
Abstract. The current status of the physics of accretion disks in
close binary stars is reviewed, with an emphasis on the hydro-
dynamic overreflection instability, which is a factor leading to
the accretion disk turbulence. The estimated turbulent viscosity
coefficients are in good agreement with observations and ex-
plain the high angular momentum transfer rate and the mea-
sured accretion rate. Based on the observations, a power-law
spectrum for the developed turbulence is obtained.

1. Introduction

Accretion disks are known to be objects with the maximum
efficiency coefficient among all other objects in the Universe:
their radiation energy varies from 6 to 30% ofMc 2, whereM
is the mass of an accretion disk and c is the speed of light (cf.
0.3%Mc 2 for nuclear reactions in the interior of a star). Until
recently, the cause of such a high efficiency had been
unknown.

Meanwhile, the results of observations suggest that
accretion disks have abnormally high turbulent viscosity
coefficients (9 ± 11 orders of magnitude higher than molecu-
lar viscosity coefficients). This strong turbulence facilitates
conversion of the kinetic energy of plasma incident on the
accretion disk into the energy of radiation. What is then the
cause of such well-developed turbulence in accretion disks?

This review was undertaken to find answers to this and
related questions.

Accretion disks of close binary systems (CBSs) are not
rare in the Universe. On the contrary, they rather frequently
occur in our Galaxy because almost 80% of the stars arise in
pairs (see, e.g., [1]). A star having a large mass completes its
`life journey' and turns into a compact object sooner than a
lighter star. The end product of evolution may be either a
white dwarf, a neutron star, or a black hole, depending on the
mass. Its companion, the second star, grows in size during the
same period. When its radius reaches the libration point, at
which all forces except the pressure gradient are in equili-
brium, the process of spillover and incidence of matter on the
compact object (accretion) begins. For this reason, such an
object is termed an accretor (also referred to as star 2 below),
while the star losing mass is called a donor or star 1 (Fig. 1).
The Roche approximation usually used in binary star studies
is based on the following assumptions:

(1) the gravitational field of either star is strictly
spherically symmetric;

(2) the orbits of both stars around their centers of mass are
circular;

(3) self-rotations of the stars are synchronized with their
orbiting by tidal forces, just as rotations in the Earth ±Moon
system are, the result being that we see only one side of the
Moon.

We consider a binary star system with the distance A
between their centers, the orbital angular velocity Xorb, and
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the orbital period Porb � 2p=Oorb. The components of the
system, stars 1 and 2, havemassesM1 andM2.We use a right-
handed coordinate system rotating synchronously with the
binary system. The origin of the coordinate system is at the
center of star 1, the x axis is parallel to the line connecting the
centers of the stars, and the z axis is parallel to the rotation
axis (see Fig. 1).

The effect of rotation can be described in terms of
classical mechanics [2] by introducing an additional term
in the expression for the energy of a rotating body with
mass M. This term depends only on the coordinates of the
body and is proportional to the squared angular velocity:
ÿ�1=2�M�Xorb � �rÿ rc��2, where rc is the radius vector of the
centers of mass of the binary system. Such an additional term
is called the centrifugal energy [2]. The gravity potential F of
the field of forces in this coordinate system has the form

F � ÿ GM1���������������������������
x 2 � y 2 � z 2

p ÿ GM2���������������������������������������
�xÿ A�2 � y 2 � z 2

q
ÿ 1

2
O 2

orb

��
xÿ A

M2

M1 �M2

�2

� y 2

�
; �1�

where G is the gravitational constant.
Examples of equipotential surfaces described by Eqn (1)

are presented in Fig. 1. For large ÿF, these surfaces are two
spheroidal cavities that enclose the respective gravitating
masses M1 and M2 (dashed circles in Fig. 1). As ÿF
decreases, the surfaces broaden and come into contact at a
point known as the first libration point. We note that the first
libration point is usually referred to in the astrophysical
literature as the inner Lagrange point L1, even though this
trend is in conflict with historic evidence, the first three
libration points �L1, L2, L3� having been discovered by
Euler in 1767. Five years later (1772), Lagrange discovered
the last two libration points �L4, L5� that are termed
triangular libration points or Lagrange points in celestial
mechanics.

Libration points are remarkable in that the sum of all
three forces (two gravity forces of attraction to masses M1

and M2 and the centrifugal force) is equal to zero, HF � 0.
The first three libration points are unstable: a probe particle
placed at these points leaves them upon an infinitely small
perturbation. At the same time, the Lagrange points L4 and
L5 remain stable for the mass ratio of CBS components

q < 0:04 [3], which enables particles to accumulate in them.
This phenomenon has been observed in the solar system since
1906 when the family of Trojan asteroids was discovered in
the vicinity of the triangular libration points in the Sun ±
Jupiter system.We note, however, that the condition q < 0:04
in the restricted three-body problem related to the solar
system dynamics is invariably satisfied and the respective
points L4 and L5 are stable. For close binary stars, the inverse
inequality, q > 0:04, typically holds. This means that all five
libration points in a CBS are unstable.

The region bounded by an equipotential surface contain-
ing the libration point L1 is called the Roche lobe. This region
plays an important role in the physics of binary stars because
the size of a star cannot be substantially larger than the Roche
lobe radius. When one of the stars fills up the entire Roche
lobe, stellar matter begins to overflow into the Roche lobe of
the accretor star through the vicinity of the point L1 under the
action of an unbalanced pressure force. If the accretor's
radius is small, a large fraction of the inflowing material
having an excessive angular momentum gives rise to the so-
called accretion disk around the accretor star.

Observations of close binary stars (especially in the
shortwave spectral region) give evidence of an intense flow
of matter streaming to the accretor. Such a flow occurs solely
under the condition that a large fraction of the angular
momentum of the accretion plasma is transferred onto the
outer parts of the disk. This requires an enormously high
viscosity (9 ± 11 orders of magnitude higher than the
molecular viscosity), possible only in the case of well-
developed turbulence in the accretion disk. The developed
turbulence resulting from strong instability is not the sole
mechanism by which the angular momentum is redistributed;
other physical processes are supposed to operate to the same
effect. The principal ones are the tidal interaction [4 ± 6],
spiral shock waves [7 ± 10], convection [11 ± 14], wind from
an accretion disk, jets [15 ± 18], the angular momentum
transfer by propagating waves [19 ± 21], and various instabil-
ities of the accretion disk, such as magnetohydrodynamic
[22 ± 25], parametric [26, 27], and baroclinic [28 ± 30). Analy-
sis of different modes of angular momentum transfer (see,
e.g., Refs [31, 32]) indicates that all the above mechanisms
encounter difficulties in explaining the accretion disk proper-
ties.

