
Abstract. The review deals with a theoretical description of the
generation of zonal winds and vortices in a turbulent barotropic
atmosphere. These large-scale structures largely determine the
dynamics and transport processes in planetary atmospheres.
The role of nonlinear effects on the formation of mesoscale
vortical structures (cyclones and anticyclones) is examined. A
new mechanism for zonal wind generation in planetary atmo-
spheres is discussed. It is based on the parametric generation of
convective cells by finite-amplitude Rossby waves. Weakly
turbulent spectra of Rossby waves are considered. The theore-
tical results are compared to the results of satellite microwave
monitoring of the Earth's atmosphere.

1. Introduction

One of the major tasks of atmospheric physics is the
description of elements of global atmospheric circulation,
which determine theweather and climate in vast regions of the
planet. This task has long attracted and continues to attract
the attention of many researchers, as witnessed by numerous

reviews and monographs (see, for example, Refs [1 ± 18]).
Despite this particular attention, it is still far from being
completed. Dynamical processes in planetary atmospheres
which are dominated by the Coriolis force, have a common
feature seen as the spontaneous generation of zonal winds
(flows following latitude circles with respect to the planet's
rotation axis) and vortices. Discussion of new achievements
in exploring large-scale structures in planetary atmospheres is
the focus of this review.

The general circulation of the Earth's atmosphere and
oceans on large temporal and spatial scales is characterized by
synoptic vortices of Rossby waves (cyclones and anti-
cyclones) and zonal winds which are tightly interconnected.
The physical nature of Rossby waves is linked to their large
horizontal length and dominance of the Coriolis force, so that
the Kibel (Rossby) number Ki � v=fL5 1 is small and the
Ekman number Ek � n=fL2 5 1 is very small. Here, v and L
are the typical velocity and length scales in the plane
perpendicular to the rotation axis, f is the Coriolis para-
meter, and n is the kinematic viscosity. The turbulent motion
existing in the atmosphere at large Reynolds numbers
�Re � Ki=Ek4 1� drives large-scale vortices and zonal jets.
According to the Taylor ± Proudman theorem, the motion in
these conditions presents the superposition of a two-dimen-
sional motion in the plane perpendicular to the rotation axis
and a uniform motion along this axis.

Characteristic scales of synoptic motions greatly exceed
the height of the atmosphere. This allows one to describe
these motions as waves in the b-plane approximation. These
are the Rossby waves named after Carl-Gustaf Rossby [19,
20], the American meteorologist of Swedish origin, as
recognition for his contribution to the theory of synoptic
waves made in the 1930 ± 1940s. They constitute the branch of
synoptic scale waves with the length comparable to the
Rossby ±Obukhov (deformation) radius in the atmosphere
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or ocean. The Rossby ±Obukhov radius reaches approxi-
mately 8000 km in the Earth's atmosphere at a latitude of
15�, decreasing with increase in latitude to approximately
2000 km at midlatitudes, while it is reduced to 50 km in the
open ocean. This exceeds by far the height of the atmosphere
or the depth of the ocean. In the atmospheres of the giant
planets Jupiter and Saturn, theRossby ±Obukhov radius is of
order 6000 km, which is also much larger than the atmo-
spheric depth but much less than the radii of these planets.
The other distinct feature of giant planets is their well-
expressed periodic structure of zonal winds in the meridian
direction [20, 21]. The zonal wind velocity amplitude reaches
about 100 m sÿ1 on Jupiter, and 200 m sÿ1 on Saturn.

Atmospheric masses are captured by long-lived synoptic
eddies (cyclones and anticyclones) and transferred by them
over large distances. This property determines the importance
of eddies in the dynamics of mean daily pressure, tempera-
ture, wind velocity, etc. In the Earth's atmosphere, cyclones
and anticyclones have spatial scales ranging fromhundreds of
kilometers to several thousand kilometers, and persist from
several days to several weeks. The synoptic eddies of the
Earth's atmosphere drift with a characteristic speed of 5 ±
10m sÿ1, which is comparable to the velocity of fluid particles
inside the eddies. The substance circulation within the eddies
is slower than the planetary rotation. Because of their slow
rotation and nearly horizontal (quasi-two-dimensional)
motion, Rossby vortices are very distinct from small-scale
(as compared with the atmospheric height) vortices such as
tornadoes or the eyes of typhoons. The latter execute
essentially three-dimensional motion and rotate faster than
the planet. Discussing them is beyond the scope of this review
which deals with large-scale synoptic structures moving
nearly horizontally.

The motion of fluid in Rossby waves is analogous to the
motion of ions in plasma drift waves (see, for example,
Refs [8 ± 10, 21 ± 23]). The analogy between Rossby and drift
waves, based on the similarity between the Coriolis force in a
rotating fluid and the Lorentz force in a magnetized plasma,
stimulates the exchange of ideas and methodical approaches.
The Lorentz force in a magnetized plasma plays the same role
as the Coriolis force in Rossby waves. The eddies of Rossby
waves and zonal winds observed in the atmosphere can be
considered as models of wave processes in the magnetized
plasma, and vice versa. The anomalous transfers of heat and
particles across the magnetic field in a fusion plasma are
attributed to drift waves. That is why exploring these waves
also receives special attention. A numerical experiment [24]
has pointed to an important feature of the drift turbulence in a
magnetized plasma Ð the intense excitation of convective
cells which substantially contribute to transport processes.
Sagdeev and his collaborators [25] were the first to develop a
theory for the nonlinear generation of convective motions in
plasmas, driven by the interaction of drift waves.

In recent years, progressively increasing attention has
been given to studies on the generation of large-scale zonal
structures which have a pronounced effect on transport
processes in the atmosphere [26 ± 28], magnetized plasmas
[29 ± 31], and a number of astrophysical objects, including
galactic disks and some others [32]. Currently there exist two
main approaches to the problem of zonal wind generation.
The first one relies on three-dimensional thermal convection
[33 ± 36]. The second approach suggested very recently is
based on a parametric instability of small-scale Rossby
waves. According to the second approach, the energy

transfer from small-scale Rossby waves into large-scale
zonal wind structures is mediated by eddy Reynolds stresses
averaged over small spatial and temporal scales. This process
follows the paradigm of inverse turbulent cascade in the
theory of two-dimensional anisotropic turbulence, the build
up of large-scale structures out of turbulent chaos. Labora-
tory experiments and numerical simulation [37 ± 40], assisted
by analytical studies [29, 41 ± 48], give witness in favor of the
parametric mechanism of zonal wind generation in a two-
dimensional barotropic atmosphere. The present review
discusses this model of zonal wind generation in the shallow
atmosphere approximation.

The existence of shear zonal winds in the atmosphere and
jets in the ocean provides a framework for the generation of
frontal synoptic eddies. According to meteorological obser-
vations of planetary atmospheres, an unstable zonal wind
generates so-calledmeanders (so named for a river with a very
convoluted path in Anatolia, with the old name Meander).
Meanders resemble a geometrical ornament in the form of an
irregular sinusoidal curve with the size of separate loops
ranging from several hundred to several thousand kilo-
meters. Meanders cut off from zonal currents evolve into
cyclonic and anticyclonic eddies. Meandering and the
subsequent formation of cyclones and anticyclones in the
field of atmospheric zonal jets is fully analogous to the
generation of large-scale eddies at sea, which emphasizes the
similarity of eddy formation physics. Meanders shed off the
Gulf Stream have a characteristic size of 300 ± 400 km and
develop into cold cyclonic (warm anticyclonic) eddies to the
right (left) of the main jet [12]. The generation of meanders
and the subsequent separation of eddies is the result of the
Rayleigh (Kelvin ±Helmholtz) instability in a shear flow.

