
13. Concluding remarks

The `E � mc 2 problem': could it be avoided?One is tempted to
think that the `E � mc 2 problem' would not arise from the
first place if the quantity E=c 2 Ð the proportionality
coefficient between velocity and momentum Ð were identi-
fied with a new physical quantity christened as, say, `inertia'
or `iner'; it would be identical tomass asmomentum tended to
zero. As a result, mass would become `rest inertia'. Likewise,
another new quantity could be introduced Ð `heaviness' or
`grav' Ð pipk=E reducing to mass at zero momentum. But
physicists preferred `to refrain from multiplying entities' and
from introducing new physical quantities. They formulated
instead new, more general relations between old quantities,
for example E 2 ÿ p 2c 2 � m 2c 4 and p � vE=c2.

Unfortunately, many authors attempt to retain even in
relativistic physics such nonrelativistic equations as p � mv,
and such nonrelativistic glued-up concepts as `mass is a
measure of inertia' and `mass is a measure of gravitation'; as
a result, they prefer to use the notion of velocity-dependent
mass.

It is amazing how again and again a physicist would
choose the first of these paths (new equations) in his research
papers and the second one (old glued-up concepts) in science-
popularizing and pedagogical activities. This could of course
only produce unbelievable confusion in the minds of those
who read popular texts and blindly follow the authority.

On the reliability of science. An opinion that has become
widely publicized recently is that science in general and
physics in particular are untrustworthy. Many popularizers
of science create the impression that the theory of relativity
proved Newton's mechanics wrong just as chemistry proved
alchemywrong and astronomy proved astrologywrong. Such
declarations are a crude distortion of the essence of scientific
revolutions. Newton's mechanics remains a correct science
today, in the XXIst century, and will continue to be correct
forever. The discovery of the theory of relativity only put
bounds on the domain of applicability of Newton's
mechanics to velocities much smaller than the speed of light
c. It also demonstrated its approximate nature in this domain
(to within corrections of the order of v 2=c 2).

Similarly, the discovery of quantum mechanics put
bounds on the domain of applicability of classical mechanics
to phenomena for which the quantity of action is large in
comparison with the quantum of action �h. Quite to the
contrary, the domain where astrology and alchemy exist is
that of prejudice, superstition, and ignorance. It is rather
funny that those who compare Newton's mechanics with
astrology typically believe that mass depends on velocity.

Recent publications. Additional information on the aspects
discussed above can be found in [11, 12].

On the title. My good friend and expert in the theory of
relativity read the slides of this talk and advised me to drop
Pythagoras's name from the title. I chose not to follow his
advice as in the relativity-related literature I had never come
across a discussion of right-angled triangles without the
approximate extraction of square roots.
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Bjorken and Regge asymptotics
of scattering amplitudes in QCD
and in supersymmetric gauge models

L N Lipatov

1. Introduction

We review theoretical approaches to the investigation of
deep-inelastic lepton ± hadron interactions and high-energy
hadron ± hadron scattering in the Regge kinematics. It is
demonstrated that the gluon in QCD is Reggeized and the
Pomeron is a composite state of the Reggeized gluons.
Remarkable properties of the BFKL equation for the
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Pomeron wave function in QCD and supersymmetric gauge
theories are outlined. It is shown that by the AdS/CFT
correspondence, the BFKL Pomeron is equivalent to the
Reggeized graviton in the N � 4 extended supersymmetric
model. The maximal transcendentality and integrability
properties realized in this model allow calculating the
anomalous dimension of twist-2 operators up to 4 loops.

