shalashov [45] concerned with essentially the
same process Ð the pulsed maser radiation of an electron
bunch with an anisotropic distribution. In this process, like in
the process considered in this section, the kinetic electron

energy is also converted to the energy of electromagnetic
waves emitted by the plasma.

Proceeding from the picture outlined above we shall
investigate the kinetics of transverse electron cooling in
greater detail. There is a strongly anisotropic electron
velocity distribution (36), (44). Initially, the electrons are
uniformly distributed in phase c, and the directions of their
velocities may therefore be depicted by points uniformly
distributed over a circumference. To make an estimate, the
subsequently emerging phasing will be represented as
`turning' the points-filled circumference into a sector
ÿp=2� Dc�t� < c < 3p=2ÿ Dc�t� (Fig. 5). According to
relation (271), it would suffice to assume that Dc�t�5 1. At
t � 0, a nonuniform distribution emerges due to a typical
fluctuation, whereat the numbers of particles on the left and
on the right (see Fig. 5) differ by� ����

N
p

, which corresponds to

Dc�0� � 1����
N
p ; Ed�0� � neD?�0�����

N
p ; �272�

where D?�0� � D? is the initial transverse velocity spread. In
accordance with formula (259), the moduli of particle
velocities in the upper semiplane in Fig. 5 by the instant of
time t decrease by Dv�t�, and those in the lower semiplane
increase by the same value. From formulas (259) and (260) we
obtain approximate equations

dDv�t�
dt

� eEd�t�
m

;
dDc�t�

dt
� oH

c 2
D?�t�Dv�t� : �273�

To these we should add the equations

Ed�t� � 4pne
D?�t�
oH

Dc�t� ;
�274�

dD?�t�
dt

� ÿNe 2o2
H

mc 3
D?�t�

�
Dc�t��3 ;

the former following from an estimate for the polarization
vector P � neDc�t�D?�t�=oH, and the latter from equation
(270). We solve Eqns (273) and (274) to obtain

D?�t� � D?
1� A exp �2gt� ; �275�

I�t� � NmD2
?g

A exp �2gt�ÿ
1� A exp �2gt��2 ;

2Dc�t�

Ed

Figure 5.Qualitative formof the electron velocity distribution in directions

at an arbitrary instant of time.
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where A � opc=�oHD?
����
N
p � � 0:01. From formulas (275)

follows the conclusion that the characteristic transverse
cooling time is estimated as

tcool � 1

2g
Lcool � 4 ms ; Lcool � ln

1

A
: �276�

The radiation intensity I�t� initially increases exponentially
�� exp �2gt�� to attain at tmax � ln �1=2A�=2g its peak value
Imax � �4=27�NmD2

?g, and then decreases exponentially
�� exp �ÿ2gt��. One can see that Imax is smaller than the
quantity (269) in magnitude. The reason lies with the
incompleteness of phasing owing to the fast emission of
cyclotron waves �Dc4 0:3�.

The logarithm in formula (276) describes the well-known
effect of superradiation pulse delay [37] and emerges owing to
the weakness of the initial fluctuation electric field (272)
which brings about the electron phasing. Hence, it is clear
that the transverse electron cooling time tcool would shorten
by a factor of order Lcool � 5 should we generate a circularly
polarized `seed' electromagnetic wave with the electric vector
E comparable in magnitude with the vector of the intrinsic
bunch field (262):

E4Ed � 0:5 V cmÿ1 : �277�

This issue invites additional study with recourse to the
methods set forth in Section 12.

Ikegami [46 ± 48] came up with the idea of cooling
electrons by an electromagnetic wave with E � 100 V cmÿ1.
In this case, the intrinsic bunch field Ed (262), and even
more so the radiative friction field ER, may be neglected.
The motion of each electron is then described by the
Hamiltonian [43]

H�r; p; t� � c

����������������������������������������������������
p� e

c
A�r; t�

�2

�m 2c 2

s
� ej�r; t� ;

where A�r; t� and j�r; t� are the vector and electric potentials
of the wave. That is why the Liouville theorem applies here
and the phase volume of the bunch is conserved (generally
speaking, six-dimensional, but four-dimensional in the case
(44) of interest). Therefore, the cooling of electrons by the
method suggested in Refs [46±48] does not take place [49, 50].
In essence, cyclotron resonance occurs, with the result that
the electron velocity attains a value of v � eE0=

�
m�oH ÿ O��.

In this steady-state regime, the electron velocity is perpendi-
cular to the electric field and therefore no longer increases.
When the radiative friction is taken into account, the angle
between the velocity and the electric vector is slightly different
from the right angle, and the field therefore does work on the
particles, being completely converted to the energy of the
radiated electromagnetic waves. Preliminary numerical cal-
culations (see Section 12) suggest that the wave field strength
E should satisfy condition (277) for cooling the electrons,
because the cooling slows down when the field strength is
increased further.

It is noteworthy that the maser mechanism of transverse
electron cooling discussed in this section is well known in
plasma physics, where it is now referred to as the `Bernstein
mode instability'. This mechanism was supposedly first
discussed by Sagdeev and Shafranov [51]. At the present
time, this mechanism is believed to be the principal radiation
mechanism of some astrophysical objects [13, 52 ± 54].

12. Role of the dipole ± dipole interaction
of electron Larmor orbits
in the transverse cooling effect

In Section 11 we showed that no cooling of electrons occurs
under an external electric field alone. In this case, the
electrons participate simultaneously in two motions: external
and internal (Fig. 6). The external motion constitutes the
collective circular motion following the electric field. The
internal one is depicted by the closed curve with arrows in
Fig. 6. On switching off the field, the external motion
adiabatically vanishes, and the internal one remains.

The cooling of electrons represents the lowering of the
energy of internal motion. If the interelectron interaction is
neglected, electron motions become independent. External
motion produces a collective gyrating dipole moment. The
energy losses due to the emerging radiation are made up by
the work of the external field. The dipole moment corre-
sponding to the internal motion is equal to zero, and therefore
the energy of this motion is invariable and no cooling occurs.

The conclusion about the occurrence of cooling through a
spontaneous mechanism considered in Section 11 was relied
on the self-consistent field �Ed� approximation (SCFA) (262).
The action of this field is approximately equivalent to the
action of all other particles on a given particle. The field is the
same for each of them, and therefore within the SCFA we are
once again dealing withHamiltonianmotion, and hence there
is no cooling. In this approximation there once again emerge
independent external and internal electron motions, which do
not exchange energy.

The correct answer consists in the following: the cooling
does take place and all SCFA-based estimates of its
characteristics given in Section 11 are valid. We are led to
this conclusion when account is taken of fluctuation effects
which are ignored in the SCFA. The fluctuation electric field
Efl � nerH is primarily produced by the particles nearest to a
given electron (we take an interest in the resonance field
produced by the gyrating dipole moments of the Larmor
orbits). Since Efl � Ed, there is no small parameter allowing
us to separate the external and internal motions. The
excessive energy is rapidly `pumped' from the internal
motion into the external one and is carried away by
electromagnetic waves. Below, we shall show that this
process is so efficient that the bulk of electron energy is
emitted by superradiation (SR) in the form of a short pulse.