The best known and popular mechanism is the magnetor-
otational instability (MRI) [22]. However, it needs a magnetic
field to be operative. Results of observations suggest the
existence of many systems in which the field is so weak that it
fails to manifest itself. For an MRI to develop, the field must
be readily appreciable not only at the surface of the accretor
star but also much farther from it (e.g., at a distance as large
as the accretion disk radius). There are practically no such
systems among CBSs. Consequently, the MRI mechanism is
inapplicable.

Another crucial point is that the mechanism of angular
momentum transfer must be operative in high-temperature
disks. The fact is that the matter density in a disk being
formed is low, which makes the process of radiative cooling
inefficient. At the same time, the accretor star typically has a
high temperature. For this reason, the equilibrium tempera-
ture of diskmatter at themoment of its formation is also high.

The present review describes an efficacious mechanism of
angular momentum transfer that we proposed in [33]; this
mechanism operates in hot disks of close binary systems in the
absence of a magnetic field.

M1

L1

L4

L2

L5

L3

M2

x

y

z Oorb

A

Figure 1. Equipotential Roche surfaces in the equatorial plane of a binary

system with the mass ratio q �M2=M1 � 0:5. Libration points are

marked as L1ÿL5.
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2. Accretion disks in close binary stars

2.1 Background information
In a classical consideration, a CBS is assumed to have a
critical surface whose occupation by one of the stars triggers
mass exchange within the system. This surface is identified
with the inner critical surface (Roche surface) in the restricted
three-body problem. The exchange of matter occurs via the
neighborhood of the libration point L1 where the pressure
gradient is not counterbalanced by the gravity force. The
gasdynamics of matter efflux from the neighborhood of L1

has been investigated by many authors. In a semianalytic
approximation, the problem was first analyzed in [34] and
[35]; its current interpretation and a review of topical issues
can be found in reviews [36 ± 38].

We follow up the fate of a gas after it passes the libration
point L1. As the gas moves away from L1, its velocity
increases under the action of an attractive force of the
accretor star (star 2). Soon, the motion becomes essentially
supersonic (see, e.g., Refs [35, 39]). Moreover, the Coriolis
force diverts the stream of matter from the line connecting
star centers. According to [35], the stream deflection angle #s
is given by

cos �2#s� � ÿ 4

3
gÿ1# �

��������������������
1ÿ 8

9
gÿ1#

r
;

where

g#�q� �
�

q

�xL1
=A�3 �

1

�1ÿ xL1
=A�3

�
�q� 1�ÿ1 :

The stream deflection angle #s depends on the component
mass ratio alone. It can be seen from Fig. 2a that in the
simplest case under consideration (disregarding stream
interaction with the unaccreted gas), the rotation stream
angle varies only insignificantly (in the range from ÿ28:4� to
ÿ19:5�).

The trajectory of the stream in a binary system is
frequently considered in the ballistic approximation on the
formal grounds that this approximation is permitted by the
supersonic nature of the stream, which allows neglecting
pressure effects. The equation of motion describing the
trajectory of such a particle in the absence of a magnetic
field and pressure effects can be written as

d2r

dt 2
� ÿHFÿ 2X� dr

dt
:

The results of the computation of trajectories in the orbital
plane of a system with equal component masses �q � 1� are
presented in Fig. 2b. Evidently, at low initial velocities, 1 all
trajectories of particles are approximately identical and
independent of the angle at which they enter the system.

It can be concluded from the analysis of trajectories that
the stream passes close enough to the point mass, i.e., star 2 in
the Roche approximation. The minimally attainable distance
Rmin between the trajectory of an individual particle and the
center of the star for systems with different component mass
ratios is shown in Fig. 2c [35]. In the range 0:05 < q < 1, the
value ofRmin can be approximated with an accuracy of 1%by

the expression [38]

Rmin

A
� 0:0488qÿ0:464 :

In binary systems with the second component radius
R2 > Rmin, the stream of matter reaches the surface of the
star. But whenR2 < Rmin, the stream flow rounds the star and
eventually intersects itself at a certain point (see trajectories in
Fig. 2b). It is worth noting that the presence of intersecting
trajectories in the system suggests strong interactions between
gas streams, considering which in the ballistic approximation
is incorrect. The complicated character of the interaction
between the stream and the material of the circumbinary
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Figure 2. (a) The function #s�q� giving the stream deêection angle [35].
(b) Trajectories of particles in the orbital plane of a binary system with the
component mass ratio q � 1; it was assumed for the purpose of computa-
tion that the particles escape from L1 at a low speed u �
0:03

���������������������������������
G�M1 �M2�=A

p
in the directions 0� and �45� relative to the line

connecting the centers of the components. (c) The minimal distance Rmin

between star 2 and a particle fromL1 during the érst passage and the initial
ring radius Rh as functions of the component mass ratio q.

1 Here, the particle velocity is compared with the characteristic orbital

velocity of the binary system,
���������������������������������
G�M1 �M2�=A

p
.
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envelope requires solving the complete set of gasdynamic
equations for the description ofmass transfer in semidetached
binary stars. Examples of such a description are given in
Section 3. Here, following [35, 40], we qualitatively consider
the flow pattern based on the analysis of probe particle
trajectories.

We consider the angular momentum of a particle after it
passes the point at which the trajectory intersects itself.
Because the intersection point of the trajectories of probe
particles is rather close to star 2, the effect of star 1 on the flow
near the collision point can be disregarded. Hence, it may be
assumed that the angular momentum of the gas element
about star 2 is conserved. The minimal energy for a particle
with a fixed angular momentum revolving around a point
mass is reached at a circular orbit. Therefore, it can be
expected that after collision, the gas forms a ring with a
radius Rh around star 2. The gas in the ring rotates about
star 2 with the azimuthal velocity vf estimated, under the
assumption of the absence of pressure forces, from the
balance between the centrifugal force v 2f=r and the gravita-
tional attraction of the star GM2=r

2. Equating them yields a
gas ring obeying the Kepler rotation law vK � �GM2=r�1=2.
The angular momentum in such a ring increases in the
centrifugal direction as

��
r
p

.
The radius Rh of the initial ring can be found by the

method in [35] as the distance to the accretor over which the
stream of matter has the same tangential velocity as a particle
in a closed periodic orbit passing through a given point. But
this approach is too complicated for algorithmization.Rh can
be determined with a good accuracy as the point at which the
tangential velocity of the stream equals that of the ring. An
even more exact expression can be obtained if the presence of
Coriolis forces in the system is taken into account. In this
case, the velocity distribution in the ring is described by the
law

v ringf �
����������������������
O 2r 2 � v 2

K

q
ÿ Or :

Therefore, the condition v ringf �Rh� � v streamf �Rh� gives the
dependence Rh�q� coinciding with the theoretical one in [35].
The dependence of Rh on q is illustrated in Fig. 2c.

