
A scientific session of the Physical Sciences Division of the
Russian Academy of Sciences dedicated to the centenary of
L D Landau's birth was held in the Conference Hall of the
Lebedev Physics Institute, Russian Academy of Sciences, on
22 and 23 January 2008.AnOpeningAddress byAFAndreev
and the following reports were presented at the session:

(1) Andreev A F (Kapitza Institute of Physical Problems,
Russian Academy of Sciences) ``Supersolidity of quantum
glasses'';

(2) Kagan Yu M (Russian Research Center Kurchatov
Institute, Moscow) ``Formation kinetics of the Bose con-
densate and long-range order'';

(3) Pitaevskii L P (Kapitza Institute of Physical Problems,
Russian Academy of Sciences; Dipartimento di Fisica,
Universita di Trento and BDC Center, Trento, Italy)
``Superfluid Fermi liquid in a unitary regime'';

(4) Lebedev V V (Landau Institute for Theoretical
Physics, Russian Academy of Sciences, Chernogolovka,
Moscow Region) ``Kolmogorov, Landau, and the modern
theory of turbulence'';

(5) Khalatnikov I M (Landau Institute for Theoretical
Physics, Russian Academy of Sciences, Moscow), Kamen-
shchik A Yu (Landau Institute for Theoretical Physics,
Russian Academy of Sciences, Moscow; Dipartimento di
Fisica and Istituto Nazionale di Fisica Nucleare, Bologna,
Italy) ``Lev Landau and the problem of singularities in
cosmology'';

(6) Ioffe B L (Russian State Scientific Center Alikhanov
Institute for Theoretical and Experimental Physics, Moscow)
``Axial anomaly in quantum electro- and chromodynamics
and the structure of the vacuum in quantum chromody-
namics'';

(7) Okun L B (Russian State Scientific Center Alikhanov
Institute for Theoretical and Experimental Physics, Moscow)
``The theory of relativity and the Pythagorean theorem'';

(8) Lipatov L N (St. Petersburg Nuclear Physics Institute,
Gatchina, St. Petersburg) ``Bjorken and Regge asymptotics
of scattering amplitudes in QCD and in supersymmetric
gauge models.''

A brief presentation of the Opening Address by
A F Andreev and reports 2, 3, and 5 ± 8 is given below.
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L D Landau: 100th anniversary
(Introductory talk)

A F Andreev

Dear colleagues! Today is a memorable day for scientists: Lev
Davidovich Landau was born 100 years ago. The audience
present here todayÐan enviable audience in all respects, of
courseÐdoes not really need to be told who Lev Davidovich
Landau was or why we are all gathered here on this day. I
would only like to emphasize the following aspect. From my
point of view, Lev Davidovich was the man who was able to
show and to formulate what theoretical physics is all aboutÐ
indeed, there is no need to remind you how broad his scope
was, what his approach was to completely different fields of
physics and chemistry, to everything the world contains. He
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embraced the entirety of theoretical physics and with his
absolutely first-class work demonstrated the essence of the
general approach of theoretical physics to all natural
phenomena.

Together with Evgenii Mikhailovich Lifshitz (Lev Petro-
vich Pitaevsky also took part in it), Landau wrote a truly
fundamental course of theoretical physics, in which he not
only presented the essential core of problems attacked by
theoretical physics but also demonstrated his approachÐ
what he meant by working in theoretical physics and what
sort of argument is allowed in true theoretical physics
stripped of fuzzy philosophizing about the nature of things;
he gave a straightforward demonstration: here is the way it
must be done.

Landau left behind a very large school, which in fact was
not all that large while he was alive, just several dozen people.
Nevertheless, the first generations of Landau's students not
only sustained and preserved Landau's methodÐ the theore-
tician's minimum, the approach to fostering and shaping
theoretical physicistsÐbut also developed and extended it;
they have every reason to be proud of this achievement.
Landau's students, and most of all Isaak Markovich
Khalatnikov, created the Institute for Theoretical Physics,
which started to `mass-produce' theoretical physicists of an
absolutely world-class stature (eventually, even Petr Leoni-
dovich Kapitza had to agree with this), and not on a `one-off'
basis, as it was in Landau's lifetime, but in an `industrial'
fashion. As a result, the group known as Landau's school
became a high-profile community of physicists. Once the
Soviet Union crashed out of existence, this absolutely unique
community of people spread all over the world and we could
say that in this way Landau succeeded in defining what
theoretical physics is on a world scale, not just in the Soviet
Union.

No doubt, some physicists contributed more to physics
in general and to theoretical physics in particular than did
Landau. But I do not think that we can say about anyone
else that they showed what the gist of theoretical physics

was, how one should do it, how to help new generations to
mature, and how to write books on theoretical physics. It
was after Landau's death that Evgeny Mikhailovich Lifshitz
showed me a letter from an outstanding theoreticianÐI do
not remember exactly who it was but it was one the big
namesÐand it said: ``The entire wisdom of the West came
from the books of Landau and Lifshitz.'' This was very high
praise and Evgeny Mikhailovich was of course very proud
to receive it. Now the last thing I wish to say is that the
times that began in Landau's lifetime and lasted through the
1970s to the beginning of the 1980s, these times are gone
forever, never to return; it is sad but I am sure I am right.
Consequently, all this structure that you admired and took
off your hat to, is now impossible: time brought us grants,
funds, foundations, and so forth. In these conditions, it will
definitely never be possible to recreate the atmosphere that
reigned in Landau's time, and then, after he was gone, in a
few places where Landau's school flourished, e.g., in the
Institute for Theoretical Physics and in some other places.
Still, there is some ground for optimism since there are a
good many people around who absorbed these ideas, this
high respect to science and to theoretical physics; I am
convinced that we will be able to continue working
successfully and for a long time and that Landau's name
will continue to occupy pride of place in our hearts.

I wish to mention in conclusion that the magazine Priroda
published an outstanding special issue (No. 1, 2008)
devoted to the 100th anniversary of the birth of academician
L D Landau and presenting new materials on the life and
work of the great scientist.Priroda has published such special
issues devoted to Nobel Prize winners in the past Ð to
academicians P L Kapitza, I E Tamm, and N N Seme-
nov.

I think that the Division of Physical Sciences of the
Russian Academy of Sciences ought to express its gratitude
to the magazine Priroda for its efforts in celebrating the
memory of outstanding Russian scientists.

Front page and table of contents of the special issue of the magazine Priroda (No. 1, 2008) devoted to the 100th anniversary of Lev Davidovich Landau's

birth.
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Formation kinetics of the Bose condensate
and long-range order

Yu M Kagan

The rapidly developing area of research related to ultracold
gases has opened up the unique possibility of studying the
formation kinetics of a Bose condensate and long-range
order. The isolation of a gas from the walls in magnetic and
electric traps and the possibility of observing the intrinsic
real-time evolution of the system are the decisive factors in
this case. Although the first theoretical papers in this field
appeared in the early 1990s, it was not until 2007 that the first
experimental research on the time evolution of long-range
order was reported in the literature [1 ± 2]. A vigorous study of
this phenomenon was pursued between these dates, and this
report is concerned with the analysis of the data and existing
notions in this area.

The capability of rapid cooling by cutting off the
Maxwellian tails enables studying the evolution starting
from the points in time when all correlation properties of a
gas are purely classical and there is not the slightest trace of
a condensate. In this case, the kinetics proceed with
conservation of the total energy and the number of
particles in the system. As it turns out, the evolution
comprises four stages.

During the first stage, which is described by the Boltz-
mann equation, a particle flux forms in the energy space,
directed towards lower energies. When the particles that
constitute the condensate in equilibrium occur in the energy
range where the kinetic energy is lower than the interparticle
interaction energy, the formation of collective correlations
sets in and the kinetic equation is no loner valid (the number
of particles that fall into this energy range, which is commonly
termed the coherence interval, is comparable with the total
number of particles). But even before this, the evolution goes
through a stage during which all occupation numbers of
individual modes become much greater than unity. As
shown in Refs [3, 4], the system is then adequately described
by the classical Bose field, which obeys the nonlinear
SchroÈ dinger equation in the form of the Gross ± Pitaevskii
equation. The solution of this equation leads to an important
result: in the coherence interval, the fluctuations of density
are suppressed and the single-particle density matrix depends
only on phase fluctuations. At this stage, a special quasicon-
densate state emerges, which is equivalent to the genuine
condensate in local properties, but has no long-range order.
An instantaneous picture of the gas actually demonstrates the
division of the system into finite-size quasicondensate
domains. Each domain has a specific phase in the absence of
phase correlation between different domains.

This picture underlay the prediction that the evolution
during the third stage should be accompanied by the
emergence of a vorticity structure. This prediction was
borne out by the direct numerical solution of the nonlinear
Schr�odinger equation [5], which demonstrated the emergence
of a vorticity ball and its temporal evolution.

The final stage is characterized by the damping of
nonequilibrium regular-phase fluctuations and the relaxa-
tion of the vorticity structure. This occurs with an increase of

quasicondensate domains in size, which is effectively equiva-
lent to an increase in the density-matrix decay distance,
thereby determining the evolution of the long-range order
scale [3, 4] (see also Ref. [6]). The long-range order settling
time tL increases with the domain size L: tL � Ln, where
n � 1ÿ2, depending on parameter ratios.

The report presents a comparison with the theory and a
comprehensive analysis of the experimental results found in
Refs [1, 2], especially of the temporal evolution of long-range
order formation [1]. The analysis relies on the theory
elaborated for the analog of the Hanbury ±Brown ±Twiss
effect for particles in the `two sources, one detector' setup in
the evolution of a nonequilibrium system involving a
classical-to-quantum transformation of correlations [7].
Experimental data are qualitatively and quantitatively
compared with theoretical predictions.
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Superêuid Fermi liquid in a unitary regime

L P Pitaevskii

1. Introduction

When choosing the subject of my presentation at this session
dedicated to the 100th anniversary of the birth of Landau, I
wanted to speak about something that would have surprised
Landau. I believe that the recently prepared physical
objectÐa universal superfluid Fermi liquidÐmeets this
requirement in the best way possible.

As is well known, Landau did not regard the microscopic
theory of fluids as a problem worth being occupied with. I
quote a well-known passage from Statistical Physics [1]: ``In
contrast to gases and solids, liquids do not permit calculating
the thermodynamic quantities or at least their temperature
dependences in the general form. The reason lies with the
strong interaction between the molecules of a liquid and, at
the same time, the absence of the smallness of oscillations,
which imparts simplicity to the thermal motion in solids.
Because of the high intensity of molecular interaction, the
knowledge of a specific interaction law, which is different for
different liquids, becomes significant for calculating thermo-
dynamic quantities.''

This statement is perfectly correct for all liquids existing in
nature. However, progress in experimental techniques has
recently enabled preparing liquids with properties indepen-
dent of any quantities that characterize the interaction. This
situation emerges because the interatomic interaction in these
bodies is, in a sense, infinitely strong. The case in point is
ultracold gases near the so-called Feshbach resonances.
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First of all, we pose the question: what is the word liquid
taken to imply? We accept a natural definition: a liquid is a
fluid body with a strong interaction between its particles. We
emphasize that fluidity implies the absence of strict periodi-
city, of a crystalline long-range order.

The liquids of interest to us are made from gases whose
atoms obey the Fermi statistics. The gas is dilute in the sense
that the average interatomic distance nÿ1=3, where n is the
atomic number density, is much greater than the character-
istic range r0 of interatomic forces:

r0 5 nÿ1=3 : �1�

Condition (1) is always satisfied for the objects under
consideration. However, the fulfillment of this condition
does not yet signify that we are dealing with a gas in the
sense that the interaction is weak. Let the temperature be
sufficiently low, such that the gas is degenerate, T4EF.

1 It is
then valid to say that all body properties depend on one
parameter f, the amplitude of the scattering of atoms with the
orbital momentum l � 0 by each other. The interaction is
weak, i.e., the body is indeed a gas, if the amplitude is small in
comparison with the interatomic distances:

j f j5 nÿ1=3 : �2�

The quantities r0 and j f j are typically of the same order of
magnitude and conditions (1) and (2) are practically equiva-
lent. However, this is not the case when a system of two atoms
has an energy level close to zero. According to the general
scattering theory, the scattering amplitude is then expressed
in the form (see, e.g., Landau and Lifshitz [2]) f �k� �
ÿ�aÿ1 � ik�ÿ1, where k is the wave vector and a � ÿf �0� is
the scattering length, a constant that characterizes the
scattering completely. When a > 0, the system of two atoms
has a bound state with the negative energy E � ÿ�h 2=ma 2.
When a < 0, the system is said to have a virtual level. If jaj is
high enough, jaj5 kÿ1 � nÿ1=3, the interaction weakness
condition (2) is certainly violated and we are by definition
dealing with a liquid, although a dilute liquid in the sense of
condition (1). In this case, its properties are characterized by
the sole parameter a. When jaj4 kÿ1, the scattering ampli-
tude reaches its `unitary limit' f � i=k. The length a then drops
out of the theory and we are dealing with a universal liquid,
whose properties do not depend on the interaction at all. Of
course, the picture under discussion implies the possibility of
changing the scattering amplitude. This opportunity arises in
the presence of Feshbach resonances, in the vicinity of which
the position of the energy level of the system of two atoms
depends on the magnetic field [3]. The scattering length as a
function of the magnetic field can be represented as

a � abg

�
1ÿ DB

Bÿ B0

�
: �3�

Near the resonance B � B0, the scattering length is large and
the system is a universal liquid.

We qualitatively consider the properties of the system at
T � 0 in different ranges of the scattering length a. When this
length is positive and relatively small, r0 5 a5 nÿ1=3, the
system of two atoms has a bound state and the atoms combine
to form molecules with a binding energy E. The system is a

Bose gas consisting of weakly bound diatomic molecules, or
dimers. It is significant that the dimer ± dimer scattering
length add is positive, i.e., these molecules experience mutual
repulsion. Calculating add is an intricate problem, which was
solved in [4]. It turned out that add � 0:6a. Therefore, in this
regime, the system is a weakly nonideal superfluid Bose gas
described by the Bogolyubov theory [6], with the obvious
change m! 2m, a! 0:6a.

The question of the lifetime of this system is of paramount
importance for the entire area of physics involved. This
lifetime is limited by transitions from the weakly bound level
to deep molecular levels in molecular collisions accompanied
by the release of a large amount of energy. The molecule
number loss in these inelastic processes is described by the
equation _nd � ÿaddn 2

d . The dependence of the recombination
coefficient add on a was also studied in Ref. [4]. It turned out
that add / aÿ2:25. Therefore, the system becomes more stable
with an increase in the scattering length, i.e., as the resonance
is approached. This paradoxical result stems from the Fermi
nature of atoms or, to be more precise, from the fact that
fermions with parallel spins cannot reside at the same point.
In a Bose gas, which was also studied in experiments, the
lifetime decreases sharply as the resonance is approached.
This is the reason why only the Fermi liquid can actually be
investigated in the unitary mode. The experimentally mea-
sured dependence of add on a is depicted in Fig. 1. It is in
satisfactory agreement with the theory.

We now consider the opposite limit case, where the
scattering length is negative and small in modulus, a < 0,
r0 5 jaj5 nÿ1=3, as is the case on the opposite side of the
resonance. The system is then a weakly nonideal Fermi gas
with attraction between the atoms. According to the
theoretical concepts of Bardeen ±Cooper ± Schrieffer and
Bogolyubov, the occurrence of a Fermi surface gives rise to
Cooper pairs in this case. As a result, a gap appears in the
fermion energy spectrum and the system becomes superfluid.

In the immediate vicinity of the resonance, the system is a
universal unitary Fermi liquid. Because the system is super-
fluid in both limit cases considered, it is reasonable to assume
that it is superfluid in all of the interval of a values. (Different
arguments are presented below.) Of course, the system is then
assumed to be stable in the unitary mode. This assumption is
supported by the wealth of experimental data and theoretical
calculations.

1 In all formulas, we set kB � 1.
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Figure 1. The dimer recombination coefficient add as a function of the

scattering length a (borrowed from Ref. [5]). The slope of the dashed line

corresponds to the theoretical dependence add / aÿ2:5.
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Prior to discussing these results, I briefly describe the
typical experimental arrangement using the example of a
facility at Duke University [7] (Fig. 2a). Two types of Fermi
atoms were actually used in the experiments, 6Li and 40K
isotopes. The isotope choice was dictated by the presence of a
Feshbach resonance in a convenient range of the magnetic
field and the occurrence of spectral lines in a convenient
wavelength range. The atoms are confined in an optical trap
formed by a focused laser beam. The chosen light frequency is
somewhat lower than the absorption line frequency, and
therefore the atoms are `attracted' to the intensity peak.
Because the intensity near the focus decreases rapidly in the
radial direction and slowly in the axial direction, the sample

was elongated and cigar-shaped. Solenoids induce the
magnetic field required to attain the resonance. Since the
main objective of the experiments was to investigate super-
fluidity, two types of fermions were needed. In superconduc-
tivity theory, electrons with opposite values of spin projection
are usually considered. In our case, atoms in different
hyperfine structure states were used.

Experiments with fermions are arduous and the number
of groups working with them is smaller than the number of
groups investigating the Bose ±Einstein condensation. The
work is undertaken at the JILA (Joint Research Institute of
the National Institute of Standards and Technology and the
University of Colorado) (Boulder), Massachusetts Institute
of Technology (MIT) (Boston), Duke University (Durham),
and Rice University (Houston) in the USA, the �Ecole
Normale SupeÂ rieure (Paris) in France, and the University of
Innsbruck in Austria. It is a pleasure for me to mention that
A Turlapov, one of the leading experimenters at Duke
University, has returned to Nizhnii Novgorod and is making
a facility there.

I give the typical parameters of recent experiments. The
number of atoms in the trap isN � 3� 106ÿ107 and the atom
density at its center is n � 2� 1012. Accordingly, the Fermi
energy is EF � 200ÿ500 nK and the magnitude of the Fermi
wave vector is kF � 0:3 mmÿ1. The parameters of the trap are
conveniently characterized by the frequencies of atomic
oscillations in it. The radial frequency n? normally lies in
the 60 ± 300 Hz range and the longitudinal frequency
nz � 20 Hz. The lowest attainable temperature turns out to
be under 0:06EF, i.e., of the order of 10 nK.As is evident from
the subsequent discussion, it has been possible not only to
conduct experiments at these prodigiously low temperatures
but also to set up a thermodynamic temperature scale in this
domain. I cannot enlarge on the techniques of gas cooling,
and only mention that during the final stage, the gas is cooled
due to the evaporation of the faster atoms from the trap,
much like tea is cooled in a cup left on a table.

One of the most important experimental tasks was to
ascertain that the system was superfluid. An immanent
property of superfluidity is the existence of quantized
vortices. The velocity circulation around a vortex in a Fermi
liquid is G � p�h=m, two times smaller than in a Bose liquid.
Accordingly, in the rotation with a sufficiently high angular
velocity O, the number of vortices per unit area must be equal
to 2Om=�p�h�. How can the liquid be set in rotation? MIT
experimenters positioned a pair of thin laser beams along the
trap axis, which were shifted from the axis (Fig. 2b) [8]. This
`mixer' rotated about the axis and entrained the liquid. At
some instant, the trap was disengaged, the liquid expanded,
and observations of the density distribution were made. The
result is shown inFig. 3. The vortex cores are observed as dark
reduced-density domains. A simple calculation of the number
of vortices confirms the theoretical value of the circulation
given above.

We now consider the liquid precisely at the resonance
point, when a! �1. (It is pertinent to note that this is not a
phase transition point.) We begin from the properties of a
uniform liquid at T � 0. Apart from the density, there are no
parameters at our disposal on which the thermodynamic
functions may depend. Dimensionality considerations sug-
gest, e.g., that the chemical potential of the liquid must be of
the form

m�n� � xm id�n� ; �4�

a

b

Figure 2. (a) Schematic of the facility employed at Duke University to

investigate the properties of a Fermi gas in an optical trap near a Feshbach

resonance (borrowed from [7]). (b) Schematic of the facility used at MIT

for investigating the rotation of a superfluid Fermi gas (borrowed

from [8]). Two laser beams aligned with the axis set the gas in rotation.