Therefore, the conclusions drawn by proceeding from the
SCFA should be treated with caution. Among the SCFA-

E

Figure 6. Motion of bunch particles in the co-moving inertial frame of

reference on imposition of gyrating electric field E.
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related artifacts is, for instance, the phenomenon of incom-
plete energy emission in a system of charged oscillators, which
was pointed out in Ref. [37]. The author of Ref. [37] also
suggested that the metastable states of this system may be
disrupted by the dipole ± dipole interaction of the oscillators,
which was borne out by numerical calculations [40, 41].

Because of the absence of a small parameter, the SCFA-
reliant predictions may be verified only by way of numerical
computation, the data of which are discussed in this section.
This computation amply, without approximations, takes into
account the dipole ± dipole interaction of Larmor electron
orbits. We emphasize that this interaction is characterized by
the spatial scale of the order ofR � nÿ1=3 and is therefore the
small-scale factor which is, according to Van der Meer [49],
required for particle cooling.

To discuss the part played by the dipole ± dipole interac-
tion we consider a system of charged nonlinear oscillators of
size (268), which is completely similar to the electron bunch
embedded in the magnetic field and considered in Section 11
[37, 40, 41].

Let particles of charge e and mass m be located at points
with the coordinates ra � na �a � 1; 2; . . . ;N� at the ends of
springs with the coefficients of stiffness k, fixed at points ra at
which there are also the compensating charges ÿe. The
equation of oscillator motion has the form [44]

�na � o2
0�1� gx 2

a �na

� ÿ 2e 2o2
0

3mc 3

X
b

_nb �
e 2

m

X
b 6�a

HHa �
�
HHa � nb�tab�

r 3ab

�
: �278�

Here, HHa � q=qra, rab � ra ÿ rb, tab � tÿ rab=c is the time lag,
o0 �

���������
k=m

p
is the oscillator eigenfrequency, and g is the

nonlinearity parameter. Upon substitution of na �
b
�
Fa�t� exp �ÿiot� � F �a �t� exp �iot�

�
, where b is the charac-

teristic initial amplitude of oscillator oscillations, the system
of equations (278) takes on the form

_Fa � id
ÿjFaj2 ÿ 1

�
Fa

� ib
X
b 6�a

HHa �
�
HHa

exp �ikrab�
rab

� Fb�t�
�
ÿ 1

2
b0
X
b

Fb : �279�

We omitted in equation (279) the second derivatives of the
functions Fa�t� which vary slowly in comparison with the
exponents exp ��iot�, and selected the frequencyo � o0 � d,
where d � 3go0b

2=2. It should be noted that d < 0 corre-
sponds to the case of particles gyrating in a magnetic field.
For a system of small size, we obtain from expression (279)
the following equation

_Fa � id
ÿjFaj2 ÿ 1

�
Fa � ib

X
b 6�a

3nab�nabFb� ÿ Fb

r 3ab
ÿ 1

2
b0
X
b

Fb ;

�280�

where b � e 2=�2mo0�, b0� 2e 2o2
0=�3mc 3�, and nab� rab=rab.

The first term on the right-hand side of equation (280)
describes the dipole ± dipole interaction of the oscillators,
and the second term describes the radiative friction.

Following Il'inskii and Maslova [55], we consider one-
dimensional oscillators, i.e., we assume that the dipoles
oscillate along the x-axis and the vectors Fa are therefore
parallel to this axis: Fa� Fai, i � �1; 0; 0�. At an arbitrary
instant of time t we have Fa�t� � ra�t� exp

ÿ
ija�t�

�
. The

atomic dipole moments are expressed as da�t� � ena�t� �
ebira cos �ot� ja�. The radiation intensity averaged over
the fast dipole oscillations is given by the expression

I�t� � e 2o 4b 2
X
a; b

jFajjFbj cos �ja ÿ jb�
3c 3

: �281�

The problem therefore reduces to the numerical solution of a
set of equations (280) for a system of N oscillators which are
located in a body of arbitrary shape, with randomly specified
initial phases ja�0�.

To explain the results of calculations, we consider the
complex plane �x; y� � ÿRe �F �; Im �F ��. The state of the
oscillator system is depicted byN points with the coordinates
�xa; ya�. The movements of the points in this plane obey the
equations that follow from equation (280):

va � x�qa� � qa � f�
X
b

d�qa; qb; ra; rb� : �282�

Here, qa �
ÿ
Re �Fa�; Im �Fa�; 0

�
, va � _qa, f � ÿb0

P
a qa=2,

x�q� � ÿ0; 0;ÿd�r 2 ÿ 1��, and d�qa; qb; ra; rb� is the term
which takes into account the dipole ± dipole interaction (not
given due to its awkwardness). Vector ÿf is proportional to
the total system's dipole moment d � eb

P
a qa=2. Initially,

the points are uniformly scattered over the circumference of
unit radius r � 1, and therefore o�ra� � 0 at t � 0.

For definiteness, we assume that g > 0, i.e., the
oscillation frequency rises with increasing amplitude (the
picture of the emerging phenomena is independent of the
sign of parameter g). Owing to distribution density
fluctuations of the initial oscillator phases ja�0�, the initial
magnitudeofvector f isnonzero.At t � 0,fromequations(282)
it follows that dd=dt � ÿd=tSR, where tSR � 1=�Nb0� is the
characteristic SR pulse length in the oscillator model being
considered [37].

According to expression (282), the system begins moving
with a velocity f in the direction opposite to the dipole
moment d. In a time � tSR, the system of points as a whole
shifts by a distance of order d�0�=�Ne� (Fig. 7a). As a result
of this motion, half of the points find themselves in the
domain r > 1, where o > 0, and the other half in the r < 1
domain, where o < 0. The points located outside the unit
circumference will start rotating clockwise, and those
located inside it, counterclockwise. This rotation with
different angular velocities results in the formation of a
bunch of points (Fig. 7b). The onset of bunch formation
corresponds to the first SR peak (Fig. 8), during which the
bulk of energy stored in the oscillators is radiated. This
takes place for t � 10tSR, which is consistent with the time
delay t0 � tSR lnN for two-level atoms [56]. In a half turn,
the above groups of points find themselves on opposite sides
of the origin (Fig. 7c). At this instant of time, the system's
dipole moment reaches its minimum, which corresponds to
the first minimum in Fig. 8. Subsequently, everything is
repeated, resulting in SR pulses far lower in intensity.
Repetitive pulses are characteristic of the SR in small-sized
classical systems [55]. They do not occur in quantum
systems consisting of two-level atoms [56].

In Refs [40, 41] it was also shown that suppression of SR
occurs with increasing oscillator concentration n, as sug-
gested in Ref. [37]. This is attributable to the chaotic nature
of the electric fields of the dipoles, which disrupts the
phasing. As applied to the cooling of electrons, SR
suppression takes place at practically unattainable number
densities n5 1012 cmÿ3.
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The problem of radiation by a system of charged
oscillators is easy to solve in the framework of the SCFA
[37]. The answer is as follows: for a low anisotropy of the
initial phases ja�0�, only a small fraction of the energy is
radiated in a time � tSR, following which the radiation
terminates. Therefore, the electric field fluctuations pro-
duced by the nearest dipoles play a crucial role in converting
the entire energy stored by the oscillators to radiation. It is
pertinent to note that these fluctuations are, in terms
customary to plasma physics scientists, nothing more nor
less than the energy transfer by cyclotron waves inside the
plasma.