The radius dependence of the matter angular velocity,
OK � vK=r, implies differential rotation of the gas in the ring,
i.e., nonzero shear stress in the gas stream. Dissipative
processes decelerate the rotation of gas particles in inner
orbits and accelerate it in outer orbits. As a result, the angular
momentum undergoes redistribution within the ring, which
spreads out into an accretion disk.

Examination of physical processes in accretion disks
described in many monographs and original papers (see,
e.g., Refs [8, 37 ± 46]) is a very difficult task. We do not
pretend to coherently expose the theory of accretion disks and
only briefly touch on the main physical phenomena inherent
in them. We refer the reader for the details to a special
publication on accretion disks and present here only the
minimum of knowledge necessary to understand the material
that follows.

The thickness of the accretion disk depends on the balance
of heating and cooling. Effective cooling results in a
geometrically thin disk that can be described by introducing
the surface density S, i.e., the mass of matter per unit surface,

S � 2

�H

0

r dz ;

where H is the disk half-thickness. Variation of the surface
density S with time determines the dynamics of the accretion
disk [38, 40, 44, 45, 47].

Dissipative processes in the disk are responsible for the
radial motion of matter toward the accretor with a velocity
vrad. Equations describing thin disk dynamics are usually
derived from the complete system of 3D2 gasdynamic
equations by integration over disk thickness under the
assumption that the disk is Keplerian (i.e., vf � vK � rOK �����������������
GM2=r

p
) and vrad is independent of z. It follows from the

mass conservation law at a radius r that

r
qS
qt
� q
qr

rvradS � 0 : �2�

It follows from the angular momentum conservation law that

r
q
qt

Sr 2O� q
qr

rvradSr 2O � G ; �3�

where

G � 1

2p
qF
qr

and F is the viscous force moment at the radius r,

F � 2pr nSr
qO
qr

r :

Here, n is the kinematic viscosity coefficient and r qO=qr is the
shear stress.

Combining (2) and (3) yields equations describing the time
evolution of the surface density S and the radial velocity vrad
for a Keplerian disk:

qS
qt
� 3

r

q
qr

� ��
r
p q

qr
�nS ��

r
p �

�
; �4�

vrad � ÿ 3

S
��
r
p q

qr
nS

��
r
p

: �5�

An important property of Eqn (4) is its diffusion type,
meaning that the disk surface density may change only on the
viscous time scale

tn�r� � r 2

n
; �6�

or, in other words, the radial velocity ofmass transfer through
the disk is proportional to � r=tn � n=r.

From the physical standpoint, the radial mass flow in the
disk is described by the diffusion equation rather than the
equation of motion because the gas cannot accrete until the
excess of its angular momentum is eliminated. Viscosity
causes redistribution of the angular momentum inside the
disk, withdrawing it from inner disk regions to outer ones;
this ensures accretion of the inner parts.

We use Eqn(4) and calculate the time evolution of surface
density in the case of a constant viscosity n. Initially, the
surface density distribution is described as a perturbation
(d-function) at the disk half-radius. Time evolution for four
instants t � 1� 10ÿ3t0, t � 2� 10ÿ3t0, t � 4� 10ÿ3t0, and

2 Two-dimensional equations obtained using this approach are not totally

correct [see comparison of the sets of equations (10) and (11) below].
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t � 9� 10ÿ3t0, is presented in Fig. 3 (curves 1 ± 4, respec-
tively). The time scale was chosen as t0 � R 2

d=n based on the
assumed viscosity value nv and the disk radius Rd. Figure 3
also shows vrad (in units of n=Rd) for the same instants. The
results of calculations indicate that the bulk of ring matter
moves to the inside, losing energy and angular momentum.
Only its small portion streams to the outside and acquires
angular momentum. As a result, the starting ring spreads out
into a disk as expected.

The fate of the disk outer layers depends on the fact that a
stationary disk has to permanently eliminate the excessive
angular momentum. Given a large disk, the tidal forces from
the companion star limit its further growth and transfer the
excess of its angular momentum into the orbital momentum
of the binary system. Moreover, an excess of angular
momentum can be transferred from the outer disk edge to
the gas of the circumbinary envelope that afterwards escapes
from the system (matter decretion). This mechanism appears
to coexist with other modes of elimination of the excessive
angular momentum from disk matter (e.g., magnetic wind,
spiral shock waves) that should also be taken into considera-
tion in the analysis of accretion disks.

The disk structure in the direction normal to the disk
plane (along the z axis) is determined by the balance
between the vertical constituent of the pressure gradient
and the z component of the stellar gravity force. Under the
assumption of a negligibly small disk mass,

qp
qz
� r

q
qz

�
GM2���������������
r 2 � z 2
p

�
: �7�

For a thin disk, z5 r; therefore, Eqn (7) can be reduced

qp
qz
� GM2rz

r 3
: �8�

For the purpose of assessment, it is convenient to use a
simplified equation derived from (8) under the assumption
that

qp
qz
� p0

H
; z � H ; cs �

������
p0
r0

r
;

where the subscript 0 corresponds to the values taken on the
equatorial plane. Hence, the resulting equation for the disk
half-thicknessH becomes

H '
������������������

c 2s
GM2=r 3

s
� cs
vK

r ; �9�

where cs is the speed of sound. In real astrophysical disks, a
gas particle undergoes the action of additional forces (such as
the pressure gradient), in addition to that of the centrifugal
force and gravity forces. This means that the rotation law in
such disks may differ from the Keplerian one. In this case, the
gas particle dynamics in the disk are described by the
momentum conservation equation in the radial direction
and by the hydrostatic equilibrium equation in the vertical
direction. The corresponding set of equations can be written
in the following form under the assumption of axial symmetry
and the polytropic gas state equation:

qvrad
qt
� vrad qvrad

qr
� 1

r
qp
qr
� ÿ qF

qr
� v

2
f

r
;

1

r
qp
qz
� ÿ qF

qz
; �10�

p � Kr 1�1=n :

Thin disks are usually described based on the standard set
of `flat' equations averaged over z:

qvrad
qt
� vrad qvrad

qr
� 1

S
qP
qr
� ÿ qF0

qr
� v

2
f

r �11�
P � K1S 1�1=n1 ;

where, as usual, S is the surface density,

P � 2

�H

0

p dz

is the `flat' pressure, and K and K1 are constants. In system
(11), F0 stands for the first term in the expansion of the
potential F with respect to z in the vicinity of the equatorial
plane (the prime denotes differentiation with respect to z):