Separately shown is the scheme for observing the vortices from the

shadowgraph of the expanding fermionic cloud.
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where m id�n� � �3p 2n�2=3��h 2=m� is the chemical potential of
an ideal Fermi gas with the density n for T � 0 and x is a
dimensionless coefficient independent of the kind of liquid.
The theoretical task consists in the calculation of x and the
experimental task involves its measurement. The first esti-
mates of x were made proceeding from the Bardeen ±
Cooper ± Schrieffer ±Bogolyubov (BCSB) theory. This the-
ory is a mean-field theory and, needless to say, is inapplicable
near the unitarity point. But its ingenious generalization to
the strong-coupling case has allowed obtaining formulas
sound in both limit cases (see, e.g., [9]). At exactly the
unitarity point, this theory yields x � 0:59. The most reliable
result is provided by calculations involving the quantum
Monte Carlo (QMC) technique: x � 0:42 [10]. It is note-
worthy that the absence of a small parameter in the theory is
substantially favorable to numerical calculations. It is not
infrequent that the existence of such a parameter impairs
convergence. An attempt has been made to apply the e-
expansion technique, which relies on the fact that x � 0 in a
four-dimensional space [11]. The theory is constructed in the
space ofD � 4ÿ e dimensions under the assumption that e is
small, and the results are then extrapolated to e � 1. This
technique, which is highly beneficial in the theory of phase
transitions, supposedly yields poor accuracy in this case. It is
significant that the parameter x < 1. This signifies that the
interaction at the unitarity point lowers the fluid pressure, i.e.,
is an effective attraction. It is therefore reasonable that it leads
to fermion pairing and to superfluidity. A quantitative
characteristic of the pairing is the gap D in the Fermi branch
of the spectrum. Once again, the dimensionality considera-
tions suggest that

D�n� � ym id�n� : �5�

QMC calculations yield y � 0:5 [10].
We now turn our attention to the experimental verifica-

tion of the theory. The most direct method of determining x
consists in the precise measurement of fluid density in the
trap. In the semiclassical approximation, this distribution is
given, in view of expression (4), by the equation
xm id

�
n�x��� V�x� � const. Fitting to the observed distribu-

tion allows determining x. At Rice University, the value
x � 0:46 was thus found for 6Li [12]. Another method was
applied by experimenters at JILA, who worked with 40K.
They measured the density distribution and calculated the
potential energy Upot �

�
n�x�V�x� dx of the liquid, which is

proportional to
���
x
p

[13]. By this means, they obtained the
value x � 0:46. The proximity of the values for 6Li and 40K to
the theoretical one confirms the universal nature of x.
Reliable measurements of the gap D, in my opinion, have
not been made to the present day.

Important information about the properties of the liquid
may be obtained by investigating its oscillations in the trap.
These oscillations are described by the Landau superfluid
hydrodynamics [14]. (I emphasize that Landau believed from
the outset that his equations applied both to Bose and Fermi
superfluid liquids.) An especially simple result for the
oscillation frequencies in a harmonic trap is obtained for a
liquid with the polytropic equation of state m�n� / n g. We
consider an important type of oscillation: axially symmetric
radial oscillations whose frequency iso � �����������������

2�g� 1�p
o? [15].

According to this formula, in the molecular limit (a > 0,
na 3 5 1), when m / addn, i.e., g � 1, the frequency o � 2o?.
In the unitary limit and BCSB limit, g � 2=3 as in an ideal
Fermi gas and o � ����������

10=3
p

o? � 1:83o?. For intermediate
values of a, the frequency cannot be calculated analytically,
but it appears reasonable that the frequency for a > 0 is
monotonically decreasing with increasing a. These were
precisely the indications of the first experiments. Theories
that have this property and rely on the mean-field approx-
imation have also been proposed.

However, the situation is not that simple. For na 3 5 1, the
theory permits rigorous calculations of not only the first term
in m but also a correction, which was first determined in [16].
This gives a correction to the frequency equal to [17]

do
o
� �0:72

�������������������������
n�x � 0� a 3

dd

q
: �6�

The positive correction sign signifies that the frequency must
initially increase with increasing a and only then decrease to
attain the limit value 1:83o?. This reasoning was disputed on
the grounds that molecular dimers are nevertheless not
entirely bosons. However, correction (6) bears a clear
physical meaning. It stems from the contribution to the
energy made by zero-point phonon oscillations, whose
occurrence in the superfluid liquid is beyond question. This
is why it is anomalously large, of the order of the square root
of the gas parameter na 3, while the `normal' expansion is
performed in this parameter. All this leads us to the statement
that the author has been vigorously promoting, namely, that
the monotonic behavior of the frequency would imply a
catastrophe for the theory. Fortunately, the situation has
recently been clarified. New experiments do yield above-2o?
values of the frequency on the molecular side of the
resonance. They are in good agreement with the calculations
throughout the interval of a values performed by the QMC
technique [19] (Fig. 4).We note that the disagreement with the
data of previous experiments is attributable to the fact that
the temperature in those experiments was not low enough.
Meanwhile, correction (6) is temperature sensitive, because it
is related to the excitation of relatively low energies �ho � m.

We now discuss the fluid properties at the unitarity point
at finite temperatures. In this case, the temperature is
assumed to be not too high, and therefore the wavelength of
atoms in their thermal motion is long in comparison with the
atomic size: r0 5 �h=

�������
mT
p

. We are actually dealing with
temperatures of the order of EF.

The question of the temperature of transition to the
superfluid state is all-important here. The most reliable data
were obtained in [20] using the Monte Carlo technique:

1.6
BEC BCS

0 ÿ0.7

730 833

a b c

Magnetic éeld, Gs

Interaction parameter 1=kfa

935

Figure 3.Quantized vortices in a rotating superfluid Fermi gas (borrowed

from [8]): (a) corresponds to a dilute gas of dimers, (b) to a Fermi liquid in

the vicinity of the unitarity point, and (c) to a dilute Fermi gas with a weak

attraction between the atoms.
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Tc � 0:16m id. This result is in good agreement with experi-
ment. It is noteworthy that the transition temperature is
relatively low, and hence at temperatures somewhat higher
thanTc, we face an interesting research objectÐa degenerate
normal Fermi liquid in the unitary regime.

At finite temperatures, the equation of state cannot be
written proceeding from only the dimensionality considera-
tions. But these considerations lead to important similarity
relations. For instance, the chemical potential is of the form
m�n;T � � m id�n� fm�T=m id�n��; the entropy per atom can be
written as s�n;T � � fS�T=m id�n��. The last relation implies
that under an adiabatic density variation, the temperature
varies as / n 2=3, as in an ideal monoatomic gas.

For a fluid in the trap, these formulas lead to an important
integral relation. Following the standard derivation of the
virial theorem, it can be shown that

2Upot � E ; �7�

where Upot is the potential energy and E is the total energy,
i.e., the sum of potential, internal, and hydrodynamic kinetic
energies [21]. As indicated above, Upot can be calculated
directly from the measured density distribution. The total
energy may be changed in a controllable way. For this, the
trap potential was switched off for some `heating time' theat.
During this period, the liquid was free to expand. The sum of
the kinetic and internal energies was conserved in the process.
Then, the trap was turned on again and the system came to
equilibrium, and its potential energy, which was measured
anew, turned out to be higher. This ingeniousmethod enabled
the authors of [21] to verify relation (7) with high precision
and thus confirm the similarity laws formulated above.

The total entropy S � � n�x� s�x� dx of the system as a
function of its energy E was measured in a similar experiment
in [22]. In the experiment, the energywas varied andmeasured
as described above; tomeasure the entropy, themagnetic field
was adiabatically increased, taking the system away from
resonance, where the interaction was insignificant. Measure-

ments of the cloud dimension enabled calculating the entropy
from the formulas for an ideal Fermi gas, which, due to the
adiabaticity of the process, was equal to the entropy of the
liquid before the increase in the magnetic field. It is
noteworthy that the derivative T � dE=dS directly yields
the absolute temperature of the system. I believe that the
capability of measuring the absolute temperature in the
nanokelvin domain is a wonderful achievement by itself.
Another way of measuring the absolute temperature is
described below.

The aforesaid leaves no room for doubt that the
theoretical notions about the properties of a `unitary' super-
fluid liquid are amply borne out by experiments. I believe,
however, that the significance of the issue calls for high-
precision verification. Such a possibility does exist. For this,
the fluid should be placed in a trap that is harmonic and
isotropic with a high degree of accuracy. Then, we can state
with certainty that the spherically symmetric cloud pulsations
are precisely equal to 2oh in frequency, where oh is the
eigenfrequency of the trap, and do not attenuate [23]. This
theorem is valid both below and above the superfluid
transition point and applies to oscillations of arbitrary
amplitude. It is a corollary of the hidden symmetry of the
system at the unitarity point. (A similar situation occurs for
oscillations of a dilute Bose gas in a cylindrical trap [24, 25].)
The absence of damping signifies that the second viscosity z of
the fluid is equal to zero above the transition point. Of the
three second viscosity coefficients introduced byKhalatnikov
[26], z1 and z2 turn out to be zero [27] in the superfluid phase.

So far, we have dealt with experiments in which the
numbers of atoms in two spin states were equal. Recently,
active work commenced to study polarized systems in which
the number of atoms in one spin state (we conventionally
speak of `spin-up' atoms) is greater than in the other state.
This question had already been discussed for superconduc-
tors. In [28] and [29], the existence of spatially inhomogeneous
phases (LOFF phases) was predicted, in which the super-
conducting gap is a periodic function of coordinates [28, 29].
In superconductors, the population difference of the spin
states may exist in ferromagnetic bodies or may be induced by
an external magnetic field. In both cases, the magnetic field
affects the orbital motion and destroys superconductivity.

In our neutral dilute systems, the spin relaxation time is
quite long and the numbers of atoms in different states are
practically arbitrary parameters, determined by the initial
conditions. Theoretical calculations in [30] and the experi-
ment in [31] show that the liquid in a trap at T � 0 near the
unitarity domain breaks up into three phases. At the center is
the superfluid phase with equal numbers of `spin-up' and
`spin-down' atoms. It is surrounded by the partially polarized
normal phase with unequal densities of the atoms of different
polarization. At the periphery is the completely polarized
phase, which consists of only the atoms of excess polarization.
In this case, the existence of LOFF-type phases in some
parameter value ranges is not ruled out.

The measurement data are depicted in Fig. 5. The system
with N" � 5:9� 106, T=EF � 0:03 and the spin state popula-
tion ratio N#=N" � 0:39 was investigated. Figure 5a shows
the shadowgraph of the two-dimensional polarization dis-
tribution (the column density) dna�x; z� �

�
dy�n"�r� ÿ n#�r��

and Fig. 5b shows the `weighted' distribution dnb�x; z� ��
dy�0:76n"�r� ÿ 1:43n#�r��, which gives a higher-contrast

picture. Figure 5c shows the curves dna�0; z� and dnb�0; z�,
and Figs 5d and 5e the plots of integrated linear densities
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dna�z� �
�
dxna�x; z� and dna�x� �

�
dzna�x; z�. I emphasize

that the measurements were made in the trap itself, without
prior expansion of the fluid. Processing the measured two-
dimensional distribution by the Abel transform enabled
reconstructing the three-dimensional polarization distribu-
tion and confirmed the three-phase fluid structure. Measure-
ments at different temperatures were also made. Worthy of
note in this connection is the special role played by the
completely polarized phase. Because slow fermions with
parallel spins hardly interact with each other, this phase is
an ideal Fermi gas. By measuring the density distribution of
this phase and fitting it to formulas for the ideal gas, it is
possible to determine the thermodynamic temperature of the
system. The polarized phase plays the role of an ideal-gas
thermometer contacting with other phases. It is significant in
this case that the fermions of the polarized phase interact with
the fermions of other phases, which ensures thermodynamic
equilibrium. These temperature measurements permitted
verifying the transition temperature calculated in Ref. [20].
The results under discussion are at some variance with the
findings in [12], where a smaller number of atoms was
considered. Conceivably, the surface tension at the phase
boundaries plays a role under these conditions.

I mention several interesting possibilities for future
investigations. One of them involves employing two types of
fermions of different masses for which the Feshbach
resonance exists [32]. Theory predicts unconventional proper-
ties for a superfluid liquid formed as a result of Cooper
pairing of the fermions of different masses.

Another possibility is related to the vortex-free rotation of
a Fermi liquid [33]. The vortex lattice shown in Fig. 3 is
formed due to a strong fluid perturbation by the rotating
mixers. If a trap asymmetric about the axis is simply set in
rotation, there are grounds to believe that vortices would be
formed only for a high rotation rate, when the fluid shape
becomes unstable. At lower rotation rates, the fluid would

break up into two phases. The center of the weakly deformed
trap would be occupied by the superfluid liquid at rest, while
the normal phase of the liquid would rotate in the usual way
at the periphery. The existence of the normal phase at
absolute zero kept by rotation from transiting into the
superfluid state raises difficult theoretical issues.

A very rich area of research opens up when the fluid is
placed in a periodic lattice produced by counterpropagating
laser beams (see the author's review Ref. [34]). This research
in the unitary domain is still in its infancy.

We see that the investigations of a near-resonance Fermi
gas in a trap have opened up entirely new theoretical and
experimental opportunities in condensed matter physics,
reflecting the modern trend. Work to an increasing extent is
shifting to the investigation of specially fabricated objects
that do not exist in nature and have surprising new properties.
In view of this, I believe, no exhaustion of our realm of physics
is to be expected in the foreseeable future.

Acknowledgements. I express my appreciation to S Stringari
for discussions, to J Thomas for providing the original of
Fig. 2a, and to R Grimm for providing the original of Fig. 4.
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Lev Landau and the problem
of singularities in cosmology

I M Khalatnikov, A Yu Kamenshchik

1. Introduction

We consider different aspects of the problem of cosmological
singularity such as the BKL oscillatory approach to singular-
ity, the new features of cosmological dynamics in the
neighborhood of the singularity in multidimensional and
superstring cosmological models, and their connections with
such amodern branch ofmathematics as infinite-dimensional
Lie algebras. In addition, we consider some new types of
cosmological singularities that have been widely discussed
during the last decade, after the discovery of the phenomenon
of cosmic acceleration.

Many years ago, in conversations with his students, Lev
Davidovich Landau used to say that three problems were
most important for theoretical physics: the problem of
cosmological singularity, the problem of phase transitions,
and the problem of superconductivity [1]. We now know that
the great breakthrough was achieved in the explanation of
phenomena of superconductivity [2] and phase transitions [3].
The problem of cosmological singularity has been widely
studied during the last 50 years and many important results
have been obtained, but it still preserves some intriguing
aspects. Moreover, some quite unexpected facets of the
problem of cosmological singularity have been discovered.

In our review published 10 years ago [4] in the issue of this
journal dedicated to the 90th anniversary of Landau's birth,
we discussed some questions connected with the problem of
singularity in cosmology. In the present paper, we dwell on
relations between well-known old results of these studies and
new developments in this area.

To begin, we recall that Penrose and Hawking [5] proved
the impossibility of indefinite continuation of geodesics under
certain conditions. This was interpreted as pointing to the
existence of a singularity in the general solution of the Einstein
equations. These theorems, however, did not allow finding the
particular analytic structure of the singularity. The analytic
behavior of the general solutions of the Einstein equations in
the neighborhood of a singularity was investigated in [6 ± 11].
These papers revealed the enigmatic phenomenon of an
oscillatory approach to the singularity, which has become
known as theMixmaster Universe [12]. The model of a closed
homogeneous but anisotropic universe with three degrees of
freedom (Bianchi IX cosmological model) was used to
demonstrate that the universe approaches the singularity
such that its contraction along two axes is accompanied by
an expansion along the third axis, and the axes change their
roles according to a rather complicated law revealing chaotic
behavior [10, 11, 13, 14].

The study of the dynamics of the universe in the vicinity of
the cosmological singularity has become an explodingly
developing field of modern theoretical and mathematical
physics. We first note the generalization of the study of the
oscillatory approach to the cosmological singularity in multi-
dimensional cosmological models. It has been noticed [15]

that the approach to the cosmological singularity in the
multidimensional (Kaluza ±Klein type) cosmological mod-
els has a chaotic character in space ± times whose dimension is
not higher than ten, while in space ± times of higher dimen-
sions, the universe enters a monotonic Kasner-type contract-
ing regime after undergoing a finite number of oscillations.

The development of cosmological studies based on super-
string models has revealed some new aspects of the dynamics
in the vicinity of the singularity [17]. First, it was shown that
these models involve mechanisms for changing Kasner
epochs provoked not by the gravitational interactions but
by the influence of other fields present in these theories.
Second, it was proved that the cosmological models based
on the six main superstring models plus the D � 11 super-
gravity model exhibit a chaotic oscillatory approach towards
the singularity. Third, the connection between cosmological
models manifesting the oscillatory approach towards singu-
larity and a special subclass of infinite-dimensional Lie
algebras [18], the so called hyperbolic Kac ±Moody alge-
bras, was discovered.

Another confirmation of the importance of the problem
of singularity in general relativity has come from observa-
tional cosmology. At the end of the 1990s, the study of the
relation between the luminosity and redshift of type-Ia
supernovae revealed that the modern Universe is expanding
with an acceleration [19]. To provide such an acceleration, it is
necessary to have a particular substance, which was named
`dark energy' [20]. The main feature of this kind of matter is
that it should have a negative pressure p such that r� 3p < 0,
where r is the energy density. The simplest kind of this matter
is the cosmological constant, for which p � ÿr. The so-called
standard or LCDM cosmological model is based on the
cosmological constant, whose energy density is responsible
for roughly 70 percents of the general energy density of the
Universe, while the rest is occupied by dust-like matter, both
the baryonic one (approximately 4 percent) and a dark one.
This model is in good agreement with observations, but other
candidates for the role of dark energy are being intensively
studied and new observations can give some surprises already
in the nearest future. First of all, we note that some
observations [21] suggest the possible existence of the so-
called superacceleration, which is connected with the presence
of phantom dark energy [22], characterized by the inequality
p < ÿr. Under certain conditions, a universe filled with this
type of dark energy can encounter a very particular
cosmological singularity, the Big Rip [23]. When an expand-
ing universe encounters this singularity, it has an infinite
cosmological radius and an infinite value of the Hubble
variable. Earlier, the possibility of this type of singularity
was discussed in [24].

Study of different possible candidates for the role of
dark energy has stimulated the elaboration of the general
theory of possible cosmological singularities [25 ± 29]. It is
remarkable that while the `traditional' Big Bang or Big
Crunch singularities are associated with the vanishing size
of the universe, i.e., with a universe squeezed to a point,
these new singularities occur at finite or infinite value of the
cosmological radius. The physical processes occurring in the
vicinity of such singularities can have rather exotic features
and their study is of great interest. Thus, we see that the
development of both the theoretical and the observational
branches of cosmology has confirmed the importance of the
problem of singularity in general relativity mentioned by
Landau many years ago.
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The structure of this contribution is as follows: in
Section 2, we briefly discuss the Landau theorem about the
singularity, which was not published in a separate paper and
was reported in book [30] and in review [6]; in Section 3, we
recall the main features of the oscillatory approach to the
singularity in relativistic cosmology; Section 4 is devoted to
the modern development of the BKL ideas and methods,
including the dynamics in the presence of a massless scalar
field, multidimensional cosmology, superstring cosmology,
and the correspondence between chaotic cosmological
dynamics and hyperbolic Kac ±Moody algebras; in Section 5,
we describe some new types of cosmological singularities, and
in Section 6 we present some concluding remarks.

2. Landau theorem about singularity

We consider the synchronous reference frame with the metric

ds 2 � dt 2 ÿ gab dx
a dx b ; �1�

where gab is the spatial metric. Landau pointed out that the
determinant g of the metric tensor in a synchronous reference
systemmust tend to zero at some finite time if the equation of
state satisfies some simple conditions. To prove this state-
ment, it is convenient to write the 0-0 component of the Ricci
tensor as

R 0
0 � ÿ

1

2

qK a
a

qt
ÿ 1

4
K b

aK
a
b ; �2�

where Kab is the extrinsic curvature tensor defined as

Kab �
qgab
qt

; �3�

and the spatial indices are raised and lowered by the spatial
metric gab. The Einstein equation for R0

0 is

R 0
0 � T 0

0 ÿ
1

2
T ; �4�

where the energy ±momentum tensor is

T j
i � �r� p� uiu j ÿ d j

i p ; �5�

where r; p, and ui are the energy density, the pressure, and the
four-velocity, respectively. The quantity T0

0 ÿ 1=2T in the
right-hand side of Eqn (4) is

T 0
0 ÿ

1

2
T � 1

2
� r� 3p� � � r� p� uau a ; �6�

which is positive if

r� 3p > 0 : �7�

Thus, Eqn (4) implies that

1

2

qK a
a

qt
� 1

4
K b

aK
a
b 4 0 : �8�

Because of the algebraic inequality

K b
aK

a
b 5

1

3
�K a

a �2 ; �9�

we have

qK a
a

qt
� 1

6
�K a

a �2 4 0 ; �10�

or

q
qt

1

K a
a
5

1

6
: �11�

If K a
a > 0 at some instant of time, then if t decreases, the

quantity 1=K a
a decreases to zero within a finite time. Hence,

K a
a tends to �1; because of the identity

K a
a � g ab

qgab
qt
� q

qt
ln g ; �12�

this means that the determinant g tends to zero [no faster than
t 6 according to inequality (11)]. IfK a

a < 0 at the initial instant,
then the same result is obtained for increasing time. A similar
result was obtained in [31] in the case of dust-like matter and
in [32].