Another point of view on the transverse cooling effect can
also be useful. According to formula (266), the amplitudes of
cyclotron waves exponentially increase with frequencies o
next tooH, but slightly below this value. The source of energy
for these waves is the excess kinetic energy of transverse
motion of electrons. According to equation (2.150) given in
monograph [59], these waves have negative energies. Due to
the nonequilibrium state of electrons, the energy of plasma
without waves is larger than its energy with due regard for the
wave energy.

13. Conclusions

At the beginning of this review we discussed at a qualitative
level the principal effects concerned with the electron cooling
of heavy particle beams, which is required for the under-
standing of a more intricate problem of the deceleration of
light particles Ð positrons. Special emphasis was placed on

the electron magnetization effect, i.e., the increase in particle-
decelerating friction force with increasing magnetic field
intensity. It was explained that, apart from the `freezing' of
the transverse electron motion, the decisive role in the
magnetization effect is played by the `oblateness' of electron
velocity distribution (36) and the new properties of charge
screening in the electron cloud inherent in this oblateness:
with increasing magnetic field intensity, the Debye cloud
shrinks, with a consequential rise in the strength of decelerat-
ing electric field which acts on the charge from the plasma.
This is a collective effect in which a large number of electrons
participate in the case of an ideal plasma.

In the review it was shown that the part played by
collective effects in electron cooling increases in importance:
(a) with a decrease in mass of the particle being moderated;
(b) with a strengthening of the electron cloud anisotropy
T?=Tk, and (c) with increasing magnetic field intensity.
Hence, it follows that the behavior of positrons in coolers is
entirely determined by collective effects. This difference from
the case of heavy-particle deceleration invites the develop-
ment of a new theory, the groundwork for which has been laid
by recent papers [8, 9, 21, 30, 38 ± 41]. These papers were
discussed in our review, as were new results obtained on the
basis of the generalization of the results of these works.

The particle energy dissipation takes place within the
Debye sphere by the Landau damping mechanism which
essentially consists in the following. The domain in which
the electron motion is perturbed by the particle field moves
through the plasma together with the particle. The formation
of this electron cloud is explicable on the basis of the notion
that the particle emits and absorbs virtual plasmons which do
not escape to infinity. A part of the energy of this collective
motion is converted into the energy of single-particle chaotic
thermal motion, which generates the friction force acting on
the particle.

When a particle travels along a magnetic field with a
velocity exceeding the characteristic longitudinal electron
velocity Dk �

������������
Tk=m

p
, the principal mechanism through

which the particle loses energy is the emission of real
plasmons which propagate through distances far greater
than the Debye radius, i.e., the Cherenkov radiation of
plasmons. These mechanisms play the leading part in the
loss of the longitudinal energy of positrons in a cloud of
magnetized electrons, and that is why they have been studied
in detail in our review.

Another contribution to the force of friction comes from
binary collisions of a particle with electrons which practically
execute one-dimensional motion in a strong magnetic field
along the lines of force. According toRefs [2, 3], in themotion
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qa �
ÿ
Re �Fa�; Im �Fa�

�
[see formula (282)]. The dashed circumference has a unit radius. The number of oscillators is N � 5� 103.

0

7

6

5

4

3

2

1

0.5 1.0 1.5 2.0 2.5 3.0

R
ad

ia
ti
o
n
in
te
n
si
ty
,r
el
.u

n
it
s

t, rel. units

Figure 8. Time dependence of the radiation intensity for N � 5� 103.

July 2008 New directions in the theory of electron cooling 671



of a heavy particle at some angle to the magnetic lines of force
there emerges asymmetry in the dependence on the time
during which the particle experiences a force from an
electron, which determines the electron-to-particle momen-
tum transfer. This asymmetry is related to the electron
acceleration under the action of the electric field of the
particle. This effect was comprehensively considered in
Section 3 on the basis of the solution of the equations of
motion by the method of successive approximations in the
strength of the particle's electric field.

For positrons, this mechanism turns out to be insignif-
icant, like binary collisions with electrons in general. For
them, the main part is played by collective effects: the energy
of longitudinal positron motion is lost and gained as a result
of the emission and absorption of real and virtual plasmons,
while the energy of transverse motion is transferred in similar
processes with the excitation of cyclotron waves, because
positrons gyrate at resonance with electrons in the magnetic
field.

The review is concerned with a detailed qualitative and
quantitative study of these processes. We revealed a peculiar
character of screening of the variable part of the electro-
magnetic field of a positron gyrating in an electron cloud.
This field is confined in a `tube' (203) extended along the
magnetic field. Outside of the tube, the field decays by a
power law. The bulk of the energy of transverse positron
motion is absorbed in the tube through the Landau damping
mechanism. A small fraction of the energy `flows out' of the
tube and reaches the quasistatic region (A2.10), where
diverging cyclotron waves are generated due to the action of
retardation effects. This effect of screening of the gyrating
charge field explains, in our view, the suppression of
cyclotron radiation at the fundamental harmonic in a dense
plasma, reported in Ref. [28].

In our review we calculated the components of the
dynamic force of friction and the coefficients of longitudinal
and transverse positron diffusion in the velocity space, which
are required for the analysis of positron moderation kinetics
in coolers. It was shown that, as a result of moderation, a
stationary positron velocity distribution function is gained in
the storage ring, which is practically coincident with the
electron one.

The review concluded with an analysis of the feasibility of
lowering the energy of transverse electron motion in the
cooler, which would allow decreasing the momentum spread
in a positron beam.

Also given and analyzed in our review were new results
that are of significance in planning positron beam experi-
ments characteristic for the LEPTA facility [6].
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14. Appendices

A1. Cherenkov deceleration
as the excitation of plasma oscillators
Let us calculate the forceFr from formula (132) employing the
method borrowed from Ginzburg [17], which will enable

gaining a deeper insight into its nature. We assume that
particle M travels along the lines of force of a uniform
magnetic field H (the z-axis), and electrons are magnetized.
In accordance with expression (25), one finds

Fr � ÿq
qjp

qz

����
z�Vt

: �A1:1�

The linearized equations of motion of the magnetized
electrons are of the form

m
qv
qt
� ÿqe zÿ Vt

r 3
� e

qjp

qz
;

qn1
qt
� n

qv
qz
� 0 ;

ne � n� n1 ; jn1j5 n ; �A1:2�
Djp � 4pen1 ; r �

������������������������������
r 2 � �zÿ Vt�2

q
;

r �
����������������
x 2 � y 2

p
; _z � v :

Here, r � �x; y; z� are the electron coordinates; the electrons
are treated as a liquid moving along the magnetic lines of
force with a velocity v�r; t�. In Eqn (A1.2) we move to the
Fourier components in spatial coordinates, for instance, as in
the case of velocity:

v�r; t� �
�

d3k

�2p�3 v�k; t� exp �ikr� :

We eliminate v and n1 to obtain the equation for jp�k; t�:
q2jp

qt 2
� o2�k�jp � ÿq

4pk 2
ko

2
p

k 4
exp �ÿikkVt� ; �A1:3�

where o�k� is the plasmon frequency defined by formula
(127). Equation (A1.3) has a clear physical meaning: a
moving particle M excites `plasma oscillators' [if the
plasma is treated as a mechanical system with eigenfrequen-
cies o�k�].