Observations constitute the main source of information
about atmospheric circulation. Early observations were
ground-based. Later, they were augmented by wind, pres-
sure, and temperature measurements from balloons. The
airborne meteorology and then meteorological satellites
have essentially facilitated observing the processes in the
Earth's atmosphere. Instruments carried by satellites work
in visual, infrared, and radio wave ranges and provide
observations of synoptic eddies and winds (flows), measure
distributions of their temperature and air humidity, and
estimate the magnitude and direction of winds (see, for
example, Refs [49 ± 51]). The efficiency of satellite meteorol-
ogy is increasing owing to an increase in the number of
satellites, but also due to the growth in the number of
onboard instruments and their quality. Access to the data
provided by geostationary and low-orbit satellites is con-
tinuously improving. The system of archiving meteorological
observational data is providing users with fast and efficient
access to the satellite data. This creates favorable conditions
for exploring atmospheric dynamics which are uniformly
monitored over the globe.

The contribution of laboratory experiments to today's
theory of vortex structures and Rossby wave turbulence, as
well as to studies of the analogy between Rossby and plasma
drift waves is indisputable [9 ± 11, 15, 37 ± 43]. Atmospheric
circulation is simulated in rotating vessels of cylindrical or
annulus geometry. Laboratory experiments have aided in
examining fundamental properties of Rossby waves and
establishing a common physical view of Rossby and drift
waves.

In circumstances where applying direct analytical meth-
ods faces insurmountable obstacles, the value of numerical
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simulation is strongly increasing. In principle, the full atmo-
spheric dynamics can be investigated in the framework of the
complete system of hydrodynamical equations. However, it is
unlikely that the complete system of equations subject to
appropriate initial and boundary conditions will be solved in
the foreseeable future because of its unwieldy character and
complexity. This explains why there is interest in investigating
both analytically and numerically the simplified (model)
equations which explicitly take into account the main
effects. Meteorological observations suggest (as was already
mentioned by J G Charney in his classical paper [52]) that
motion in synoptic eddies respects the following principles: it
is quasihydrostatic over the height of the atmosphere, quasi-
two-dimensional, nearly adiabatic, and quasigeostrophic. In
this review we limit ourselves to hydrostatic vertical motion
and purely two-dimensional synoptic scale motions in a
horizontal plane. The influence of vertical velocity and
variations in the atmospheric parameters in the vertical
direction will be neglected. This approximation allows the
original system of equations to be essentially simplified.
Following it, simplified equations describing the most
important processes in atmospheric dynamics have been
obtained. V D Larichev and G M Reznik, studying Rossby
waves in the framework of the nonlinear Charney ±Obukhov
equation [53], have shown that the vector nonlinearity
(nonlinearity of the type �Ha;Hb�z, where a and b are some
scalar functions, the subscript z corresponds to the
z-component of the vector product, and the z-axis coincides
with the normal to the b-plane) occurring in this equation can
play a localizing role. It compensates for dispersive spreading
of a wave package, similarly to the scalar nonlinearity in the
Korteweg ± de Vries equation. Nonlinear stationary vortex
structures form in a fluid as a result of such compensation.

As can be seen from synoptic maps, isobars do not
coincide with isotherms in the real atmosphere. Such an
atmosphere is called baroclinic, and is distinct from a
barotropic atmosphere where the pressure is only dependent
on density and isobars coincide with isotherms. The latter
atmosphere yields a simpler analysis. Most of this review
deals with Rossby waves in a barotropic atmosphere, and
only one section discusses Rossby waves in a horizontally
baroclinic atmosphere. Amultilayer model frequently used to
describe vertically baroclinic atmospheres cannot be applied
to describe a horizontally baroclinic atmosphere. Long-wave
perturbations in the horizontally baroclinic atmosphere were
addressed in Refs [54 ± 57] which show that in this case the
atmosphere can be unstable, similarly to the vertically
baroclinic one.

Progress on the theory of weakly turbulent Kolmogorov
spectra of small-scale Rossby waves (with scalesmuch shorter
than the Rossby ±Obukhov radius) is related in Refs [58, 59].
The weakly turbulent Kolmogorov spectra of large-scale
Rossby waves and the locality of Rossby wave spectra were
studied in Refs [60 ± 62].

The goal of this review is to present the current state of
research related to nonlinear Rossby waves, with a particular
focus on the generation of large-scale eddies and zonal winds.
A part of the review is dedicated to results of laboratory,
numerical, and observational studies of Rossby waves in
planetary atmospheres. This is of an auxiliary character and
mainly considers the results which either support or reject
theoretical constructions. Section 2 has to be considered as an
introduction to the theory of nonlinear Rossby waves and
zonal jets. It also presents the main hydrodynamical equa-

tions. Mechanisms of generating nonlinear vortex structures
by a zonal wind are addressed in Section 3. The evolution of
weak turbulent spectra of the Kolmogorov type due to
interactions of Rossby waves is considered in Section 4.
Section 5 deals with a mechanism responsible for the
generation of large-scale zonal wind structures. It is attrib-
uted to the parametric instability of small-scale Rossby wave
fluctuations in a turbulent atmosphere. Section 6 concludes.

2. Shallow water equations

2.1 Shallow water approximation
In order to describe the basic features characterizing the
motion of large-scale structures, including synoptic eddies
and zonal winds, in a rotating atmosphere or ocean one uses
the so-called shallowwater (thin layer) approximation. In this
approximation, the atmosphere (or the ocean) is usually
considered as a layer of homogeneous incompressible fluid
rotating around an axis perpendicular to the fluid layer with
angular speed O sin y (with O being the Earth's angular
rotation rate, and y the local latitude).

From the hydrostatic balance along the rotation axis (the
z-axis), an expression for the pressure at the underlying
surface follows:

p�x; y� � rgH : �1�
Here, g is the acceleration due to gravity, r is the constant
density, H � H0 � ~H is the depth of fluid, and ~H is the
deviation of layer thickness from the equilibrium value H0.
In this approximation, the equations of continuity and
motion of an ideal fluid are reduced to the shallow water
equations

d

dt
H � 0 ; �2�

d

dt
v � ÿgHH� f �v; ez� ; �3�

where v is the velocity, d=dt � q=qt� vH is the convective
derivative with respect to time, f � 2O sin y is the Coriolis
parameter (a doubled projection of the angular rotation speed
on the local vertical), and ez is the unit vector perpendicular to
the �x; y� plane. Applying operator rotz to Eqn (3) and using
Eqn (2) one obtains the freezing-in condition for the general-
ized vorticity in the barotropic atmosphere (Ertel's theorem):

d

dt

�
rotz v� f

H

�
� 0 : �4�

If the relative vorticity rotz v has the same sign as the
Coriolis parameter (positive, with counterclockwise circula-
tion, in the northern hemisphere or negative, with clockwise
circulation, in the southern hemisphere), the Coriolis force is
directed from the center of the area under consideration. Such
motions are called cyclones, and are characterized by low
pressure at their centers. Flows with high pressure at their
centers and the relative vorticity opposite to the planetary
vorticity are called anticyclones.