F � F0�r� � 1

2
F 000 �r� z 2 � . . . ;

and n1 is the `flat' polytropic index.
However, the sets of equations (10) and (11) are not

equivalent in the general case [48, 49]. Indeed, it follows
from the second equation in (10) that the function

w � F�
�
dp

r

8
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Figure 3.Time evolution of a gaseous ring under the effect of viscosity. The

figure shows distribution of the surface density S and the radial velocity of

spreading vrad from a radius r for four time instants (see text for details).
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depends on r alone, which allows writing the density r as

r �
�
w�r� ÿ F0�r� ÿ �1=2�F 000 �r� z 2

K�n� 1�
�n

:

Integrating the expression for the density with respect to z
from ÿH to H and taking into account that the disk half-
thickness is defined in this case as H � �����������������������������

2�wÿ F0�=F 000
p

, we
obtain the relation between w and S:

w�r� � F0�r� � C�r�S 2=�2n�1� ;

where

C�R� � �F 000 �R��1=�2n�1� :
To obtain a `flat' equation for momentum in the radial

direction with correct averaging, it is necessary to differenti-
ate w�r� with respect to r. Differentiation yields

qvrad
qt
� vrad qvrad

qr
� 2

2n� 1
C�r�Sÿ�2nÿ1�=�2n�1�

� dC

dr
S 2=�2n�1� � ÿ qF0

qr
� v

2
f

r
: �12�

This equation is different from its counterpart in (11), which
can be written as

qvrad
qt
� vrad qvrad

qr
� K1

n1 � 1

n1
Sÿ�n1ÿ1�=n1 � ÿ qF0

qr
� v

2
f

r
:

�13�

Thus, Eqn (12) differs from the standard Eqn (13) not
only in that it contains an additional termwith dC=dr but also
in that it has different powers of S in the term describing the
pressure gradient if identical polytropic indices n1 � n are
used in both full and `flat' models. This difference disappears
only in the isothermic case corresponding to n!1, where
dC=dr! 0. 3 In the above axisymmetric polytropic case, the
disk can be described in the `flat' variant with modified
momentum equation (12).

Modified flat equations in the nonaxisymmetric poly-
tropic case (49) are extremely difficult to analyze. That is
why complete 3D equations are preferred to describe
accretion disks in an external gravitational field. As regards
the more general case in which disk matter is not described by
a barotropic equation of state 4 but has a form p � p�r; e�, the
possibility of obtaining the correct closed system of `flat'
equations remains open [49]. We emphasize that the impor-
tance of the three-dimensional approach stems from the fact
that an averaged `flat' consideration of thick discs is
impossible in principle.

Dissipative viscous processes play a key role in the physics
of accretion disks. We consider an equilibrium gaseous
configuration near the gravitating center. Dissipative pro-
cesses cause redistribution of the angular momentum and
thereby induce the radial motion of matter. If the angular
momentum is either lost by or withdrawn from the system,
matter starts moving toward the gravitating center; this
sooner or later leads to accretion. It is therefore possible to

state that only the presence of dissipative processes turns the
initial equilibrium gaseous configuration into an accretion
disk.

The source of viscosity in differentially rotating gaseous
disks remains to be discovered; it accounts for the popularity
of the phenomenological theory of the a-disk. This theory is
based on the parameterization of the kinematic viscosity
coefficient proposed in Refs [41, 42] in the form

n � acsH ; �14�
where a is a dimensionless parameter.

The development of a correct accretion disk model
requires knowledge of the viscosity n or, which is equiva-
lent, the coefficient a. Some data on the range of possible a
values in accretion disks are available from observations.
According to sufficiently reliable experimental estimates,
a � 0:01ÿ1 (see, e.g., Refs [50 ± 53]). Evidently, these values
are much greater than the corresponding molecular viscosity
�a � 10ÿ11�. It remains to find the physical mechanisms
responsible for such a high viscosity in accretion disks.

2.2 Temperature of accretion disks

The aim of the present section is to estimate the possible

temperature range of accretion disks for different accretion

ratesM
�
, i.e., to derive the dependence T�M

�
�.

2.2.1 Basic equations. As shown in Section 2.1, the vertical
structure of an accretion disk depends on the equilibrium
between the vertical component of the gravity force and the
pressure gradient (vertical). It is, in turn, determined by the
balance of gas heating and cooling processes. The process of
heating is associated with viscous dissipation of kinetic
energy; also, it is related to volumetric radiative heating
caused by emission from the central object. The cooling
process is underlain by a few mechanisms: volumetric
radiation cooling, radiative thermal conductivity, and
convection. Assuming that the advective terms and terms
related to adiabatic heating/cooling are small, we can write
the steady-state energy equation

Q� ÿQÿ � 0 �15�
as follows:

(1) In an optically thin case where Q� is determined by
volumetric radiative heating and viscous heating, and Qÿ is
given by volumetric radiative cooling,

Q�visc�r;T � � n 2
�
G�T;Twd� ÿ L�T �� � 0 : �15a�

Here, G�T;Twd� is a function of the radiative heating
depending on the gas temperature T and the temperature of
the central object (white dwarf) Twd, L�T � is the function of
radiative cooling, and Q�visc�r;T � is the viscous heating.

(2) In an optically thick case where Q� is determined by
viscous heating and Qÿ by radiative thermal conductivity, 5

and convection occurs in the vertical direction,

Q�visc�r;T � ÿ
qFrad

qz
ÿ qFconv

qz
� 0 : �15b�

Here, Frad and Fconv are the radiative and convective energy
fluxes.3 It is worthy of note that a similar consideration of a self-gravitating disk

demonstrates that the standard `flat' equations are also valid only in one

case, at n � 1 [49].
4 Exemplified by the equation of state p � �gÿ 1�re for an ideal gas.

5 Molecular heat conductivity is disregarded because it is low compared

with the radiative one.
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To find the functions entering Eqns (15a) and (15b), we
need the continuity equation

ÿM
�
� 2p

�
rrvr dz � const ; �16�

the angular momentum balance equation l � r 2OK in the
radial direction

q
qr
�rrvrl� � q

qr

�
nrr 2

qOK

qr

�
; �17�

which implies that

jvrj � ÿn qOK

qr
Oÿ1K rÿ1 ' nrÿ1 ; �18�

and the viscous heating equation

Q�visc � rn
�
r
qOK

qr

�2

: �19�

Here, OK �
���������������
GM=r 3

p
is the angular rotation velocity of the

Keplerian disk, M is the mass of the central object, r is the
matter density, vr is the radial velocity, and n is the kinematic
viscosity coefficient. As noted above,molecular viscosity does
not ensure the necessary dissipation. Therefore, it is usually
assumed that dissipative processes are associated either with
turbulent viscosity or with magnetic viscosity.

