
Abstract. Wave-theory arguments often used to explain colors
of thin films are applied to derive simple, physically instructive
relations providing a quantitative understanding of transmis-
sion spectra of hollow optical waveguides with a complex struc-
ture of the cladding. Antiresonant phenomena in complicated
optical waveguide systems are shown to weaken the coupling
between certain groups of waveguide modes, suggesting ways to
substantially reduce optical loss and radically improve the beam
quality of radiation transmitted through hollow waveguides. It
has been revealed that the presence of a single Fabry ±Perot
type antiresonant layer in a waveguide cladding considerably
lowers the waveguide loss and enhances the suppression of high-
order waveguide modes relative to standard, capillary wave-
guides with a solid cladding. Transmission of optical signals
over large distances, however, requires waveguides with a peri-
odically structured antiresonant cladding. The loss in such
waveguides exponentially decreases, while the efficiency of
high-order mode suppression exponentially increases with the
growth in the number of structure periods in the waveguide
cladding.

1. Introduction: colors of thin films
and guided-wave optics

The excitation efficiency of a resonant system is controlled by
a frequency detuning of the driving force from eigenmodes of

the system. For a broad class of optical resonators, including
various modifications of the Fabry ± Perot cavity, resonant
excitation of eigenmodes provides a maximum transmission
T of an optical signal. In the opposite limiting case, i.e., in the
regime of large frequency detuning of a light field from the
modes of an optical resonator, the system can display a high
reflectivity R � 1ÿ T. This effect is often referred to as an
antiresonance.

A well-known experiment that illustrates the change-over
of resonant and antiresonant regimes of light action on an
optical system involves the observation of the colors of thin
films Ð phenomenon described by Hooke [1], Newton [2],
Perot and Fabry [3], Michelson [4], and Fizeau [5] and
consistently explained in terms of the wave theory of light by
Rayleigh [6]. Light transmitted through a film is a result of
multibeam interference of elementary waves (Fig. 1a) that
have passed through both interfaces and that have experi-
enced an even number of reflections from the film boundaries.
Reflected light, on the other hand, is produced by elementary
waves that have passed through the upper film interface twice
and that have experienced an odd number of reflections from
the film boundaries, as well as by a wave resulting from the
reflection of the primary incident wave from the upper
boundary of the film. Constructive and destructive inter-
ference of reflected and transmitted waves gives rise to
colored and dark fringes occurring in reflection and transmis-
sion of light, which Rayleigh called the colors of Newton
series [7].

Similar to a ray of sunlight, which appears colored upon
reflection from a thin film, white light transmitted through
the hollow core of an optical waveguide with a complicated
structure of cladding often acquires a well-defined color and
makes the waveguide cladding glimmer with another color.
This simple observation helps us to understand the funda-
mental properties of a broad class of complex waveguide
structures which are receiving an ever-growing application in
modern optical technologies.
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2. Hollow microstructure waveguides
in optical physics

The role of micro- and nanostructured waveguide systems in
optical physics has been increasing in its significance through
the past years, as such systems have been finding broader and
yet broader use in modern optical devices and advanced laser
systems [8 ± 12]. The development of the technology of
photonic-crystal fibers (PCFs) gave rise to a new field in
fiber optics, allowing the creation of a novel class of fiber laser
systems, frequency converters, generators of broadband
radiation, and sources of ultrashort light pulses (see Refs [13,
14] for a review). The key advantages of PCFs for a nonlinear-
optical transformation of ultrashort light pulses include the
possibilities of engineering the frequency profile of dispersion
[15] and the spatial profile of an electromagnetic field [9, 16] in
fiber modes through a modification of the fiber structure.
Highly efficient PCF-based frequency converters of ultra-
short light pulses [17] and sources of radiation with a broad
continuous spectrum (supercontinuum) [13, 18 ± 21] suggest
new solutions to fundamental problems in optical metrology
[22 ± 25] and ultrafast optics [26] and are actively employed in
laser biomedicine [27], as well as in nonlinear spectroscopy
[28 ± 30] and microscopy [31 ± 34]. Along with planar coupled
micro- and nanostructured waveguide systems [35, 36], PCFs
offer a new attractive platform for optical sensing [37 ± 40].

Hollow-core PCFs (Fig. 1b) open new horizons in optical
information technologies and high-field physics [9, 41 ± 44].
Waveguides of this type are of special interest for the long-
distance low-loss transmission of optical signals in the regime
of very low optical nonlinearity. Hollow PCFs are employed
for the delivery of high-power light pulses in laser systems for
biomedical applications [45] and material processing [46].
Simultaneously, work is in progress now on the development
of hollow PCFs capable of transmitting mega- and gigawatt
optical solitons [47 ± 50], as well as hollow waveguide
structures for the efficient nonlinear-optical spectral and

temporal transformation of high-peak-power ultrashort
light pulses [51, 52].