For small Kibel (Rossby) numbers, omitting the small
inertial term on the left-hand side of Eqn (3), one obtains the
condition of geostrophic equilibrium, according to which the
Coriolis force is balanced by the pressure gradient. In this
approximation, the velocity of motion of perturbations in the
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atmosphere is v � vg, where

vg � 1

fr
�ez;Hp� �5�

is referred to as the geostrophic velocity or the gradient wind
velocity. A surprising property of motion in rapidly rotating
fluids follows from the geostrophic approximation (5): it is
executed along isobars, not perpendicular to them.

Rossby [19, 20] called attention to the fact that for
synoptic scale waves in the quasigeostrophic approximation
the correction to the geostrophic balance due to inertial
effects can be of the same order as the correction due to the
meridional variation of the Coriolis parameter (the so-called
b-effect):

f � f0 � by� Ay 2

2
; A � ÿ f0

R 2
; j f0j4 jbyj ;

where b � qf=qy � 2O cos y=R, and R is the radius of the
planet. Considering the weak perturbations we assume
j ~Hj5H0 and j ~pj5 p0, where p � p0 � ~p, p0 is the equili-
brium pressure, and ~p is the perturbation. Replacing the fluid
velocity with the geostrophic velocity (5), we transform the
potential vorticity conservation equation (4) to the approx-
imate form

q
qt
� p̂ÿ r 2RH

2
? p̂� ÿ vR

�
1� p̂� A

y

b

�
q
qx

p̂

ÿ r 4R f0f p̂;H 2
? p̂g � 0 : �6�

Here, p̂ � ~p=p0 is the dimensionless pressure perturbation,
rR � cs= f0 is the deformation radius (the Rossby ±Obukhov
radius), cs � � p0=r0�1=2 is the isothermal speed of sound,
vR � r 2Rb is the Rossby velocity, and

fA;Bg � �HA;HB �z �
qA
qx

qB
qy
ÿ qA

qy
qB
qx

is the Poisson brackets for scalar fields. The term propor-
tional to p̂ qp̂=qx in Eqn (6) is referred to as the scalar
nonlinearity, while the term with the Poisson bracket stands
for the vector (or vortex) nonlinearity.

The scalar nonlinearity exceeds the vector one in large-
scale eddies of a size comparable to the intermediate-
geostrophic radius

rIG �
�
r 2R f0
b

�1=3

:

Equation (6) with the scalar nonlinearity term was first
derived in Ref. [63], which considered the influence of this
term on the formation of large-scale (in excess of the
deformation radius) circular eddies. This term is responsible
for the cyclone ± anticyclone asymmetry [15]. The term
proportional to Ay qp̂=qx takes into account the meridional
change in the velocity of Rossby wave propagation on large
scales comparable to rIG. The contribution from this term
leads to the phenomenon known as twisting [9, 10]. Different
portions of an eddy propagate at different velocities, which
destroys the eddy on a time scale comparable to f0=bvR.
Introducing generalized (potential) vorticity

q � r 2RH
2
? p̂ÿ p̂� by

f0
ÿ y 2

2R 2
; �7�

Eqn (6) can be rewritten in the following form

dq

dt
� 0 ; �8�

where d=dt � q=qt� vgH � q=qt� �r0 f0�ÿ1f ~p; g. Equation
(8) implies conservation of generalized (potential) vorticity in
a barotropic atmosphere in the intermediate-geostrophic
approximation. When exploring Rossby vortices in the
Earth's atmosphere one may neglect the scalar nonlinearity
and the meridional dependence of the Rossby wave velocity.
In this approximation, Eqn (6) is rearranged to the form

q
qt
� p̂ÿ r 2RH

2
? p̂� ÿ vR

q
qx

p̂ÿ r 4R f0f p̂;H 2
? p̂g � 0 : �9�

Equation (9) corresponds to the conservation of potential
vorticity q without the last term on the right-hand side of
Eqn (7) (the quasigeostrophic potential vorticity). It is known
as the Charney ±Obukhov equation. A modified form of this
equation, taking into account the vertical inhomogeneity of
the atmosphere, was used by J G Charney [52] and
A M Obukhov [2] to derive a principal scheme of weather
forecasting. A solution to Eqn (9) possesses the symmetry:
p̂�x; y; t� � ÿp̂�ÿx; y; t�. In opposition to the Korteweg ±
de Vries equation, which yields solutions in the form of one-
dimensional solitons, the Charney ±Obukhov equation does
not support nonlinear one-dimensional or axisymmetric
structures.

Taking theFourier representation [p̂�pk exp �ÿiokt�ikr�,
where pk is the Fourier amplitude and ok and k are the
frequency and wavevector, respectively], one obtains the
dispersion relation

ok � ÿ kxvR
1� k 2r 2R

�10�

from the linearized Charney ±Obukhov equation. The x- and
y-axes of the adopted coordinate system are directed eastward
and to the nearest pole, respectively. In the conditions of the
Earth's atmosphere, the Rossby ±Obukhov radius is compar-
able to the Earth's radius and the dispersion relation can be
used in the approximate form

ok � ÿ kxvR
k 2r 2R

: �11�

It is inferred from equations (10) and (11) that the phase
velocity of the Rossby waves, ok=kx < 0, is directed west-
ward.

The Charney ±Obukhov equation possesses two integrals
being conserved (integrals of motion). They are (up to a
dimensional coefficient) the energy integral

W �
��

p̂ 2 � r 2R�Hp̂�2
�
d2x ; �12�

and enstrophy integral

H �
���Hp̂�2 � r 2R�H 2p̂�2� d2x : �13�

The integration in formulas (12) and (13) is carried over an
arbitrary `fluid' domain, the points of which move with the
velocity v.
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2.2 Rossby waves in a barotropic atmosphere
with a zonal wind. Stability of zonal flows
Rossby waves propagating in a barotropic atmosphere with
a zonal wind Ð a stationary shear flow directed along the
x-axis and varying in the meridional direction, U�y�Ð obey,
taking into account the viscous dissipation, the equation�

q
qt
�U�y� q

qx

�
H 2
? p̂� b

q
qx

p̂ÿ q2U
qy 2

q
qx

p̂

� r 2R f0f p̂;H 2
? p̂g � nH 4

? p̂ : �14�

Here, n is the kinematic viscosity. Equation (14) represents the
generalization of the Charney ±Obukhov equation (9) for
small-scale Rossby waves �r 2RH 2

?4 1� to the case of an
atmosphere with a zonal wind �U 6� 0� and with due regard
for the viscosity effects.