This result does not prove that a true physical singularity
inevitably exists that belongs to space ± time itself and is not
connected with the character of the chosen reference system.
However, this result played an important role in stimulating
the discussion about the existence and generality of singula-
rities in cosmology.We note that energy dominance condition
(7) used for the proof of the Landau theorem also appears in
the proof of the Penrose andHawking singularity theorem [5].
Moreover, the breakdown of this condition is necessary for an
explanation of the phenomenon of cosmic acceleration.

The Landau theorem is deeply connected with the
appearance of caustics studied in [33] and was discussed
between those authors and Landau in 1961. In trying to
geometrically construct the synchronous reference frame, one
starts from the three-dimensional Cauchy surface and designs
the family of geodesics orthogonal to this surface. The length
along these geodesics serves as the time measure. It is known
that these geodesics intersect on some two-dimensional
caustic surface. This geometry constructed for the empty
space is also valid in the presence of dust-like matter (p � 0).
Such matter, moving along the geodesics, concentrates on the
caustics, but the increase in density cannot be unbounded
because the arising pressure destroys the caustics. 1 This
question was studied in [34]. Later, caustics were used in [35]
to explain the initial clustering of the dust, which, although
not creating physical singularities, is nevertheless responsible
for the creation of so-called pancakes. These pancakes
represent the initial stage of the development of the large-
scale structure of the universe.

3. Oscillatory approach to the singularity
in relativistic cosmology

One of the first exact solutions found in the framework of
general relativity was the Kasner solution [16] for the
Bianchi-I cosmological model representing the gravitational
field in an empty space with a Euclidean metric depending on
time according to the formula

ds 2 � dt 2 ÿ t 2p1 dx 2 ÿ t 2p2 dy 2 ÿ t 2p3 dz 2 ; �13�

where the exponents p1, p2, and p3 satisfy the relations

p1 � p2 � p3 � p 2
1 � p 2

2 � p 2
3 � 1 : �14�

1 In an empty space, the caustic is a mathematical but not a physical
singularity. This follows simply from the fact that its location can always
be shifted by changing the initial Cauchy surface.
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Choosing the ordering of exponents as

p1 < p2 < p3 ; �15�

we can parameterize them as [6]

p1� ÿu
1� u� u 2

; p2� 1� u

1� u� u 2
; p3� u�1� u�

1� u� u 2
: �16�

As the parameter u varies in the range u5 1, p1, p2, and p3
take all their allowed values:

ÿ 1

3
4 p1 4 0 ; 04 p2 4

2

3
;

2

3
4 p3 4 1 : �17�

The values u < 1 lead to the same range of values of p1, p2,
and p3 because

p1

�
1

u

�
� p1�u� ; p2

�
1

u

�
� p3�u� ; p3

�
1

u

�
� p2�u� : �18�

The parameter u introduced in the early 1960s turned out to
be very useful and its properties are attracting the attention
of researchers in different contexts. For example, in recent
paper [36], a connection was established between the
Lifshitz ±Khalatnikov parameter u and invariants arising
in the context of Petrov's classification of the Einstein
spaces [37].

In the case of Bianchi-VIII or Bianchi-IX cosmological
models, theKasner regime described by (13) and (14) is not an
exact solution of the Einstein equations; however, a general-
izedKasner solutions can be constructed [7 ± 11]. It is possible
to construct some kind of perturbation theorywhere the exact
Kasner solution in (13), (14) plays the role of the zeroth-order
approximation, with the role of perturbations played by the
terms in the Einstein equations that depend on spatial
curvature tensors (apparently, such terms are absent in
Bianchi-I cosmology). This perturbation theory is effective
in the vicinity of a singularity or, in other words, at t! 0. The
remarkable feature of these perturbations is that they imply a
transition from the Kasner regime with one set of parameters
to the Kasner regime with another one.

The metric of the generalized Kasner solution in a
synchronous reference system can be written as

ds 2 � dt 2 ÿ �a 2lalb � b 2mamb � c 2nanb� dx a dxb ; �19�

where

a � t pl ; b � t pm ; c � t pn : �20�

The three-dimensional vectors l,m, and n define the directions
along which the spatial distances vary with time according to
power laws (20). Let pl � p1, pm � p2, and pn � p3, with

a � t p1 ; b � t p2 ; c � t p3 ; �21�

which means that the Universe is contracting in directions
given by the vectors m and n and is expanding along l. It was
shown in [10] that the perturbations caused by spatial
curvature terms make the variables a, b, and c undergo
transition to another Kasner regime characterized by the
formulas

a � t p
0
l ; b � t p

0
m ; c � t p

0
n ; �22�

where

p 0l �
j p1j

1ÿ 2j p1j ; p
0
m � ÿ

2j p1j ÿ p2
1ÿ 2j p1j ; p

0
n � ÿ

p3 ÿ 2j p1j
1ÿ 2j p1j :

�23�
Thus, the effect of the perturbation is to replace one

`Kasner epoch' by another such that the negative power of t
is transformed from the l to the m direction. During the
transition, the function a�t� reaches a maximum and b�t� a
minimum. Hence, the previously decreasing quantity b now
increases, the quantity a decreases, and c�t� remains a
decreasing function. The previously increasing perturbation
caused the transition from regime (21) to regime (22), and is
therefore damped and eventually vanishes. Then another
perturbation begins to grow, which leads to a new replace-
ment of one Kasner epoch by another, etc.

We emphasize that just the fact that perturbation
implies a change of dynamics extinguishing it allows using
the perturbation theory so successfully. We note that the
effect of changing the Kasner regime already exists in
cosmologicalmodels that are simpler than those ofBianchi IX
and Bianchi VIII. As a matter of fact, in the Bianchi II
universe, there exists only one type of perturbation connected
with spatial curvature and this perturbation makes one
change of Kasner regime (one bounce). This fact was known
to Lifshitz and Khalatnikov in the early 1960s, and they
discussed this topic with Landau (just before the tragic
accident), who highly appreciated it. The results describing
the dynamics of the Bianchi IX model were reported by
Khalatnikov in his talk given in January 1968 at the Henri
PoincareÂ Seminar in Paris. Wheeler, who was present there,
pointed out that the dynamics of the Bianchi IX universe
represent a nontrivial example of the chaotic dynamic
system. Later, Thorn distributed a preprint with the text of
this talk.

Returning to the rules governing the bouncing of the
negative power of time from one direction to another, it can
be shown that they can be conveniently expressed in terms of
parameterization (16),

pl � p1�u� ; pm � p2�u� ; pn � p3�u� ; �24�

and then

p 0l � p2�uÿ 1� ; p 0m � p1�uÿ 1� ; p 0n � p3�uÿ 1� : �25�

The greater of the two positive powers remains positive.
The successive changes as in (25), accompanied by a

bouncing of the negative power between the directions l and
m, continue until the integral part of u is exhausted, i.e., until u
becomes less than one. Then, according to Eqn (18), the value
u < 1 transforms into u > 1; at this instant, either the
exponent pl or pm is negative and pn becomes the smaller of
the two positive numbers (pn � p2). The next sequence of
changes bounces the negative power between the directions n
and l or n and m. We emphasize that the Landau ±
Khalatnikov parameter u is useful because it allows encoding
rather complicated laws of transitions between different
Kasner regimes (23) by simple rules such as u! uÿ 1 and
u! 1=u.

Consequently, the evolution of our model towards a
singular point consists of successive periods (called eras) in
which distances oscillate along two axes and decrease
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monotonically along the third axis, and the volume decreases
according to a law that is near � t. In the transition from one
era to another, the axes along which the distances decrease
monotonically are interchanged. The order in which the pairs
of axes are interchanged and the order in which eras of
different lengths follow each other acquire a stochastic
character.

To every (sth) era, there corresponds a decreasing
sequence of values of the parameter u. This sequence has the
form u

�s�
max; u

�s�
max ÿ 1; . . . ; u

�s�
min, where u

�s�
min < 1. We introduce

the notation

u
�s�
min � x �s� ; u �s�max � k �s� � x �s� ; �26�

i.e., k �s� � �u �s�max� (the square brackets denote the greatest
integer 4 u

�s�
max). The number k�s� defines the era length. For

the next era, we obtain

u �s�1�max �
1

x �s�
; k �s�1� �

�
1

x �s�

�
: �27�

The ordering with respect to the length of k�s� of the
successive eras (measured by the number of Kasner epochs
contained in them) acquires an asymptotically stochastic
character. The random nature of this process arises because
of rules (26) and (27) that define the transitions from one era
to another in the infinite sequence of values of u. If all this
infinite sequence begins from some initial value u

�0�
max �

k �0� � x �0�, then the lengths of series k �0�; k �1�; . . . are the
numbers occurring in the expansion into a continued fraction:

k �0� � x �0� � k �0� � 1

k �1� � 1

k �2� � � � �
: �28�

We can statistically describe this sequence of eras if,
instead of a given initial value u

�0�
max � k �0� � x �0�, we consider

a distribution of x �0� over the interval �0; 1� governed by some
probability law. Thenwe also obtain some distributions of the
values of x �s� that terminate every sth series of numbers. It can
be shown that with increasing s, these distributions tend to a
stationary (independent of s) probability distribution w�x� in
which the initial value x �s� is completely `forgotten':

w�x� � 1

�1� x� ln 2 : �29�

It follows from Eqn (29) that the probability distribution of
the lengths of series k is given by

W�k� � 1

ln 2
ln
�k� 1� 2
k�k� 2� : �30�

Moreover, probability distributions for other parameters
describing successive eras, such as the parameter d, can be
calculated exactly, giving a relation between the amplitudes of
logarithms of the functions a, b, and c and the logarithmic
time [14].

Thus, we have seen from the results of statistical analysis
of evolution in the neighborhood of a singularity [13] that the
stochasticity and probability distributions of parameters
already arise in classical general relativity.

At the end of this section, a historical remark is in order.
Continued fraction (28) was shown in 1968 to I M Lifshitz

(Landau had already passed away) and he immediately
noticed that the formula for a stationary distribution of the
value of x in (29) can be derived. Later, it became known that
this formula was derived in the nineteenth century by Gauss,
who had not published it but had described it in a letter to a
colleague.

4. Oscillatory approach to the singularity:
modern development

The oscillatory approach to the cosmological singularity
described in the preceding section was developed for an
empty space ± time. It is not difficult to understand that if
the universe is filled with a perfect fluid with the equation of
state p � wr, where p is the pressure, r is the energy density,
and w < 1, then the presence of this matter cannot change the
dynamics in the vicinity of the singularity. Indeed, using the
energy conservation equation, we can show that

r � r0
�abc�w�1 �

r0
tw�1

; �31�

where r0 is a positive constant. Thus, the term representing
matter in the Einstein equations behaves as � 1=t 1�w and is
weaker as t! 0 than the terms of geometric origin coming
from the time derivatives of the metric, which behave as
1=t 2, let alone the perturbations due to the presence of
spatial curvature, responsible for changes in the Kasner
regime, which behave as 1=t 2�4j p1j. But the situation
changes drastically if the parameter w is equal to unity,
i.e., the pressure is equal to the energy density. This matter
is called `stiff matter' and can be represented by a massless
scalar field. In this case, r � 1=t 2 and the contribution of
matter is of the same order as the leading terms of
geometrical origin. Hence, it is necessary to find a Kasner-
type solution, with the presence of terms connected with the
presence of stiff matter (a massless scalar field) taken into
account. Such a study was carried out in [38]. It was shown
there that the scale factors a; b, and c can again be
represented as t 2p1 ; t 2p2 , and t 2p3 , where the Kasner indices
satisfy the relations

p1 � p2 � p3 � 1; p 2
1 � p 2

2 � p 2
3 � 1ÿ q 2 ; �32�

where the number q2 reflects the presence of stiff matter and is
bounded by

q 2 4
2

3
: �33�

It can be seen that if q2 > 0, then there exist combina-
tions of the positive Kasner indices satisfying relations (32).
Moreover, if q 2 5 1=2, only triples of positive Kasner
indices can satisfy relations (32). If the universe finds itself
in a Kasner regime with three positive indices, the
perturbative terms existing due to the spatial curvatures
are too weak to change this Kasner regime, and it therefore
becomes stable. This means that in the presence of stiff
matter, after a finite number of changes of Kasner regimes,
the universe finds itself in a stable regime and the
oscillations stop. Thus, the massless scalar field plays an
`antichaotizing' role in the process of cosmological evolu-
tion [38]. The Lifshitz ±Khalatnikov parameter can also be
used in this case. The Kasner indices satisfying relations (32)
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are conveniently represented as [38]

p1 � ÿu
1� u� u 2

;

p2 � 1� u

1� u� u 2

�
uÿ uÿ 1

2

ÿ
1ÿ �1ÿ b 2�1=2�� ;

p3 � 1� u

1� u� u 2

�
1� uÿ 1

2

ÿ
1ÿ �1ÿ b 2�1=2�� ;

b 2 � 2�1� u� u 2�2
�u 2 ÿ 1�2 : �34�

The range of the parameter u is now ÿ14 u4 1, while the
admissible values of q at a fixed u are

q 2 4
�u 2 ÿ 1�2

2�1� u� u 2�2 : �35�

It is easy to show that after one bounce, the value of q 2

changes according to the rule

q 2 ! q 0 2 � q 2 1

�1� 2p1�2
> q 2 : �36�

Thus, the parameter q 2 increases and, hence, the probability
of finding all three Kasner indices to be positive increases.
This again confirms the statement that after a finite number of
bounces, the universe in the presence of the massless scalar
field finds itself in the Kasner regime with three positive
indices and the oscillations stop.

In the second half of the 1980s, a series of papers was
published [15] where solutions of the Einstein equations in the
vicinity of a singularity for (d� 1)-dimensional space ± times
were studied. The multidimensional analog of a Bianchi-I
universe was considered with the generalized Kasner metric

ds 2 � dt 2 ÿ
Xd
i�1

t 2pi dx i2 ; �37�

where the Kasner indices pi satisfy the conditionsXd
i�1

pi �
Xd
i�1

p2i � 1 : �38�

In the presence of spatial curvature terms, the transition from
one Kasner epoch to another occurs and this transition is
described by the following rule: the newKasner exponents are
equal to

p 01; p
0
2; . . . ; p 0d � �q1; q2; . . . ; qd� ; �39�

where

q1 � ÿp1 ÿ P

1� 2p1 � P
; q2 � p2

1� 2p1 � P
; . . . ;

qdÿ2 � pdÿ2
1� 2p1 � P

; qdÿ1 � 2p1 � P� pdÿ1
1� 2p1 � P

;

qd � 2p1 � P� pd
1� 2p1 � P

; �40�

with

P �
Xdÿ2
i�2

pi : �41�

However, such a transition fromoneKasner epoch to another
occurs if at least one of the numbers ai j k is negative. These
numbers are defined as

ai j k � 2pi �
X
l6�j; k; i

pl ; �i 6� j ; i 6� k ; j 6� k� : �42�

For space ± times with d < 10, one of the factors a is always
negative and, hence, one change of Kasner regime is followed
by another, implying the oscillatory behavior of the universe
in the neighborhood of the cosmological singularity. But for
space ± times with d5 10, combinations of Kasner indices
satisfying Eqn (38) with all the numbers ai j k positive exist. If
the universe enters the Kasner regime with such indices (so-
called `Kasner stability region'), its chaotic behavior disap-
pears and this Kasner regime is preserved. Thus, the
hypothesis was put forward that in space ± times with
d5 10, after a finite number of oscillations, the universe
under consideration finds itself in the Kasner stability region
and the oscillating regime is replaced by the monotonic
Kasner behavior.

The discovery of the fact that the chaotic character of the
approach to the cosmological singularity disappears in
space ± times with d5 10 was unexpected and looked like an
accidental result of an interplay of real numbers satisfying
generalized Kasner relations (40). Later, it became clear that
underlying this fact is a deep mathematical structure, the
hyperbolicKac ±Moody algebras. Indeed, in a series of works
byDamour, Henneaux, Nicolai, and some other authors (see,
e.g., Refs [17]) on the cosmological dynamics in models based
on superstring theories living in 10-dimensional space ± time
and in the d� 1 � 11 supergravitymodel, it was shown that in
the vicinity of the singularity, these models reveal oscillating
behavior of the BKL type. The important new feature of the
dynamics in these models is the role played by nongravita-
tional bosonic fields (p-forms), which are also responsible for
transitions from one Kasner regime to another. For a
description of these transitions, the Hamiltonian formalism
[12] becomes very convenient. In the framework of this
formalism, the configuration space of the Kasner parameters
describing the dynamics of the universe can be treated as a
billiard system, while the curvature terms in the Einstein
theory and p-form potentials in superstring theories play the
role of the walls of these billiards. The transition from one
Kasner epoch to another is a reflection from one of the walls.
Thus, there is a correspondence between the rather compli-
cateddynamics of auniverse in the vicinity of the cosmological
singularity and the motion of a ball on a billiard table.

However, there exists a more striking and unexpected
correspondence between the chaotic behavior of the universe
in the vicinity of the singularity and such an abstract
mathematical object as the hyperbolic Kac ±Moody alge-
bras [17]. We briefly explain what it means. Every Lie algebra
is defined by its generators hi; ei; fi; i � 1; . . . ; r, where r is the
rank of the Lie algebra, i.e., the maximal number of its
generators hi that commute with each other (these generators
constitute the Cartan subalgebra). The commutation rela-
tions between the generators are

�ei; fj� � di j hi ;

�hi; ej� � Ai j ej ;

�hi; fj� � ÿAi j fj ;

�hi; hj� � 0 : �43�
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The coefficients Ai;j constitute the generalized Cartan r� r
matrix such that Aii � 2, its off-diagonal elements are
nonpositive integers, and Ai j � 0 for i 6� j implies Aj i � 0.
We can say that the ei are rising operators, similar to the well-
known operator L� � Lx � iLy in the theory of angular
momentum, while the fi are lowering operators like
Lÿ � Lx ÿ iLy. The generators hi of the Cartan subalgebra
can be compared with the operator Lz. The generators must
also satisfy the Serre relations

�ad ei�1ÿAi j ej � 0 ;

�ad fi�1ÿAi j fj � 0 ; �44�
where �adA�B � �A;B�.

The Lie algebras G�A� built on a symmetrizable Cartan
matrix A have been classified according to the properties of
their eigenvalues:

if A is positive definite, G�A� is a finite-dimensional Lie
algebra;

if A allows one null eigenvalue and all the others are
strictly positive, G�A� is an affine Kac ±Moody algebra;

if A allows one negative eigenvalue and all the others are
strictly positive, G�A� is a Lorentz Kac ±Moody algebra.

A correspondence exists between the structure of a Lie
algebra and a certain system of vectors in the r-dimensional
Euclidean space, which essentially simplifies the task of
classification of the Lie algebras. These vectors, called
roots, represent the rising and lowering operators of the
Lie algebra. The vectors corresponding to the generators ei
and fi are called simple roots. The system of positive simple
roots (i.e., roots corresponding to the rising generators ei)
can be represented by nodes of their Dynkin diagrams,
while the edges connecting (or not connecting) the nodes
give information about the angles between simple positive
root vectors.

An important subclass of Lorentz Kac ±Moody algebras
can be defined as follows. A Kac ±Moody algebra such that
deleting one node from its Dynkin diagram gives a sum of
finite or affine algebras is called a hyperbolic Kac ±Moody
algebra. These algebras are all known. In particular, there
exists no hyperbolic algebras with the rank higher than 10.

We recall some more definitions from the theory of Lie
algebras. Reflections with respect to hyperplanes orthogonal
to simple roots leave the root system invariant. The
corresponding finite-dimensional group is called the Weyl
group. Finally, the hyperplanes mentioned above divide the
r-dimensional Euclidean space into regions called Weyl
chambers. The Weyl group transforms one Weyl chamber
into another.

We can now briefly formulate the results of the approach
in [17] following paper [39]: the links between the billiards
describing the evolution of the universe in the neighborhood
of singularity and its correspondingKac ±Moody algebra can
be described as follows:

the Kasner indices describing the `free' motion of the
universe between the reflections from the walls correspond to
the elements of the Cartan subalgebra of the Kac ±Moody
algebra;

the dominant walls, i.e., the terms in the equations of
motion responsible for the transition from one Kasner epoch
to another, correspond to the simple roots of the Kac ±
Moody algebra;

the group of reflections in the cosmological billiard system
is the Weyl group of the Kac ±Moody algebra;

the billiard table can be identified with the Weyl chamber
of the Kac ±Moody algebra.