Let us consider the case in which the particle is immobile
when the time t < 0, and moves with a velocity V for t > 0.
This signifies that Eqn (A1.3) is to be solved subject to the
initial conditions jp � 0 and qjp=qt � 0 at t � 0. The
solution assumes the form

jp�k; t� �
2pk 2

ko
2
p

okk 4
Q�k; t� ; �A1:4�

where ok � o�k�,

Q�k; t� � exp �ÿikkVt� ÿ exp �ÿiokt�
ok ÿ kkV

� exp �ÿikkVt� ÿ exp �ÿiokt�
ok � kkV

:

We are concerned with the stationary Debye cloud, i.e.,
the case when t4oÿ1p . Then, expression (A1.4) may be
rearranged with the use of the formula from Appendix A1 in
Davydov's monograph [57]:

lim
t!1

1ÿ exp �ÿiat�
a

� 1

aÿ i0
:

According to this formula, for t!1 we have

jp�k; t� !
2pk 2

ko
2
p

okk 4

�
1

ok ÿ kkVÿ i0
� 1

ok � kkV� i0

�
� exp �ÿikkVt� :
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Hence, and from expression (A1.1), it follows that

Fr � ÿq
�

d3k

�2p�3 kkjp�k; t� exp
ÿ
ikR�t��

� q 2o2
p

4p

�
d3k

k 3
k

okk 4

�
d�ok ÿ kkV � ÿ d�ok � kkV �

�
;

�A1:5�

where R�t� � Vt. Integration employing the formula

d
�
op

jkkj
k
ÿ lkkV

�
� k

opjkkj d
�
kÿ op

V
l sign kk

�
gives the resultant formula (132). Here, l � �1 and l � ÿ1
correspond to the first and second d functions in formula
(A1.5). Hence, we conclude that, first, the relation sign kk � l
is fulfilled and, second, the magnitude of the wave vector of
the emitted plasmons is k � op=V.

A2. Screening of the field of a positron rotating
in a magnetic field in a magnetized electron cloud
We consider an immobile �Vk � 0� positron rotating in the
Larmor orbit and embedded in a cloud of magnetized
electrons with a strongly anisotropic velocity distribution
(44). It radiates cyclotron waves with a frequency o � oH

and a wavelength

l0 � 2pc
oHn0

; �A2:1�

where n0 is the refractive index of the plasma at this frequency
(and for a given type of waves).

Expressions for n0 are given in many books (see, for
instance, Refs [11 ± 17, 58]); they are complicated, however,
and for greater clarity we therefore restrict ourselves to an
estimate of this quantity. We neglect the spatial dispersion
(which is equivalent to the cold plasma case) and consider an
electron moving in uniform fields: a constant magnetic field,
and the alternating electric field

E�t� � E0 cosot � Re
�
E0 exp �ÿiot�

�
:

This motion is described by the equations

m�rÿ e

c
�_r�H� � ÿeE�t� :

Hence we obtain, assuming the presence of weak damping,
the solution of these equations for steady motion:

r�t� � e

m�o2 ÿ o2
H�
�
Eÿ i

oH

o
�h� E�

�
� e

mo2
�Eh� h :

Just as in the derivation of formula (121), we introduce the
polarization �P� and electric induction �D� vectors, as is
done in the plasma theory by analogy with dielectrics [59].
Taking into account the relation Da � eabEb, we arrive at
formula (123) which describes cold plasmas. From this
formula follows the sought-for estimate:

n0 �
��
e
p

; jeÿ 1j � o2
p

oHjDoj ; �A2:2�
Do � oÿ oH ; jDoj5oH :

Estimate (A2.2) may be obtained in a still simpler way by
treating each electron as a one-dimensional (for simplicity)

oscillator described by the equation

�x� o2
Hx � ÿ

e

m
E : �A2:3�

The solution of this equation, viz.

x � e

m�o2 ÿ o2
H�

E � e

2moHDo
E ;

leads to estimate (A2.2) once again.
For typical parameters (42), (44) of electron cooling, the

cyclotron resonance width is determined by the Doppler
mechanism, and so

Do � DoD � bkoH ; bk �
Dk
c
;

jeÿ 1j � o2
p

o2
H

1

bk
� 102 ; bk �

Dk
c
; �A2:4�

n0 �
��
e
p � op

oH

�����
bk

q � 10 ; l0 � 1 cm :

For a short rHp inherent in the case of fulfilling relation (170)
and typical of magnetized electrons, dipole term (178), in
which we must put Vk � 0, O � o, is responsible for the
excitation of cyclotron waves. For the electric potential in the
plasma we obtain the following expressions

j�k;o� � 8p2q
k 2

�
d�oÿ oH�
e�k;oH� �

d�o� oH�
e�k;ÿoH�

�
J1�k?rHp� ;

j�r; t� �
�
d3kdo

�2p�4 j�k;o� exp �ÿiot� ikr�

� 2q

p
Re
�
J exp �ÿioHt�

�
; �A2:5�

J �
�
d3k

k 2

exp �ikr�
e�k;oH� J1�k?rHp� : �A2:6�

At Vk � 0, we retain the resonance terms �S � �1� in
expression (183) and put J1�k?V?=oH� � k?V?=oH, which
gives an uncertainty of about 20%. In line with the results
outlined in Section 7, we a priori assume that the domain
(202), (203) is most important for joj � oH (this will be borne
out by the calculation). Then we arrive at the expressions

e�k;oH� � 1� i

jkkjd0 ; �A2:7�

d0 �
oHDk
o2

p

������
2p
p � 0:04 cm ; �A2:8�

J � 2pI1I2 ; �A2:9�

I1 �
�1
0

dk?
k?

J0�k?; r?� J1�k?rHp�

�
�
1� 1

3
a 2
0 � A0a 4

0

�ÿ3=4
;

I2 �
�1
ÿ1

dkk jkkj
jkkj � i=d0

exp �ikkz�

� ÿ i

d0

�1
ÿ1

dkk exp �ikkz�
jkkj � i=d0

� 2i

a0
ln

�
b0

1� b 3
0

�
;

A0 �
�
2

3

�4=3

; a0 � r?
rHp

; b0 �
jzj
d0
:
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The interpolation formulas for integrals I1 and I2 given
above are exact in the limiting cases of small and large values
of the parameters a0 and b0. From expressions (A2.5) and
(A2.9) it follows that in the quasistatic domain

r < l0 ; �A2:10�
where retardation may be neglected �c!1�, the electric
potential produced in the plasma by a positron rotating in the
Larmor orbit is confined in the region (203). This region is a
narrow long tube of radius � rHp extended along the
magnetic field through a distance � d0 on either side of the
positron, with

d0
rHp
� D?