2. Deep-inelastic ep scattering

The inclusive electron ± proton scattering in the Bjorken
kinematics (see Fig. 1),

2pq � Q 2 � ÿq 2 !1 ; x � Q 2

2pq
; 04 x4 1 ; �1�

is very important because it gives direct information about the
distribution n q�x� of quarks inside the proton as a function of
their energy ratio x �jk j= jp j (jp!1j). Indeed, in the
framework of the Feynman ± Bjorken quark ± parton
model [1, 2], we can obtain the following simple expression
for the structure functions F1;2�x� of this process:

1

x
F2�x� � 2F1�x� �

X
i�q; �q

Q 2
i n

i�x� ; �2�

where the quark charges are Qu � 2=3, Qd � ÿ1=3.
It turns out that the partonic picture is also valid in

renormalizable field theories if the parton transverse
momenta k? are restricted by an ultraviolet cut-off
k 2
? < L 2 � Q 2 [3]. In these theories, the running coupling

constant a � g 2=�4p� in the leading logarithmic approxima-
tion (LLA) is

a�Q 2� � am
1� bam=�4p� ln �Q 2=m 2� ; �3�

where am is its value at the renormalization point m. In
quantum electrodynamics (QED) and quantum chromody-
namics (QCD), the coefficients b have opposite signs,

bQED � ÿne
4

3
; bQCD �

11

3
Nc ÿ nf

2

3
; �4�

where Nc is the rank of the gauge group (Nc � 3 for QCD),
and ne and nf are the numbers of leptons and quarks, which
can be considered massless for a given Q 2.

Landau and Pomeranchuk argued that because of the
negative sign of bQED, a Landau pole is generated in the
photon propagator, which leads to the vanishing of the
physical electric charge in the local limit. On the other hand,
in QCD, the non-Abelian interaction disappears at large Q 2

and, as a result of the asymptotic freedom, we have an
approximate Bjorken scaling: the structure functions depend
on Q 2 only logarithmically [4]. Thus, the experiments on
deep-inelasic ep scattering performed at SLAC at the end of
the 1960s discovered that the Landau `zero charge' problem is
absent in strong interactions.

In the infinite-momentum frame jp j! 1, it is helpful to
introduce the Sudakov variables for parton momenta as

ki � bi p� k?i ; �k?i ; p� � 0 ;
X
i

ki � p : �5�

The parton distributions are defined in terms of the proton
wave function Cm as

n i�x� �
X
m

� Ymÿ1
r�1

dbr d
2k?r

�2p�2 jCmj2
X
r2i

d�br ÿ x� : �6�

They are functions of L � Q because the factor
jCmj2 �

Qm
r�1 Zr depends on L through the wave-function

renormalization constants
�����
Zr

p
and L is the upper limit in

integrals over the transverse momenta k?r . With the cascade-
type dynamics of the parton number growth andwithL taken
into account, we can obtain the evolution equations of
Dokshizer, Gribov, Lipatov, Altarelli, and Parisi (DGLAP)
[3, 5] in the LLA,

d

dx�Q 2� ni�x� � ÿwi ni�x� �
X
r

�1
x

dy

y
wr!i

�
x

y

�
nr�y� ;

�7�

wi �
X
k

�1
0

dx xwi!k�x� ; �8�

where

x�Q 2� � Nc

2p

�Q 2

m 2

dk2?
k 2
?

a�k 2
?� : �9�

Equation (7) has a clear probabilistic interpretation: the
number of partons ni decreases because of their decay into
other partons in the opening phase space dx�Q 2� and
increases because the decay products of other partons r can
contain partons of the type i [3].

The momenta of parton distributions

n j
i �

�1
0

dx x jÿ1 ni�x� �10�

satisfy the renormalization-group equations

d

dx�Q 2� n
j
i �

X
r

w j
r!i n

j
r ; �11�

and are related to the matrix elements of twist-2 operators

ni� j� �


p jOj

i j p
�
: �12�

The twist t is defined as the difference between their canonical
dimension dmeasured in units of mass and the Lorentz spin j
of the corresponding tensor. The quantities wj

r!i are elements
of the anomalous dimension matrix for the operators Oj

i .

q

k
0

p 0e

p

k

m

pe

Figure 1.
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3. High-energy interactions

Hadron ± hadron scattering in the Regge kinematics (see
Fig. 2)

s � � pA � pB�2 � �2E�2 4 q2 � ÿ� pA 0 ÿ pA�2 � m2 �13�

is usually described in terms of a t-channel exchange of the
Reggeon (see Fig. 3),