The modes of hollow waveguides are different in their
nature from the modes of conventional waveguides, which
guide light due to total internal reflection. As the refractive
index of the core in hollow waveguides is lower than the
refractive index of the cladding, the modes confined in the
core of such a waveguide are leaky. These modes are
coupled to the cladding modes of the same waveguide. As
a result, the imaginary parts of the propagation constants
for such modes are nonzero, thus indicating nonzero
radiation loss. For standard, capillary type hollow wave-
guides with a thick cladding, the magnitude of this loss
scales as l 2=a 3 [53] with a core radius a and radiation
wavelength l. As a consequence, only capillary waveguides
with a large core diameter are of any interest for practical
applications. Such large-core waveguides are, however,
essentially multimode.

PCF technology helps to resolve the conflict between the
loss and the beam quality of radiation delivered through a
hollow waveguide. The generic idea of lowering the loss and
improving the beam quality of radiation in hollow wave-
guides is based on optical antiresonance [13], i.e., weakening
the coupling between the modes confined in the core of a
waveguide and the cladding modes. As shown in earlier work
[55, 56], antiresonant phenomena may have a substantial
influence on the mode properties of different types of PCFs
and can be employed [57] to reduce the radiation loss of
hollow PCFs (see also a review [13]). Regimes of antiresonant
waveguiding in solid-core PCFs (Fig. 1c) where the air holes
in the cladding are filled with an analyte can be used, as shown
by Litchinitser and Poliakov [58], for the creation of novel
sensor devices.

The main goal of this work is to demonstrate a unified,
physically instructive approach to mode analysis of hollow
waveguides with a complex cladding structure. In what
follows, we apply wave-theory arguments, which are often
used to explain colors of thin films, to provide a quantita-
tive understanding of transmission spectra of hollow optical
waveguides with a complicated cladding. We will consider
the influence of antiresonance phenomena on the properties
of planar (Figs 2a ± 2c) and cylindrical (Figs 2d ± 2f) hollow
waveguides of three types Ð hollow waveguides with an
infinite uniform cladding (Figs 2a, 2d), hollow waveguides
with a finite cladding (Figs 2b, 2e), and hollow waveguides
with a periodic cladding (Figs 2c, 2f). We will use this
approach to show that a single Fabry ± Perot type anti-
resonant layer in a waveguide cladding can considerably
lower the waveguide loss and enhance the suppression of
high-order waveguide modes relative to standard, capillary
waveguides with a uniform cladding. Waveguides with a
single antiresonant layer in a cladding offer a convenient
platform for novel highly efficient biochemical sensors and
frequency converters of high-power ultrashort laser pulses.
However, a single antiresonant layer in a waveguide
cladding is not sufficient to support low-loss transmission
of optical signals over large distances. This challenge can be
met through the use of waveguides with a periodically
structured antiresonant cladding. The loss in such wave-
guides exponentially decreases, while the efficiency of high-
order mode suppression exponentially increases with the
growth in the number of structure periods in the waveguide
cladding.
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Figure 1. (a) Multiple-beam interference giving rise to colors of a thin film.

(b, c) Microstructured waveguides with (b) a hollow core and a photonic-

crystal cladding, and (c) a dielectric core.
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3. Ray-optics analysis of hollow waveguides

In this section, we present a simple method for the analysis of
radiation loss in hollow waveguides of a general type, based
on the ray-optics approximation. Despite its simplicity, this
approach lets us derive useful closed-form expressions for the
loss coefficient a for the modes of hollow waveguides of

different types, completely coinciding with expressions for a
in the case of complex hollow waveguides, obtained by means
of a more rigorous, more sophisticated, analysis based on the
equations for the transverse field distribution in a waveguide.

Let us consider a generic type of a planar waveguide
consisting of a hollow core layer having a refractive index n1,
surrounded by an infinite uniform cladding with a refractive
index ncl (Figs 2a, 2d). In a ray-optics picture, a waveguide
mode is represented by a zigzag ray trajectory (Fig. 3) where
the apex points correspond to a partial reflection of a light ray
from the core ± cladding interface. As some fraction of
radiation energy is transferred through this interface at each
point of reflection, the modes of a hollow waveguide are
leaky, with the relevant leakage loss a given by [59]

exp �ÿaL� � rN ; �1�

where r is the reflection coefficient of the core ± cladding
interface, the exponent

N � L

tan y1
�2�

stands for the number of apex points in the zigzag ray
trajectory of length L, and y1 is the angle that this ray makes
with the normal to the core ± cladding interface (Fig. 3).