The vertical pressure gradient can be found using the
equation for hydrostatic equilibrium in the vertical direc-
tion:

1

r
qP
qz
� q

qz

�
GM���������������
r 2 � z 2
p

�
' ÿO 2

Kz ; �20�

and the equation of state for an ideal gas with emission

P � rRT� 1

3
aT 4 :

Here, as usual, P is the pressure,T is the temperature,R is the
gas constant, and a is the radiation constant. All the equations
are written in the cylindrical coordinate system �r; z�.

2.2.2 Solution method. To find the dependence T�M
�
�,

Eqns (16) and (18) are needed, along with the expressions

for the viscosity coefficient n. We use the expression for n
proposed in Refs [41, 42]: n � acsH, where H is the disk half-

thickness and cs '
��������������������������������������RT� �1=3�aT 4=r

p
. With the depen-

dence of density on z neglected and with the value of r
averaged over the height (hereinafter denoted as �r) used,

integration of Eqn (20) gives the following expression for the

disk half-thickness H:

H � csOÿ1K :

The value of cs can be found from the temperature in the disk

equatorial plane, z � 0. This procedure is sufficiently correct

in view of the uncertainty in the parameter a. It results in the

equation relatingM
�
, T
��
z� 0

, and r at given r and a:

M
�
� 2paOÿ2K rc 3s � 2paOÿ2K

�
RTr 2=3 � 1

3
aT 4rÿ1=3

�3=2

:

�21�

Equation (21) reduces to a cubic equation for r 1=3 and has
two solution variants: either one negative real and two
complex roots or three real roots, one of which is negative.
In terms of the physical meaning of density, only positive real
roots are meaningful. These roots exist under the condition
that

M
�
>

���
3
p

p
�����Rp aaT 9=2

O 2
K

; �22�

yielding the minimal accretion rate at given T, r, and a.
Condition (22) was derived using the equation of state with
the radiation pressure taken into account.

This estimate can be written as

T < 7� 105
�

r

Rwd

�ÿ2=3� M
�

10ÿ9M� yrÿ1

�2=9� a
0:1

�ÿ2=9
�K� ;

where Rwd � 109 cm is the radius of the accretor (white
dwarf).

We consider condition (22) for the outer regions of an
accretion disk, assuming r � A=5, where A is the distance
between components of the binary system and A � 1:42R�,
as in IP Peg; then,

M
�
> 10ÿ9

�
T

105 K

�9=2� a
0:1

�
�M� yrÿ1� : �23�

With condition (22) satisfied, the roots of Eqn (21)

relating r, T, andM
�
at given r and a can be written as

r � �RT �ÿ3=4
�
M
�
O 2

K

2pa

�
sin3

"
1

3
arcsin

 �����
R
p

aT 9=2 2pa

M
�
O 2

K

!#
;

r � �RT �ÿ3=4
�
M
�
O 2

K

2pa

�
� cos3

"
1

3
arcsin

 �����
R
p

aT 9=2 2pa

M
�
O 2

K

!
� p

6

#
;

where numerical factors
���
3
p

=2 ' 1 are omitted for
simplicity. The first root in Eqn (21) corresponds to the
so-called radiation-pressure-dominated disks: b �
�1=3�aT 4=rRT > 1, and the second one corresponds to
those dominated by gaseous pressure: b < 1.

These formulas describe two branches of the two-

parameter dependence r�M
�
;T �. For our purposes, i.e., for

calculating the dependence T�M
�
�, an additional equation is

needed, namely the thermal balance equation (15). It follows

from Section 2.2.1 that Eqn (15) has different forms

depending on the optical thickness of the disk; hence, the

necessity to calculate the optical density.

2.2.3 Optical thickness. The optical thickness t is the product
of the absorption coefficient kabs, the density, and the
geometric thickness of the layer: t � kabs rl. The key para-
meter for disk accretion is the ratio of the geometric thickness
of the layer at which the value of t � 1 is achieved to the disk
half-thickness: l t� 1=H. Simple transformation yields

l t� 1

H
� 2pa

kabsM
� c 2s O

ÿ1
K : �24�
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The absorption coefficient kabs shows a complex depen-
dence on T and r and on the degree of ionization, chemical
composition, etc. In this review, a simple approximation for
kabs�T; r� is accepted [14, 54, 55]:

kabs�T; r� �

k1 r 2=3T 3 ; k1 � 10ÿ8 ;

k2 r 1=3T 10 ; k2 � 10ÿ36 ;

k3 rTÿ5=2 ; k3 � 1:5� 1020 ;

k4 ; k4 � 0:348 :

8>>>>>><>>>>>>:
According to Ref. [55], these four subregions correspond to
scattering on molecular and atomic hydrogen, to free ± free
and free ± bound transitions, and to Thompson scattering.
The boundaries of the subregions at which transitions from
one expression to another occur are given by the matching

condition for the kabs values computed from these expres-
sions. The plots of kabs versus T and r are presented in Fig. 4.
It shows regions with dkabs=dT > 0, where a thermal
instability develops when the dependence between the sur-
face density and the disk temperature follows an S-curve on
the �S;Teff� plane. Thermal instability is frequently used to
explain outbursts of dwarf novae (see, e.g., Refs [52, 56]). It is
evident, however, that this approach holds only for suffi-
ciently cold disks.

We return to Eqn (21), set a � 0:1 and r � A=5, and
consider disks dominated by gaseous pressure for which
b � �1=3�aT 4=rRT < 1. Figure 5a shows a shaded region in
the �T;M

�
� plane corresponding to all possible solutions for

the disks under consideration. The dashed line corresponds to
condition (23), under which Eqn (21) can be solved. Solutions
are absent in the region below this line. The solid line is the
boundary between optically thick and thin solutions: hor-
izontal and vertical hatchings show regions of optically thick
and thin disks, respectively. A similar analysis for disks
dominated by radiation pressure �b > 1� is presented in
Fig. 5b.

It follows from Fig. 5a that most gaseous pressure-

dominated disks are optically thick at real values

M
�
2 �10ÿ12; 10ÿ7�M� yrÿ1, although solutions correspon-

ding to optically thin cold disks are conceivable at small M
�
.

Figure 5b shows that the majority of the disks dominated by

radiation pressure are optically thin, while thick hot disks can

exist only at largeM
�
.