Ap�s; t� � xp�t� g�t� s jp�t� g�t� ; jp�t� � j0 � a 0t ; �14�

xp �
exp

ÿÿ ipjp�t�
�� p

sin�pjp� ; �15�

where jp�t� is theRegge trajectory, assumed to be linear, and j0
and a 0 are its intercept and slope. The signature factor xp is a
complex quantity depending on the Reggeon signature
p � �1. A special Reggeon ± Pomeron is introduced to
explain the approximately constant behavior of total cross
sections at high energies and the fulfillment of the Pomeran-
chuk theorem sh�h=shh ! 1. Its signature p is positive and its
intercept is close to unity: j

p
0 � 1� D, D5 1. The field theory

of Pomeron interactions was constructed by Gribov around
40 years ago.

Particle production at high energies can be investigated in
the multi-Regge kinematics (see Fig. 4)

s4 s1 ; s2 ; . . . ; sn�1 4 t1 ; t2 ; . . . ; tn�1 ; �16�

where sr are squares of the sums of neighboring particle
momenta krÿ1 and kr, and ÿtr are squares of the momentum
transfers qr. This amplitude can also be expressed in terms of
the Reggeon exchanges in each of the tr-channels:

A2!2�n �
Yn�1
r�1

s jp�tr�
r : �17�

4. Gluon Reggeization in QCD

In the Born approximation in QCD, the scattering ampli-
tude for two-colored particle scattering is factored (see
Fig. 2),

MA 0B 0
AB �s; t�

��
Born
� G c

A 0A
2s

t
G c
B 0B ; G c

A 0A � gT c
A 0AdlA 0 lA ;

�18�

where T c are the generators of the color group SU�Nc� in the
corresponding representation and lr are helicities of the
colliding and final-state particles. In the LLA, the scattering
amplitude in QCD can be written as [6]

MA 0B 0
AB �s; t� �MA 0B 0

AB �s; t�
��
Born

so�t�; as ln s � 1 ; �19�

where the gluon Regge trajectory is

o
ÿÿ jqj2� � ÿ � d2k

4p2
asNc jqj2
jkj2jqÿ kj2 � ÿ

asNc

2p
ln
jq2j
l2

: �20�

The fictitious gluonmass l is introduced here to regularize the
infrared divergence. This trajectory was also calculated in the
two-loop approximation in QCD [7] and in supersymmetric
gauge theories [8].

Further, the gluon production amplitude in the multi-
Regge kinematics can be written in the factored form [6]

M2!1�n � 2sG c1
A 0A

so1

1

jq1j2
gTd1

c2c1
C�q2; q1�

� so2

2

jq2j2
. . .C�qn; qnÿ1� son

n

jqnj2
G cn
B 0B : �21�

The Reggeon ±Reggeon ± gluon vertex for the produced
gluon with a definite helicity is

C�q2; q1� � q2 q
�
1

q �2 ÿ q �1
; �22�

where we use the complex notation for the transverse
components of particle momenta. This allows calculating
the total cross section [6]

st �
X
n

�
dGn

��M2!1�n
��2 ; �23�

pA
t

s

pB

p 0A

p 0B

Figure 2.

Figure 3.
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where Gn is the phase space for the produced particle
momenta in the multi-Regge kinematics.

5. The BFKL equation

Using the fact that the production amplitudes in QCD are
factored, we can write a Bethe ± Salpeter-type equation for
the total cross section st. Also using the optical theorem, we
can represent this equation as the Balitsky ±Fadin ±Kur-
aev ± Lipatov (BFKL) equation for the Pomeron wave
function [6]:

EC�q 1; q 2� � H12C�q 1; q 2� ; D � ÿ asNc

2p
E ; �24�

where st � sD and the BFKL Hamiltonian in the coordinate
representation is

H12 � ln j p1p2j2 � 1

p1p
�
2

ÿ
ln j r12j2

�
p1p

�
2

� 1

p �1 p2

ÿ
ln j r12j2

�
p �1 p2 ÿ 4c�1� ; r12 � r1 ÿ r2 : �25�

It is invariant under the M�obius transformations [9, 10]

rk !
ark � b

crk � d
: �26�

We use the complex notation for transverse coordinates and
their canonically conjugate momenta. The conformal weights
for the principal series of unitary representations of the
M�obius group are

m � g� n

2
; em � gÿ n

2
; g � 1

2
� in ; �27�

where g is the anomalous dimension of the twist-2 operators
and n is the conformal spin.