For a waveguide mode with a propagation constant
b � �k0n 2

1 ÿ h 2�1=2, where k0 � 2p=l, l is the radiation
wavelength, and h is the mode eigenvalue defined by the
relevant characteristic equation (see Fig. 3), we find that

tan y1 � b
h
: �3�

For a planar waveguide with a thickness t of the core
layer, this eigenvalue equals

hm � pm
t
; �4�

where m is an integer.
Since the acceptable level of loss in a hollow waveguide is

achieved only for the modes represented by zigzag ray
trajectories with a grazing incidence of a ray on the core ±
cladding interface, we assume that h5 k0n1 and reduce
Eqn (2) to the following expression

N � lm
2t 2n1

L : �5�
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Figure 2. Planar (a ± c) and cylindrical (d ± f) hollow waveguides consisting

of a waveguide layer (core) with a refractive index n1 and a cladding with a

refractive index n2: (a, d) hollow waveguides with a uniform infinite

cladding (material with a refractive index n2); (b, e) hollow waveguides

with a finite cladding, and (c, f) hollow waveguides with a periodic

cladding.
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Figure 3. Ray-optics representation of radiation guiding in a hollow

waveguide: n1 and ncl are the refractive indices of the core and the

cladding, respectively; y1 and y2 are the angles that the incident and

refracted rays make with the normal to the core ± cladding interface; t is

the lateral size of the cladding; b � �k0n 2
1 ÿ h 2�1=2 is the propagation

constant of the waveguide mode, k0 � 2p=l, l is the radiation wavelength,
and h is the eigenvalue of the waveguide mode.
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The reflection coefficient in Eqn (1) is given by the well-
known Fresnel formulas which, in the limiting case of
h5 k0n1, yield

rF � 1ÿ 4
n1 cos y1
ncl cos y2

� 1ÿ 2

�n 2
cl ÿ n 2

1 �1=2
lm
t
; �6�

where y2 is the angle that the refracted ray makes with the
normal to the core ± cladding interface (Fig. 3).

Taking logarithms of the left- and right-hand sides of
formula (1) and employing an approximation ln �1� x� � x,
which is valid for small x, we arrive at

am � 1

�n 2
cl ÿ n 2

1 �1=2
�lm�2
t 3n1

: �7�

Expression (7), which was derived using simple ray-optics
arguments, coincides with the result of more rigorous analysis
based on the characteristic equation for complex propagation
constants of modes in a planar hollow waveguide [53]. The
leakage loss of a cylindrical hollow waveguide with an inner
diameter t (Fig. 2d) can be found by multiplying the loss
coefficient defined by Eqn (7) by a quantity �2ul=pm�2, where
ul is the upper limit for the mode eigenvalue for the lth mode
of a cylindrical waveguide [for the fundamental mode, l � 0
and J0�u0� � 0�].

As can be seen from expression (7), the leakage loss of a
mode in a hollow waveguide scales as the square of the
radiation wavelength and is inversely proportional to the
third power of the lateral size of the waveguide core layer. For
high-order modes, as may also be seen from Eqn (7), the
leakage loss grows with the square of the mode indexm. This
circumstance allows one to filter the fundamental waveguide
mode and suppress higher order modes by choosing the
waveguide length L in such a way that aÿ12 < L < aÿ11 . For
gas-filled hollow waveguides with a silica cladding (n1 � 1,
ncl � 1:45), formula (7) yields the following simple expression
for the attenuation length in the case of the fundamental
waveguide mode: l1 � aÿ11 � t 3=l 2. For hollow waveguides
with a large core (t � 100l � 100 mm), we thus find l1 � 1 m.
Such waveguides are successfully employed for the compres-
sion of high-power ultrashort laser pulses [60, 61]. With
t � 10l � 10 mm, we, however, arrive at l1 � 1 mm. These
estimates show that hollow waveguides with a uniform
infinite silica cladding are not suitable for the long-distance
transmission of optical signals. We will show in the following
sections that an antiresonant structure of a cladding can
substantially lower the leakage loss and considerably
improve the beam quality of radiation transmitted through
a hollow waveguide.