2.2.4 Optically thick disks. In Section 2.2.2, Eqn (21) relating

M
�
, T, and r at given r and a was derived. Additionally using

thermal balance equation (15) allows reducing the number

of unknowns and finding the sought relation between M
�

and T.

The vertical distribution of temperature in optically thick

disks is described by the equation for radiative thermal

conductivity with a source due to viscous heating (15b). This
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Figure 4.The dependence kabs�T � for the values n � 1018 cmÿ3, 1017 cmÿ3,
1016 cmÿ3, 1015 cmÿ3, and 1014 cmÿ3 (from top down) [55].
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radiation pressure.
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equation can be written as

qe
qt
� q

qz

�
1

kabs r
q
qz

�
1

3
acT 4

��
� rac 2s OK ; �25�

where e is the specific internal energy and c is the speed of
light. Equation (25) can be solved if boundary conditions are
known. Due to the problem symmetry, the temperature
derivative in the equatorial plane vanishes, T 0jz� 0 � 0. The
temperature at the upper boundary of the disk is found from
the condition G�T�;Twd� � L�T��. The functions G�T;Twd�
and L�T � have an intricate form, but they are well known
(see, e.g., Refs [57 ± 59]). The temperature determined from
the equality of these functions is T�H� � T� � 13;600 K (the
temperature of the central object, a white dwarf, is
Twd � 70;000 K).

The solution of Eqn (25) comes to the steady-state regime
when the characteristic thermal conductivity time

tdiff ' Rkabs r
2H 2

acT 3

becomes comparable with the viscous heating time

theat ' RT
ac 2s OK

' aÿ1Oÿ1K :

We note that Eqn (25) can be integrated analytically in the
stationary case. We set U � T 4, U� � T 4

� , and U0 � U jz� 0

and again assume that r is independent of z; then,

d

dz

�
1

kabs r
d

dz

�
ac

3
U

��
� ÿrac 2s OK :

Integration over z leads to

1

kabs r
d

dz

�
ac

3
U

�
� ÿrac 2s OKz ;

and the integration constant vanishes because U 0jz� 0 � 0.
For simplicity, we rewrite the last equation as

1

kabs

dU

dz
� dB

dz
� ÿ 3

ac
r 2ac 2s OKz ;

where the function B�U� found from the differential equation

dB

dU
� 1

kabs�U; r�

can be written in analytic form for a fixed r. Integration of the
last equation over z yields

B�U� � B�U�� � 3

2ac
r 2ac 2s OK�H 2 ÿ z 2� ;

or for z � 0,

B�U0� � B�U�� � 3

2ac
r 2ac 2s OKH

2 :

Using the expressions

c 2s �
�
RU 1=4

0 � 1

3

aU0

r

�
;

H 2 �
�
RU 1=4

0 � 1

3

aU0

r

�
Oÿ2K

gives an algebraic equation for U0:

B�U0� � B�U�� � 3

2ac
r 2aOÿ1K

�
RU 1=4

0 � 1

3

aU0

r

�2

:

This equation implicitly defines the dependence U0�r�, i.e.,
T�r�. The expression of M

�
in terms of r and T gives the

dependence M
�
�r� �M

� ÿ
T�r�; r� and therefore the sought

dependence T�M
�
� in parametric form. Formally, the solu-

tion was also obtained in optically thin regions, but these

points were discarded on account of the above assumptions.

We consider the graphical representation of the results of

the solution of this equation. Asterisks in Fig. 6a denote the

dependence T�M
�
� for a � 1 and r � A=5. Similarly to Fig. 5,

the dashed line delimits the region of solutions of Eqn (21)

from below, and the solid line separates regions of optically

thin and thick disks. Figure 6b presents the solutions for

a � 0:1 and a � 0:01, respectively, and Fig. 6d shows the

dependence of the accretion rate on the disk thickness. All the

disks are geometrically thin, i.e.,H5 r.

Radiative thermal conductivity is not the sole mechanism
of the released heat transfer to optically thin regions.
Convection may also play an important role under certain
conditions. Neglecting radiation pressure, we can write the
convective flux as [60, 61]

Fconv � cP r
�jgj
T

�1=2
l 2

4

�
D�HT ��3=2 ;

D�HT � � ÿ T

cP

qS
qz

;

where cP is the thermal capacity at a constant pressure,
S � R ln �T 3=2=r� is the specific entropy, g � ÿO 2

Kz is the
acceleration of gravity, and l is the mixing length assumed to
be given by l � aH. To determine the vertical temperature
distribution with the convection taken into account, we must
solve the equation

qe
qt
� q

qz

�
1

kabs r
q
qz

�
1

3
acT 4

��
ÿ qFconv

qz
� rac 2s OK �26�

with the same boundary conditions as for Eqn (25).
Equation (26) does not allow a simple analytic solution
and was solved numerically by the relaxation method. The
solution obtained is shown by squares in Fig. 6a ± d. It
appears that convection is essential only for a ' 1.

Summarizing the results of the above analysis, it may be

stated that an optically thick disk at smallM
�
has the constant

temperature T � T� � 13;600 K; at greater M
�
, the disk

temperature increases as T /M
�
1=3. This means that for

realistic parameters of accretion disks in CBS M
�
'

�10ÿ12ÿ10ÿ7�M� yrÿ1 and a ' 10ÿ1ÿ10ÿ2, the gas tempera-

ture in the outer regions of the disk �r ' A=5ÿA=10� ranges
from � 104 K to � 106 K.

In solving Eqn (25) with different r, it is possible to
compute dependences T�r� and r�r�. Analysis of the
obtained results shows that T / rÿ0:8, r / rÿ1:8, in perfect
agreement with the result T / rÿ3=4 in [42].
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2.2.5 Optically thin disks. The temperature of optically thin
disks is a function of the balance between the radiative
heating G�T;Twd� and viscous heating (19) on the one hand,
and the radiative cooling L�T � on the other hand.

Thermal balance equation (15a), which can be written in
the form

rac 2s OK � r 2m 2
p

ÿ
G�T;Twd� ÿ L�T �� � 0

reduces to a quadratic equation for r:

a
�
rRT� 1

3
aT 4

�
OK � r 2mÿ2p

ÿ
G�T;Twd� ÿ L�T �� � 0 :

The solution of this equation at fixed r and a gives the

dependence r�T � and then T�M
�
�. Formally, the solution

was also obtained in optically thick regions, but these points

were discarded on account of the above assumptions.

The analysis in Section 2.2.3 has shown that most gaseous

pressure-dominated disks are optically thick, and solutions

corresponding to optically thin discs are possible only at

small M
�
. In contrast, disks dominated by radiation pressure

are typically optically thin. Radiation pressure dominates

only in inner disk regions; for this reason, further analysis is

concerned with the case r � A=20 (for the typical dwarf nova

IP Peg, it corresponds to five radii of the accretor, the white

dwarf).