The Bartels ±Kwiecinski ± Praszalowicz equation for col-
orless composite states of several Reggeized gluons has the
form [11]

EC�q 1; . . .� � HC�q 1; . . .� ; H �
X
k<l

TkTl

ÿNc
Hkl ; �28�

where Hkl is the BFKL Hamiltonian. In addition to the
MoÈ bius invariance, its wave function in the multi-color
QCD (Nc !1) has the holomorphic factorization prop-
erty [12]

C�q 1; . . . ; q n� �
X
r; s

ar; s Cr�r1; . . . ; rn�Cs� r �1 ; . . . ; r �n � ;

�29�

where the sum is taken over the degenerate set of
solutions of the corresponding holomorphic and anti-
holomorphic BFKL equations. These equations have the
duality symmetry pk ! rk; k�1 ! pk�1 (k � 1; 2; :::; n) [13]
and n integrals of motion qr; q

�
r [14]. The corresponding

Hamiltonians h and h � are local Hamiltonians of an
integrable Heisenberg spin model in which spins are
generators of the MoÈ bius group [15]. We can introduce
the transfer (T ) and monodromy (t) matrices according to

the definitions [14]

T �u� � tr t�u� ; t�u� � L1L2 . . .Ln �
Xn
r�0

unÿr qr ; �30�

Lk � u� rk pk pk

ÿr 2
k pk uÿ rk pk

� �
: �31�

Then the monodromy matrix t�u� satisfies the Yang ±Baxter
equation [14]

t s1r 0
1
�u� t s2r 0

2
�v� l r 01r 02r1r2 �vÿ u� � l s1s2s 0

1
s 0
2
�vÿ u� t s 02r2 �v� t s

0
1

r1 �u� ;

l̂�u� � u1̂� iP̂ ; �32�
where l̂�u� is the monodromy matrix for the usual Heisenberg
spin model and P̂ is the permutation operator. This equation
can be solved with the use of the Bethe ansatz and the
Baxter ± Sklyanin approach.

6. Pomeron in the N=4 SUSY

We can also calculate the integral kernel for the BFKL
equation in two loops [16]. Its eigenvalue can be written as

o � 4â w�n; g� � 4 â 2D�n; g� ; â � g 2Nc

16p 2
; �33�

where

w�n; g� � 2c�1� ÿ c
�
g� jnj

2

�
ÿ c

�
1ÿ g� jnj

2

�
�34�

and c�x� � G 0�x�=G�x�. The one-loop correction D�n; g� in
QCD contains nonanalytic terms, the Kronecker symbols
djnj;0 and djnj;2 [8]. But in theN � 4 SUSY, they cancel and we
obtain the following result for D�n; g� in the Hermitian
separable form [8, 17]:

D�n; g� � f�M� � f�M �� ÿ r�M� � r�M ��
2â=o

;

M � g� jnj
2
; �35�

r�M� � b 0�M� � 1

2
z�2� ;

b 0�z� � 1

4

�
c 0
�
z� 1

2

�
ÿ c 0

�
z

2

��
: �36�

It is interesting that all functions entering these expressions
have the maximal transcendentality property [17]. Moreover,
f�M� can be written as

f�M� � 3z�3� � c 0 0�M� ÿ 2F�M�

� 2b
0 �M�ÿc�1� ÿ c�M�� ; �37�

F�M��
X1
k�0

�ÿ1� k
k�M

�
c 0�k� 1� ÿ c�k� 1� ÿ c�1�

k�M

�
; �38�

wherec�M� has the transcedentality equal to 1, its derivatives
c �n� have transcedentalities n� 1, and the additional poles in
the sum over k increase the transcedentality of F�M� up to 3,
which is also the transcendentality of z�3�. The maximal
transcendentality hypothesis is also valid for the anomalous
dimensions of twist-2 operators in theN � 4 SUSY [18, 19], in
contrast to the case of QCD [20]. This result is discussed in the
next section.
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Generally, the BFKL equation in the diffusion approx-
imation can be written in the simple form [6]