4. Antiresonant phenomena
in a hollow waveguide with a finite cladding

Consider now a waveguide structure consisting of a hollow
core with a refractive index n1 and a lateral size t, and a
cladding with a finite layer thickness d and a refractive index
n2 (Figs 2b, 2e). We assume for simplicity that the refractive
index n3 of a medium outside the above-mentioned cladding
layer is close to the refractive index n1 of the core. Physically,
the difference between a hollow waveguide with a finite
cladding (Figs 2b, 2e) and a hollow waveguide with an
infinite cladding (Figs 2a, 2d) is related to the reflection of
light from the outer boundary of the cladding. As shown

below in this section, the interference of the fields reflected
from the cladding boundaries can substantially lower the
leakage loss of a hollow waveguide. We analyze a hollow
waveguide with a finite cladding using Eqn (1), where the
well-known formula of a Fabry ± Perot etalon is employed to
describe reflection from a finite cladding layer:

r � rFP � F sin2�d=2�
1� F sin2�d=2� : �8�

Here, the following notation was introduced:

d � 4p
l

dn2

(
1ÿ

�
n1
n2

�2�
1ÿ

�
h

b

�2�)1=2

; �9�

F � 4rF

�1ÿ rF�2
; �10�

and rF is the reflection coefficient calculated by the Fresnel
formulas (6).

In the regime of grazing incidence (y1 5 1, h5 b),
expressions (9) and (10) may be reduced to

d � 4p
l

d �n 2
2 ÿ n 2

1 �1=2 ; �11�

F � t 2

l 2
�n 2

2 ÿ n 2
1 � : �12�

The solid line in Fig. 4 displays the transmission spectrum
T�l� � exp �ÿaL� calculated using Eqns (1), (5), (8) ± (10) for
the fundamental mode (m � 1) of the considered planar
hollow waveguide with n1 � 1, t � 10 mm, d � 0:5 mm, and
L � 2 cm. The dispersion of the cladding was included in
these calculations by using the Sellmeier equation for fused
silica.

The equality

ll � 2d

l
�n 2

2 ÿ n 2
1 �1=2 ; �13�
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Figure 4. Transmission spectra of a planar (solid and dashed lines) and a

cylindrical (dash-and-dot line) hollow waveguide with a single antireso-

nant layer in the cladding. For a planar waveguide, calculations were

performed by using Eqns (1), (5), (8) ± (10) (solid line) and Eqn (15)

(dashed line). The dispersion of the cladding was included by using the

Sellmeier equation for fused silica. The refractive index of the core is

n1 � 1. The lateral size of the core equals t � 10 mm. The thickness of the

antiresonant layer amounts to d � 0:5 mm. The length of the waveguide is

L � 2 cm.
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where l is an integer, specifies the conditions of a resonant
excitation of Fabry ± Perot cavity modes of the waveguide
cladding. In this regime, the modes confined in the waveguide
core are strongly coupled to cladding modes and rapidly leak
to the cladding, giving rise to well-pronounced minima in the
transmission spectrum of the waveguide (Fig. 4).

By contrast, around the wavelengths

lj � 4d

2j� 1
�n 2

2 ÿ n 2
1 �1=2 ; �14�

where j is an integer, the coupling between the core and
claddingmodes is reduced to aminimum.When the condition
specified by formula (14) is satisfied, Fabry ± Perot cavity
cladding modes are antiresonant to the core modes [55, 56],
providing a maximum transmission of the waveguide modes
(Fig. 4).

Substituting expression (8) into formula (1) and using
Eqns (6) and (10), we find for the antiresonant waveguiding
regime, defined by condition (14), that

a ar
m �

1

2�n 2
2 ÿ n 2

1 �
�lm�3
t 4n1

: �15�

Formula (15) coincides with the expression for the leakage
loss of a planar waveguide with a finite cladding, derived by
solving the relevant characteristic equation [62, 63]. As can be
seen from formula (15), the leakage loss of an antiresonant
finite-cladding hollow waveguide (the dashed line in Fig. 4)
scales as the third power of the radiation wavelength and is
inversely proportional to the fourth power of the lateral size
of the waveguide core. For high-order modes, as may also be
seen from formula (15), the leakage loss grows as the third
power of the mode index m. An antiresonant waveguide
cladding thus substantially (by a factor of l=m) reduces the
loss of waveguide modes as opposed to a hollow waveguide
with an infinitely thick uniform cladding. Due to the scaling
a ar
m / m 3, an antiresonant waveguide cladding also enhances

the suppression of high-order waveguide modes when
compared to a standard hollow waveguide with an infinite
cladding [cf. formulas (7) and (15)].

The leakage loss of a cylindrical hollowwaveguide with an
inner diameter t (Fig. 2e) can be found by multiplying the loss
coefficient of a planar finite-cladding hollow waveguide by a
quantity �2ul=pm�3, where ul is the upper limit for the mode
eigenvalue for the lth mode of a cylindrical waveguide. The
transmission spectrum of a cylindrical waveguide with an
inner diameter t � 10 mm and an outer diameter of 11 mm,
and with n1 � 1 and L � 2 cm is shown by the dashed ±
dotted line in Fig. 4.