We can imagine two types of billiard tables: infinite, where
the linear motion without collisions with the walls is possible
(nonchaotic regime), and those where reflections from the
walls are inevitable and the regime can be only chaotic.
Remarkably, the Weyl chambers of the hyperbolic Kac ±
Moody algebras are such that infinitely repeating collisions
with the walls occur. It was shown that all the theories with
the oscillating approach to the singularity such as the Einstein
theory in dimensions d < 10 and superstring cosmological
models correspond to hyperbolic Kac ±Moody algebras.

The existence of links between the BKL approach to
the singularities and the structure of some infinite-dimen-
sional Lie algebras has inspired some authors to declare a
new program of development of quantum gravity and
cosmology [40]. They propose ``to take seriously the idea
that near the singularity (i.e., when the curvature gets larger
than the Planck scale) the description of a spatial continuum
and space ± time based (quantum) field theory breaks down,
and should be replaced by amuchmore abstract Lie algebraic
description.''

5. New types of cosmological singularities

As mentioned in the Introduction, the development of the
theoretical and observational cosmology and, in particular,
the discovery of the cosmic acceleration have stimulated the
elaboration of cosmological models where new types of
singularities are described. In contrast to the `traditional'
Big Bang and Big Crunch singularities, these singularities
occur not at zero but at finite or even infinite values of the
cosmological radius. The most famous of these singularities
is, perhaps, the Big Rip singularity [23, 24] arising if the
absolute value of the negative pressure p of dark energy is
larger than the energy density r. Indeed, we consider a flat
Friedmann universe with the metric

ds 2 ÿ a 2�t� dl 2 ; �45�

filled with a perfect fluid with the equation of state

p � wr ; w � const < ÿ1 : �46�

The dependence of the energy density r on the cosmological
radius a is, as usual,

r � C

a 3�1�w� ; �47�

and the Friedmann equation in this case has the form

_a 2

a
� C

a 3�1�w� ; �48�

where C is a positive constant. Integrating Eqn (48), we
obtain

a�t� �
�
a
3�1�w�=2
0 � 2

����
C
p �tÿ t0�
3�1� w�

�2=3�1�w�
: �49�

It is easy to see that at the finite time tR > t0 equal to

tR � t0 ÿ 3�1� w�
2
����
C
p a

3�1�w�=2
0 ; �50�
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the cosmological radius becomes infinite and the same also
occurs with the Hubble variable _a=a and, hence, with the
scalar curvature. Thus, we encounter a new type of cosmolo-
gical singularity, characterized by infinite values of the
cosmological radius, its time derivative, the Hubble variable,
and the scalar curvature. It is usually called the `Big Rip'
singularity. Its properties have attracted a considerable
attention of researchers because some observational data
indicate that the actual value of the equation of state
parameter w is indeed smaller than ÿ1.

There are also other types of cosmological singularities
that can be encountered at finite values of the cosmological
radius (see, e.g., [25 ± 29]). For illustration, we here consider
one type of singularity, the Big Brake singularity [25]. This
singularity can be achieved in a finite lapse of cosmic time and
is characterized by a finite value of the cosmological radius,
by the vanishing first time derivative of the radius, and by the
second time derivative of the cosmological radius tending to
minus infinity (an infinite deceleration).We consider a perfect
fluid with the equation of state

p � A

r
; �51�

where A is a positive constant. This fluid could be called an
`anti-Chaplygin' gas because the widely used Chaplygin gas
cosmological model [41] is based on the equation of state
p � ÿA=r. The dependence of the energy density on the
cosmological radius for equation of state (51) is

r �
���������������
B

a 6
ÿ A

r
; �52�

where B is a positive constant. When a is small, r � 1=a 3 and
behaves like dust. Then, as a! aB,

aB �
�
B

A

�1=6

; �53�

and the energy density tends to zero. The solution of the
Friedmann equation in this limit gives

a�t� � aB ÿ C0�tB ÿ t�4=3; C0 � 2ÿ7=335=3�AB�1=6 : �54�

Now, it can be easily verified that as t! tB, _a! 0 and
�a! ÿ1. Thus, we indeed encounter the Big Brake cosmo-
logical singularity.

6. Conclusions

Wehave shown in this short review that the opinion expressed
by Landau many years ago concerning the importance of the
problem of singularity in cosmology has proved to be
prophetic. The study of the cosmological singularity has
revealed the existence of an oscillatory behavior of the
universe as the curvature of space ± time increases, which in
turn has a deep connection with quite new branches of
modern mathematics. On the other hand, the latest successes
of observational cosmology have stimulated the development
of various cosmological models, which reveal new types of
cosmological singularities whose investigation from both the
physical and mathematical standpoints can be very promis-
ing.

This work was partially supported by the RFBR grant
05-02-17450 and by the grant LSS-1157.2006.2.
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Axial anomaly in quantum
electro- and chromodynamics
and the structure of the vacuum
in quantum chromodynamics

B L Ioffe

1. Introduction

In this report, I discuss the current state of the problem of the
axial anomaly in quantum electrodynamics (QED) and
quantum chromodynamics (QCD) and the relation of the
axial anomaly to the structure of the vacuum in QCD. In
QCD, the vacuum average of the axial anomaly is propor-
tional to a new quantum number n, the winding number.
There are an infinite number of vacuum states jni. The
transition amplitudes between these states are amplitudes of
tunnel transitions along certain paths in the space of gauge
fields. I show that the axial anomaly condition implies that
there are zero modes of the Dirac equation for a massless
quark and that spontaneous chiral symmetry breaking occurs
in QCD, which leads to the formation of a quark condensate.
The axial anomaly can be represented in the form of a sum
rule for the structure function in the dispersion representation
of the axial ± vector ± vector (AVV) vertex. On the basis of this
sum rule, we calculate the width of the p0 ! 2g decay with an
accuracy of 1.5%.

2. The definition of an anomaly

We suppose that the classical field-theory Lagrangian has a
certain symmetry, i.e., is invariant under transformations of
the fields corresponding to this symmetry. According to the
Noether theorem, the symmetry corresponds to a conserva-
tion law. An anomaly is a phenomenon in which the given
symmetry and the conservation law are violated as we pass
to quantum theory. The reason for this violation lies in the
singularity of quantum field operators at small distances,
such that finding the physical quantities requires fixing not
only the Lagrangian but also the renormalization proce-
dure. (See reviews dealing with various anomalies in
Refs [1 ± 4].)

There are two types of anomalies, internal and external.
In the first case, the gauge invariance of the classical

Lagrangian is broken at the quantum level, the theory
becomes unrenormalizable, and is not self-consistent. This
problem can be resolved by a special choice of fields in the
Lagrangian, for which all the internal anomalies cancel.
(Such an approach is used in the standard model of
electroweak interaction and is known as the Glashow ±
Illiopoulos ±Maiani mechanism.) External anomalies
emerge as a result of the interaction between the fields in
the Lagrangian and external sources. It is these anomalies
that appear in quantum electrodynamics and quantum
chromodynamics; they are discussed in what follows. We
show that anomalies play an important role in QED and
especially in QCD. Hence, the term `anomaly' should not
mislead us Ð it is a normal and important ingredient of
most quantum field theories.

3. Axial anomaly in QED

The Dirac equation for the electron in an external electro-
magnetic field Am�x� is

igm
qc�x�
qxm

� mc�x� ÿ egmAm�x�c�x� : �1�

The axial current is defined as

jm5�x� � �c�x� gmg5c�x� : �2�

Its divergence calculated in classical theory, i.e., with the use
of Eqn (1), is

qm jm5�x� � 2im�c�x� g5c�x� �3�

and tends to zero as m! 0. In quantum theory, the axial
current must be redefined because jm5�x� is the product of two
local fermionic fields, with the result that it is singular when
both fields act at the same point. (Naturally, a similar
statement is true for a vector current.) To achieve a mean-
ingful approach, we split the points where the two fermionic
fields act by a distance e, such that

jm5�x; e� � �c
�
x� e

2

�
gmg5

� exp

�
ie

� x�e=2

xÿe=2
dyaAa�y�

�
c
�
xÿ e

2

�
; �4�

and take e! 0 in the final result. The exponential factor in (4)
is introduced to ensure the local gauge invariance of jm5�x; e�.
The divergence of axial current (4) has the following form (we
use Eqn (1) and keep only the terms that are linear in e):

qm jm5�x; e� � 2im �c
�
x� e

2

�
g5c
�
xÿ e

2

�

ÿ ieea �c
�
x� e

2

�
gmg5c

�
xÿ e

2

�
Fam ; �5�

where Fam is the electromagnetic field strength. For simplicity,
we assume thatFmn � const and use the fixed-point gauge (the
Fock ± Schwinger gauge) xmAm�x� � 0. Then Am�x� �
�1=2� xnFnm. We calculate the vacuum average of (5). To
calculate the right-hand side of (5), we use the expression for
the electron propagator in an external electromagnetic field
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�6x � xmgm�:

S�x� � i

2p 2

� 6x
x 4
� i

m

2x 2
� 1

16x 2
eFmn�6xsmn � smn 6x�

�
; �6�

smn � i

2
�gmgn ÿ gngm� : �7�

Vacuum averaging involves first-order corrections in e 2.
Substituting Eqn (6) in Eqn (5) and ignoring the electron
mass, we obtain

h0j qm jm5j0i � e 2

4p 2
FamFlsebmls

eaeb
e 2

: �8�

Because there can be no preferred direction in space ± time,
the limit e! 0 can be achieved in a symmetric manner, and
we have

qm jm5 � e 2

8p 2
Fab ~Fab ; �9�

where

~Fab � 1

2
eablsFls �10�

is the dual electromagnetic field tensor. In Eqn (9), the
symbol of vacuum averaging is dropped because in the
e 2-order, this equation can be considered an operator
equation. Equation (9) is known as the Adler ± Bell ± Jackiw
anomaly [5 ± 8].

To better understand the origin of an anomaly, we
consider the same problem in the momentum space. In
QED, the matrix element of the transition of an axial current
with a momentum q into two real or virtual photons with
momenta p and p 0 is described by the diagrams in Fig. 1. The
matrix element is

Tmab� p; p 0� � Gmab� p; p 0� � Gmba� p 0; p� ; �11�

Gmab� p; p 0� � ÿe 2
�

d4k

�2p�4 Tr
�
gmg5�6k� 6pÿm�ÿ1

� ga�6kÿm�ÿ1gb�6kÿ 6p 0 ÿm�ÿ1� : �12�

Integral (12) linearly diverges. In a linearly divergent
integral, the important terms are the surface terms, which
emerge as a result of integrating over an infinitely remote

surface in the momentum space. (This becomes especially
clear when the vectors q; p, and p 0 are space-like and the
integration contour over k0 can be rotated to the imaginary
axis, k0 ! ik4, such that integration over k is carried out in
Euclidean space.) The result of calculations depends on the
way k is chosen: we can displace k by an arbitrary constant
vector al, i.e., kl ! kl � al. Amplitude (11) must satisfy the
conditions needed for the vector-current conservation:
paTmab� p; p 0� � 0 and p 0bTmab� p; p 0� � 0.

We try to choose the vector al such that the conditions for
both axial- and vector-current conservation are satisfied. We
parameterize al as al � �a� b� pl � bp 0l. The result of
calculations shows that both conditions cannot be satisfied
simultaneously: the vector-current conservation can be
achieved at a � ÿ2, while the axial-current conservation
requires that a � 0 [8, 9]. The vector-current conservation is
a necessary condition for the existence of QED. Hence, we
select a � ÿ2. The divergence of the axial current is

qmTmab� p; p 0� �
�
2mG� p; p 0� ÿ e 2

2p2

�
eabls pl p 0s : �13�

Here, we restore the term proportional to the electron mass
and define G� p; p 0� as


p; ea; p 0; e 0b j �cg5c j0
� � G� p; p 0� eabls pl p 0s ; �14�

with ea and e 0b being the polarizations of the two photons. The
fact that the axial current is not conserved, stated in Eqn (13),
is equivalent to Eqn (9). Our discussion of the axial anomaly
in QED was limited to terms of the order e 2. Adler and
Bardeen have proved (see Refs [5, 6, 10]) that the radiative
corrections caused by the photon lines connecting different
points inside the triangle diagrams in Fig. 1 do not alter the
anomaly equation. However, the diagram in Fig. 2 yields a
nonvanishing, albeit small, correction of the order e 6 to this
condition [11].

4. The axial anomaly and its relation
to the structure of the vacuum
in quantum chromodynamics

In QCD with massless quarks, the axial anomaly is described
by a formula similar to (9):

qm j am5 �
e 2

8p 2
e 2qNc Fmn ~Fmn : �15�

a

k� p

p

k

kÿ p0

p0

q

ga

gmg5

gb

b

k� p0

p

k

kÿ p

p0

q

gmg5

gagb

Figure 1. Feynman diagrams describing the transition of an axial current

with a momentum q into two real or virtual photons with momenta p and

p 0, q � p� p 0: (a) the direct diagram, and (b) the crossing diagram.

Figure 2. The e 6-order correction to the Adler ±Bell ± Jackiw anomaly in

QED.
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Here, Nc � 3 is the number of colors and eq is the quark
charge. (We wrote Eqn (15) for one massless quark.) There is
also another anomaly in QCD, where the external fields are
not electromagnetic but gluonic:

qm jm5 � asNc

4p
Gn

mn
~Gn
mn ; �16�

where Gn
mn is the gluonic field strength and ~Gn

mn is its dual.
Equation (16) can be considered an operator equation, and
the fields Gn

mn and
~Gn
mn can be considered the fields of virtual

gluons. In the same way as in QED, perturbative corrections
to (16) begin at a3s and are described by a diagram similar to
the one shown in Fig. 2. In QCD, however, the coupling
constant is large, with the result that the contribution
provided by this diagram is not small; the contribution of
diagrams obtained from the one in Fig. 2 by attaching
additional quark and gluon loops are not small either.
Obviously, in QCD, the octet axial current

j im5 �
X
q

�cqgmg5
l i

2
cq ; i � 1; :::; 8 �17�

is conserved in the absence of an electromagnetic field. (Here,
the li are the Gell-Mann matrices, and summation is over the
flavors of the light quarks, q � u; d; s.) The singlet axial
current

j
�0�
m5 �

X
q

�cqgmg5cq �18�

contains the anomaly

qm j
�0�
m5 � 3

asNc

4p
Gn

mn
~Gn
mn : �19�

In view of the spontaneous breaking of chiral symmetry, the
pseudoscalar mesons belonging to the octet �p;K;Z� are
massless (in the mq ! 0 approximation), while the SU(3)
singlet Z 0 is massive. In this way, the presence of an anomaly
solves what is known as the U(1) problem [12].

I now discuss the important assertion that exists in QCD
and relates the structure of the anomaly to the structure of
the vacuum in this theory. Because we deal with the
existence of degenerate vacua and tunnel (underbarrier)
transitions between them, it is convenient (just as in
quantum mechanics) to introduce imaginary time by
setting t � x0 � ÿix4; we thus operate in the Euclidean
space, where x 2 � x 2

1 � x 2
2 � x 2

3 � x 2
4 . In the Euclidean

space, the action integral

S � 1

4

�
d4xG 2

mn �20�

is positive. (We temporarily ignore the quark contribution.)
The transition amplitudes are determined by the matrix
elements of exp �ÿS�. A theorem first proved by Belavin,
Polyakov, Schwartz, and Tyupkin [13] states that

as
8p

�
d4xGn

mn
~Gn
mn � n ; �21�

where n is an integer known as the winding number. Here, we
do not prove this theorem in detail; instead, we mention its
main points. The integrand in (21) can be written as the total

derivative

Gn
mn

~Gn
mn � qmKm ; �22�

Km � emngd

�
An

n G
n
gd ÿ

1

3
f nmpAn

n A
m
g A

p
d

�
: �23�

When x 2 is large,Gmn�x� decreases faster than 1=x 2 (i.e., there
is no physical field), and An

m is a pure-gauge field. Then, we
can drop the first term in the right-hand side of (23) and keep
only the second term in the general expression for the gauge
transformation for An

m ,

A 0m � Uÿ1AmU� iUÿ1qmU �24�

(here, U is a unitary, unimodular matrix, U� � U, jU j� 1).
We suppose that the fieldAn

m �n � 1; 2; 3� belongs to the SU(2)
subgroup of the color group SU(3). This subgroup plays a
special role in the SU(3) group because it is isomorphic to the
spatial rotation group O(3). At this point, it is convenient to
introduce matrix notation for the fields Am:

Ai � 1

2
gt kAk

i ; k � 1; 2; 3 ; i � 1; 2; 3 : �25�

Then, according to Eqns (22) and (23), we have�
d4xGmn�x� ~Gmn�x� � ÿi 4

3

1

g 2

�
dVeikl Tr �AiAkAl� : �26�

Substituting the second term in the right-hand side of
Eqn (24) in (26), we see that the integrand in (26) is a total
derivative with respect to the spatial coordinates, and there-
fore reduces to an integral over an infinitely remote surface.
Because jU j� 1 on this surface, the matrix U has the form

U � exp

�
2pnr̂a

t a

2i

�
; �27�

where n in an integer and r̂a is a unit radius vector, r̂a � ra=j r j.
The invariance of U under spatial rotations stems from the
fact that each such rotation is accompanied by a gauge
transformation, a rotation in the SU(2) group. When the
right-hand side of Eqn (24) is substituted in (26), we see that
Eqn (21) follows from (27). Theorem (21) also follows from
general mathematical considerations, because the SU(2)
group is mapped onto O(3); such a map is multivalued and
is determined by the number of times the O(3) group is
covered. We note that the fields corresponding to different n
cannot be transformed into each other by a continuous
transformation. In the perturbation theory, we always deal
with fields corresponding to n � 0. The action integral in (2)
can be written as

S � 1

4

�
d4xGn

mnG
n
mn �

1

4

�
d4x

�
Gn

mn
~Gn
mn �

1

2
�Gn

mn ÿ ~Gn
mn�2
�
:

�28�

Because the last term in (28) is positive, the minimum of the
action is achieved with fields satisfying the self-duality
condition

Gn
mn � ~Gn

mn ; �29�

Smin � 1

4

�
d4xGn

mn
~Gn
mn �

8p 2

g 2
jn j � 2p

as
jn j : �30�
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(Negative n correspond to anti-self-dual fields Gn
mn � ÿ ~Gn

mn.)
The solutions of the self-duality equation (for n � 1), which
became known as instantons, were found in [13]. It follows
fromEqn (30) that inQCD in the Euclidean space, there exists
an infinite number of action minima. In Minkowski space,
instantons are paths of tunnel transitions (in the field space)
between vacua characterized by different winding numbers
but having the same energies [14 ± 16]. By examining n�t�,
which transforms into the winding number as t! �1, it can
be shown that the instanton solutions correspond to
n�t! ÿ1� � 0 and n�t!1� � 1 and that the transition
amplitude between vacuum states is [17]�

On�1�t!1�
On�0�t! ÿ1�

�
� exp

�
ÿ 2p

as

�
: �31�

5. Structure of the vacuum
in quantum chromodynamics

Above, we showed that in QCD, there is an infinite number of
vacua with the same energies, vacua that are characterized by
the values of the winding number n. We let O�n� denote the
wave function of such a vacuum and suppose that the wave
functions are normalized, O��n�O�n� � 1, and form a
complete system. The ambiguity in the wave function resides
in the phase factor, O�n� � exp �iyn�O 0�n�. We separate the
Euclidean space into two big parts and assume that the field
strength in the space between these parts is zero and the
potentials are pure gauge. Then, obviously,

exp �iyn1�n2�O�n1� n2�� exp �iyn1�O�n1� exp �iyn2�O�n2� :
�32�

[Here, we drop the prime on O 0�n�.] Because
O�n1 � n2� � O�n1�O�n2� ; �33�

we have the equation

yn1�n1 � yn1 � yn2 ; �34�

which is solved by

yn � ny : �35�
Thus, the vacuum wave function in QCD is a linear
combination of wave functions with different winding
numbers:

O�y� �
X
n

exp �iny�O�n� : �36�

The state O�y� is known as the y-vacuum. The vacuum state
O�y� is similar to the Bloch state of an electron in a crystal,
with y acting as momentum. But in contrast to a Bloch state,
all transitions between states with different y are forbidden
for the y-vacuum. The vacuum stateO�y� can be reproduced if
the term

Ly � g 2y
32p 2

Gmn ~Gmn : �37�

is added to the QCD Lagrangian (in Minkowski space). The
presence of this term in the Lagrangian demonstrates that y is
an observable. Term (37) violates the P- and CP-invariance.
However, so far all attempts to discover the violation of CP-
invariance in strong interactions have failed. The strongest

bound on the value of y has been found in searches of the
neutron dipole moment, y < 10ÿ9 [18].