j � 2ÿ DÿDn 2 ; �39�

where n is related to the anomalous dimension of the twist-2
operators as [16]

g � 1� jÿ 2

2
� in : �40�

The parameters D and D are functions of the coupling
constant â and are known up to two loops. Higher-order
perturbative corrections can be obtained with the use of the
effective action [21, 22]. For large coupling constants, we can
expect that the leading Pomeron singularity in the N � 4
SUSY is moved to the point j � 2 and the Pomeron
asymptotically coincides with the graviton Regge pole. This
assumption is related to the AdS/CFT correspondence,
formulated in the framework of the Maldacena hypothesis
that the N � 4 SUSY is equivalent to a superstring model
living on the 10-dimensional anti-de Sitter space [23 ± 25]. For
the BFKL equation in the diffusion approximation, it is
therefore natural to impose the physical condition that g is
zero for the conserved energy ±momentum tensor #mn�x�
having the Lorents spin j � 2. As a result, we obtain that the
parameters D and D coincide [19]. In this case, we can solve
the above BFKL equation for g:

g � � jÿ 2�
�
1

2
ÿ 1=D

1� ����������������������������
1� � jÿ 2�=Dp �

: �41�

Using the dictionary developed in the framework of the AdS/
CFT correspondence [24], we can rewrite the BFKL equation
in the form of the graviton Regge trajectory [19]

j � 2� a 0

2
t ; t � E 2

R 2
; a 0 � R 2

2
D : �42�

On the other hand, Gubser, Klebanov, and Polyakov
predicted the following asymptotic form of the anomalous
dimension at large â and j [26]:

gj â; j!1 � ÿ
����������
jÿ 2

p
Dÿ1=2j j!1 �

�������
2pj

p
â 1=4 : �43�

As a result, we can obtain the explicit expression for the
Pomeron intercept at large coupling constants [19, 27],

j � 2ÿ D ; D � 1

2p
âÿ1=2 : �44�

7. Maximal transcedentality

According to the hypothesis discussed above, the anomalous
dimension

g� j � � âg1� j � � â 2g2� j � � â 3g3� j � � . . . �45�

should contain the maximally transcendental functions [17].
Indeed, we have

g1� j� 2� � ÿ4S1� j � ; �46�

g2� j� 2�
8

� 2S1

ÿ
S2 � Sÿ2

�ÿ 2Sÿ2;1 � S3 � Sÿ3 �47�

in two loops [17, 18], and

g3� j� 2�
32

� ÿ12ÿSÿ3;1;1 � Sÿ2;1;2 � Sÿ2;2;1
�

� 6
ÿ
Sÿ4;1 � Sÿ3;2 � Sÿ2;3

�ÿ 3Sÿ5 ÿ 2S3 Sÿ2 ÿ S5

ÿ 2S 2
1

ÿ
3Sÿ3 � S3 ÿ 2Sÿ2;1

�ÿ S2

ÿ
Sÿ3 � S3 ÿ 2Sÿ2;1

�
� 24Sÿ2;1;1;1 ÿ S1

ÿ
8Sÿ4 � S 2

ÿ2 � 4S2Sÿ2 � 2S 2
2

�
ÿ S1

ÿ
3S4 ÿ 12Sÿ3;1 ÿ 10Sÿ2;2 � 16Sÿ2;1;1

� �48�

in three loops [19], where the harmonic sums are defined as

Sa� j � �
Xj
m�1

1

ma
; Sa; b; c; ...� j � �

Xj

m�1

1

ma
Sb; c; ...�m� ;