Although a hollow waveguide with an antiresonant
cladding can substantially reduce the leakage loss as com-
pared to a hollow waveguide with a uniform infinite cladding,
the level of loss in an antiresonant-cladding waveguide
remains too high for the long-distance transmission of
optical signals, as the lateral size of the waveguide core
becomes as small as a few radiation wavelengths. Indeed,
setting n1 � 1, n2 � 1:45, and t � 10l � 10 mm for a gas-
filled hollow waveguide with a silica cladding, we find from
formula (15) that l ar1 � �a ar

1 �ÿ1 � 2 cm. With t � 30l �
10 mm, the l ar1 parameter reaches 1.6 m, which is still not
enough for the long-distance transmission of optical signals.
In Section 5, we will demonstrate that the problem of long-
distance optical transmission can be solved by using hollow
waveguides with a periodically structured cladding.

5. A hollow waveguide with a periodic cladding

We now examine a hollow waveguide where the cladding
consists of periodically alternating planar (Fig. 2c) or
cylindrical (Fig. 2f) layers having refractive indices n1 and n2
and thicknesses a and b. A cladding with such a structure
qualifies as a one-dimensional photonic crystal. Within finite
frequency ranges, the destructive interference of light waves
transmitted through the interfaces between the planar or
cylindrical layers forming the photonic-crystal cladding of
the waveguide cancels the radiation field inside the structure.
In these frequency ranges, called photonic band gaps (PBGs),
the photonic-crystal structure exhibits a high reflectivity. This
property of periodic structures helps us to reduce the leakage
loss of modes in hollow waveguides with a coaxial Bragg
cladding [64, 65] or a two-dimensionally periodic cladding
[41 ± 44].

Planar and coaxial Bragg waveguides can be conveniently
analyzed by employing well-developed numerical methods
[65, 66], as well as approximate semianalytical approaches
[67 ± 69] based on the transfer-matrix technique. Here, we will
follow the general idea of this work and examine the
properties of modes in Bragg-cladding hollow waveguides
using the ray-optics approach described in the previous
sections. Below, we will apply the ray-optics analysis to find
the leakage loss of Bragg-cladding hollow waveguides
starting from the reflection coefficients of a periodic clad-
ding, calculated by utilizing the transfer-matrix technique.
For the planar photonic-crystal structure shown in Fig. 2c,
such a transfer-matrix analysis yields [59]

r � rPBG � G

G� �sinKL= sinMKL�2 ; �16�

where L � a� b is the period of the structure in the cladding,
andM is the number of periods (unit cells) of the cladding,

G � r1
1ÿ r1

; �17�

r1 �
����CA
����2 �18�

is the coefficient of reflection from a unit cell of the photonic-
crystal structure,

K � 1

L
arcos

A�D

2
�19�

is the Bloch wave number defining the radiation field inside
the periodic structure,

A � exp �ik1a�
�
cos k2b� i

2

�
k2
k1
� k1
k2

�
sin k2b

�
; �20�

C � i

2
exp �ik1a�

�
k1
k2
ÿ k2
k1

�
sin k2b ; �21�

D � exp �ÿik1a�
�
cos k2bÿ i

2

�
k2
k1
� k1
k2

�
sin k2b

�
�22�

are the elements of the transfer matrix for the layered
structure of the cladding, and

ki � 2plÿ1ni cos yi ; i � 1; 2 :

It is evident from expressions (19) ± (22) that the Bloch
wave numbers K become complex (Fig. 5) within the PBGs
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defined by the condition KL � pl, where l is an integer:

K � pl
L
� iK 0 ; �23�

whereK 0 is the imaginary part of the Bloch wave number [59].
Within the PBG, in accordance with expression (23), the

radiation field inside the periodic waveguide cladding
exponentially decays with the distance from the core ±
cladding interface. In this frequency range, no real Bloch
wave number is allowed for a light field inside the cladding
structure (see Fig. 5), which thus becomes antiresonant to
waveguide modes confined in the hollow core of the
waveguide.

When 1ÿ r1 5 1, formula (16) can be conveniently
rewritten as

rPBG � 1ÿ 1ÿ r1
r1

�
sinKL
sinMKL

�2

: �24�

Expression (24) provides useful insights into the role of a
periodic structure, which furnishes a high reflectivity of the
waveguide cladding.