Dk
�

�������
T?
Tk

s
4 1 : �A2:11�

The electric potential decreases with distance to the tube axis
as � rÿ3? . Inside the tube, i.e., at distances r?4 rHp from its
axis, the potential at a distance jzj from the positron is of the
form

j � qd0

jzj2 ; jzj4 d0 ; �A2:12�

j � q

d0
ln

�
d0
jzj
�
; r0 5 jzj5 d0 : �A2:13�

Formulas (A2.12) and (A2.13) break down at distances
jzj < r0 � �r 2Hpd0�1=3. In this case, we are approximately
dealing with a quadrupole field, because the dipole moment
of the positron orbit is perpendicular to the magnetic field,
i.e., to the direction toward the observation point:

j � qr 2Hp

jzj3 ; rHp < jzj < r0 : �A2:14�

Let us estimate the total dipole momentD 0 of the electrons in
the tube. To do this we proceed from the simplest oscillator
model defined by Eqn (A2.3), in which for the electric field we
must substitute the quantity following from expressions
(A2.5), (A2.9), and (A2.13):

E? � ÿ qj
qr?
� q

d0rHp
exp �ÿioHt� : �A2:15�

From expressions (A2.3) and (A2.15) we obtain an estimate
for the induced dipole moment of one electron:

d1 � ex1 �
e 3

md0rHpoHDo
: �A2:16�

For Do in formula (A2.16) we must substitute the quantity

Do � max �Dodd;DoD� : �A2:17�
Here,Dodd is the characteristic change in the electron Larmor
frequency [see formula (196)]:

Dodd �
o2

p

oH
; �A2:18�

due to the dipole ± dipole interaction with the neighboring
electrons:

Vdd � e 2
x1x2
r 3�t� � e 2nx1x2 ; �A2:19�

where r�t� is the difference between the coordinates of the
centers of the Larmor circles for the orbits of these electrons.

Estimate (A2.18) will be obtained by treating the two
electrons as two interacting oscillators:

m�x1 �mo2
Hx1 � ÿ

qVdd

qx1
� ÿ e 2

r 3
x2 ; �A2:20�

m�x2 �mo2
Hx2 � ÿ

qVdd

qx2
� ÿ e 2

r 3
x1 :

According to equations (A2.20), for an invariable distance
r�t� � const � R there are two eigenmodes with the close
frequencies

o1; 2 �
���������������������
o2

H �
e 2

mr 3

r
� oH � e 2

2mr 3oH
; �A2:21�

whence follows estimate (A2.18).
The characteristic broadening of the cyclotron resonance

arising from the Doppler effect is given by

Do 0D � jkkjDk : �A2:22�

We emphasize that Do 0D 6� DoD [see estimates (A2.4)].
These frequency mismatches are different due to the fact
that the outgoing cyclotron waves are formed too far away
Ð at the boundary r � l0 between the quasistatic (A2.10)
and wave �r > l0� zones. In this connection, it is pertinent
to note that

l0
d0
� n0 4 1 : �A2:23�

In the field formation in the domain of interest, cyclotron
waves with the wavelengths

l � d0 5 l0 ; jkkj � 2p
l
� 1

d0
; �A2:24�

constructively interfere, thus making the main contribution,
and from equation (A2.20) and relation (A2.22) we therefore
conclude that

DoD �
Dk
d0

: �A2:25�

From relation (A2.25) and formulas (A2.8), (A2.18) it follows
that

Do 0D � Dodd ; Do � Do 0D � Dodd : �A2:26�

The tube volume is Vt � r 2Hpd0. From relations (A2.16),
(A2.18), and (A2.26) we have

jD 0j � d1nVt � erHp : �A2:27�

These estimates enable determining the nature of the
positron electromagnetic field in the quasistatic zone. As
indicated in Section 2, the static field (the field of an
immobile charge, dipole, quadrupole, etc.) in the cloud of
magnetized electrons with an anisotropic velocity distribution
is screened over a distance � Rk. The portion of the positron
field that oscillates at a frequency� oH penetrates the plasma
much deeper: over a distance� d0 4Rk. The electron motion
is perturbed as a result of collision of the electron and
positron Larmor circles �r0 � rH � rHp�. Since these pertur-
bations are produced by one and the same positron, they are
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correlated for different electrons that experienced the above
collision. This coherent perturbation of the Larmor electron
motion is transferred by the electrons some distance L along
the magnetic lines of force.

To estimate the distance L, we will consider two electrons
that have experienced a collision with a positron. Owing to a
small difference (A2.17) in their eigenfrequencies, the coher-
ence between these electrons vanishes when the phase
difference of their Larmor motion amounts to

Dj � Do
L

vk
� o2

pL

oHvk
� p : �A2:28�

Hence follows an estimate for L, which coincides with the
estimate for d0 [see formula (A2.8)]. This coherent perturba-
tion of the electron motion gives rise to a self-consistent
electric potential in the tube. However, at this point we would
do well to explain that the perturbation of the Larmormotion
takes place due to collective interaction rather than to binary
interaction (see Section 7).

In the plasma there occurs complete screening of not only
the constant part of the positron field, but of its time-varying
part, as well: estimate (A2.27) should be perceived as
D�D 0 � 0. From the change in behavior of j as a function
of z for jzj � d0 [see formulas (A2.12), (A2.13)] it is clear that
the characteristic size along the z-axis, over which this
screening is realized, amounts to � d0. This screening
strongly suppresses the cyclotron emission for a large value
of the refractive index n0 [see estimates (A2.4)], which was
pointed out by Ginzburg and Zheleznyakov [28] (some
manifestations of this effect are also discussed in Ref. [37]).
According to Ref. [28], the suppression is attributable to the
noncoincidence of the senses of gyration of the electron and
the cyclotron wave polarization vectors. As we saw, however,
the cyclotron radiation of the positron embedded in the
electron cloud is also suppressed. Therefore, this effect is
independent of the sense of gyration of a radiating particle,
and so the screening-reliant explanation given above is, in our
opinion, preferable to that of Ref. [28].

Thus, provided that

n0 � op

oH

������
c

Dk

r
4 1 ; �A2:29�

i.e., for a sufficiently high plasma density, there emerges a
tube (203) inside the quasistatic zone (A2.10). The energy
of transverse particle motion is transferred over it and
almost completely absorbed in it (through the mechanism
of Landau damping). The retardation of signals in the tube
is insignificant, and so the energy loss process is nonrela-
tivistic [the speed of light does not enter into formula
(201)]. These particle energy losses were termed polariza-
tion losses [12].

Owing to screening, the intensity of an electromagnetic
field at a distance r � l from a positron turns out to be
approximately l0=d0 � n0 times lower than the field intensity
of the positron in vacuum. For this reason, the intensity of the
cyclotron waves that go to infinity is� n 2

0 times lower than in
vacuum. These waves are generated due to the retardation
effect, and their intensity is therefore much lower than the
energy absorbed in the tube in a unit time.

A3. Correlation functions for electric field intensities
in an ideal nonrelativistic plasma in a magnetic field
In uniform plasmas, the correlation function
hEa�r; t�Eb�r 0; t 0�i depends only on the differences rÿ r 0,

tÿ t 0:

Ea�r; t�Eb�r 0; t 0�

� � Eab�rÿ r 0; tÿ t 0�

�
�
dQEab�k;o� exp

�
ik�rÿ r 0� ÿ io�tÿ t 0�� ; �A3:1�

where dQ � d3kdo=�2p�4.
To calculate the tensor Eab�k;o�, we adopt the method

devised in Ref. [12]. A formula similar to formula (A3.1)
applies to charge density fluctuations:

h r�r; t� r�r 0; t 0�i � R�rÿ r 0; tÿ t 0�

�
�
dQR�k;o� exp �ik�rÿ r 0� ÿ io�tÿ t 0�� : �A3:2�

From expressions (A3.1), (A3.2) and the Fourier transforms

r�r; t� �
�
dQ r�k;o� exp �ikrÿ iot� ;