The shear flows in hydrodynamics are frequently
unstable. The presence of the third term proportional to
d2U=dy 2 on the left-hand side of Eqn (14) can contribute
to the instability of the shear flow. In a linear approxima-
tion, for small perturbations of the form p̂�r; t� �
p̂�y� exp �ÿiot� ikxx�, Eqn (14) transforms into the Orr ±
Sommerfeld equation [64]

ÿ in
�

q2

qy 2
ÿ k 2

x

�2

p̂� �oÿ kxU �
�

q2

qy 2
ÿ k 2

x

�
p̂

� kx�U 00 ÿ b� p̂ � 0 : �15�
Here, U 00 � d2U=dy 2. Neglecting the contribution of viscos-
ity effects, Eqn (15) is simplified to

p̂ 00 ÿ k 2
x p̂�

kx�U 00 ÿ b�
oÿ kxU

p̂ � 0 ; �16�

where p̂ 00 � d2p̂=dy 2. Equation (16) is the modification of the
well-known Rayleigh equation [65] for b 6� 0. The stability of
a plane-parallel shear flow obeying Eqn (16) was the subject
of thorough research initialized by works [65 ± 67]. The
fulfilment of the condition

U 00�yc� ÿ b � 0 �17�

at some point y � yc of the shear flow is the necessary
condition of instability. When it is fulfilled, differential
equation (16) may remain regular even if the resonance
condition o � kxc, where c � U�yc�, holds at some point
within the shear flow. For such vibrations, Rayleigh equation
(16) assumes the form

p̂ 00 ÿ k 2
x p̂� F�y� p̂ � 0 : �18�

Here, F�y� � �U 00 ÿ b�=�cÿU�y��. Equation (18) has a
discrete set of eigenfunctions p̂ �n�, eigenvalues k

�n�
x , and

frequencies o�n� � k
�n�
x c, provided F�y� > 0. This inequality

is the sufficient condition of flow instability. The sufficient
condition reduces to satisfying the inequality [68]

F�yc� � ÿU 000�yc�
U 0�yc� > 0 : �19�

In the Earth's atmosphere, b commonly greatly exceeds
the quantity U 00 in large-scale zonal flows and thus wind
remains stable most of the time. However, periodically wave

breaking events occur such that the condition b � U 00 is
satisfied in some vicinity of the layer y � yc. This triggers
instability over some period of time, after which the zonal
wind rearranges and becomes stable again.

2.3 Rossby waves in a horizontally baroclinic atmosphere
Let the temperature T, potential temperatureY, and pressure
in a horizontally baroclinic atmosphere be expanded as sums
of equilibrium values and weak perturbations thereof,
~T�t; x; y�, ~Y�t; x; y�, and ~p�t; x; y�:

T � T0 � ~T�t; x; y� ; Y � Y0 � ~Y�t; x; y� ; �20�
p � p0 � ~p�t; x; y� :

In this case, from Eqn (6) it follows that [56, 57]

q
qt
� p̂ÿ r 2RH

2
? p̂� ÿ vR

�
1� T̂� A

y

b

�
q
qx

p̂

ÿ r 4R f0f p̂;H 2
? p̂g � r 2R f0f p̂; Ŷg � 0 ; �21�

where the parameters T̂ � ~T=T0, p̂ � ~p=p0, and Ŷ � ~Y=Y0

stand for dimensionless perturbations of the temperature,
pressure, and potential temperature. The potential tempera-
ture is a unique function of the entropy and is connected to the
temperature and pressure via the relationship

Y � T

�
p0
p

��gÿ1�=g
:

In this section, the notation rRs � cs=f0 for the Obukhov scale
is introduced, with cs � �gp0=r0�1=2 being the adiabatic speed
of sound. Introducing the potential vorticity in the form (7),
Eqn (21) can be rearranged as

dq

dt
� r 2Rs f0f p̂; Ŷg ÿ vRT̂

q
qx

p̂ : �22�

Here, d=dt � q=qt� vgH, as in the preceding section. In such
an atmosphere, the potential vorticity is not conserved, in
contrast to the barotropic atmosphere. This makes possible
spontaneous generation of vortices from nonclosed stream-
lines in the horizontally baroclinic atmosphere.

The real atmosphere is characterized by large-scale
gradients of potential temperature and pressure. In general,
they are oriented meridionally. Let us assume that the
equilibrium potential temperature and pressure contain
large-scale equilibrium inhomogeneities kYy and kpy in the
meridional direction:

Ŷ0 � 1� kYy ; p̂0 � 1� kpy ; �23�

whereas the scale of weak perturbations ~y�t; x; y� and ~p�t; x; y�
is essentially smaller than kÿ1Y and kÿ1p , respectively. In
agreement with Eqn (20), writing the dimensionless potential
temperature and pressure as Ŷ � Ŷ0�y� � ~y�t; x; y� and p̂ �
p̂0�y� � ~p�t; x; y�, one obtains from the law of conservation of
the potential temperature (which is an unambiguous function
of the entropy), viz.

d

dt
Y � 0 �24�

and the potential vorticity conservation equation (21),
neglecting the scalar nonlinearity [55], the following equa-
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tions

q
qt

~y� kY
q~p

qx
ÿ kp

q~y
qx
� f ~p; ~yg � 0 ; �25�

q
qt
� ~pÿ r 2RsH

2
? ~p� ÿ �vR ÿ f0r

2
RskY�

q
qx

~p

� f0r
2
Rskp

�
r 2Rs

q
qx

H 2~pÿ q
qx

~y
�

ÿ f0r
4
Rsf ~p;H 2~pg � f0r

2
Rsf ~p; ~yg � 0 : �26�

This is the system of nonlinear equations describing a
horizontally baroclinic atmosphere with equilibrium linear
gradients of pressure and potential temperature. The system
of equations (25) and (26) conserves the energy integral

E /
��

~p 2 � r 2Rs�H~p�2 ÿ kp
kY

~y 2

�
d2x : �27�

It is of interest to compare it with the energy integral (12).
Expression (27) shows that the energy is not always a positive
definite quantity. It may become negative if gradients of the
potential temperature and pressure have the same sign. In this
case, the atmosphere can be unstable. In the linear approx-
imation, the system of equations (25) and (26) implies the
following dispersion equation

o� � ÿ kx

2�1� k 2r 2Rs�
��vRÿ f0r

2
Rs�kY ÿ kp� � f0r

4
Rsk

2�k �p� kp� �D 1=2
�
; �28�

where

k �p �
kp
g
; �29�

D � k 2
x

n�
vR ÿ f0r

2
Rs�kY ÿ k �p � ÿ f0r

4
Rsk

2�k �p ÿ kp�
�2

ÿ 4f 20 r
6
Rsk

2kYk �p
o
: �30�

According to equality (30), the radicand in the dispersion
equation can get negative for some value of k if kY and kp
have the same sign. This condition of horizontally baroclinic
instability coincides with the other one, which may be derived
from the condition that the energy integral (27) is positive
definite.