The results of calculations are presented in Fig. 6e, where

asterisks denote the dependences T�M
�
� for a � 1, 0:1, 10ÿ2,

and 10ÿ3 (from top to bottom) and r � A=20. In these

solutions, the disks are geometrically thick, i.e., H ' r. We

note that the starting assumptions of the model restrict its

applicability to geometrically thin disks; therefore, solutions

for geometrically thick disks are formal.

The analysis of the principal heating and cooling

processes in accretion disks of binary systems has demon-

strated that the gas temperature in the outer regions of

accretion disks in a CBS at realistic parameters of the disks

(M
�
' 10ÿ12ÿ10ÿ7 M� yrÿ1 and a ' 10ÿ1ÿ10ÿ2) ranges from

104 K to � 106 K.

3. Waves in accretion disks

A correct description of matter gasdynamics in semidetached
binary systems requires solving the complete set of 3D
equations. Unfortunately, solving this task was for a long
time hampered by the lack of necessary computing facilities;
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Figure 6. (a) Solutions of Eqn (25) for an optically thick disk (asterisks) at a � 1 and r � A=5 and solutions of Eqn (26) with convection taken into account

(squares); the dashed line delimits the region of solutions of Eqn (21) from below, the solid line separates regions of optically thin and thick disks. (b) The

same at a � 0:1. (c) The same at a � 0:01. (d) Disks dominated by gaseous pressure. Solid lines show possible states of the disk on the �H=r;M
�
� plane for

r � A=5. Curves marked by asterisks are solutions of Eqn (25) with radiative thermal conductivity and viscous heating for a � 0:1, 10ÿ2, and 10ÿ3 (from
top down). The curve marked by squares is the solution of Eqn (26) with radiative thermal conductivity and viscous heating for a � 1. The dashed lines

delimit regions of solutions of Eqn (21) from below for a � 1, 0:1, 10ÿ2, and 10ÿ3 (from top down). (e) Solutions for an optically thin disk (asterisks) for

a � 1, 0:1, 10ÿ2, and 10ÿ3 (from top down) and r � A=20. The dashed lines delimit the region of solutions of Eqn (21) from below, the solid lines separate

regions of optically thin and thick disks.
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the flow structure was analyzed using 2D models. Pioneering
studies [62 ± 64] reported over 15 years ago opened up the
possibility for numerical investigations into the gasdynamics
of matter transport in the framework of more realistic 3D
models. The present section reviews the results of three-
dimensional numerical analysis of the flow pattern in
semidetached binary systems obtained in Refs [65 ± 72]. The
total variation diminishing (TVD) method for the solution of
a set of gasdynamic equations allows considering the gas flow
morphology in a system despite the presence of strong density
gradients. The gasdynamics of matter overflow in a semi-
detached system was investigated at large time intervals; this
allowed elucidating specific features of the stream of the flow
pattern in the equilibrated (steady-state) regime.

3.1 Shock waves
Analysis of the main heating and cooling processes in
accretion disks of binary systems reported in Section 2.2.
indicates that for realistic parameters of accretion disks, the
gas temperature in their outer regions ranges from 104 K to
� 106 K, meaning that both hot and cold accretion disks can
form in these systems.

We consider the gasdynamics of matter in binary systems
with hot disks. Solutions were obtained in the cases where the
temperature of the outer regions of an accretion disk was
� �100ÿ200� � 103 K.

Figure 7a, b gives some idea of the stream flow morphol-
ogy in the systems being examined. The density and velocity
vector distributions in the equatorial plane of the systems are
illustrated by Fig. 7a; the velocity field is depicted in Fig. 7b as
tracks of numerous particles. Figure 7a also shows the flow
line (light with round dots) delimiting the accretion disk and
the flow line (black with squares) passing through the shock
wave at the edge of the stream. According to Ref. [37], the
gasdynamics of matter flow in a semidetached binary system
depends on the stream of matter from L1, the quasielliptic
accretion disk, the circumdisk halo, and the circumbinary
envelope. Classification of the main elements of the overall
flow pattern is based on their physical properties: (1) if gas
motion is unrelated to the gravitational field of the accretor,
the gas forms an circumbinary envelope filling the space
between the components; (2) if the gas rotates about the
accretor and thereafter mixes with the material of the stream,
it does not belong to the disk but forms a circumdisk halo;
(3) the accretion disk is formed from streammatter that, once

X=A
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Figure 7. (a)Distribution of density and velocity vectors in the equatorial plane of a systemwith a hot accretion disk. CoordinatesX andY are presented in

units of the distance A between the components. The asterisk marks the accretor. Dashed curves are boundaries of the Roche lobe. The light line with

round dots is the flow line delimiting the accretion disk. The black line with squares is the flow line passing through the shock wave at the stream edge.

Larger dots and squares on the flow lines correspond to the shock wave region. The light dotted curve is an arm of the tidal shock wave. (b) Visualization

of the velocity field in the equatorial plane of the system. CoordinatesX andY are in units of the distanceA between the components. The asterisk marks

the accretor. The dashed curve is the boundary of theRoche lobe. (c) Distribution of density and velocity vectors in the equatorial plane of a systemwith a

cold accretion disk. (d, e) The density and velocity vector isolines (d) and visualization of the velocity field (e) in the region of stream ±halo interaction in

the equatorial plane of the system for the solution with a cold accretion disk.
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entering the accretor's gravitational field, no longer interacts
with the stream and moves toward the star, losing its angular
momentum.

Analysis of the available data shows that a self-consistent
solution of the problem does not contain shock interaction
between thematter stream from the libration point L1 and the
arising accretion disk (`hot spot'). Interaction of the disk halo
gas and circumbinary envelope with the stream results in a
shockwave at the edge of the stream. This shock wave (the so-
called hot line) is readily apparent in Fig. 7a, b.

The tidal impact of the donor star gives rise to the spiral
shock wave shown by the dotted line in Fig. 7a. The solution
with a high gas temperature contains only one arm of the
spiral shock wave; the flow structure in the region where
another arm ought to be present is determined by the matter
stream from L1. It is worthy of note that in this case, the tidal
spiral wave enters deep into the disk interior.