6. Zero eigenvalues of the Dirac equation
for massless quarks as a consequence
of the anomaly. Spontaneous breaking of chiral
symmetry in quantum chromodynamics

We consider the Dirac equation for massless quarks in QCD
in Euclidean space:

ÿigmHmck � lkck ; Hm � qm � ig
ln
2
An

m : �38�
From anomaly condition (16) with n � 1, we have�

d4xTr


0 jqm jm5�x� j0

�
� g 2

16p 2

�
d4x


0 jGa

mn
~Ga
mn j0

� � 2Nc : �39�

The left-hand side of Eqn (39) can bewritten as an operator as
follows:�

d4xTr


0 jqm jm5�x� j0

�
� ÿ

�
d4xqm Tr



0 j i 6Hÿ1�x; x� gmg5 j0

�
� ÿ

�
d4xHm Tr

�X
k

ck�x�c�k �x�
lk

gmg5

�
� ÿ

�
d4xTr

�X
k

ck�x�c�k �x�
lk

2lkg5

�
: �40�

States with nonzero lk contribute nothing to (40) because
each such state ck�x� corresponds to the state g5ck�x� with
the eigenvalue ÿlk, and the two states are orthogonal. Thus,
only the zero modes contribute, and hence we have

2

�
d4xTr

�
g5c0�x�c�0 �x�

� � ÿ2Nc : �41�

This implies that in the case where n � 1, i.e., in the instanton
field, the zeromode is right-handed: the quark spin is directed
along the quark momentum, g5c0 � ÿc0. (Actually, for a
quark in the instanton field, only one right-handed zero mode
exists, because spin is correlated with color and the factor Nc

in the right-hand side of Eqn (41) disappears.) At n � ÿ1, the
resulting equation differs from (41) only in sign, i.e., a left-
handed zero mode exists in an anti-instanton field. In the
general case, we have the Atiyah ± Singer theorem [19],
according to which

n � nL ÿ nR ; �42�

where nL and nR are the respective numbers of left- and right-
hand zero modes. It follows from (41) that in an instanton
field, the zero mode violates the chiral symmetry of the
Lagrangian, i.e., the invariance under the transformations
c! g5c. (We note that in passing from the Euclidean metric
to Minkowski space, the function c� is replaced by �c.) Thus,
the presence of instantons is an indication that a quark
condensate exists in the QCD vacuum:


0 j �cc j0� 6� 0 ; �43�
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which breaks the chiral symmetry of the Lagrangian.
(Unfortunately, it is impossible to calculate the quark
condensate on the basis of the instanton approach because
this approach is meaningful only when the distances are
small, while the condensate forms over large distances.)

The winding number n corresponds to the topological
current operator

Q5�x� � as
8p

Gn
mn�x� ~Gn

mn�x� : �44�

It was found in [20] that the vacuum correlator of topological
currents

z�q 2� � i

�
d4x exp �iqx�

D
0 jT�Q5�x� ; Q5�0�

	 jE �45�

vanishes at q 2 � 0 if the theory contains at least one massless
quark. Later, it was proved in [21] that in the limit asNc !1,
the relation

z�0� � 
0 j �qq j0��XNf

i

1

mi

�ÿ1
�46�

holds. In the cases of two and three massless quarks, the
validity of Eqn (46) was proved in Ref. [22], where the limit
Nc !1 was not used. The concept of topological current
turned out to be highly effective in QCD: it has been used to
establish the spin composition of the proton [23], to establish
a relation between the spin structure functions for large and
small Q 2 [24, 25], and to determine the axial coupling
constants for the nucleon [26].

7. The sum rule for the axial anomaly
in quantum chromodynamics

We consider the general representation of the transition
amplitude of the axial current into two photons with
momenta p and p;0 in terms of the structure functions (form
factors) without kinematic singularities, Tmab� p; p 0� [27]. We
limit ourselves to the case where p 2 � p 0 2. Then [28, 29]

Tmab� p; p 0� � F1�q 2; p 2� qmeabrsprp 0s ÿ
1

2
F2�q 2; p 2�

�
�
emabs� pÿ p 0�s ÿ

pa
p 2

embrsprp 0s �
p 0b
p 2

emarsprp 0s

�
: �47�

The anomaly condition in QCD reduces to

F2�q 2; p 2� � q 2F1�q 2; p 2�

� 2
X
q

mqG�q 2; p 2� ÿ e 2

2p 2

X
q

e 2qNc : �48�

Because Tmab� p; p 0� is nonsingular at p 2 � 0, we have
F2�q 2; 0� � 0. The functions F1�q 2; p 2�, F2�q 2; p 2�, and
G�q 2; p 2� can be described by dispersion relations in q 2 with
no subtractions. Using these relations, we can prove the sum
rule�1

4m 2

ImF1�t; p 2� dt � e 2

2p2
X

e 2q Nc ; �49�

wherem 2 is the smallest of quark masses. The sum rule in (49)
was proved in [30] for p 2 < 0,m � 0, in [28] for p 2 � p 0 2, and

in [31] in the general cases where p 2 6� p 0 2. We note that (49)
also holds for massive quarks. We consider the most
interesting case where the axial current is the third compo-
nent of the isovector current:

j
�3�
m5 � �ugmg5uÿ �dgmg5d : �50�

We ignore the masses of the u- and d-quarks and assume that
p2 � p 0 2 � 0. Combining (47) and (48), we obtain

Tmab� p; p 0� � ÿ 2a
p
Nc

qm
q 2
�e 2u ÿ e 2d � eablsplp 0s : �51�

It follows from (51) that the transition of the isovector axial
current into two photons occurs through an intermediate
massless state. Such a state (in the limit mu; md ! 0) is the
p0-meson (Fig. 3). Combining the fact that



0 j j �3�m5 jp0

� ����
2
p

i fpqm and the anomaly condition, we can find the matrix
element of the p0 ! 2g decay,

M�p 0 ! 2g� � Aeablse1ae2bplp 0s ; �52�

find the constant A, and calculate the width of p0 ! 2g as

G�p0 ! 2g� � a 2

32p 3

m 3
p

f 2p
: �53�

This result was first obtained in [32]. Under the assumption
that fp0 � fp� � 130:7 MeV, we obtain G�p0 ! 2g�theory �
7:73 eV from (53). It is difficult to estimate the accuracy of
the prediction, but apparently it varies between 5 and 10%.
The experimental value of this quantity averaged over all
existing measurements (data for the year 2006) is
G�p0 ! 2g� � 7:8� 0:6 eV [33]. To achieve better accuracy
for the theoretical prediction, we must (a) insert fp0 instead of
fp� in (53), and (b) allow the contribution of excited states (in
addition to p0) to the sum rule (49) for the isovector current at
p 2 � 0. This program was implemented in Ref. [34], where it
was shown that the difference D fp � fp0 ÿ fp� is small:
D fp=fp � ÿ1:0� 10ÿ3. Among the excited states, only the
Z-meson contributes significantly. Its contribution is deter-
mined by the value of the p0 ÿ Zmixing angle [35, 36] and the
widthG�Z! 2g� � 510 eV [33]. It was found in Ref. [34] that
G�p0 ! 2g�theory � 7:93� 1:5%. The most recent measure-
ments in [37] yield G�p0 ! 2g�exp � 7:93� 2%, �2:1%, i.e.,
the experimental data are in extremely good agreement with
the theoretical predictions.

p p0

g

q p0

g

Figure 3. The diagram describing the transition of the isovector axial

current (denoted by X) into two photons).
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It would seem that Eqn (51) suggests that the existence of a
massless (in the limit of massless u- and d-quarks) Goldstone
p0-meson is a consequence of the axial anomaly described by
the triangle diagrams in Fig. 1. This is not the case, however.
A direct calculation of ImF1�q 2; p 2� (it is to this function that
the intermediate p0-meson contributes) for p 2 6� 0 shows [9,
28] that in this case, ImF1�q 2; p 2� is a regular function of q
that tends to a constant as q 2 ! 0 and has no singularities of
the d�q 2� type, in contrast to the case p 2 � 0 described above.
Thus, the amplitude Tmab� p; p 0� corresponding to the transi-
tion of the axial current to two virtual photons and calculated
according to the diagrams in Fig. 1 has no pole in q 2 at
q 2 � 0. On the other hand, based on a chiral effective theory
(e.g., see Ref. [38]), we can state that the transition amplitude
of the axial current to two virtual photons must contain the
contribution provided by the intermediate massless p0-meson
(see Fig. 3). As shown in [6], the introduction of gluon lines
into the diagrams in Fig. 1 does not change the expression for
the anomaly. (Actually, this was shown in [6] to be true for
QED, but there is no difference between QCD and QED in
this aspect.) Thus, from examining the case where p 2 6� 0, we
conclude that the appearance of a massless p0-meson in the
dispersion representation of the AVV form factor is not
caused by an anomaly. The presence of massless Goldstone
mesons (p;K;Z) stems from the spontaneous breaking of
chiral symmetry in the QCD vacuum. That there is a
singularity at q 2 � 0 in the amplitude Tmab� p; p 0� when
p 2 � 0 is sometimes interpreted as the double nature of the
anomaly, the ultraviolet and the infrared (e.g., see Ref. [3]). I
believe that in view of the absence of such a singularity when
p 2 6� 0, this interpretation is faulty: the nature of an anomaly
in QED and QCD stems from ultraviolet divergences, the
singularity in the amplitudes at small distances. (In this
respect, QED and QCD differ dramatically from the two-
dimensional Schwinger model, in which the origin of an
anomaly is truly double (see Ref.[3]).)

For the eighth component of the octet current, the
transition amplitude of the axial current to two real photons,
F1�q 2; 0�, has a pole at q 2 � 0 ifmu � md � ms � 0. It is only
natural to associate this pole with the Z-meson. However, a
relation for G�Z! 2g� similar to (53) differs dramatically
from the experimental result. A possible explanation of such a
discrepancy is the strong nonperturbative interaction of the
type of instantons in a pseudoscalar channel mixing Z- and
Z0-mesons [39]. In the case of a singlet axial current, the
amplitude j

�0�
m5 ! 2g contains diagrams of the type shown in

Fig. 2 (with virtual gluons instead of photons), their exten-
sions, and nonperturbative contributions. Hence, we cannot
expect reliable predictions concerning the width of Z0 ! 2g
based on anomalies.

't Hooft hypothesized [40] that the singularities of the
amplitudes calculated in QCD on the quark ± gluon basis
should reproduce themselves in calculations on the hadron
basis. Obviously, this is true if both perturbative and
nonperturbative interactions are taken into account. How-
ever, as a rule, we know nothing about the nonperturbative
interactions. In the cases discussed above (except for the
decay of p0 into two real photons), 't Hooft's hypothesis does
not hold [9].

8. Conclusion

1. An anomaly is an important and necessary element of
quantum field theory.

2. An anomaly emerges because the amplitudes of quantum
field theory contain ultraviolet singularities, in view of
which it is necessary to augment the Lagrangian by
renormalization conditions.

3. An anomaly in QCD is related to the appearance of a new
quantum number, the winding number.

4. The vacuum in QCD is a linear combination of an infinite
number of vacua with different winding numbers.

5. Transitions between vacua with different winding num-
bers are tunnel transitions occurring along classical paths
in the field space, self-dual solutions ofQCD equations, or
instantons.

6. The axial anomaly in QCD results in the appearance of
zero modes in the Dirac equations for light quarks and
points to the existence of spontaneous breaking of chiral
symmetry in the QCD vacuum, the existence of a quark
condensate.

7. The axial anomaly predicts thewidth of the p0 ! 2g decay
with a high accuracy (� 2%), a result corroborated by
experiments.

References

1. Treiman S B et al. Current Algebra and Anomalies (Princeton Series
in Physics) (Princeton, NJ: Princeton Univ. Press, 1985)

2. Collins J C Renormalization (Cambridge: Cambridge Univ. Press,
1984)

3. Shifman M A Phys. Rep. 209 341 (1991)
4. Peskin M E, Schroeder D V An Introduction to Quantum Field

Theories (Reading, Mass.: Addison-Wesley, 1995)

5. Adler S L Phys. Rev. 177 2426 (1969)

6. Adler S L, Bardeen W A Phys. Rev. 182 1517 (1969)

7. Bell J, Jackiw R Nuovo Cimento 51 47 (1969)

8. Jackiw R ``Field theoretical investigations in current algebra'', in
Treiman S B et al. Current Algebra and Anomalies (Princeton Series
in Physics) (Princeton, NJ: Princeton Univ. Press, 1985) pp. 81 ± 210

9. Ioffe B L Int. J. Mod. Phys. A 21 6249 (2006)
10. Adler S L ``Anomalies to all orders'', in 50 Years of Yang-Mills

Theory (Ed. G 't Hooft) (Singapore: World Scientific, 2005)
pp. 187 ± 228; hep-th/0405040

11. AnselmAA, IogansenAAPis'maZh. Eksp. Teor. Fiz. 49 185 (1989)
[JETP Lett. 49 214 (1989)]

12. Weinberg S Phys. Rev. D 11 3583 (1975)
13. Belavin A A et al. Phys. Lett. B 59 85 (1975)
14. Gribov V N, unpublished
15. Jackiw R, Rebbi C Phys. Rev. Lett. 37 172 (1976)
16. Callan C G (Jr), Dashen R F, Gross D J Phys. Lett. B 63 334 (1976)
17. Bitar K M, Chang S-J Phys. Rev. D 17 486 (1978)
18. Altarev I S et al. Phys. Lett. B 276 242 (1992)
19. Atiyah M F, Singer I M Ann. Math. 87 484 (1968); 93 119 (1971)
20. Crewther R J Phys. Lett. B 70 349 (1977)
21. Di Vecchia P, Veneziano G Nucl. Phys. B 171 253 (1980)
22. Ioffe B L Yad. Fiz. 62 2226 (1999) [Phys. At. Nucl. 62 2052 (1999)]
23. Ioffe B L, Oganesian A G Phys. Rev. D 57 R6590 (1998)
24. Burkert V D, Ioffe B L Phys. Lett. B 296 223 (1992)
25. Burkert V D, Ioffe B L Zh. Eksp. Teor. Fiz. 105 1153 (1994) [JETP

78 619 (1994)]
26. Ioffe B L Survey High Energy Phys. 14 89 (1999); hep-ph/9804238
27. Eletsky V L, Ioffe B L, Kogan Ya I Phys. Lett. B 122 423 (1983)
28. Ho�rej�si J Phys. Rev. D 32 1029 (1985)
29. Bass S D et al. Zh. Russ. Fiz. Obshch (J. Moscow Phys. Soc.) 1 317

(1991)
30. Frishman Y et al. Nucl. Phys. B 177 157 (1981)
31. Veretin O L, Teryaev O V Yad. Fiz. 58 2266 (1995) [Phys. At. Nucl.

58 2150 (1995)]
32. Dolgov A D, Zakharov V I Nucl. Phys. B 27 525 (1971)
33. YaoW-M et al. (Particle Data Group) ``Review of Particle Physics''

J. Phys. G: Nucl. Part. Phys. 33 1 (2006)
34. Ioffe B L, Oganesian A G Phys. Lett. B 647 389 (2007)
35. Ioffe B L Yad. Fiz. 29 1611 (1979) [Sov. J. Nucl. Phys. 20 827 (1979)]
36. Gross D J, Treiman S B, Wilczek F Phys. Rev. D 19 2188 (1979)
37. de Jager K Prog. Part. Nucl. Phys. (Available online 28 December

2007); arXiv:0801.4520

June 2008 Conferences and symposia 621



38. Ioffe B LUsp. Fiz. Nauk 171 1273 (2001) [Phys. Usp. 44 1211 (2001)]
39. Geshkenbein B V, Ioffe B L Nucl. Phys. B 166 340 (1980)
40. 't Hooft G, in Recent Developments in Gauge Theories (NATO

Advanced Study Inst. Series, Ser. B, Vol. 59, Eds G 't Hooft et al.)
(New York: Plenum Press, 1980) p. 241

PACS number: 03.30.+p

DOI: 10.1070/PU2008v051n06ABEH006552

DOI: 10.3367/UFNr.0178.200806l.0663

The theory of relativity
and the Pythagorean theorem

L B Okun

1. Introduction

The report ``Energy and mass in the works of Einstein,
Landau and Feynman'' that I was preparing for the Session
of the Division of Physical Sciences of the Russian Academy
of Sciences (DPS RAS) on the occasion of the 100th
anniversary of Lev Davidovich Landau's birth was to consist
of two parts, one on history and the other on physics. The
history part was absorbed into the article ``Einstein's formula:
E0 � mc2. `Isn't the Lord laughing?' '' that appeared in the
May issue of Uspekhi Fizicheskikh Nauk [Physics-Uspekhi]
journal [1]. The physics part is published in the present article.
It is devoted to various, so to speak, technical aspects of the
theory, such as the dimensional analysis and fundamental
constants c and �h; the kinematics of a single particle in the
entire velocity range from 0 to c; systems of two or more free
particles; and the interactions between particles: electromag-
netic, gravitational, etc. The text uses the slides of the talk at
the session of the Section of Nuclear Physics of the DPS RAS
in November 2007 at the Institute for Theoretical and
Experimental Physics (ITEP). My goal was to present the
main formulas of the theory of relativity in the simplest
possible way, using mostly the Pythagorean theorem.

2. Relativity

The advanced standpoint.The history of the concept ofmass in
physics runs to many centuries and is very interesting, but I
leave it aside here. Instead, this will be an attempt to look at
mass from an advanced standpoint. I borrowed the words
from the famous title of Felix Klein's Elementary Mathe-
matics from an Advanced Standpoint (traditionally translated
into Russian incorrectly as Elementary Mathematics from the
Standpoint of Higher Mathematics. See V G Boltyanskii's
foreword to the 4th Russian edition). The advanced modern
standpoint based on principles of symmetry in general and on
the theory of relativity in particular makes it possible to avoid
inevitable terminological confusion and paradoxes.

The principle of relativity. Ever since the time of Galileo and
Newton, the concept of relativity has been connected with the
impossibility of detecting, by means of any experiments, a
translational (uniform and rectilinear) motion of closed space
(for instance, inside a ship) while remaining within this space.
At the turn of XIX and XX centuries Poincar�e gave to this
idea the name `the principle of relativity'. 1 In 1905 Einstein

generalized this principle to the case of the existence of the
limiting velocity of propagation of signals. (The finite velocity
of propagation of light has been discovered byR�omer already
in 1676). Planck called the theory constructed in this way
`Einstein's theory of relativity'.

Mechanics and optics. Newton tried to construct a unified
theory uniting the theory of motion of massive objects
(mechanics) and the theory of propagation of light (optics).
In fact, it became possible to create the unified theory of
particles of massive matter and of light only in the XXth
century. It was established on the road to this vantage ground
of truth that light is also a sort of matter, just like the massive
stuff, but that its particles are massless. This interpretation of
particles of light Ð photons Ð continues to face resistance
from many students of physics, and even more from physics
teachers.

3. Dimensions

Units in which c � 1.Themaximumpossible velocity is known
as the speed of light and is denoted by c. When dealing with
formulas of the theory of relativity it is convenient to use a
system of units in which c is chosen as a unit of velocity. Since
c=c � 1, using this system means that we set c � 1 in all
formulas, thus simplifying them greatly. If time is measured
in seconds, then distance in this system of units should be
measured in light seconds: one light second equals
3� 1010 cm.

PoincareÂ and c.One of the creators of the theory of relativity,
Henri PoincareÂ , when discussing in 1904 the fact that c is
found in every equation of electrodynamics, compared the
situation with the geocentric theory of Ptolemy's epicycles in
which every relation between motions of celestial bodies
included the terrestrial year. PoincareÂ expressed his hope
that the future Copernicus would rid electrodynamics of c
[3]. However, Einstein showed already in 1905 that c was to
play the key role as the limit for the velocity of signal
propagation.

Two system of units: SI and c = 1. The unit of velocity in the
International System of Units SI, 1 m sÿ1, is forced on us by
convenience arguments and by standardization of manufac-
turing and commerce but not by the laws of Nature. In
contrast to this, c as a unit of velocity is imposed by nature
itself when we wish to consider fundamental processes of
Nature.

Dimensional factors. Consider some physical quantity a.
Let us denote by [a] the dimension of the quantity a. The
dimension of a definitely changes if it is multiplied by any
power of the universal constant c but its physical meaning
remains unaffected. In what follows I explain why this is
so.

Velocity, momentum, energy, mass. The dimensions of
momentum, mass, and velocity of a particle are usually
related by the formula �p� � �m��v� while the dimensions of
energy, mass, and velocity are related by the formula
�E ���m��v 2�.

Let us introduce dimensionless velocity v=c and from now
on denote this ratio as v. Likewise, referring to momentum p
we actually mean the ratio p=c. When speaking of energy, we1 This sentence was added by the Author in the English proof.
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actually mean the ratio e � E=c 2. Obviously, the dimensions
of p, e, andm become identical and therefore, these quantities
can be measured in the same units, for example, in grams or
electron-volts, as is customary in elementary particle physics.