3. Vortex structures

3.1 Dipole vortices
To explore stationary waves traveling along the x-axis with
the velocity u in a shallow barotropic atmosphere, the
Charney ±Obukhov equation (9) can be cast in the form�

H 2p̂ÿ Lp̂; p̂� y

b

�
� 0 �31�

on introducing the variable Z � xÿ ut. Here, constantsL and
b are defined as follows:

L � 1

r 2R

�
1� vR

u

�
; b � r 2R f0

u
: �32�

The equation

H 2p̂ÿ Lp̂ � F

�
p̂� y

b

�
; �33�

where F is an arbitrary function of its arguments, provides a
particular solution to the nonlinear Eqn (31). Examining
solutions to equation (33), we select F to be a linear
function, so that

H 2p̂ÿ Lp̂ � C

�
p̂� y

b

�
; �34�

where C is an arbitrary constant. Performing the analysis of
vortex structures described by Eqn (34), we will also use,
together with the Cartesian coordinates x and Z, polar
coordinates r � �x 2 � Z 2�1=2 and # � arctan �Z=x�. Follow-
ing Ref. [53], we imagine that the vortex consist of internal
and external parts separated by some boundary r � a, where
a is a constant termed the vortex radius. In the outer part of
the vortex C � 0, while in the inner part C 6� 0. A particular
solution to Eqn (39) is a so-called dipole vortex

p̂�r; #� � F�r� cos# : �35�

In this case, the function F�r� in the outer part of the vortex
(for r > a) is given by

F�r� � F�a�K1�rb=a�
K1�b� : �36�

Inside the vortex (for r < a), this function assumes the form

F�r� � F�a�
��

1ÿ b 2

g 2

�
r

a
ÿ b 2

g 2
J1�rg=a�
J1�g�

�
: �37�

The constants b and g are linked to L and C by the
relationships

b 2 � a 2L and g 2 � ÿa 2�L� C� : �38�

It is apparent that for p̂ to be bounded at infinity �r!1�, the
inequalities b 2 > 0 and L > 0 must hold. According to
Eqn (32), vortices propagating eastward can have, in
general, any velocity �u > 0�, whereas those propagating
westward should move faster than the Rossby velocity.
From the continuity conditions for p, qp=qr, H 2p̂, and
qH 2p̂=qr at the vortex boundary �r � a�, the vortex para-
meter matching condition follows:

K2�b�
bK1�b� � ÿ

J2�g�
gJ1�g� : �39�

An approximate solution of dispersion equation (39) has the
form b � 3:9� 1:2g 2=�3:4� g 2�. In a dipole vortex with this
matching condition, both the energy [see Eqn (12)] and
enstrophy [see Eqn (13)] of the vortex are conserved.

3.2 Vortex streets
Let us turn to the description of nonlinear vortex structures
generated in the atmosphere by a zonal wind. There is a close
physical analogy between the resonant interaction of Rossby
waves with zonal winds, described by Eqn (14), and the
resonant interaction in a system of self-gravitating bodies
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(see, e.g., Ref. [32]) or oscillations in plasmas [69]. This
analogy was first addressed in Refs [70 ± 72]. It allows the
resonance phenomena occurring in media that are, at first
glance, completely different to be considered in the same
framework. For waves interacting with plane-parallel flows,
nonlinear effects show themselves primarily in the vicinity of
the resonance layer. It is therefore possible to assume that the
fluid vibrations are linear outside the resonance layer, while
nonlinearity governs the structure of a solution within the
layer. The solutions of the Rayleigh equation are found as the
limit of solutions of the Orr ± Sommerfeld equation for
perturbations and an infinitesimal viscosity �n! 0�. The
solutions of inviscid (Rayleigh) equations are not, however,
unique and only accounting for finite viscosity allows
selecting one of them.

The choice of a valid branch of a multivalued solution to
the Rayleigh equation in the vicinity of the branch point
y � yc follows the Lin contour selection rule [67] which is
analogous to the contour selection rule in plasma physics (the
Landau detour [69]). The existence of resonance points with
the respective path-tracing rules determines a mechanism of
energy exchange betweenwaves (perturbations) and themean
flow. It is not immediately connected with viscous dissipation
and exists even in an ideal fluid. Fluid particles `trapped' by
the wave in the resonance layer y � yc move along the x-axis
in the westward direction with the velocityU�yc� � vR. From
Eqn (14) it follows that for a quasistationary state under the
conditions of resonance the following equation is valid:

f p̂;H 2p̂g � 0 : �40�

The solution to this equation is written out as

H 2p̂ � F� p̂� ; �41�

where F� p̂� is an arbitrary function of its argument. Equation
(41) implies a particular case of Eqn (34) and coincides with
the condition of vorticity conservation in an incompressible
inviscid fluid, H 2c � F�c� (c is the streamfunction), which
follows from the Navier ± Stokes equation. The solution of
Eqn (41) was obtained in Ref. [73] by matching asymptotic
expansions on both sides of the singular point y � yc with a
simultaneous account of weak viscosity and nonlinearity
effects. This solution [74] corresponds to the function

F� p̂� � k 2K exp

�
ÿ 2p̂

K

�
: �42�

The meaning of parameters k and K will be clarified below.
For this function F� p̂�, Eqn (41) has the solution

p̂ � K ln
�
C cosh kx� �C 2 ÿ 1�1=2 cos ky� ; �43�

where the parameter K characterizes the amplitude of the
vortex street, and 2p=k sets the size of vortices along the y-
axis. Expressions for the velocity components follow from
Eqns (5) and (43):

vx � vRkrRK C sinh ky

C cosh ky� �C 2 ÿ 1�1=2 cos kx
; �44�

vy � vRkrRK �C 2 ÿ 1�1=2 sin kx
C cosh ky� �C 2 ÿ 1�1=2 cos kx

: �45�

Here, C is a constant larger than one. If C � 1, solution (45)
describes a zonal flow (the x- and y-axes are directed to the
east and north, respectively):

vx � vRkrRK tanh ky ; vy � 0 : �46�

Solutions (44) and (45) with closed streamlines resembles `cat
eyes' and were first obtained by Kelvin. Figure 1 illustrates
the trajectories of fluid particles in a vortex street of the cat
eye type. Such structures are typical for phase space portraits
of nonlinear resonance. In plasma physics, cat eye structures
occur when one considers phase space trajectories of particles
in the field of a monochromatic plasma wave [75].

Numerical simulation of the temporal evolution of
instability in flows of ideal fluids, made with due account for
nonlinear effects at the resonance level [76], indicated that the
entity of spiral vortices growing with time, meanders, develop
in the vicinity of y � yc. Figure 2 illustrates schematics of this
development for a zonal flow [76]. Numerical modeling of
perturbation evolution in the framework of the Orr ±
Sommerfeld equation or Eqn (14) is the subject of numerous
works. In particular, Refs [77 ± 82] explore the dynamics of a
shear flow in a barotropic atmosphere in the nonlinear phase
before quasistationary state is reached in the region of
instability saturation. The weak viscosity of the atmosphere
facilitates the formation of vortex streets of the cat eye type
from the meanders. Figures 3 and 4 show schematically
numerical results [81] which illustrate particle trajectories in
stationary nonlinear structures generated by zonal shear
flows in a barotropic atmosphere (or ocean). Vortex streets
resembling cat eyes are formed in the vicinity of resonance
regions where the flow velocity is compared with the local
Rossby velocity �U � c�.