Ea�r; t� �
�
dQEa�k;o� exp �ikrÿ iot�

we obtain

Ea�k;o�Eb�k 0;o 0�

� � SEab�k;o� ; �A3:3�
G � 
 r�k;o� r�k 0;o 0�� � SR�k;o� ;

where S � �2p�4d�k� k 0� d�o� o 0�. From formulas (21)
and (A3.3) it follows that

Eab�k;o� � 16p2kakb

k 4
��e�k;o���2 R�k;o� ; �A3:4�

where use was made of the property e�ÿk;ÿo� � e ��k;o�.
For a system of N point electrons in a volume V, the

charge density is expressed as

r�r; t� � ÿe
XN
a� 1

d
ÿ
rÿ ra�t�

�
:

Here, ra�t� is the radius vector of the ath electron. The Fourier
component of the density assumes the form

r�k;o� � ÿe
XN
a� 1

�1
ÿ1

dt exp
�
iotÿ ikra�t�

�
:

Hence, and from formulas (A3.3), we find

G � e 2
X
a; a 0

�1
ÿ1

�1
ÿ1

dt dt 0 exp �iot� io 0t 0�Faa 0 ; �A3:5�

where

Faa 0 �


exp

�ÿikra�t� ÿ ik 0ra 0 �t 0�
��
: �A3:6�

In the ideal plasma approximation, the terms with a 6� a 0,
corresponding to different electrons, may undergo factoriza-
tion into two independent components:

Faa 0 �


exp

�ÿikra�t���
exp�ÿik 0ra 0 �t 0��� :
Since all electrons are equivalent, the factor Q �
hexp �ÿikra�t��� is independent of the electron number a,
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and we therefore omit the subscript a:

Q � 
exp �ÿikr�t��� : �A3:7�
Let r0 and v0 be the initial (at t � 0) electron position and
velocity, so that

r�t� � r0 �
� t

0

_r�t1; v0� dt1 : �A3:8�

The angular brackets in expressions (A3.5), (A3.6) imply
averaging over the initial data �r0; v0�. In the ideal plasma
approximation, when calculating the velocity _r�t; v� of an
electron its interaction with other electrons should be
neglected. First we perform averaging over r0:

Q �
�
exp

�
ÿik

� t

0

_r�t1; v� dt1
��

v0

Qr0 ;

where averaging over electron velocities v0 (the subscript in v0
is subsequently omitted) is performed in the first factor on the
right-hand side. Averaging over the initial electron position r0
is performed in the second factor:

Qr0 �
1

V

�
d3r0 exp �ÿikr0� � dk; 0 � �2p�

3

V
d�k� : �A3:9�

Since we are concerned with the k 6� 0 case, thenQr0 � 0. And
so there are no correlations for different electrons �a 6� a 0�:
Faa 0 � 0. Hence we conclude that Faa 0 � daa 0F, where
F � 
exp �ÿikr�t� ÿ ik 0r�t 0���. Similarly to Q, the function
F is independent of the electron number. Averaging over the
initial position r0 yields the following relationships:

1

V

�
d3r0 exp

�ÿi�k� k 0� r0
� � �2p�3

V
d�k� k 0� ;

F � �2p�
3

V
d�k� k 0�Fk ; �A3:10�

Fk �


exp

ÿÿikR�t; t 0���
v
� F1F2 ;

F1 �


exp

ÿÿik?R?�t; t 0���v? ; �A3:11�
F2 �



exp

ÿÿikkvk�tÿ t 0���
vk
; �A3:12�

R�t; t 0� �
� t

t 0
_r�t1; v� dt1 � r�t� ÿ r�t 0�

� R?�t; t 0� � vk�tÿ t 0� h :
Let two particles begin their motion at t � 0 from the same
point with equal values of v? � jv?j and vk, but with different
directions of vectors v?. Then, the vector R�t; t 0� for the
second particle is obtained from the similar vector for the first
particle by rotating it (about the axis parallel to the magnetic
field) through the angle which the vectors v? of these two
particles make between themselves. Consequently, averaging
over the directions of v? in expression (A3.11) is equivalent to
averaging over the directions of the vector R?:

F1 �


exp

ÿÿik?R?�t; t 0���j; v? � 
J0�k?R?��v? : �A3:13�

For a group of electrons with equal v?, the magnitude of
R?�t; t 0� is equal to the length of the chord connecting two
points in the circumference of radius rH � v?=oH and
circular measure j � oH�tÿ t 0� of the arc:

R?�t; t 0� � 2rH sin

�
1

2
oH�tÿ t 0�

�
: �A3:14�

One can see from relations (A3.11) ± (A3.14) that Fk in
expression (A3.10) depends on t and t 0 only in the combina-
tion t � tÿ t 0: Fk � Fk�t�. This property permits, in view of
expression (A3.9), bringing expression (A3.5) to the form

G � S
e 2

V

X
a

Fk�o� ; �A3:15�

where

Fk�o� �
�1
ÿ1

dtFk�t� exp �iot� : �A3:16�

Summation over the electron number a givesN, and therefore
by comparing formulas (A3.15) and (A3.3) we obtain
R�k;o� � ne 2Fk�o�. Hence, and from relations (A3.4),
(A3.13), and (A3.14), it follows that

Eab�k;o� � 16p2ne 2kakb

k 4
��e�k;o���2 Fk�o� ;

�A3:17�

Fk�o� �
��1
ÿ1

dt exp �iOt� J0
�
z sin

oHt
2

��
v

;

where O � oÿ kkvk, and z � 2k?rH.
We introduce a variable j � oHt and divide the domain

of integration with respect to dj into intervals of length 2p
�j � 2pl� c, 0 < c < 2p�. In each interval, the integration
with respect to dc is taken. In view of the formulaX1

l�ÿ1
exp �ib0l � � 2p

X1
l�ÿ1

d�b0 ÿ 2pl � ;

we arrive at

Fk�o� �
X1

l�ÿ1

�
d�Oÿ oHl �

� 2p

0

dj exp �ilj� J0
�
y sin

j
2

��
;

where y � 2k?rH. From the formula (see Prudnikov et al.
[60])� p

0

dx cos �2lx� J0�c sin x� � p J 2
l

�
c

2

�
we find

Fk�o� � 2p
X1

l�ÿ1



d�oÿ kkvk ÿ oHl �

�
vk



J 2
l �k?rH�

�
v?
:

�A3:18�
For joj � op 5oH, it would suffice to keep the term with
l � 0 in formula (A3.18):

Fk�o� � 2p


d�oÿ kkvk�

�
vk



J 2
0 �k?rH�

�
v?

� 2p
jkkj g

�
o
kk

�
P0�b 2� ; �A3:19�

where b � k?rH, and P0�x� � exp �ÿx� I0�x�; here, I0 is the
modified zero-order Bessel function of the first kind.
Furthermore, according to expression (183) we have

e�k;o� � 1� P0�b 2�
k 2R 2

k

�
1ÿ X

�
o���

2
p

kkDk

�

� i sign �kk�Y
�

o���
2
p

kkDk

��
; �A3:20�

676 L I Men'shikov Physics ±Uspekhi 51 (7)



where the functionsX andY are defined by expressions (144).
For joj � oH, it would suffice to retain the terms with l � �1
in formula (A3.18), which gives

Fk�o� � 2p
jkkj

�
g

�
oÿ oH

kk

�
� g

�
o� oH

kk

��
� exp �ÿk 2

?r
2
H� I1�k 2

?r
2
H� : �A3:21�

As in Section 7, for joj � oH in the tube (202) we find that

e�k;o� � 1ÿ o2
pP1�b 2�

2
���
2
p

oHjkkjDkx1
�
X�x1� ÿ i sign �o�Y�x1�

�
;

�A3:22�

where x1 � joÿ oHj=�
���
2
p

kkDk�, and the function P1 is given
by formula (212).