Sÿa� j ��
Xj

m�1

�ÿ1�m
ma

; Sÿa; b; ...� j ��
Xj

m�1

�ÿ1�m
ma

Sb; ...�m� ;

Sÿa; b; c; ...� j ���ÿ1� jSÿa; b; ...� j ��Sÿa; b; ...�1�
ÿ
1ÿ �ÿ1� j� :

�49�
It was argued in Ref. [28] that for the N � 4 SUSY, the

evolution equations for anomalous dimensions of quasi-
partonic operators are integrable in the LLA. Later, such an
integrability was generalized to other operators [29] and to
higher loops [30]. With the additional use of the maximal
transcendentality hypothesis, the integral equation for the so-
called casp anomalous dimension was constructed in all
orders of the perturbation theory [31, 32].

To calculate the anomalous dimension of the twist-2
operators in 4 loops, we can apply the integrability approach
based on the asymptotic Bethe ansatz [30]. The corresponding
equations for the Bethe roots uk are�

x�k
xÿk

�2

�
Yjÿ2
r�1

xÿk ÿ x�r
x�k ÿ xÿr

1ÿ g 2=x�k x
ÿ
r

1ÿ g 2=xÿk x�r
exp

ÿ
2iy�uk; ur�

�
;

�50�
where we use the notation

x�k �
u�k
2
�

�����������������������
�u�k �2
4
ÿ g 2

s
; u� � u� i

2
�51�

and the dressing phase expansion [32]

y�uk; uj� � 4z�3� g 6 �q2�uk� q3�uj� ÿ q3�uk� q2�uj�
�� . . . :

�52�

The solution for u�k allows finding the anomalous dimensions

g�g;M� � 2g 2
XM
k�1

�
i

x�k
ÿ i

xÿk

�
: �53�

In four loops, in particular, we can obtain [33]

g4
256
� 4Sÿ7 � 6S7

� 2�Sÿ3;1;3 � Sÿ3;2;2 � Sÿ3;3;1 � Sÿ2;4;1� � . . .

ÿ 80S1;1;ÿ4;1 ÿ z�3�S1�S3 ÿ Sÿ3 � 2Sÿ2;1� ; �54�
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where the harmonic sums depend on jÿ 2 and the dots denote
the omitted terms (their number exceeds 200). All these terms
satisfy the maximal transcendentality property. The last term
appears from the dressing phase.

It turns out that after the analytic continuation of this
expression in the complex j-plane, the first two terms give rise
to the pole 1=o7 for o � jÿ 1! 0, which contradicts the
singularity at this point predicted in 4 loops from the BFKL
equation,

lim
j!1

g4� j � � ÿ
32

o 4

�
32z�3� �

p 4

9
o
�
� . . . : �55�

This means that the asymptotic Bethe ansatz should be
modified starting from 4 loops. Specifically, wrapping effects
should be taken into account [33].

Interesting results were also obtained for the scattering
amplitudes in the N � 4 SUSY for particles on the mass
shell [34]. These amplitudes were used in Ref. [35] for the
construction of higher-loop corrections to the BFKL kernel
in this model. But it was shown in [35] that the BDS ansatz
in [34] does not satisfy the correct factorization properties in
the multi-Regge kinematics.

8. Discussion of the obtained results

It was demonstrated that the Pomeron in QCD is a composite
state of reggeized gluons. The BFKLdynamics is integrable in
the LLA. In the next-to-leading approximation in the N � 4
SUSY, the equation for the Pomeron wave function has
remarkable properties, including analyticity in the confor-
mal spin n and maximal transcendentality. In this model, the
BFKL Pomeron coincides with the Reggeized graviton. The
anomalous dimension for twist-2 operators has the maximal
transcendentality property, which allows calculating it
analytically in 2 and 3 loops. The integrability based on the
asymptotic Bethe ansatz reproduces these results, but fails to
reproduce the BFKL prediction in 4 loops due to the presence
of wrapping effects. The BDS ansatz for scattering ampli-
tudes in the N � 4 SUSY does not agree with the BFKL
approach in the multi-Regge kinematics.

This work was supported in part by the grants 06-02-
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