Satellite observations contribute to studies of the forma-
tion and subsequent evolution of vortex streets in zonal
winds. To interpret such observations we have selected the
near-equatorial part of the Pacific Ocean with the largest
zonal extent during the summer ± autumn period of the most
active tropical cyclogenesis spanning the months from
August to November. The east ±west-directed zonal wind in
the near-equatorial Earth's atmosphere is most unstable
during this season.

By way of example, Figs 5 and 6 display fragments of the
Earth's microwave brightness temperature field at 19.35 GHz
from the electronic Global-Field collection compiled in the

Figure 1. Streamlines in the form of `cat eyes' in the vicinity of the

resonance level (in a reference frame moving with the wave).

Figure 2. Development of meanders in the vicinity of the resonant level

[76]. Viscosity modifies them into a structure of the `cat eye' type.
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Space Research Institute of the Russian Academy of Sciences
(SRI RAS) [83] based on satellite monitoring data gathered
within the Defense Meteorological Satellite Program
(DMSP). Radiometric instruments SSM/I (Special Sensor
Microwave/Imager) on board satellites of DMSP series
supply global operative information about the state of the
atmosphere ± ocean system in the microwave range. The
orbits of satellites of this series and viewing angles of
instruments are such that daily data collected from a single
satellite do not cover the entire globe but leave large gaps
especially noticeable in low latitudes (the scan width is
1400 km, while gaps in the equatorial belt reach approxi-
mately 1200 km). As a result, an estimated 25%of the planet's
surface is void of data. A special algorithm of intertrack and
cross-instrument equilibration and augmentation was devel-
oped in the Laboratory forClimateResearch of the SRIRAS.
It supplies two full microwave images of the Earth daily
(based on data from all satellites of the series to fill the gaps).
A good spatial ± temporal resolution of the fields of micro-
wave brightness temperature in the Global-Field collection
(two realizations at a 0.5 by 0.5 degree grid daily from 1995 to
2007) makes it possible to trace the formation and evolution
of intense large-scale atmospheric eddies, together with
studying their structure.

Radiometric instruments SSM/I work in a passive regime
by receiving microwave radiation coming from the Earth's
surface, which carries information about various physical
objects. If the atmosphere were void of tracer gases and were
perfectly dry and clear, the SSM/I instruments would have
measured the radio brightness temperature of the surface of

the world's oceans and land. Yet the atmosphere contains
fractions which have resonant absorption lines in the radio-
wave range at certain frequencies. The radiometric SSM/I
instruments register radiation on frequencies of 19.35, 22.24,
37.00, and 85.50 GHz, which carries information on the
presence of water in various forms in the Earth's atmo-
sphere. These can be water vapor, water droplets of various
sizes, snow, ice crystals and some others.

The microwave brightness temperature is associated with
the depth-integrated contents of the respective fraction in the
atmosphere, i.e., with the water vapor content, cloud liquid
water, and precipitation over water and land. Microwave
brightness temperature fields on frequencies of 19.35, 22.24,
and 37.00GHz visualize the content of water vapor andwater
in droplets (the fields are well correlated at these frequencies).
Figures 5 and 6 show fragments of the microwave brightness
temperature fields of the Earth at 19.35 GHz over the North
Pacific (in the Mercator projection with a superimposed 30�

grid). The colorbar of brightness temperature in degrees
Kelvin is also displayed there. The continents are readily
recognizable. The patches of gray against the almost black
background of the surface of the Pacific Ocean characterize
the brightness temperature of the troposphere over this part
of the ocean and, consequently, the depth-integrated content
of water vapor and droplets in the troposphere. Since the
droplets and vapor are `frozen' in air streams, the fields of
radio brightness temperature visualize instantaneous
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Figure 3.Trajectories of fluid particles in the vicinity of the resonance layer

in appropriate shear flows [81].
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Figure 4.Trajectories of fluid particles in the vicinity of the resonance layer

in particular shear flows [81].
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Figure 5. A chain of vortices in an eastern zonal flow over the North

Pacific, formed on 21 ± 22 September 2001 near 15�N.
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imprints of atmospheric motions. In particular, they permit
studying the structure and dynamics of such intense moist
atmospheric flows as the equatorial zonal current (with its
instabilities and eddy structures) and tropical cyclones.

Figure 5 presents three successive realizations of the
brightness temperature over the Pacific, separated by
12-hour time intervals. The first fragment corresponds to the
evening of 21 September 2001, while the second and third
ones correspond, respectively, to the morning and evening
time of the next day.Within the zonal jet which has a cyclonic
shear one may distinguish a chain of five cyclonic eddies
moving from east to west at a latitude of about 15�N (from 5
to 20�N). They are of approximately equal intensity except
for the first, most westward one which constitutes the well-
formed cyclonic eddy by that time. Its center already contains
a tropical cyclone. Upon impinging on the Asia continent, the
cyclonic eddy will be shifted to a higher latitude by the action
of the Coriolis force and trapped in the region of westerlies at
mid- and mid-high latitudes where the wind shear is antic-
yclonic. Later on, the direction of eddy propagation will
reverse and the eddy itself will weaken. Figure 5 demonstrates
the evolution of similar eddy precursors in this phase at
midlatitudes.

A similar chain of vortices formed several days earlier
over the same part of the Pacific at a higher latitude of about
25 ± 30�N is displayed in Fig. 6. In the same manner as in
Fig. 5, the three panels are separated by 12-hour intervals.

The larger size of cyclonic eddies at this latitude with respect
to those in Fig. 5 is apparently linked to a larger spatial scale
of the zonal wind shear at their latitude.

Similar chains of vortices can be observed over water
areas of other oceans within periods of active cyclogenesis.
The number of vortices in a chain is limited by the finite sizes
of ocean basins. Thus, for example, chains constituting at
most of 2 ± 3 eddies are observed over the Atlantic.

4. Kolmogorov spectra of weak turbulence

4.1 Basic equations of weak turbulence
Consider a weak turbulence evolving due to three-wave
interaction and obeying the kinetic equation [75, 84]

qNk

qt
/
�
U�k; k1; k2�

ÿ
Nk1Nk2 ÿNkNk1 signokok2

ÿNkNk2 signokok1� d�ok ÿ ok1 ÿ ok2�
� d�kÿ k1 ÿ k2� dk1 dk2 : �47�

Here, Nk is the `number of quanta' (or the `wave action
density'), and the integrand is defined as follows:

U�k; k1; k2� �
��V�k; k1; k2���2 ; �48�

where V�k; k1; k2� is the matrix element of interaction, which
possesses some specific symmetry properties (see, for exam-
ple, Refs [75, 84, 85]). A constant multiplier which depends on
how Nk and ok are normalized is omitted on the right-hand
side of relationship (47). We assume that the matrix element
V�k; k1; k2� is scale invariant, so that

V�exkx; eyky; exkx1; eyky1; exkx2; eyky2�
� e ux e

v
yV�kx; ky; kx1; ky1; kx2; ky2� �49�

with the similarity indices u and v. Additionally, it is assumed
that the dispersive part of the wave frequency for weakly
dispersive �ok � kxvR� or strongly dispersive waves is also
scale invariant with the similarity indices a and b. Under these
assumptions, and also regarding the expression for the
number of quanta as scale invariant with the similarity
indices a and b, the kinetic equation for waves (47) can be
represented in the following form [60]:

qNk

qt
/ jkxj 2a�2u�1ÿa jkyj 2b�2v�1ÿb �50�

or

qD �i�k
qt
� HP �i��k� � 0 ; �51�

where i � 1 or 2, and

D
�1�
k � jOkjNk ; D

�2�
k � jkxjNk ;