A4. Positron diffusion in the velocity space,
occurring in an isotropic electron plasma
The tensor of the diffusion coefficients of particle M in the
velocity space, which enters into the Fokker ± Planck equa-
tion (152), is defined as

Dab�V� � lim
Dt! 0

1

2Dt
hDVaDVbi ; �A4:1�

where DVa is the variation of the particle velocity in a time Dt,
caused by the fluctuation part of the electric field E 0�r; t�:
Va�t� Dt� � Va�t� � DVa. To findDab�V�, let us consider the
quantity Gab�t� �



Va�t�Vb�t�

�
. The field fluctuations in the

intervals �ÿ1; t� and �t; t� Dt� are independent, and there-
fore


Va�t�DVb
� � 0 ;

Gab�t� Dt� � 
Va�t� Dt�Vb�t� Dt�� � Gab�t� � 2DtDab :

Hence it follows that

Dab � 1

2

dGab�t�
dt

� 1

2

��
_Va�t�Vb�t�

�
�
�
Va�t� _Vb�t�

��
� q

2M
�Kab � Kba� ;

where Kab �


E 0a�Vt; t�Vb�t�

�
.

Let the particle velocity be V �i� for the time t! ÿ1.
Then, one has

V�t� � V �i� � q

M

� t

ÿ1
E 0�Vt1; t1� dt1 :

Since


E 0a�Vt; t�V �i�b

� � 0, we arrive at

Kab � q

M

� t

ÿ1
dt1


E 0a�Vt; t�E 0b�Vt1; t1�

�
� q

M

�
dQEab�k;o�

�1
0

dt exp
�ÿi�Oÿ i0� t�

� ÿ iq

M

�
dQ

Oÿ i0
Eab�k;o� :

Consequently, the desired tensor is given by

Dab � ÿ iq

M 2

�
dQ

Oÿ i0
Eab�k;o� : �A4:2�

A5. Coefficient Dk of longitudinal positron diffusion
in the velocity space, occurring in electron plasmas
According to the results outlined in Section 7, the long-
itudinal positron diffusion depends primarily on the fluctua-
tions in the electric field with the characteristic frequencies of
the order of the Langmuir frequency [see relations (226)]. Let
us obtain the expression for the longitudinal diffusion
coefficient, as was done in Appendix A4:

Dk�Vk;V?� � d

dt

�
1

2



V 2
k �t�

�� � 
 _Vk�t�Vk�t�
�

� q 2

M 2

� t

ÿ1
dt 0


E 0z�Vkt; t�E 0z�Vkt 0; t 0�

�
� q 2

M 2

� 0

ÿ1
dt 0


Ez�0; 0�Ez�Vkt 0; t 0�

�
: �A5:1�

The expression for the correlation function of the electric field
intensities was derived in Appendix A3, whence follows the
formula

Dk � q 2

M 2

� 0

ÿ1
dt 0
�
dQEzz�k;o� exp

�
i�kkVk ÿ o� t 0�

� ÿ iq 2

M 2

�
dQEzz�k;o� 1

oÿ kkVk ÿ i0
; �A5:2�

where dQ � d3k do=�2p�4. As in the case of the longitudinal
force FcM (see Section 7), domain (130) makes the main
contribution to the longitudinal diffusion coefficient Dk. In
combination with inequality (66) this gives krH 5 1, and we
may therefore put rH � 0 in formula (A3.19):

Fk�o� � 2p
jkkj g

�
o
kk

�
: �A5:3�

According to expression (A3.17),

Ezz�k;o� �
16p2ne 2k 2

k
k 4
��e�k;o���2 Fk�o� : �A5:4�

We transform the integrand in formula (A5.2) using the
Sokhotskii formula:

1

oÿ kkVk ÿ i0
� P

�
1

oÿ kkVk

�
� pid�oÿ kkVk� :

The first term on the right-hand side of this formula makes a
zero contribution to Dk, since Ezz�ÿk;ÿo� � Ezz�k;o�
according to formulas (A5.3) and (A5.4). We perform
integration with respect to do to obtain

Dk � q 2

2M 2

�
d3k

�2p�3 Ezz�k; kkVk�

� 2nq 2e 2

M 2
g�Vk�

�
d3k jkkj

k 4
��e�k; kkVk���2 :

�A5:5�

According to formula (A3.20), one finds

e�k; kkVk�

� 1� 1

k 2R 2
k

�
1ÿ X

�
Vk���
2
p

Dk

�
� i sign �kk�Y

�
Vk���
2
p

Dk

��
:
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The singularity in e for k! 0 is nothing but the Debye
screening of the positron field in the magnetized electron
cloud (66). Due to this screening, integral (A5.5) converges
for short wave vectors k! 0. However, it diverges logarith-
mically when k!1, since we put rH � 0 and b � 0 in
formulas (A3.19) and (A3.20), in line with inequality (66). In
the positron velocity range (199), which is of prime interest, in
expression (A5.5) we may put e � 1 with a logarithmical
accuracy of order 1=Lk, where Lk � ln �kmax=kmin� �
ln �Rk=rH�, which gives

Dk � 4pnq 2e 2

M 2
Lkg�Vk� ; Vk4Dk ln

T?
Tk

; V?4D? :

�A5:6�

For positron velocities Vk5Dk ln �T?=Tk�, formula (A5.6)
breaks down and from expression (A5.5) we obtain

Dk �
2pnq 2e 2Tk
mM 2V 3

k
: �A5:7�

In this case, the main contribution to the longitudinal
diffusion coefficient Dk is made by the sharp peak in the
integrand of expression (A5.5), which is generated by the
smallness of the quantity je�k; kkVk�j2 in a denominator,
which corresponds to the Cherenkov emission of plasmons.
A simpler way of obtaining formula (A5.7) consists in the use
of expressions (189) and (252).

In the LEPTA Project, according to relations (77) one has
rH � Rk, and therefore the uncertainty of formula (A5.6) is
significant: � 100%. If we do not invoke the magnetization
condition (66), the calculation becomes tedious. However, the
calculation is not fundamentally different from that outlined
above, and so below we will highlight only the main steps and
omit the details.