On the letter e denoting energy.Choosing e as the notation for
energy may invite the reader's ire since this symbol tradition-
ally stands for electron and electric charge. However, this
choice cannot cause confusion and, importantly, it will lead to
a compact form of formulas for a single particle, always
reminding us that these formulas were written using the
system of units in which c � 1. On the other hand, it will be
clear a little later that the letter E is a convenient notation for
the energy of two or more particles.

I happened to see Einstein's formula with a lower-case e
on a billboard on Rublevskoye highway in Moscow. I
wonder, why should this e irritate physicists?

On the difference between energy and frequency. Two para-
graphs ago I insisted that e � E=c 2 is energy even though its
dimension is that of mass. In that case it is logical to ask why
o � E=�h is not energy but frequency? Indeed, the quantum of
action �h, like the speed of light c, is a universal constant. The
answer to this question can be found by considering how e
and o are measured. E and e are measured by the same
procedure, say, using a calorimeter, while frequency is
measured in a drastically different manner, say, using
clocks. Therefore, the equality o � E=�h informs us of the
link between two different types of measurement, while the
equality e � E=c 2 carries no such information. Arguments
similar to those concerning frequency hold equally well for
wavelength. I have to emphasize that these metrological
distinctions are mostly of a historical nature since in our day
atomic clocks operate on the difference between atomic
energy levels.

4. Single particle

Relative and absolute quantities. The kinetic energy of any
body is a relative quantity: it depends on the reference frame
in which it is measured. The same is true for themomentum of
a body and its velocity. In contrast to them, the mass of a
body is an absolute quantity: it characterizes the body as such,
irrespective of the observer. The rest energy of a body (see
below) is also an absolute quantity since the frame of
reference is fixed in it once and for all Ð `nailed to it'.

Invariant mass. The mass of a body is defined in the theory of
relativity by the formula

m 2 � e 2 ÿ p 2 : �1�

Here and in what follows p � jpj. Likewise, v � jvj.
Note that energy and momentum of a given body are not

bounded from above while the mass of the body is fixed.
Formula (1) is the simplest relation between energy, momen-
tum, andmass that one could write `off the top of one's head'.
(The relation between e, p, and m cannot be linear since p is a
vector while e and m are scalars in three-dimensional space.)
We shall see now that formula (1) has another, much more
profound theoretical foundation.

The 4-momentum. Minkowski was the first to point out that
the theory of relativity gains the simplest form if considered in

four-dimensional space ± time [4]. Energy and momentum in
the theory of relativity form a four-dimensional energy-
momentum vector pi (i � 0; a), where p0 � e, pa � p, and
a � 1; 2; 3.

Mass is the Lorentz scalar that characterizes the length of
the 4-vector pi:m

2 � pi
2 � e 2 ÿ p2; four-dimensional space is

pseudo-Euclidean, which explains the minus sign in the
formula for length squared. (The reader will recall that
p2 � p2.) Another way to clarify why the sign is negative is
by introducing the imaginary momentum ip. Then
m 2 � e 2 � �ip�2 and we are dealing with the Pythagorean
theorem for such a pseudo-Euclidean right triangle in which
the hypotenuse m is shorter than the larger cathetus e.

Relation betweenmomentum and velocity.Themomentumof a
body is related to its velocity v by the formula

p � ev : �2�

This formula satisfies in the simplest manner the requirement
that the momentum 3-vector be proportional to the velocity
3-vector and that the dimensional proportionality coefficient
not vanish for the massless photon.

Conservation of the thus definedmomentum in the theory
of relativity is implied by the uniformity of 3-space while
conservation of energy is implied by the uniformity of time
(Noether's theorem).

The Pythagorean theorem. Formula (1) is shown in Fig. 1 by
an ordinary right triangle in whichm and p are catheti and e is
the hypotenuse.

Transition from m 6� 0 to m � 0. Formula (1) is obviously
valid at m � 0 while formula (2) holds for v � 1. This implies
that there is a smooth transition from massless particles to
massive, when the energy of the latter particles greatly exceeds
their mass.

Physics from p � 0 to p � e. Let us consider formulas (1) and
(2) first at zero momentum, then in the limit of very low
momenta (when p5m), and then in the limit of very high
momenta when p � e4m, and finally in the case of massless
photons.

We will call the case of very small momenta and velocities
the Newtonian case, and that of very high momenta and
velocities close to the speed of light, the ultrarelativistic case.
We will start with zero momentum.

p
e

m

Figure 1.

June 2008 Conferences and symposia 623



5. Rest energy

Zero momentum. If momentum is zero, then in the case of a
massive particle the velocity is also zero and energy e is by
definition equal to the rest energy e0. (The subscript 0 reminds
us that here we are dealing not with the energy of a given body
in general but with its energy precisely in the case when its
momentum is zero!) Hence equation (1) implies

e0 � m : �3�

If, however, the particle is massless, then equation (1) at p � 0
implies that e � e0 � 0.

Horizontal `biangle'. If p � 0, then the triangle shown in Fig. 1
`collapses' to a horizontal `biangle' (Fig. 2).

Einstein's great discovery. In units in which c 6� 1, equation (3)
has the form

E0 � mc 2 : �4�

The realization that ordinary matter at rest stores an
enormous amount of energy in its mass was Einstein's great
discovery.

The `famous formula'. Equation (4) is very often written
(especially in popular physics literature) in the form of
`Einstein's famous equation' that drops the subscript 0:

E � mc 2 : �5�

This simplification, to which Einstein himself sometimes
resorted, might seem innocuous at first glance, but it results
in unacceptable confusion in understanding the foundations
of physics. In particular, it generates a totally false idea that
`according to the theory of relativity' the mass of a body is
equivalent to its total energy and, as an inevitable result,
depends on its velocity. (`Wished to make it simpler, got it as
always'.2)

No experiment can disprove the `famous formula'. Very clever
people thought up this formula in such a way that it never
contradicts experiments. However, it contradicts the essence
of the theory of relativity. In this respect, the situation with
the `famous formula' is uniqueÐ I do not know another case
that could be compared with this one.

This is not a matter of taste but of understanding. You hear
time and again that the introduction of momentum-depen-
dent mass is `a matter of taste'. Of course, one can write the
letter m instead of E=c 2 and even call it `mass', although it is
no more sensible than writing p instead of E=c and calling it

`momentum'. Alas, this `dress changing' introduces unneces-
sary and bizarre notions Ð relativistic mass and rest mass
m0 Ð and creates an obstacle to understanding the theory of
relativity. A well-known Russian proverb comes to mind:
``Call me a pot if you wish but don't push me into the oven.''
Unfortunately, people who callE=c 2 `mass' do place this `pot'
into the `oven' of physics teaching.

Longitudinal and transverse masses. In addition to relativistic
mass, concepts of intense use at the beginning of the XXth
century were the transverse and longitudinal masses: mt and
ml. This longitudinal masses increased as �e 3=m 3�m and
`explained' Ð in terms of Newton's formula F � ma Ð why
a massive body cannot be accelerated to the speed of light.
Then it was forgotten and such popularizers of the theory of
relativity as Stephen Hawking started to persuade their
readers that even much gentler growth of mass with velocity
��e=m�m� could explain why the velocity of a massive body
cannot reach c. I single out Hawking only because, printed on
the dust jacket of the Russian edition of his latest popular
science book [5], which advertises the formula E � mc 2, we
see this text: ``Translated into 40 languages. More than
10 million copies sold worldwide.''

False intuition. After my talk at the ITEP A N Skrinskii told
me that the notion of relativistic mass hampered a well-
known physicist's understanding that a relativistic electron
colliding with an electron at rest can transfer all its energy to
the latter. Indeed, how could a heavy baseball bat transfer all
its energy to the lightest ping-pong ball? In physics, as in daily
life, people very often rely on intuition. This is why it is so
important, when studying the theory of relativity, to work out
the relativistic intuition andmistrust nonrelativistic intuition.
(In order to `feel' how an electron at rest can receive the entire
energy of a moving electron it is sufficient to use their center-
of-inertia frame to consider scattering by 180 degrees, and
then return back to the laboratory frame.)

6. Newtonian mechanics

Momentum in Newtonian mechanics. Newtonian mechanics
describes with high accuracy the motion of macroscopic
bodies in a terrestrial environment and of massive celestial
bodies because their velocities are much smaller than the
speed of light. For instance, the velocity of a bullet is of the
order of 1 km sÿ1, which corresponds to v � 1=300000 and
v 2 � 10ÿ11. In this situation equation (2) reduces to

p � mv : �6�

Equation (1) is schematically shown in theNewtonian limit in
Fig. 3.

The side of the triangle representing p in Fig. 3 is far too
long. Scaled correctly, it should be a few microns.

e0

m

Figure 2.

2 A paraphrase of former Russian Prime Minister Chernomyrdin's
`statement of the day': ``Wished to make it better got as always.'' (Note

added by the Author in translation.)

p
e

m

Figure 3.
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Kinetic energy ek. It is reasonable to rewrite formula (1) for
low velocities so as to isolate the contribution of the short
cathetus:

e 2 ÿm 2 � p 2 ; �7�

and then to present it in the form

�eÿm��e�m� � p 2 : �8�

This allows us to obtain a nonrelativistic expression for
kinetic energy without resorting to the conventional series
expansion of the square root. We take into account that the
total energy e is the sum of rest energy e0 and kinetic energy ek
and therefore e � m� ek.

Energy in Newtonian mechanics. In the Newtonian limit we
have ek 5m (e.g. for a bullet ek=m � 10ÿ11). Energy can
therefore be replaced with high accuracy by mass m in
formula (2) for momentum and in the factor �e�m� in
equation (8). This last equation immediately implies an
expression for kinetic energy ek in Newtonian mechanics:

ek � p 2

2m
� mv 2

2
: �9�

Potential energy. In addition to velocity-dependent kinetic
energy, an important role in nonrelativistic mechanics is
played by potential energy, which depends only on the
position (coordinate) of the body. The sum of kinetic and
potential energy is conserved at any instance of time. The
potential energy of a body placed in an external field of force
is defined to within an arbitrary additive constant because the
force acting on the body equals the gradient of potential
energy. In a similar manner, the potential energy of interac-
tion of several bodies depends only on their positions at the
moment of interaction. However, in the theory of relativity
any interaction propagates at a finite velocity. Hence,
potential energy is an essentially nonrelativistic concept.

Newton and modern physics.Newton's flash of genius marked
the birth of modern science. The post-Newtonian progress of
science is fantastic. Today's understanding of the structure of
matter is radically different from Newton's. Nevertheless,
even in theXXIst centurymany physics textbooks continue to
use Newton's equations at energies ek 4 e0, which exceed the
limits of applicability of Newton's mechanics (ek 5 e0) by
many orders of magnitude.

If some professors prefer to insist on keeping up with this
tradition of velocity-dependent mass, they ought to at least
familiarize their students with the fundamental concepts of
mass and rest energy, and with the true Einstein equation
E0 � mc 2.

7. Ultrarelativism

High energy physics. Let us now consider in some detail the
limiting case in which e=m4 1. The ratio of energy and mass
characteristic for high energy physics is precisely this. For
example, this ratio for electrons in the LEP (Large Electron ±
Positron) Collider at CERN was e=m � 105, since
m � 0:5 MeV and e � 50 GeV. For protons in the LHC
(Large Hadron Collider), which is located in the same tunnel
where the LEP was in previous years, we find e=m � 104.
(Here, m � 938 MeV, e � 7 TeV.)

A vertical triangle. The triangle for protons in the LHC is
drawn highly schematically in Fig. 4. Its base is in fact shorter
than its hypotenuse by four orders of magnitude.

The neutrino. Neutrinos are even more ultrarelativistic
particles: their masses are a fraction of one electron-volt and
their energies reach several MeV for neutrinos emerging from
the Sun and nuclear reactors, and several GeV for neutrinos
generated in particle decays in cosmic rays and in accelera-
tors. The base of the triangle shown schematically in Fig. 4 is
much shorter at these energies than its vertical cathetus and its
hypotenuse.

Neutrino oscillations and m2=2e. Equation �eÿp��e�p�� m 2

immediately implies that eÿ p ' m 2=2e. The differences
between the masses of three neutrinos n1, n2, n3 possessing
definite masses in a vacuum result in oscillations between
neutrinos having no well-defined masses but possessing
certain flavors: ne, nm, nt. (This phenomenon is similar to
well-known beats that occur when several frequencies
interfere.) The neutrino oscillation data 3 give

Dm 2
21 � �0:8� 0:04� � 10ÿ4 eV2 ;

Dm 2
32 � �25� 6� � 10ÿ4 eV2 :

The photon. The photon mass is so small that no experiment
has been able to detect it. Hence, it is usually assumed that the
photon mass equals zero. This means that for a photon e � p
and the triangle shown in Fig. 4 collapses to a vertical biangle
(Fig. 5).

The photon and rest energy? It is logical to conclude the
discussion of single-particle mechanics by returning to the
question: is the concept of rest energy e0 applicable to
massless photon?

It may seem at first glance that it is not, since a photon
propagates at the speed c, however small its energy is, so that
`a rest for it is but a dream' 4. This being so, how can we use
the equality e0 � 0 if the photon is never at rest? We can
because our e0 is defined as the energy corresponding to zero

p
e

m

Figure 4.

3 These values are updated in this English proof by the Author.
4 This is a paraphrase of the famous line fromAlexandr Block. (Note added

in translation.)
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momentum, not velocity. Obviously this energy is zero for the
photon with p � 0: this is implied by equation (1). If a particle
has m � 0, p � 0, e � 0 and biangle of Fig. 5 collapses to a
point, we can say that it `passed away to the state of eternal
rest'. Looking at the limiting transition to zero mass, we can
show that the reference frame in which a photon is `eternally
at rest' has to be rigidly connected to another `eternally
resting' photon. Consequently, the value e0 � 0 at m � 0 is
in perfect agreement with the limiting transition.

8. Two free particles

Collision of two particles. Colliders. If two particles collide at
relativistic energies, a comparison of the reference frame in
which one of them is at rest with a reference frame in which
their common center of inertia is at rest demonstrates the
advantages of the latter. We already saw this in the case
commented on by A N Skrinskii. If the momenta of the
colliding particles are equal and oppositely directed, as for
example in the LHC or LEP collider, then practically the
entire energy of the colliding particles may be spent on the
creation of new particles.

Mass of a system of particles. The total energy E and the total
momentum P of an isolated system of particles are conserved.
Energy and momentum being additive, for two free particles
we have

E � e1 � e2 ; �10�
P � p1 � p2 : �11�
We now define the quantity M by the formula

M 2 � E 2 ÿ P 2 : �12�

Masses are additive at vv � 0. Equation (12) is invariant under
Lorentz transformations, as is equation (1). Therefore, it is
logical to refer to M as the mass of a system of two particles.
In the static limit, when p1 and p2 equal zero, equation (12)
implies that

M � e01 � e02 � m1 �m2 : �13�

In the Newtonian limit,M equals the sum of the masses of the
two particles with an accuracy of �v=c�2, i.e. the masses are
practically additive.

Masses are not additive at vv 6� 0.However,M and the masses
m1 and m2 are practically unrelated at high velocities. For

instance, M exceeds the electron mass in the LEP collider or
the proton mass in the LHC by four orders of magnitude (see
Section 7). The value of M is crucially dependent on the
relative directions of the momenta of two particles, since the
sum of two vectors is a function of the angle between them.
Thus, we have for two photons moving in the same direction

P � jPj � jp1 � p2j � p1 � p2 : �14�

Collinear photons. For such photons p1 � e1, and p2 � e2.
Therefore, for two photons moving in the same direction we
can write

P � p1 � p2 � e1 � e2 � E : �15�

Equation (12) then implies that in this case the mass of a pair
of photonsM � 0. And this means that the mass of a `needle'
light beam is zero.

What if photons fly away from each other? However, if
photons fly away in opposite directions with equal energies,
then p1 � ÿp2 and P � 0. In that case, the rest energy of two
photons simply equals the sum of their energies and the mass
of this system is

M � E0 � 2e : �16�

Shock. Of course, the statement that a pair of two massless
particles has an enormous mass may shock the unprepared
reader. Is there any sense in speaking of the rest energy of two
photons if `rest is but a dream' to either of them? What is at
rest in this case?

The answer is obvious. The entity at rest is the geometric point
Ð the center of inertia of the two photons. While the rest
energy for one particle is the energy hidden in its mass, for two
photons it is simply the sum of their energies (kinetic
energies!) in the reference frame in which their momenta are
equal in magnitude and opposite in direction. There is no
hidden energy in this case!

What does it mean `to be conserved'?When saying that energy
is conserved, we mean that the sum of the energies of particles
entering a reaction equals the sum of the energies of particles
created as a result of this reaction. The statement on the
conservation of momentum has a similar meaning. However,
sincemomentum is a vector quantity, nowwe are dealingwith
a vector sum of momenta. (In the case of momenta we speak
about three independent conservation laws: conserved are the
sums of projections of momenta in three mutually orthogonal
directions.)

The conserved quantities are thusE �P ei andP �
P

pi.
As for the energies of individual particles ei, their momenta pi
in the laboratory reference frame, they are conserved only in
elastic forward scattering.

Here, it is important to stress the difference between the
concepts of additivity and conserved. The former concept
refers to the state of a system of free particles, the latter refers
to the process of interaction of the particles.

Is mass conserved? With E and P conserved, the mass M of a
system (a set) of particles, defined by the formula
M 2 � E 2 ÿ P 2, must be conserved as well. In contrast to
energy and momentum, however, mass is not additive:

p e

Figure 5.
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M 6�Pmi. Some authors talk about the non-additivity of
mass as if it were identical to its non-conservation (e.g. we find
this statement in æ 9 of Field Theory by Landau and Lifshitz
[6].) In fact, as I emphasized above, in general neither masses
nor energies or momenta are conserved for individual
particles participating in a reaction; not even the particles
themselves are. Hence, it is incorrect to speak of mass
nonconservation as something in contrast to conservation of
energy and momentum.

Einstein's thought experiment. Of course, the concept of the
mass of two photons flying away from each other looks rather
strange. However, it was by using this very idea that Einstein
came to discover the rest energy of amassive body in 1905. He
noticed that having emitted `two amounts of light' in opposite
directions, the body at rest continues to stay at rest but that its
mass in this thought experiment diminishes. In the laboratory
reference frame both the body and the center of inertia of the
two photons are at rest. Consequently, the mass of the initial
body equals the sum of two masses: that of the resulting body
and that of the system of two photons.

Positronium annihilation. Nihil in Latin means nothing. A
positronium is an `atom' consisting of a positron and an
electron. The reaction in which a positronium converts to two
photons e�eÿ ! ggwas given the name annihilation, perhaps
because at that time photons were not considered particles of
matter. Annihilation conserves M because E and P are
conserved. In the initial state M equals the sum of masses of
the electron and the positron [minus the binding energy,
which is small and in this context irrelevant (see below)]. In
the final stateM equals the sum of energies of two photons in
the positronium's rest frame. The rest energy of the electron
and the positron thus transforms completely into the energy
(kinetic) of the photons, but the masses of the initial and final
states are identical in this process, exactly as follows from the
conservation of total energy and total momentum.

Meson decays. Likewise, when a K meson decays into two or
three p mesons, the kaon's rest energy transforms into the
sum of total energies of the pions, each of which has the form
e � ek �m. However, the mass of a system of two or three
pions produced in the decay of a kaon equals the kaon mass.

What do we call `matter'? In any decay the rest energy
transforms into the energy of motion, while the total energy
of an isolated system remains conserved. The mass of the
system is also conserved but the masses of its individual
particles are not. Massive particles decay into less massive
particles, or sometimes into massless ones. In elementary
particle physics we call `particles of matter' not only massive
particles such as protons and electrons, but also very light
neutrinos and massless photons, and even gravitons (see
below). Today's quantum field theory treats all of them on
an equal basis.

Energy without particles?Matter does not disappear in decay
and annihilation reactions leaving behind only energy like the
Cheshire cat would leave behind only its smile. In all these
processes the carriers of energy are particles ofmatter. Energy
without matter (`pure energy') has never been observed in any
process studied so far.

True, this is not so for so-called dark energy, which was
discovered in the last years of the XXth century. Dark energy

manifests itself in the accelerating expansion of the Universe.
(The evidence for this accelerating expansion is found in
recession velocities of remote supernovas.) Three-fourths of
the entire energy in the Universe is dark energy and its carrier
appears to be the vacuum. The remaining quarter is carried by
ordinary matter (5%) and dark matter (20%). Dark energy
does not affect processes with ordinary matter observed in
laboratories. In a laboratory experiment energy is always
carried by particles.