P �1��k� / jkxj 2�a�u�1� jkyj 2�b�v�1�
�

1

jkyj ;
1

jkxj
�
; �52�

P �2��k� / jkxj 2a�2u�3ÿa jkyj 2b�2v�2ÿb
�

1

jkyj ;
1

jkxj
�
: �53�

For weakly dispersive waves D
�1�
k has the sense of

enstrophy (or the dispersive part of the energy), while D
�2�
k

13.09.2001
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14.09.2001

30 120 160 200 240 320 ¬

Figure 6.A chain of vortices analogous to those depicted in Fig. 5, formed

on 13 ± 14 September 2001 near 25ÿ30�N.
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has the sense of wave energy. Accordingly, Eqn (51) with the
index i � 1 or i � 2 corresponds to the law of enstrophy or
energy conservation, respectively, while P �1��k� and P �2��k�
are the enstrophy and energy fluxes. From the condition that
the enstrophy or energy fluxes be constant, one finds the
similarity indices for the number of quanta:

a �1� � ÿ�1� u� ; b �1� � ÿ�1� v� ; �54�

a �2� � a

2
ÿ
�
3

2
� u

�
; b �1� � b

2
ÿ �1� v� : �55�

Thus, the existence of stationary power-law type solutions of
the wave kinetic equation leans upon the requirement that the
dispersion and matrix element of the interaction be scale-
invariant functions of wave vectors.

4.2 Wave interaction matrix element
We expand the pressure p̂ in Fourier harmonics:

p̂ �
X
k

pk�t� exp �ikrÿ iokt� � c:c:; �56�

where c.c. stands for complex conjugate expression, pk�t� is
the amplitude of the Fourier harmonic which is assumed to be
a slowly varying function of time, andok is the frequency of a
Fourier harmonic with the wave vector k, defined by the
linear dispersion relation (11).

The following dynamic equation corresponds to the
Charney ±Obukhov equation (9) [58, 59]:

qpk
qt
/

X
k1�k2 �k

�k1; k2�z
k 2
2 ÿ k 2

1

1� k 2r 2R
pk1 pk2

� exp
�ÿi�ok1 � ok2 ÿ ok�t

�
: �57�

According to Eqn (12), the spectral energy density has the
form

Wk / �1� k 2r 2R�j pkj2 : �58�

The number Nk of quanta determined from the condition
Nk /Wk=ok is given by

Nk / �1� k 2r 2R�2j pkj2jkxj : �59�

Employing relationship Nk / jCkj2, we introduce the
normalized complex wave amplitude

Ck / �1� k 2r 2R�j pkjjkxjÿ1=2 : �60�

Using relationship (60) and the frequency synchronism
condition ok � ok1 � ok2, one transforms dynamic equa-
tion (57) into the canonical form [75]

i
qCk

qt

�
X

k1�k2 � k

V�k; k1; k2�Ck1Ck2 exp
�ÿi�ok1 � ok2 ÿ ok�t

�
:

�61�
Using this, one gets the following expression for the
interaction matrix element:

V�k; k1; k2� / jkxkx1kx2j1=2

�
�

kx1

1� k 2
1 r

2
R

� kx2

1� k 2
2 r

2
R

ÿ kx

1� k 2r 2R

�
: �62�

References [58, 59, 62] derived the matrix element (62) in the
framework of Hamilton's formalism. Let us separately
consider short-wave �k 2r 2R 4 1� and long-wave �k 2r 2R 5 1�
turbulence. Additionally, we limit ourselves to the case of
waves with ky 4 kx. According to papers [60, 62], the main
portion of energy carried by Rossby waves is contained in
waves with ky 4 kx.

4.3 Short-wave turbulence
In a short-wave limit k 2r 2R 4 1 and for ky 4 kx, the Rossby
wave frequency and interaction matrix element behave as

ok / kxk
ÿ2
y ; �63�

V�k; k1; k2� / jkyky1ky2j1=2
�

1

kx1
� 1

kx2
ÿ 1

kx

�
: �64�

Hence, the exponents of scale invariance for the frequency
and matrix element are a � 1, b � ÿ2, u � 3=2, and v � ÿ1.
These exponents imply the following energy spectra:

Wk / kÿ3=2x kÿ2y ; �65�
Wk / kÿ3=2x kÿ3y : �66�

Spectra (65) and (66) are linked to energy and enstrophy
fluxes, respectively. Numerical simulation [21, 86] of short-
wave isotropic �kx � ky� turbulence of nonlinearly interact-
ing waves obeying the Charney ±Obukhov equation yields
spectral forms similar to Wk / kÿ4? . Close to the validity
limits, in isotropic approximation with kx � ky � k?, it
follows from expressions (65) and (66) that Wk /
�kÿ7=2? ; k

ÿ9=2
? �. Thus, the numerical value of the exponent of

the isotropic spectrum lies between the two anisotropic
Kolmogorov spectra. An additional analysis of the spectra
carried out in Refs [60, 87] shows that spectrum (65) linked to
the energy flux is local, while the spectrum given by
expression (66), which is linked to the enstrophy flux, is
nonlocal. The nonlocality of the spectrum stems from the
long-wave part with kx / k 3

y . This part of the spectrum
corresponds to zonal flows. The energy flux in spectrum (65)
is directed toward larger kx and smaller ky. A similar behavior
is observed in results of numerical simulations [21, 87]. The
enstrophy flux in spectrum (66) is directed to small ky.
Reference [62] demonstrates that the nonlocality of the
Kolmogorov turbulence spectra is the cause of spectrum
evolution. It results in the appearance of two regions
separated in the wavenumber space, which correspond to a
strong zonal current and jet spectrum of small-scale turbu-
lence.

4.4 Long-wave turbulence
The dispersive correction in the long-wave limit k 2r 2R 5 1 for
waves with ky 4 kx assumes the form

ok / kxk
2
y ; �67�

i.e., the frequency is scale invariant with the similarity indices

a � 1 ; b � 2 : �68�
The matrix element (62) in this limit is written out as

V�k; k1; k2� / jkxkx1kx2j1=2�k 3
x1 � k 3

x2 ÿ k 3
x � : �69�

Hence, it follows that

u � 3

2
; v � 3 : �70�
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The following energy spectra correspond to these indices:

Wk / kÿ3=2x kÿ4y ; �71�

Wk / kÿ3=2x kÿ3y : �72�

Spectra (72) and (71) are linked to the energy and enstrophy
fluxes, respectively. An analysis of these spectra [60] reveals
that, similarly to the short-wave approximation, spectrum
(72) related to the energy flux is local. Spectrum (71) is linked
to the enstrophy flux and is nonlocal. The nonlocality of the
spectrum is caused by wave interaction in the long-wave part
of the spectrum with kx / ky. This, however, contradicts the
initial assumption of ky 4 kx.