ForM � 1, expression (16) is reduced to rPBG � r1 � rFP.
The transmission spectrum of the fundamental waveguide
mode then tends to the transmission spectrum of a hollow
waveguide with a single antiresonant layer in the cladding (the
dashed line in Fig. 6). The solid and dashed ± dotted lines in
Fig. 6 depict transmission spectra for the fundamental
(m � 1) mode of a periodic-cladding hollow waveguide with
t � 10 mm, a � 1 mm, b � 0:5 mm, n1 � 1, and n2 � 1:45
calculated for three values of M using Eqns (1), (5), and
(16) ± (22). As can be seen from the results presented in this
figure, a periodic cladding can considerably lower the leakage
loss of a waveguide mode as compared to a hollow waveguide
with a single antiresonant layer in the cladding.

At the PBG edges, whereKL � pl, with l being an integer,
the reflection coefficient of a periodic cladding is given by

rPBG � r1
r1 � �1ÿ r1�=M 2

: �25�

As 1ÿ r1 5 1, we arrive at

rPBG � 1ÿ 1

M 2

1ÿ r1
r1

: �26�

Using expression (18), we can then represent the leakage
loss of the waveguide modes as

aPBG
m � 1

2�n 2
2 ÿ n 2

1 �
�lm�3
t 4n1

1

M 2
: �27�

Within a PBG, formula (16) is reduced to

r � rPBG � G

G� �sinhKL=sinhMKL�2 : �28�

When 1ÿ r1 5 1 andM4 1, Eqn (28) yields

rPBG � 1ÿ 1ÿ r1
r1

exp
�ÿ 2�Mÿ 1�K 0L� : �29�

Substituting expression (29) into formula (1) and using
expression (18), we finally arrive at

aPBG
m � 1

2�n 2
2 ÿ n 2

1 �
�lm�3
t 4n1

exp
�ÿ 2�Mÿ 1�K 0L� : �30�

As can be seen from formulas (27) and (30), an increase in
the number of layers in the periodic structure of the cladding
leads to a rapid lowering of the waveguide loss inside the PBG
(see also Fig. 6). At the center of the PBG, where the coupling
between the core and cladding modes involves tunneling
through an extended antiresonant cladding structure, the
waveguide loss decreases exponentially with increasing the
number of layers in the cladding.

The level of leakage loss provided by silica hollow
waveguide structures with a periodic cladding appears to be
low enough to allow a long-distance transmission of optical
signals. In particular, silica waveguide structures with t � 10l
andM5 4 meet the standard requirements for long-distance
data transmission in the fundamental waveguide mode
(m � 1): lPBG1 � �aPBG

1 �ÿ1.

6. Optical components and devices based on
hollow waveguides with an antiresonant cladding

We now employ the results of the analysis of the properties of
hollowmicrostructure waveguides, performed in the previous
sections, to understand possible applications of such wave-
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Figure 5. Spectra of the real (solid line) and imaginary (dashed line) parts

of the Bloch wave number K for a periodic waveguide cladding with

a � 1 mm, b � 0:5 mm, n1 � 1, and n2 � 1:45.
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guide systems. Typical images of hollow waveguides with a
microstructured cladding fabricated by means of PCF
technologies [42, 66, 70, 71] are presented in Fig. 7. The
inner part of the cladding that is adjacent to the waveguide
core and that has the shape of a ring 1 ± 2 mm thick plays the
key role determining the properties of waveguide modes for
the considered class of waveguides. The solid line in Fig. 8
shows a typical transmission spectrum measured for such a
waveguide structure, featuring a sequence of well-resolved
maxima andminima. The wavelengths and the bandwidths of
these features are adequately described in terms of the model
of a ring-cladding hollow waveguide (the dashed line in
Fig. 8). The sequence of maxima and minima in the
transmission spectrum of the waveguide considered corre-
sponds to a Newton series of thin-film colors, with the ring-

shaped inner part of the cladding (Fig. 7) playing the role of
such a film in the waveguide structure under consideration.

The waveguide structure presented in the inset to Fig. 9
[72, 73] implements the idea of an antiresonant suppression of
coupling between the mode localized in the hollow core and
the extended cladding of the waveguide structure having the
form of a two-dimensional periodic structure. The transmis-
sion spectrum of this waveguide is displayed in Fig. 9. The
optical loss for hollow waveguides of this type is much lower
than the loss of optical waveguides with a single antiresonant
layer in the cladding. With advanced PCF technologies at
hand [57], the level of leakage loss for this type of structures
can be reduced to 1 dB kmÿ1.