9. Non-free particles

Bodies and particles.All physical bodies consist of elementary
particles. Such elementary particles as the proton and the
neutron are themselves made up of `more elementary
particles' Ð quarks and gluons. Such particles as the electron
and the neutrino appear at our current level of understanding
as truly elementary particles. The feature common for the
proton and the electron is that the masses of all protons in the
world are strictly identical, as are the masses of all electrons.
In contrast to this, the masses of all macroscopic bodies of the
same type, say, of all 10-cent coins, are only approximately
equal. Practically the difference between two coins arises
because the process of minting coins is far from being ideal.
In principle, the mass of a coin is not well defined because
different energy levels of a coin are practically degenerate,
while the mass of the nearest excited state of a proton exceeds
the proton mass by several hundred MeV. Therefore Nature
mints ideally identical protons. 5

Mass of gas. In all the cases discussed above, particles moved
away freely when the mass of the system of particles was
greater than the sum of their masses. Let us turn now to a
situation in which they are not free to move away. This
situation is found, for example, in the frequently discussed
thought experiment with a gas of molecules or photons in a
closed vessel at rest. The total momentum of this gas is zero
because the gas is isotropic: P �P pi � 0. Hence, the total
massM of this gas equals its total energy E (and in this case it
is identical to E0) and hence to the sum of energies of
individual particles: M � E �P ei.

Mass of a heated gas. When gas in a nonmoving vessel is
heated, its total momentum remains unchanged and equal to
zero while the total energy increases because the kinetic
energy of every particle increases. As a result, the mass of
the gas as a whole increases, while the mass of each individual
particle remains unchanged. (Sometimes a wrong statement
may be encountered in the literature that the masses of
particles (or photons) increase as their kinetic energies are
increased.)

Mass of a hot iron. In the same manner, the mass of an iron
must increase as it heats up, even though the masses of the
vibrating atoms remain the same. However, the set of
formulas (10) ± (12) written for a system of free particles
cannot be applied to the iron since the particles (atoms in
this case) are not free but are tied into the crystal lattice of the
metal. Obviously, an increase in the iron mass is too small to
be measurable.

5 These two sentences were modiéed in the English proof by the Author.
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10. Atoms and atomic nuclei

On formulas (10) ± (12). Why are formulas (10) ± (12) unsuit-
able for dealing with such non-free particles as electrons in
atoms and nucleons in atomic nuclei? First and foremost, on
account of the uncertainty relation these particles do not
possess precisely definedmomenta. The smaller the volume to
which they are confined, the greater is the uncertainty of their
momenta.

Uncertainty relation.The laws of quantummechanics, and the
uncertainty relation as one among them, are very important
both for atoms and for nuclei. As we know, the product of the
momentumuncertaintyDp and the coordinate uncertaintyDx
must be not smaller than the quantum of action �h. Hence,
particles within atoms have no definite momenta and only
possess a certain total momentum.

Energy of the field. Another reason why formulas (10) ± (12)
are not valid inside atoms is the fact that the space between
individual particles in an atom is essentially not empty but
filled with a material medium, i.e. physical fields. The space
inside the atom is filled with an electromagnetic field and the
space inside a nucleus, by a much denser and stronger field,
often described as the meson field.

Real and virtual particles. In classical theory particles and
fields are concepts that cannot be reduced to one another. In
quantum field theory we use the language of Feynman
diagrams, which reduce the concept of a field to that of a
virtual particle for which e 2 ÿ p 2 6� m 2. We say about such
particles that they are off mass shell. (Particles that are called
on mass shell are real particles and for them e 2 ÿ p 2 � m 2.)
Also, the 4-momentum pi � �e; p� is conserved at each vertex
of the diagram.

Binding energy.As a result of the presence of the field, we need
to take into account in formula (10), E � e1 � e2, the field
energy of two closely interacting particles, say, in the
deuteron, the nucleus of heavy hydrogen. Consequently,
M < m1 �m2. The quantity e � m1 � m2 ÿM is known as
the binding energy.

The mass of the deuteron is less than the mass of the
proton plus that of the neutron of which deuteron consists.
The binding energy of nucleons in deuteron is 2.2 MeV. To
break deuteron into nucleons we need to spend an amount of
energy equal to or greater than the binding energy. The
atomic nuclei of all other elements of the periodic Mende-
leyev table also owe their existence to the binding energy of
their nucleons in the nucleus.

Fusion and fission of nuclei.We know that the binding energy
per nucleon rises to a maximum at the beginning of the
periodic Mendeleyev Table for the helium nucleus and in the
middle of the Table for the iron nucleus. This is why huge
amounts of kinetic energy are released when helium is formed
from hydrogen in fusion reactions in the Sun and in hydrogen
bombs. In nuclear reactors and atomic bombs, kinetic energy
is released by fission reactions when heavy nuclei of uranium
and plutonium break into lighter nuclei from the middle of
the periodic Mendeleyev Table.

Chemical reactions. Substantially lower energy, on the order
of electron-volts, is released in chemical reactions. It is caused

by differences in binding energies in various chemical
compounds. However, the source of kinetic energy in both
chemical and nuclear reactions is the difference between the
masses of initial and final particles (molecules or nuclei) that
take part in these reactions.

Since molecules and even atomic nuclei are nonrelativistic
bound systems and the concept of potential energy is
applicable to their components, the corresponding mass
differences can be calculated using this concept. Thus, one
can explain the released energy in terms of potential energy
transforming into kinetic energy.

Coulomb's law. The binding energy of electrons in atoms is
much lower than the electron mass. Hence, the concept of
binding energy in atoms can be explained in terms of the
nonrelativistic concept of potential energy. The binding
energy e equals (with a minus sign) the sum of positive kinetic
energy of the bound particle and its negative potential energy.
The potential energy of, say, an electron in a hydrogen atom is
given by Coulomb's law (in units, where �h; c � 1�:

U � ÿ a
r
; �17�

where a � e 2=�hc � 1=137 and e is the electron charge.

More about potential energy. The concept of potential energy
is defined only in the Newtonian limit (see Landau and
Lifshitz, Mechanics, æ 5 ``The Lagrange function of a system
of material points'' and æ 6 ``Energy'') [7]. The sum of kinetic
and potential energies is conserved. If one of the two
interacting particles is essentially relativistic, or both are, the
concept of potential energy is inapplicable.

Electromagnetic field. 6 The Coulomb field in the theory of
relativity is the 0th component of the 4-potential of the
electromagnetic field Ai (i � 0; 1; 2; 3). The source of the field
of a particle with charge e is the 4-dimensional electro-
magnetic current given in the next paragraph. The interac-
tion between two moving particles works through propaga-
tion of the field from one charge to the other. It is described
by the so-called Green's function or the propagator of an
electromagnetic field. (In quantum electrodynamics, we
speak of propagation of virtual photons. The potential Ai

is a 4-vector because the spin of the photon equals unity.)

Important clarification. If a virtual photon carries away a
4-momentum q, then 4-momenta of the charged particle
prior to the emission of a photon pin and after its emission pfi
satisfy the condition pin ÿ pfi � q. The 4-vector p in the
expression epi=E for the conserved current is p �
�pin � pfi�=2, and E � ������������

EinEfi

p
. As p 2

in � p 2
fi � m 2, so qp � 0.

(I denoted energy here by the letter E because e in the
expression for current stands for charge. We are clearly short
of letters.)

Gluons and quarks.A gluon's spin also equals unity. At first
glance, the interaction between gluons and quarks is
completely analogous to the interaction between photons
and electrons. Not at second glance, though. The point is
that all electrons carry the same electric charge while quarks
have three different color charges. A quark emitting or

6 This and next paragraph were substantially improved in the English
proof by the Author.
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absorbing a gluon may change its color. Clearly, this means
that gluons must themselves be colored. It can be shown
that there must be eight different color species of gluons.
While photons are electrically neutral, gluons carry color
charges.

Quantum chromodynamics. It might seem that color charged
gluons must be intense emitters of gluons, being a sort of
`luminous light'. In fact, quantum chromodynamics Ð the
theory of interaction between quarks and gluons Ð has a
spectacular property known as confinement. In contrast to
electrons and photons, colored quarks and gluons do not exist
in a free state. These colored particles are locked `for life'
inside colorless (white) hadrons. They can only change their
incarceration locality. There are no Feynman diagrams with
lines of free gluons or free quarks.

11. Gravitation

Gravitational orbits. Various emblems often show the orbits
of electrons in atoms resembling the orbits of planets. It
should be clear from the above that according to quantum
mechanics, there are no such orbits in atoms. On the other
hand, quantum effects are absolutely infinitesimal for
macroscopic bodies, all the more so for such heavy ones as
planets. Consequently, their orbits are excellently described
by classical mechanics.

Newton's constant. The potential energy of the Earth in the
gravitational field of the Sun is given by Newton's law

U � ÿGMm

r
; �18�

where M is the solar mass, m is the mass of the Earth, r is
distance between their centers, and G is Newton's constant:

G � 6:71� 10ÿ39�hc
�
GeV=c 2

�ÿ2
: �19�

(Here we used units in which c 6� 1.)

The quantity pipk=e. The source of gravitation in Newton's
physics is mass. In the theory of relativity the source of
gravitation is the quantity pipk=e, which plays the role of a
kind of `gravitational current'. (The reader will recall that pi is
the energy-momentum 4-vector, and i � 0; 1; 2; 3. Conse-
quently, the `gravitational current' has four independent
components instead of the ten that a most general symme-
trical four-dimensional tensor would have.)

The propagation of the field from the source to the `sink' is
described by Green's function of the gravitational field or the
propagator of the graviton Ð a massless spin-2 particle. This
propagator is proportional to g ilg km � g imgkl ÿ g ikg lm,
where g ik is a metric tensor. (As in the case of the photon
discussed above, the 4-momentum of the graviton is
q � pi ÿ pf and the 4-momentum in the expression for
current is p � 1=2�pi � pf�, while e � �������

eief
p

. We are again
short of letters! This time, letters for indices.)

The graviton. Like the photon, the graviton is a massless
particle. This is the reason why Newton's and Coulomb's
potentials have the form 1=r. However, in contrast to the
photon, which cannot emit photons, the graviton can and
must emit gravitons. In this respect the graviton resembles
gluons, which emit gluons.

The Planck mass. Elementary particle physics often uses the
concept of the Planck mass:

mP �
�����
�hc

G

r
: �20�

In units in which c � 1 and �h � 1 we have mP � 1=
����
G
p �

1:22�1019 GeV.
The gravitational interaction between two ultrarelativistic

particles increases as the square of their energy E in the
center-of-inertia reference frame. It reaches maximum
strength at E � mP as the distance between the particles
approaches r � 1=mP. However, let us return from these
fantastically large energies and short distances to apples and
photons in gravitational fields of the Earth and the Sun.

An apple and a photon. Consider a particle in a static
gravitational field, for instance, that of the Sun. The source
of the field is the quantity PlPm=E where Pl is the
4-momentum of the Sun and E is its energy. In the
rest frame of the Sun l, m � 0 and PlPm=E �M, where M is
the solar mass. In this case the numerator of the propagator
of the gravitational field g ilg km � g imgkl ÿ g ikg lm is
2g i0gk0 ÿ g ikg 00, and the tensor quantity pi pk times the
numerator of the propagator reduces to a simple expression
2e 2 ÿm 2. Hence, for a nonrelativistic apple of mass m the
`gravitational charge' equals m while for a photon with
energy e it equals 2e. Note the coefficient 2. Kinetic energy
is attracted twice as strongly as the hidden energy locked in
mass. This simple derivation of the coefficient 2 makes
unnecessary the complicated derivation of paper [8] using
isotropic coordinates.

A photon in the field of the Sun. The interaction of photons
with the gravitational field must cause a deflection of a ray of
light propagating from a remote star and passing close to the
solar disk. In 1915 Einstein calculated the deflection angle
and showed that it must be 4GM=c 2R ' 1:75 00. (Here,M and
R denote the solar mass and solar radius, respectively.) This
prediction was confirmed during the solar eclipse of 1919,
which stimulated a huge surge of interest in the theory of
relativity.

An atom in the field of the Earth. As a nonrelativistic body on
the Earth moves upwards, its potential energy increases in
proportion to its mass. Correspondingly, the difference
between energies of two levels of an atomic nucleus must be
higher, the higher the floor of the building in which this
nucleus is located.

A photon's energy is conserved. On the other hand, the
frequency o of a photon propagating through a static
gravitational field, and correspondingly its total energy
e � ho, should remain unchanged.

As a result, a photon emitted on the ground floor of a
building from a transition between two energy levels of a
nucleus will be unable to produce a reverse transition in the
same nucleus on the upper floor. This theoretical prediction
was confirmed in the 1960s by Pound and Rebka [9] who used
the just discovered M�ossbauer effect, which makes it possible
to measure the tiniest shifts in nuclear energy levels.

However, the wavelength changes. A photon propagating
through a static gravitational field like a stone has its total
energy e and frequencyo conserved. However, its momentum
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and therefore wavelength change as the distance to the
gravitating body changes.

Refractive index. As a photon moves away from the source
of a gravitational field, its velocity increases and tends to c,
and when it approaches the source, it decreases. Hence, the
gravitational field, like a transparent medium, has a
refractive index. This is a visually clear explanation of the
deflection of light in the field of the Sun and in the
gravitational lenses of galaxies. Shapiro experimentally
discovered the decrease in the velocity of photons near the
Sun when measuring the delay of the radar echo returned by
planets.

Clocks and gravitation. Ordinary clocks, like atomic clocks,
tick faster, the higher they are lifted. Let two synchronized
clocks A and B be placed on the first floor. If we move clock
A to the second floor and then, say, a day later, move clock
B to the second floor as well, clock A will be ahead of B as
A has been ticking faster than B for 24 hours. Nevertheless,
both A and B will continue to serve as identically reliable
stopwatches.

When every point in space is assigned an individual clock,
one in fact assumes that all clocks tick at a rate that is
independent of the distance to gravitating bodies (in our
case, on which floor of the building they are). However, this is
not true for ordinary clocks. In order to distinguish extra-
ordinary clocks from ordinary clocks, we will refer to
extraordinary ones as `cloned'.

As we saw above, the frequency of light measured using
clocks placed on various floors is independent of the floor
number. If, however, it is measured with `cloned' local clocks,
we discover that it is lower, the higher the floor. One
interpretation of the Pound ±Rebka experiment, stating that
the energy of a vertically moving photon decreases with
height, like the kinetic energy of a stone thrown upwards, is
based on precisely this argument. However, a drop in kinetic
energy of the stone is accompanied with an increase in its
potential energy, so that the total energy is conserved. Now, a
photon has no potential energy, so that its energy in a static
gravitational field remains constant.

12. Epistemology and linguistics

Physics and epistemology. Episteme in Greek means knowl-
edge. Epistemics is the science of knowledge, a relatively
young branch of epistemology, the theory of knowledge and
cognition. Obviously, the problems I discuss in this talk
concern not only physics but epistemology, too.

Physics and semantics. The Greek attribute `semanticos'
(signifying) was used in linguistics already by Aristotle.
However, what are the links tying the science of languages
Ð linguistics Ð and semantics Ð the science of words and
symbols, an element of linguistics Ð to physics?

This is the right moment to recall the words allegedly said
by V A Fock: ``Physics is an essentially simple science. The
most important problem in it is to understandwhat each letter
denotes.''

XXth century physics drastically changed our under-
standing of what a vacuum and matter are, and connected in
a new way such properties of matter as energy, momentum,
and mass. The elaboration of the fundamental concepts of
physics has not been completed and is unlikely to end in the

foreseeable future. This is one of the reasons why it is so
important to choose the adequate words and letters when
discussing physical phenomena and theories.

`Concepts glued together'.Newton's Principia `glued together'
the concepts of mass and matter (substance): ``mass is
proportional to density and volume.'' In Einstein's papers
mass is `glued together' with inertia and gravitation (the
inertial and gravitational masses). And energy is glued to
matter.

The archetype. According to dictionaries, an archetype is the
historically original form (the protoform), the original
concept or word, or the original type (prototype). The
concept of the archetype keenly interested Pauli, who in
1952 published a paper on the effect of archetypical notions
on the creation of natural-science theories by Kepler. It is
possible that the concept of mass is just the archetypical
notion that glued together the concepts of matter, inertia, and
weight.

Atom and archetype. Atom and ArchetypeÐ that was the title
chosen for the English translation from German of the book
[10] presenting the correspondence between Wolfgang Pauli
and the leading German proponent of psychoanalysis Carl
Jung, covering the period from 1932 to 1958. W Pauli and
C Jung discussed, among other things, the material nature of
time and the possibility of communicating with people who
lived several centuries or millennia before us. It is widely
known that Pauli treated rather seriously the effect named
after him: when he walked into an experimental laboratory,
measuring equipment broke down.

Poets on terminology. David Samoilov on words: ``We wipe
them clean as we clean glass. This is our trade.'' Vladimir
Mayakovskii: ``The street is writhing for want of tongue. It
has no nothing for yelling or talking.'' (Translated by Nina
Iskandaryan.)

Many an author responds to the dearth of precise terms
and inability to use them by resorting to meaningless words
like `rest mass' which impart smoothness and `energetics' to
texts, just as `blin' 7 does to ordinary speech.

How to teach physics. Terms need `wiping clean' and
`unglueing'.

The `umbilical cord' connecting the modern physical
theory with the preceding `mother theory' needs careful
cutting in teaching. (In the case of the theory of relativity the
mother was the `centaur' composed of Maxwell's field theory
and Newton's mechanics, with relativistic mass serving as the
umbilical cord.)

Let us recall the title of FKlein's famous bookElementary
Mathematics from an Advanced Standpoint. The landscape of
modern physics must be contemplated from an advanced
standpoint: not from a historical gully but from the pinnacle
of symmetry principles. I firmly believe that it is unacceptable
to claim that the dependence of mass on velocity is an
experimental fact and thus hide from the student that it is a
mere interpretational `factoid'. (Dictionaries explain that a
factoid looks very much like a fact but is trusted only because
we find it in printed texts.)

7 `Blin' is a slang euphemism for a `four-letter word' in vulgar Russian.
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13. Concluding remarks

The `E � mc 2 problem': could it be avoided?One is tempted to
think that the `E � mc 2 problem' would not arise from the
first place if the quantity E=c 2 Ð the proportionality
coefficient between velocity and momentum Ð were identi-
fied with a new physical quantity christened as, say, `inertia'
or `iner'; it would be identical tomass asmomentum tended to
zero. As a result, mass would become `rest inertia'. Likewise,
another new quantity could be introduced Ð `heaviness' or
`grav' Ð pipk=E reducing to mass at zero momentum. But
physicists preferred `to refrain from multiplying entities' and
from introducing new physical quantities. They formulated
instead new, more general relations between old quantities,
for example E 2 ÿ p 2c 2 � m 2c 4 and p � vE=c2.

Unfortunately, many authors attempt to retain even in
relativistic physics such nonrelativistic equations as p � mv,
and such nonrelativistic glued-up concepts as `mass is a
measure of inertia' and `mass is a measure of gravitation'; as
a result, they prefer to use the notion of velocity-dependent
mass.

It is amazing how again and again a physicist would
choose the first of these paths (new equations) in his research
papers and the second one (old glued-up concepts) in science-
popularizing and pedagogical activities. This could of course
only produce unbelievable confusion in the minds of those
who read popular texts and blindly follow the authority.

On the reliability of science. An opinion that has become
widely publicized recently is that science in general and
physics in particular are untrustworthy. Many popularizers
of science create the impression that the theory of relativity
proved Newton's mechanics wrong just as chemistry proved
alchemywrong and astronomy proved astrologywrong. Such
declarations are a crude distortion of the essence of scientific
revolutions. Newton's mechanics remains a correct science
today, in the XXIst century, and will continue to be correct
forever. The discovery of the theory of relativity only put
bounds on the domain of applicability of Newton's
mechanics to velocities much smaller than the speed of light
c. It also demonstrated its approximate nature in this domain
(to within corrections of the order of v 2=c 2).

Similarly, the discovery of quantum mechanics put
bounds on the domain of applicability of classical mechanics
to phenomena for which the quantity of action is large in
comparison with the quantum of action �h. Quite to the
contrary, the domain where astrology and alchemy exist is
that of prejudice, superstition, and ignorance. It is rather
funny that those who compare Newton's mechanics with
astrology typically believe that mass depends on velocity.

Recent publications. Additional information on the aspects
discussed above can be found in [11, 12].