When we abandon the magnetization approximation
which corresponds to the limiting case of rH! 0, rHp ! 0,
in lieu of expressions (A5.1) and (A5.2) we obtain

Dk � q 2

M 2

� t

ÿ1
dt 0


Ez

ÿ
r�t�; t�Ez

ÿ
r�t 0�; t 0��

� q 2

M 2

� t

ÿ1
dt 0
�
dQEzz�k;o�

� exp
�
ik?
ÿ
r?�t� ÿ r?�t 0�

��
exp �ÿiOt� ;

where t � tÿ t 0, and O � oÿ kkVk. The vector r?�t� gyrates
with the Larmor frequency, and therefore we transform the
exponents in this expression using the formula

exp
ÿ
ik?r?�t�

� � X1
S�ÿ1

JS�k?rHp� exp �iSot� : �A5:8�

We make the change t 0 � tÿ t and integrate with respect to
dt over the interval �0;�1�. Furthermore, considering that
the time scale TH � 2p=oH is short in comparison with the
typical relaxation time of the positron distribution function
F�V; t�, we average Dk over the Larmor period, which
amounts to the integral

1

TH

� TH

0

dt exp
�
ioH�Sÿ S 0� t� � dSS 0 :

Instead of expression (A5.5) we obtain

Dk � pq 2

M 2

X1
S�ÿ1

�
dQ J 2

S�k?rHp�Ezz�k;o�

� d�oÿ kkVk ÿ oHS �

� q 2

2M 2

�
d3k J 2

0 �k?rHp�Ezz�k; kkVk� ; �A5:9�

where the exponentially small terms with S 6� 0 are omitted
[which is related to the factor g�o=kk� in formula (A3.19)].
Hence, and from formula (A5.4), it follows that

Dk � 2nq 2e 2

M 2
g�Vk�

�
d3k jkkj J 2

0 �k?rHp�P0�b 2�
k 4
��e�k; kkVk���2 : �A5:10�

According to formula (A3.20), one has

��e�k; kkVk���2 � �1� p

k 2

�2

� q 2

k 4
; �A5:11�

p � Rÿ2k P0�b 2�
�
1ÿ X

�
Vk���
2
p

Dk

��
;

q � Rÿ2k P0�b 2�Y
�

Vk���
2
p

Dk

�
:

The integrand in expression (A5.9) is even in kk, which
permits reducing the range of integration with respect to dkk
to the interval �0;�1�. Since kk dkk � kdk, integrating over
the azimuthal angle gives d3k kk ! 2pk? dk?k dk. Expression
(5.9) is brought to the double integral�1

0

k? dk?
�1
k?

dk

k 3
. . . ;

which, upon integration by parts, gives

Dk � 4pnq 2e 2

M 2
g�Vk�

�1
0

dk? J 2
0 �k?rHp�P0�b 2�

k?
��1� p=k 2

?�2 � q 2=k 4
?
� :

On moving to a dimensionless variable we arrive at the final
formula which is suitable for describing the LEPTA experi-
ment:

Dk � 4pnq 2e 2

M 2
g�Vk�

�1
0

db J 2
0 �gb�P0�b 2�

b
��1� k1=b

2�2 � k 2
2 =b

4
� ; �A5:12�

k1 � P0�b 2�
�
1ÿ X

�
Vk���
2
p

Dk

���
rH
Rk

�2

;

k2 � P0�b 2�Y
�

Vk���
2
p

Dk

��
rH
Rk

�2

; g � rHp

rH
:

A6. Coefficient D? of transverse positron diffusion
in the velocity space, occurring
in a magnetized electron cloud
In Section 7 and Appendix A5 we calculated the longitudinal
force of friction FcM and the diffusion coefficient Dk. The
calculation is correct with the condition (46) for the ideality of
plasma with an oblate velocity distribution. Unlike the
longitudinal force FcM, the transverse force Fcd was calcu-
lated in Section 7 under the additional assumption (66) that
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the electrons were magnetized. To avoid exceeding the
accuracy, the diffusion coefficient D? will be calculated in
the same approximations (46), (66).

Much as we did in Appendices A4 and A5 we will derive
the expression for the transverse diffusion coefficient:

D?�Vk;V?� � bV?a bV?bDab � 1

4

d

dt



V 2
?�t�

�
� 1

2



_V?�t�V?�t�

� � 1

2



_Va�t�Va�t�

�
: �A6:1�

Hereinafter, Latin letters denote two-dimensional indices
a � �x; y� � �1; 2�; summation is performed, as usual, over
repetitive indices, and Va � �V?�a . The components of
velocity V? obey the equation of motion in which the
fluctuation part of the field enters:

_Va � oHeabVb � q

M
E 0a ; �A6:2�

where eab is an absolutely antisymmetric tensor in the two-
dimensional �x; y� space, and

eab � 0 1
ÿ1 0

� �
� eabghg :

From expression (A6.1) and equation (A6.2) it follows that

D? � q

2M



Va�t�E 0a

ÿ
r�t�; t�� ; �A6:3�

where r�t� is the unperturbed helical positron trajectory
(neglecting fluctuations). From equation (A6.2) we have

Va�t� �
�1
ÿ1

Gab�tÿ t 0� q

M
E 0b
ÿ
r�t 0�; t 0� dt 0 ; �A6:4�

where Gab�t� �
�
dab cos �oHt� � eab sin �oHt�

�
y�t� is the

Green function of equation (A6.2), _Gab ÿ oHeacGcb �
dabd�t�, and t � tÿ t 0. From expressions (A3.1) and (A6.3)
it follows that

D?� q 2

2M 2

�
dt 0 dQGabEab�k;o� exp

�
ik
ÿ
r�t� ÿ r�t 0��ÿ iot

�
:

�A6:5�

The subsequent transformations are similar to those which
led us from formula (A5.7) to expression (A5.9):

D? � ÿ iq 2

2M 2

X1
S�ÿ1

�
dQJ 2

S�k?rHp�Eaa�k;o�

�
�

1

Oÿ i0ÿ �S� 1�oH
� 1

Oÿ i0ÿ �Sÿ 1�oH

�
;

where O � oÿ kkVk, and the symmetry of the electric field
correlation function (A3.4) with respect to indices has been
taken into account. From the evenness of formula (A3.4) with
respect to a change of sign of all arguments it follows that

D? � pq 2

4M 2

X1
S�ÿ1

�
dQJ 2

S�k?rHp�Eaa�k;o�

�
n
d
�
Oÿ �S� 1�oH

�� d
�
Oÿ �Sÿ 1�oH

�o
: �A6:6�

In this sum we retain the most significant terms:

D? � D
�1�
? �D

�2�
? : �A6:7�

Here, D
�1�
? corresponds to the term with S � 0:

D
�1�
? �

pq 2

4M 2

�
dQJ 2

0 �k?rHp�Eaa�k;o�

� �d�Oÿ oH� � d�O� oH�
�
; �A6:8�

and D
�2�
? corresponds to the terms with S � �1:

D
�2�
? �

pq 2

2M 2

�
dQJ 2

1 �k?rHp�Eaa�k;o� d�O� : �A6:9�

The tube (165) makes the main contribution to the term
D
�1�
? . From expression (A6.8) we obtain, in view of

expressions (A3.17), (A3.21), and (A3.22), the following
formula, which is logarithmically accurate to the terms of
order 1= ln �T?=Tk� � 0:15:

D
�1�
? �

pnq 2e 2

M 2
g�Vk� ln T?

Tk
: �A6:10�

The domain jkkj � k? � 1=Rk makes the main contribution
to the term D

�2�
? . For magnetized electrons (66), from

expressions (A3.17), (A3.19), (A3.20), and (A6.9) we obtain

D
�2�
? �

nq 2e 2

M 2
g�Vk� ln

Rk
rH
: �A6:11�

For the LEPTA experiment, one has rH � Rk, and so from
formulas (A6.10) and (A6.11) we conclude that

D
�2�
?

D
�1�
?
� 1

ln �T?=Tk� : �A6:12�

Consequently, with the same logarithmic accuracy we have

D? � D
�1�
? : �A6:13�
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