Hollow waveguides with a photonic-crystal cladding have
been shown to support stable isolated guided modes of high-
power ultrashort light pulses [9, 13, 44] and to perform
efficient nonlinear-optical transformations of such light
fields [47, 74 ± 78]. Waveguides of this type have also been
used for the creation of high-power frequency-tunable optical
solitons [47, 48, 79]. Hollow PCFs with a low optical
nonlinearity and a tailored dispersion profile offer much
promise as dispersion-compensating components and pulse
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Figure 7. Cross-section images of hollow waveguides with a microstruc-

tured cladding: (a, b) the general view, and (c) close-up view of the

cladding.
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Figure 9. Transmission spectrum of a hollow waveguide with the cross-

section structure shown in the inset to the figure.
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compressors for high-power fiber laser systems [80 ± 82].
Fiber-optic waveguides of this class can also transmit high-
power nano- and picosecond pulses in optical systems
designed for biomedical [45] and technological applications
[46] and suggest attractive solutions for the creation of a new
type of fiber-optic endoscope.

Due to their interference origin, the maxima and minima
in transmission spectra of ring-cladding hollow waveguides
are highly sensitive to small changes in the thickness of the
cladding ring surrounding the core, as well as to small
variations in the refractive index of the material filling the
hollow core and the holes in the waveguide cladding. This
suggests an attractive approach to sensing biochemical
reactions in a solution filling the air holes of a waveguide,
e.g., the air holes in a hollow-core PCF. Below, we will
examine two types of sensing devices based on ring-cladding
hollow waveguides. Sensors of the first type are intended to
detect thin layers of biomolecules immobilized on the
waveguide walls. Sensors of the second type detect small
changes in the refractive index of an analyte filling the air
holes in the waveguide structure.

Operation of the sensor of the first type is illustrated in
Fig. 10. Formation of a biomolecular layer on the surface of a
ring cladding of a hollowwaveguide as a result of biochemical
processes in an analyte solution filling the air holes in the
waveguide (see the inset to Fig. 10) shifts minima in the
transmission spectrum of the waveguide (Fig. 10). Creation of
DNA sensors based on this principle faces difficulty related to
the fact that DNA molecules, which contain negatively
charged phosphate groups, cannot be directly immobilized
on the surface of fused silica because the surface also carries a
negative charge. This problem can often be solved by utilizing
poly-L-lysin [40], which contains positively charged amino
groups, assisting in the formation of a molecular monolayer
on a negatively charged silica surface. Such amonolayer helps
to immobilize DNAmolecules on a silica waveguide wall (the
inset to Fig. 10), giving rise to a molecular layer with a
thickness of about 10 nm and a refractive index (1.45 ± 1.48)

close [40] to the silica refractive index. Formation of such a
layer in a solution filling the air holes in the waveguide
structure can be detected from the spectral shift of transmis-
sion bands of the ring-cladding hollow waveguide (see
Fig. 10).

The factorF, defined by formula (10), is the key parameter
controlling the sensitivity of the considered type of a
waveguide sensor, as it determines the visibility of inter-
ference fringes produced by multiple reflections from the
Fabry ± Perot-cavity cladding of the waveguide. For the
modes of a hollow waveguide corresponding to a grazing
incidence of light on the core ± cladding interface (y1 5 1,
h5 b), the factor F is given by formula (12). As can be seen
from this formula, the transmission spectrum of the ring-
cladding hollow waveguide features narrow dips for large t=l
ratios, corresponding to a resonant excitation of Fabry ±
Perot cavity modes in the ring cladding of the waveguide. In
this regime, ultrathinmolecular layers formed on the cladding
surface as a result of biochemical processes can be detected.

We now assume that the immobilization of DNA on a
poly-L-lysin monolayer formed on both surfaces of the ring
cladding of the waveguide results in the formation of a layer
with a thickness ed (see the inset to Fig. 10) and a refractive
index close to the refractive index of the cladding. Effectively,
this corresponds to an increase in the cladding thickness by
2ed. Around a resonance (13) with Fabry ± Perot-type modes
of ring cladding, providing a minimum in the transmission
capacity of the waveguide, we find [84] that d=2 � pl� x=2,
where x � 8pedlÿ1�n 2

2 ÿ n 2
1 �1=2 is a small parameter, so that

sin2�d=2� � x 2=4. Theminimal detectable shift of the relevant
dip in the transmission spectrum of a waveguide can be
defined as the spectral width dl of the transmission mini-
mum, which can be estimated from the relationship
F sin2�d=2� � Fx 2=4 � 1.

Using this expression, we can derive a simple approximate
formula for the minimal detectable thickness of a biomole-
cular layer on the cladding surface: edm ��4pt�n 2

2 ÿ n 2
1 ��ÿ1l 2.

For a hollow waveguide filled with an analyte with a
refractive index n1�1:33 and having a ring cladding with a
refractive index n2�1:46 (see the inset to Fig. 10), theminimal
detectable thickness of a layer of immobilized biomolecules is
then estimated as edm � 0:13l 2=t. With l � 0:5 mm and
t � 100 mm, one finds that edm � 0:3 nm.