On the title. My good friend and expert in the theory of
relativity read the slides of this talk and advised me to drop
Pythagoras's name from the title. I chose not to follow his
advice as in the relativity-related literature I had never come
across a discussion of right-angled triangles without the
approximate extraction of square roots.
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Bjorken and Regge asymptotics
of scattering amplitudes in QCD
and in supersymmetric gauge models

L N Lipatov

1. Introduction

We review theoretical approaches to the investigation of
deep-inelastic lepton ± hadron interactions and high-energy
hadron ± hadron scattering in the Regge kinematics. It is
demonstrated that the gluon in QCD is Reggeized and the
Pomeron is a composite state of the Reggeized gluons.
Remarkable properties of the BFKL equation for the
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Pomeron wave function in QCD and supersymmetric gauge
theories are outlined. It is shown that by the AdS/CFT
correspondence, the BFKL Pomeron is equivalent to the
Reggeized graviton in the N � 4 extended supersymmetric
model. The maximal transcendentality and integrability
properties realized in this model allow calculating the
anomalous dimension of twist-2 operators up to 4 loops.

2. Deep-inelastic ep scattering

The inclusive electron ± proton scattering in the Bjorken
kinematics (see Fig. 1),

2pq � Q 2 � ÿq 2 !1 ; x � Q 2

2pq
; 04 x4 1 ; �1�

is very important because it gives direct information about the
distribution n q�x� of quarks inside the proton as a function of
their energy ratio x �jk j= jp j (jp!1j). Indeed, in the
framework of the Feynman ± Bjorken quark ± parton
model [1, 2], we can obtain the following simple expression
for the structure functions F1;2�x� of this process:

1

x
F2�x� � 2F1�x� �

X
i�q; �q

Q 2
i n

i�x� ; �2�

where the quark charges are Qu � 2=3, Qd � ÿ1=3.
It turns out that the partonic picture is also valid in

renormalizable field theories if the parton transverse
momenta k? are restricted by an ultraviolet cut-off
k 2
? < L 2 � Q 2 [3]. In these theories, the running coupling

constant a � g 2=�4p� in the leading logarithmic approxima-
tion (LLA) is

a�Q 2� � am
1� bam=�4p� ln �Q 2=m 2� ; �3�

where am is its value at the renormalization point m. In
quantum electrodynamics (QED) and quantum chromody-
namics (QCD), the coefficients b have opposite signs,

bQED � ÿne
4

3
; bQCD �

11

3
Nc ÿ nf

2

3
; �4�

where Nc is the rank of the gauge group (Nc � 3 for QCD),
and ne and nf are the numbers of leptons and quarks, which
can be considered massless for a given Q 2.

Landau and Pomeranchuk argued that because of the
negative sign of bQED, a Landau pole is generated in the
photon propagator, which leads to the vanishing of the
physical electric charge in the local limit. On the other hand,
in QCD, the non-Abelian interaction disappears at large Q 2

and, as a result of the asymptotic freedom, we have an
approximate Bjorken scaling: the structure functions depend
on Q 2 only logarithmically [4]. Thus, the experiments on
deep-inelasic ep scattering performed at SLAC at the end of
the 1960s discovered that the Landau `zero charge' problem is
absent in strong interactions.

In the infinite-momentum frame jp j! 1, it is helpful to
introduce the Sudakov variables for parton momenta as

ki � bi p� k?i ; �k?i ; p� � 0 ;
X
i

ki � p : �5�

The parton distributions are defined in terms of the proton
wave function Cm as

n i�x� �
X
m

� Ymÿ1
r�1

dbr d
2k?r

�2p�2 jCmj2
X
r2i

d�br ÿ x� : �6�

They are functions of L � Q because the factor
jCmj2 �

Qm
r�1 Zr depends on L through the wave-function

renormalization constants
�����
Zr

p
and L is the upper limit in

integrals over the transverse momenta k?r . With the cascade-
type dynamics of the parton number growth andwithL taken
into account, we can obtain the evolution equations of
Dokshizer, Gribov, Lipatov, Altarelli, and Parisi (DGLAP)
[3, 5] in the LLA,

d

dx�Q 2� ni�x� � ÿwi ni�x� �
X
r

�1
x

dy

y
wr!i

�
x

y

�
nr�y� ;

�7�

wi �
X
k

�1
0

dx xwi!k�x� ; �8�

where

x�Q 2� � Nc

2p

�Q 2

m 2

dk2?
k 2
?

a�k 2
?� : �9�

Equation (7) has a clear probabilistic interpretation: the
number of partons ni decreases because of their decay into
other partons in the opening phase space dx�Q 2� and
increases because the decay products of other partons r can
contain partons of the type i [3].

The momenta of parton distributions

n j
i �

�1
0

dx x jÿ1 ni�x� �10�

satisfy the renormalization-group equations

d

dx�Q 2� n
j
i �

X
r

w j
r!i n

j
r ; �11�

and are related to the matrix elements of twist-2 operators

ni� j� �


p jOj

i j p
�
: �12�

The twist t is defined as the difference between their canonical
dimension dmeasured in units of mass and the Lorentz spin j
of the corresponding tensor. The quantities wj

r!i are elements
of the anomalous dimension matrix for the operators Oj

i .

q

k
0

p 0e

p

k

m

pe

Figure 1.
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3. High-energy interactions

Hadron ± hadron scattering in the Regge kinematics (see
Fig. 2)

s � � pA � pB�2 � �2E�2 4 q2 � ÿ� pA 0 ÿ pA�2 � m2 �13�

is usually described in terms of a t-channel exchange of the
Reggeon (see Fig. 3),

Ap�s; t� � xp�t� g�t� s jp�t� g�t� ; jp�t� � j0 � a 0t ; �14�

xp �
exp

ÿÿ ipjp�t�
�� p

sin�pjp� ; �15�

where jp�t� is theRegge trajectory, assumed to be linear, and j0
and a 0 are its intercept and slope. The signature factor xp is a
complex quantity depending on the Reggeon signature
p � �1. A special Reggeon ± Pomeron is introduced to
explain the approximately constant behavior of total cross
sections at high energies and the fulfillment of the Pomeran-
chuk theorem sh�h=shh ! 1. Its signature p is positive and its
intercept is close to unity: j

p
0 � 1� D, D5 1. The field theory

of Pomeron interactions was constructed by Gribov around
40 years ago.

Particle production at high energies can be investigated in
the multi-Regge kinematics (see Fig. 4)

s4 s1 ; s2 ; . . . ; sn�1 4 t1 ; t2 ; . . . ; tn�1 ; �16�

where sr are squares of the sums of neighboring particle
momenta krÿ1 and kr, and ÿtr are squares of the momentum
transfers qr. This amplitude can also be expressed in terms of
the Reggeon exchanges in each of the tr-channels:

A2!2�n �
Yn�1
r�1

s jp�tr�
r : �17�

4. Gluon Reggeization in QCD

In the Born approximation in QCD, the scattering ampli-
tude for two-colored particle scattering is factored (see
Fig. 2),

MA 0B 0
AB �s; t�

��
Born
� G c

A 0A
2s

t
G c
B 0B ; G c

A 0A � gT c
A 0AdlA 0 lA ;

�18�

where T c are the generators of the color group SU�Nc� in the
corresponding representation and lr are helicities of the
colliding and final-state particles. In the LLA, the scattering
amplitude in QCD can be written as [6]

MA 0B 0
AB �s; t� �MA 0B 0

AB �s; t�
��
Born

so�t�; as ln s � 1 ; �19�

where the gluon Regge trajectory is

o
ÿÿ jqj2� � ÿ � d2k

4p2
asNc jqj2
jkj2jqÿ kj2 � ÿ

asNc

2p
ln
jq2j
l2

: �20�

The fictitious gluonmass l is introduced here to regularize the
infrared divergence. This trajectory was also calculated in the
two-loop approximation in QCD [7] and in supersymmetric
gauge theories [8].

Further, the gluon production amplitude in the multi-
Regge kinematics can be written in the factored form [6]

M2!1�n � 2sG c1
A 0A

so1

1

jq1j2
gTd1

c2c1
C�q2; q1�

� so2

2

jq2j2
. . .C�qn; qnÿ1� son

n

jqnj2
G cn
B 0B : �21�

The Reggeon ±Reggeon ± gluon vertex for the produced
gluon with a definite helicity is

C�q2; q1� � q2 q
�
1

q �2 ÿ q �1
; �22�

where we use the complex notation for the transverse
components of particle momenta. This allows calculating
the total cross section [6]

st �
X
n

�
dGn

��M2!1�n
��2 ; �23�

pA
t

s

pB

p 0A

p 0B

Figure 2.

Figure 3.
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June 2008 Conferences and symposia 633



where Gn is the phase space for the produced particle
momenta in the multi-Regge kinematics.

5. The BFKL equation

Using the fact that the production amplitudes in QCD are
factored, we can write a Bethe ± Salpeter-type equation for
the total cross section st. Also using the optical theorem, we
can represent this equation as the Balitsky ±Fadin ±Kur-
aev ± Lipatov (BFKL) equation for the Pomeron wave
function [6]:

EC�q 1; q 2� � H12C�q 1; q 2� ; D � ÿ asNc

2p
E ; �24�

where st � sD and the BFKL Hamiltonian in the coordinate
representation is

H12 � ln j p1p2j2 � 1

p1p
�
2

ÿ
ln j r12j2

�
p1p

�
2

� 1

p �1 p2

ÿ
ln j r12j2

�
p �1 p2 ÿ 4c�1� ; r12 � r1 ÿ r2 : �25�

It is invariant under the M�obius transformations [9, 10]

rk !
ark � b

crk � d
: �26�

We use the complex notation for transverse coordinates and
their canonically conjugate momenta. The conformal weights
for the principal series of unitary representations of the
M�obius group are

m � g� n

2
; em � gÿ n

2
; g � 1

2
� in ; �27�

where g is the anomalous dimension of the twist-2 operators
and n is the conformal spin.

The Bartels ±Kwiecinski ± Praszalowicz equation for col-
orless composite states of several Reggeized gluons has the
form [11]

EC�q 1; . . .� � HC�q 1; . . .� ; H �
X
k<l

TkTl

ÿNc
Hkl ; �28�

where Hkl is the BFKL Hamiltonian. In addition to the
MoÈ bius invariance, its wave function in the multi-color
QCD (Nc !1) has the holomorphic factorization prop-
erty [12]

C�q 1; . . . ; q n� �
X
r; s

ar; s Cr�r1; . . . ; rn�Cs� r �1 ; . . . ; r �n � ;

�29�

where the sum is taken over the degenerate set of
solutions of the corresponding holomorphic and anti-
holomorphic BFKL equations. These equations have the
duality symmetry pk ! rk; k�1 ! pk�1 (k � 1; 2; :::; n) [13]
and n integrals of motion qr; q

�
r [14]. The corresponding

Hamiltonians h and h � are local Hamiltonians of an
integrable Heisenberg spin model in which spins are
generators of the MoÈ bius group [15]. We can introduce
the transfer (T ) and monodromy (t) matrices according to

the definitions [14]

T �u� � tr t�u� ; t�u� � L1L2 . . .Ln �
Xn
r�0

unÿr qr ; �30�

Lk � u� rk pk pk

ÿr 2
k pk uÿ rk pk

� �
: �31�

Then the monodromy matrix t�u� satisfies the Yang ±Baxter
equation [14]

t s1r 0
1
�u� t s2r 0

2
�v� l r 01r 02r1r2 �vÿ u� � l s1s2s 0

1
s 0
2
�vÿ u� t s 02r2 �v� t s

0
1

r1 �u� ;

l̂�u� � u1̂� iP̂ ; �32�
where l̂�u� is the monodromy matrix for the usual Heisenberg
spin model and P̂ is the permutation operator. This equation
can be solved with the use of the Bethe ansatz and the
Baxter ± Sklyanin approach.

6. Pomeron in the N=4 SUSY

We can also calculate the integral kernel for the BFKL
equation in two loops [16]. Its eigenvalue can be written as

o � 4â w�n; g� � 4 â 2D�n; g� ; â � g 2Nc

16p 2
; �33�

where

w�n; g� � 2c�1� ÿ c
�
g� jnj

2

�
ÿ c

�
1ÿ g� jnj

2

�
�34�

and c�x� � G 0�x�=G�x�. The one-loop correction D�n; g� in
QCD contains nonanalytic terms, the Kronecker symbols
djnj;0 and djnj;2 [8]. But in theN � 4 SUSY, they cancel and we
obtain the following result for D�n; g� in the Hermitian
separable form [8, 17]:

D�n; g� � f�M� � f�M �� ÿ r�M� � r�M ��
2â=o

;

M � g� jnj
2
; �35�

r�M� � b 0�M� � 1

2
z�2� ;

b 0�z� � 1

4

�
c 0
�
z� 1

2

�
ÿ c 0

�
z

2

��
: �36�

It is interesting that all functions entering these expressions
have the maximal transcendentality property [17]. Moreover,
f�M� can be written as

f�M� � 3z�3� � c 0 0�M� ÿ 2F�M�

� 2b
0 �M�ÿc�1� ÿ c�M�� ; �37�

F�M��
X1
k�0

�ÿ1� k
k�M

�
c 0�k� 1� ÿ c�k� 1� ÿ c�1�

k�M

�
; �38�

wherec�M� has the transcedentality equal to 1, its derivatives
c �n� have transcedentalities n� 1, and the additional poles in
the sum over k increase the transcedentality of F�M� up to 3,
which is also the transcendentality of z�3�. The maximal
transcendentality hypothesis is also valid for the anomalous
dimensions of twist-2 operators in theN � 4 SUSY [18, 19], in
contrast to the case of QCD [20]. This result is discussed in the
next section.
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Generally, the BFKL equation in the diffusion approx-
imation can be written in the simple form [6]

j � 2ÿ DÿDn 2 ; �39�

where n is related to the anomalous dimension of the twist-2
operators as [16]

g � 1� jÿ 2

2
� in : �40�

The parameters D and D are functions of the coupling
constant â and are known up to two loops. Higher-order
perturbative corrections can be obtained with the use of the
effective action [21, 22]. For large coupling constants, we can
expect that the leading Pomeron singularity in the N � 4
SUSY is moved to the point j � 2 and the Pomeron
asymptotically coincides with the graviton Regge pole. This
assumption is related to the AdS/CFT correspondence,
formulated in the framework of the Maldacena hypothesis
that the N � 4 SUSY is equivalent to a superstring model
living on the 10-dimensional anti-de Sitter space [23 ± 25]. For
the BFKL equation in the diffusion approximation, it is
therefore natural to impose the physical condition that g is
zero for the conserved energy ±momentum tensor #mn�x�
having the Lorents spin j � 2. As a result, we obtain that the
parameters D and D coincide [19]. In this case, we can solve
the above BFKL equation for g:

g � � jÿ 2�
�
1

2
ÿ 1=D

1� ����������������������������
1� � jÿ 2�=Dp �

: �41�

Using the dictionary developed in the framework of the AdS/
CFT correspondence [24], we can rewrite the BFKL equation
in the form of the graviton Regge trajectory [19]

j � 2� a 0

2
t ; t � E 2

R 2
; a 0 � R 2

2
D : �42�

On the other hand, Gubser, Klebanov, and Polyakov
predicted the following asymptotic form of the anomalous
dimension at large â and j [26]:

gj â; j!1 � ÿ
����������
jÿ 2

p
Dÿ1=2j j!1 �

�������
2pj

p
â 1=4 : �43�

As a result, we can obtain the explicit expression for the
Pomeron intercept at large coupling constants [19, 27],

j � 2ÿ D ; D � 1

2p
âÿ1=2 : �44�

7. Maximal transcedentality

According to the hypothesis discussed above, the anomalous
dimension

g� j � � âg1� j � � â 2g2� j � � â 3g3� j � � . . . �45�

should contain the maximally transcendental functions [17].
Indeed, we have

g1� j� 2� � ÿ4S1� j � ; �46�

g2� j� 2�
8

� 2S1

ÿ
S2 � Sÿ2

�ÿ 2Sÿ2;1 � S3 � Sÿ3 �47�

in two loops [17, 18], and

g3� j� 2�
32

� ÿ12ÿSÿ3;1;1 � Sÿ2;1;2 � Sÿ2;2;1
�

� 6
ÿ
Sÿ4;1 � Sÿ3;2 � Sÿ2;3

�ÿ 3Sÿ5 ÿ 2S3 Sÿ2 ÿ S5

ÿ 2S 2
1

ÿ
3Sÿ3 � S3 ÿ 2Sÿ2;1

�ÿ S2

ÿ
Sÿ3 � S3 ÿ 2Sÿ2;1

�
� 24Sÿ2;1;1;1 ÿ S1

ÿ
8Sÿ4 � S 2

ÿ2 � 4S2Sÿ2 � 2S 2
2

�
ÿ S1

ÿ
3S4 ÿ 12Sÿ3;1 ÿ 10Sÿ2;2 � 16Sÿ2;1;1

� �48�

in three loops [19], where the harmonic sums are defined as

Sa� j � �
Xj
m�1

1

ma
; Sa; b; c; ...� j � �

Xj

m�1

1

ma
Sb; c; ...�m� ;

Sÿa� j ��
Xj

m�1

�ÿ1�m
ma

; Sÿa; b; ...� j ��
Xj

m�1

�ÿ1�m
ma

Sb; ...�m� ;

Sÿa; b; c; ...� j ���ÿ1� jSÿa; b; ...� j ��Sÿa; b; ...�1�
ÿ
1ÿ �ÿ1� j� :

�49�
It was argued in Ref. [28] that for the N � 4 SUSY, the

evolution equations for anomalous dimensions of quasi-
partonic operators are integrable in the LLA. Later, such an
integrability was generalized to other operators [29] and to
higher loops [30]. With the additional use of the maximal
transcendentality hypothesis, the integral equation for the so-
called casp anomalous dimension was constructed in all
orders of the perturbation theory [31, 32].

To calculate the anomalous dimension of the twist-2
operators in 4 loops, we can apply the integrability approach
based on the asymptotic Bethe ansatz [30]. The corresponding
equations for the Bethe roots uk are�

x�k
xÿk

�2

�
Yjÿ2
r�1

xÿk ÿ x�r
x�k ÿ xÿr

1ÿ g 2=x�k x
ÿ
r

1ÿ g 2=xÿk x�r
exp

ÿ
2iy�uk; ur�

�
;

�50�
where we use the notation

x�k �
u�k
2
�

�����������������������
�u�k �2
4
ÿ g 2

s
; u� � u� i

2
�51�

and the dressing phase expansion [32]

y�uk; uj� � 4z�3� g 6 �q2�uk� q3�uj� ÿ q3�uk� q2�uj�
�� . . . :

�52�

The solution for u�k allows finding the anomalous dimensions

g�g;M� � 2g 2
XM
k�1

�
i

x�k
ÿ i

xÿk

�
: �53�

In four loops, in particular, we can obtain [33]

g4
256
� 4Sÿ7 � 6S7

� 2�Sÿ3;1;3 � Sÿ3;2;2 � Sÿ3;3;1 � Sÿ2;4;1� � . . .

ÿ 80S1;1;ÿ4;1 ÿ z�3�S1�S3 ÿ Sÿ3 � 2Sÿ2;1� ; �54�
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where the harmonic sums depend on jÿ 2 and the dots denote
the omitted terms (their number exceeds 200). All these terms
satisfy the maximal transcendentality property. The last term
appears from the dressing phase.

It turns out that after the analytic continuation of this
expression in the complex j-plane, the first two terms give rise
to the pole 1=o7 for o � jÿ 1! 0, which contradicts the
singularity at this point predicted in 4 loops from the BFKL
equation,

lim
j!1

g4� j � � ÿ
32

o 4

�
32z�3� �

p 4

9
o
�
� . . . : �55�

This means that the asymptotic Bethe ansatz should be
modified starting from 4 loops. Specifically, wrapping effects
should be taken into account [33].

Interesting results were also obtained for the scattering
amplitudes in the N � 4 SUSY for particles on the mass
shell [34]. These amplitudes were used in Ref. [35] for the
construction of higher-loop corrections to the BFKL kernel
in this model. But it was shown in [35] that the BDS ansatz
in [34] does not satisfy the correct factorization properties in
the multi-Regge kinematics.

8. Discussion of the obtained results

It was demonstrated that the Pomeron in QCD is a composite
state of reggeized gluons. The BFKLdynamics is integrable in
the LLA. In the next-to-leading approximation in the N � 4
SUSY, the equation for the Pomeron wave function has
remarkable properties, including analyticity in the confor-
mal spin n and maximal transcendentality. In this model, the
BFKL Pomeron coincides with the Reggeized graviton. The
anomalous dimension for twist-2 operators has the maximal
transcendentality property, which allows calculating it
analytically in 2 and 3 loops. The integrability based on the
asymptotic Bethe ansatz reproduces these results, but fails to
reproduce the BFKL prediction in 4 loops due to the presence
of wrapping effects. The BDS ansatz for scattering ampli-
tudes in the N � 4 SUSY does not agree with the BFKL
approach in the multi-Regge kinematics.
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