5. Zonal wind generation

Let us explore the dynamics of interaction between Rossby
waves and a zonal wind in a turbulent barotropic atmosphere.
Since the time scale of zonal wind variability is larger than
typical periods of Rossby waves, we will employ the multi-
scale expansion method, assuming that the regions of Rossby
wave turbulence and zonal winds are well separated in the
wavenumber space. Let us represent the dimensionless
perturbation of the atmospheric pressure (normalized to the
equilibrium pressure) as a sum of low- and high-frequency
components: p=p0 � p̂� P, where P�R;T � denotes large-
scale pressure perturbations in the zonal wind, and
p̂�r; t;R;T � is the pressure perturbation in small-scale
Rossby waves. Here, R and T are the large-scale space and
time coordinates, and r and t are the small-scale ones.
Averaging Eqn (9) over short time scales, one arrives at the
evolution equation for the pressure in the zonal wind:

H 2
?

q
qT

P � ÿf r 2R f p̂;H 2
? p̂g ; �73�

where the over-bar denotes short-time averaging. The right-
hand side of Eqn (73) describes the Reynolds stresses due to
Rossby wave fluctuations. The interaction of a Rossby wave
package with a zonal current is described by the wave kinetic
equation [75]

qNk

qt
� qok

qk
qNk

qx
ÿ qok

qx
qNk

qk
� gNk � S ; �74�

where S is the right-hand side of Eqn (47). The term with g
characterizes sources and sinks of waves, which are ignored
here. We seek a solution to equation (74) in the case of a zero
right-hand side. Equations (73) and (74) govern the dynamics
of interaction of the Rossby wave package with the zonal
wind. One supposes that the Rossby wave spectrum consists
of the equilibrium and modulated parts: Nk � N 0

k � ~Nk,
N 0

k 4 ~Nk, while the wave frequency is represented as
ok � o0

k � kxV. Here, V � f r 2R qP=qy is the geostrophic
velocity of the large-scale zonal current stemming from the
finite gradient of the large-scale pressure P, and o0

k is the
frequency of the wave package of small-scale Rossby waves,
with o0

k 4 kxV. Assuming that

� ~Nk;P� / exp �ÿiOT� iqY � ;

where O and q are the frequency and wavenumber of large-
scale perturbations, we can linearize the system of equations

(73) and (74). The result is written out as

ÿiOP � f r 2R

�
kxkyj pkj2 dk �75�

and

~Nk � ÿiq 2r 2R
kxvR

Oÿ qVg

qN 0
k

qky
; �76�

where Vg � qok=qky is the component of the group velocity
of the wave package. Taking into account that
~Nk � k 2j pkj2=ok and Vg � ÿ2okky=k

2, one obtains from
the system of equations (75) and (76):

O � ÿ f 2

2
q 2r 2R

�
dk

qN 0
k

qky

Vgkx
Oÿ qVg

: �77�

We make use of the approximation N 0
k � N 0d�kx ÿ kx0��

W�ky ÿ ky0;Dky�, where W�ky ÿ ky0;Dky� is the step func-
tion, W�ky ÿ ky0;Dky� � Dkÿ1y for jky ÿ ky0j < Dky=2 and
Dky 5 ky0, and W�ky ÿ ky0;Dky� � 0 for all other ky. In this
approximation, Eqn (77) leads to

O � ÿ f 2

2
q 2r 4R

kx0
2Dky

�N0

�
Vg ÿ V 0g Dky

Oÿ qVg � V 0g Dkyq=2
ÿ Vg � V 0g Dky
Oÿ qVg ÿ V 0g Dkyq=2

�
;

�78�
whereV 0g � qVg=qky � ÿ2kyok=k

2. ApproximatingDky� q,
one finds from Eqn (78) the following relationship

�Oÿ qVg�2 ÿ
�
V 0gq

2

2

�2

� 2f 2q 2k 2
0 r

4
Rj ~pk0j2 : �79�

Hence, one concludes that the real part of the frequency is
zero �ReO � 0�, while the increment �g � ImO� is given by

g �
�
2f 2q 2k 2

0 r
4
Rj ~pk0j2 ÿ

q 4

k 4
ok

�1=2

: �80�

The expression obtained for the increment of the parametric
instability is valid, strictly speaking, only at the initial, quasi-
linear stage of instability. However, as follows from numer-
ical simulations [88], the magnitude of the parametric
instability increment obtained in the quasilinear approxima-
tion remains unchanged at the nonlinear stage of instability
development. Equation (80) provides the condition for the
scales of the zonal wind structure compatible with the
existence of instability:

0 <

�
q

k

�2

max

< 2

�
f

ok

�2

�krR�4j ~pk0j2 : �81�

For a given value of k, the fastest growth is exhibited by
perturbations satisfying the condition�

q

k

�2

max

�
�

f

ok

�2

�krR�4j ~pk0j2 ; �82�

with the maximum increment equal to

g � f 2

ok
�krR�6j ~pk0j2 : �83�
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For typical values of the parameters of the Earth's atmo-
sphere at 30� latitude ( f � 0:8� 10ÿ4 sÿ1, rR � 4� 106 m,
~pk0 � 10ÿ2, k0rR � 2, and vR � 3� 102 m sÿ1), the instability
increment g � 2:4� 10ÿ6 sÿ1. This corresponds to the
characteristic time gÿ1 of instability development equal to
� 5 days. As a result of this process, a periodic structure is
formed in the meridional direction with a characteristic scale
qÿ1max � 3� 103 km. These rough estimates agree with obser-
vations of zonal winds. Thus, the instability considered here
can be responsible for the generation of zonal winds.

6. Conclusion

Despite the large variety of wave motions in planetary
atmospheres, studying large-scale eddies and zonal winds
has attracted and continues to attract the particular interest
of researchers. Indeed, these structures determine the global
transfer of air masses, which forms the climate and weather of
vast regions on the Earth. The dynamics of large-scale
nonlinear structures formed by planetary (Rossby) waves is
modelled by the relatively simple Charney ±Obukhov equa-
tion (9) or its modification (14) which takes account of the
zonal wind. However, even this rather simple model descrip-
tion has permitted us to discover a set of remarkable specific
features of two-dimensional motion of fluid in Rossby waves.
One of the main features of these waves is their self-
organization, which manifests itself through the sponta-
neous generation of coherent structures, such as large-scale
vortices and zonal winds. The zonal wind is a self-controlled
system of shear flows where the source is the modulation
instability of Rossby waves in a turbulent barotropic atmo-
sphere, and the sink is provided by the Rayleigh instability. It
essentially suppresses the equator ± pole transport processes.
This mechanism provides an effective channel of energy
transfer from the region of small-scale turbulence of Rossby
waves to the region of large-scale motions which correspond
to zonal winds, and contributes importantly to the regulariza-
tion of atmospheric turbulence. Laboratory experiments [9 ±
11, 15, 36 ± 39, 90, 91], together with numerical simulation [25,
40 ± 42, 82, 89, 92] and analytical studies [26 ± 30, 40 ± 47],
witness in favor of such a mechanism of zonal wind
generation by small-scale Rossby waves in a two-dimen-
sional barotropic atmosphere.

This work was partially supported by the Russian
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