For a waveguide with n1 � 1:33 and n2 � 1:46, having an
unperturbed cladding thickness d � 400 nm, the minimum of
transmission corresponding to l � 1 is observed at the
wavelength l1 � 480 nm (curves 1 and 3 in Fig. 10). Forma-
tion of a layer of immobilized DNA molecules with a
thickness of ed � 10 nm on both surfaces of the waveguide
cladding shifts the transmission minimum by
Dl � 4ed�n 2

2 ÿ n 2
1 �1=2 � 24 nm (Fig. 10).

Waveguide sensors of the second type are intended for the
detection of small changes in the refractive index of an analyte
filling the air holes in the waveguide structure. A small change
dn in the refractive index of the analyte shifts the minima in
the transmission spectrum of a ring-cladding waveguide
(Fig. 11). This shift Dl can be found by differentiating
expression (13) in n1. This procedure yields dl �
2dmÿ1n1�n 2

2 ÿ n 2
1 �1=2dn. For a small change in the refractive

index of an analyte around a resonance (13) with Fabry ±
Perot modes of the ring cladding, providing aminimum in the
transmission capacity of a waveguide, we derive
d=2 � pl� z=2, where z � ÿ4pdlÿ1n1dn�n 2

2 ÿ n 2
1 �ÿ1=2 is a

small parameter, so that sin2�d=2� � z 2=4. The minimum
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Figure 10. Transmission spectra of a ring-cladding hollow waveguide

(shown in the inset) filled with an analyte characterized by a refractive

index n1 � 1:33 without (1, 2) and with (3, 4) a 10-nm-thick layer of

biomolecules on both sides of the cladding. The ring-cladding thickness is

d � 400 nm, the refractive index of the cladding equals n2 � 1:46. The
lateral size of the core is t � 15 mm (1, 3) and 100 mm (2, 4).
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change in the refractive index that can still be detected by such
a sensor is controlled by the parameter F and may be found
from the equation F sin2�d=2� � Fz 2=4 � 1. Solving this
equation and using formula (12), we arrive at jdnj�
l 2�2pn1dt�ÿ1. With n1 � 1:33, l � 0:5 mm, d � 0:4 mm, and
t � 100 mm, we find that jdnj � 7� 10ÿ4. Importantly, in
contrast to many types of integrated antiresonant reflecting
optical waveguide sensors [36], the proposed sensor design
does not require an external interferometer, because a
Fabry ± Perot interferometer is, in fact, built-in to the
waveguide cladding of the sensor device considered.

Figure 12 presents a structure that integrates ring-
cladding hollow waveguides with a hollow-core diameter
increasing from the center of the structure to its periphery
[85]. The central part of the structure includes an array of
ring-cladding hollow waveguides with an outer diameter of
about 10 mm. This part of the structure is surrounded with six
arrays of ring-cladding waveguides with an outer diameter of
about 20 mm. The diameter of hollow waveguides reaches
200 mm in outer sections of this structure. Such a system of
hollow waveguides enables the parallel detection of various
biochemical processes in a solution on a platform of a single
chip.

Measurement data presented in Fig. 13 illustrate a shift in
the transmission band of a hollow waveguide with the cross-
section structure shown in Fig. 7a, caused by a change in the
thickness of the inner ring-shaped part of its cladding. These
data suggest a high sensitivity of transmission spectra of
hollow microstructure waveguides to variations in the
thickness of the inner ring-shaped part of the cladding
bounding the hollow core of the waveguide.

7. Conclusion

In this paper, we applied the wave-theory arguments explain-
ing colors of thin films to derive simple, physically instructive
relations providing a quantitative understanding of transmis-
sion spectra of hollow optical waveguides with a complex
structure of the cladding. Our analysis shows that an
antiresonant structure of the waveguide cladding can sub-
stantially reduce optical loss and radically enhance the
suppression of high-order modes in complex systems of
hollow waveguides. It has been shown that waveguides with
a single Fabry ± Perot type antiresonant layer in a cladding
allow novel highly efficient biochemical sensors and fre-
quency converters of high-power ultrashort laser pulses to
be implemented. Transmission of optical signals over large
distances, however, requires waveguides with a periodically
structured antiresonant cladding. Optical coupling between
the core and cladding modes in such waveguide structures
involves a tunneling of the light field through an extended
antiresonant cladding. As a consequence, the loss in such
waveguides exponentially decreases, while the efficiency of
high-order mode suppression exponentially increases with the
growth in the number of structure periods in the waveguide
cladding.
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