We consider matter flow morphology in a semidetached
binary system with a stationary cold (T � 1:4� 104 K) disk.
Figure 7c depicts the distribution of density and velocity
vectors in the system equatorial plane. Shock waves arising in
the disk are seen in Fig. 7c as confluent density isolines. The
closeness of isolines at the disk edge corresponds to a sharp
decrease in density, from characteristic disk values to back-
ground ones. Figure 7d, e depicts the enlarged region of the
stream± halo interactions in the equatorial plane; density
isolines and velocity vectors are shown in Fig. 7d and the
field of velocities in Fig. 7e. It can be seen that the interaction
between the circumdisk halo and the stream has all the typical
characteristics of an oblique collision of two streams. The
resulting structure of two shock waves and the tangential
discontinuity separating them is well apparent in Fig. 7d, e.
The region of shock interaction between the gas of the disk
halo and the stream lies outside the disk and has an intricate
shape. Parts of the halo distant from the disk have low density
and their interaction with the stream runs generates a shock
wave at the edge of the stream. The shock wave bends as the
halo gas density increases and eventually finds itself located
along the stream edge. The shock wave is sufficiently long and
may be called a hot line. It follows from the above general
characteristics of the stream flow pattern that in the
interaction region, the halo gas and the stream gas pass
through shock waves and intermingle; the resulting mixture
travels along the tangential discontinuity between the two
shock waves. Thereafter, this material is used to build up the
disk proper, the halo, and the circumbinary envelope.

These peculiarities of the stream flow in systems with hot
and cold accretion disks are schematically presented in
Fig. 8a, b, showing part of the donor filling its Roche lobe,
the position of the libration point L1, the stream of matter
outflowing from L1, and the location of the accretor. A three-
dimensional gasdynamic computation demonstrated that the
solution for a cold accretion disk has the same qualitative
features as the solution for high temperatures: the stream ±
disk interaction is shock-free, and the region of enhanced
energy release (shock wave, HL) resulting from interactions
between the disk halo gas and the stream is situated outside
the disk. At the same time, the cold accretion disk (zones A
and B in Fig. 8) is much denser than stream matter, its height
diminishes, and the shape changes from quasielliptical to
practically circular. The circumdisk halo (zone C in Fig. 8)
also contracts significantly. The second arm of the tidal spiral
shock wave forms, but neither arm reaches the accretor; both
stay in the outer regions of the disk.

3.2 Precession density wave in cold disks
Bearing in mind that the stream of matter has only a weak
influence on the dense inner parts of the disk and that shock
waves (the hot line and two arms of the tidal waves) are
located at the disk periphery, one more element of the flow
structure can be distinguished in the cold solution: it is the
inner region of the disk (zone A in Fig. 8) where the effect of
the aforementioned gasdynamic perturbations may be
neglected. We consider the behavior of matter in the inner
disk regions unexposed to gasdynamic perturbations. In the
absence of external impacts, a particle revolves around a
gravitating center (accretor) in an elliptic orbit. It is known
(see, e.g., Ref. [38]) that the effect of the second component in
a binary star is the retrograde precession of the particle orbit
as it revolves around the accretor (i.e., revolution of themajor
semiaxis of the orbit against the orbital motion); the
precession rate decreases as the particle approaches the
accretor.

An accretion disk is formed of many particles, each
traveling in its own elliptical orbit. Because the particles
interact with one another and form a gas, the disk should be
considered in the gasdynamic approximation, necessitating
transformation from orbits to flow lines, also elliptical in
shape. As is known, there can be no mutually perpendicular
intercrossing stream flows in a gas; therefore, flow lines can be
only tangential to one another.

Flow

A star
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B
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Flow
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Figure 8. Schematic representation of themain features of amatter flow in semidetached binary systems at high (a) and low (b) gas temperatures. Zones A

and B are accretion disks, C is the circumdisk halo, HL is the hot line, I is the arms of the spiral tidal shock wave, and L1 is the libration point. The dotted

line shows the Roche equipotential containing the inner Lagrange point.
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It is clear from geometric reasoning that a disk of disjoint
ellipses can be constructed only by fitting one ellipse into
another. A round disk is formed in this way given zero
eccentricity of all elliptic flow lines. In the case of a nonzero
eccentricity of these lines, an `equilibrium solution' is feasible
in which major semiaxes of all flow lines lie on the same
straight line. If the system contains an external factor
(inevitable in a binary star) and the orbit precession rate
increases as the major semiaxis lengthens, flow lines distant
from the accretor outrun those with smaller semiaxes.
Because there can be no intercrossing stream flows in a
gasdynamic disk, an equilibrium is reached after a time and
all the lines start precessing with the same angular rate, i.e., in
a solid-state mode. Because precession is retrograde and its
rate depends on the characteristic size of the orbit, flow lines
distant from the accretor must rotate through a larger angle
and opposite to matter rotation.

The precession rate varies from that of outer (`fast') orbits
to the precession rate of inner (`slow') orbits. The position of

an inner orbit is determined by the fact that the effect of the
second component in this disk region is negligibly small
compared with that of the accretor gravitational field and
may be disregarded. The position of the outer orbit is given by
the size of the region free from gasdynamic perturbations
because perturbations tend to disturb the regularity of flow
line precession. Clearly, the position of both inner and outer
orbits depends on the system parameters proper and on the
parameters of mass exchange. Therefore, the mean rate of
precession can be expected to differ in different systems. The
formation of spiral structures in accretion disks is considered
in Refs [68, 73, 74].

Analysis of the aforementioned results of three-dimen-
sional numerical modeling (Fig. 7c) confirms the hypothesis
of spiral density wave formation in the interior of a cold
disk. Figure 9a describes the propagation of this wave,
showing distribution of density and velocity vectors in the
equatorial plane of the system for two time instants differing
by 1.5 orbital periods. The two-arm spiral wave rests in the
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noninertial reference frame connected with the binary star,
whereas the precession wave slowly propagates in the
laboratory system of coordinates (the stationary observer
reference frame); its rotation period in the noninertial
reference frame is slightly longer than the orbital period.
Figure 9b shows two variants of the motion of a radial matter
flow over the disk toward the accretor in the equatorial plane
of the system. The flow is normalized by its maximum value.
Evidently, the line connecting the peaks of the matter stream
toward the accretor looks like a spiral. Due to an increase in
the radial matter flow behind the precession density wave, the
accretion rate increases roughly by one order of magnitude
compared with its value in the solution disregarding such a
wave.

Perfect agreement between the results of qualitative
analysis and the theory definitively confirms that this wave
is produced by the precession mechanism.

3.3 Density wave in hot disks
It was found in Refs [65, 75] that even a small alteration of the
mass exchange rate in a binary system perturbs the equili-
brium of the hot accretion disk and gives rise to a bunch of
matter traveling over the disk at a velocity roughly 6 times
Oorb (Fig. 10).

The results of computations indicate that the bunch is a
long-lived structure whose average characteristics remain
unaltered at times of the order of tens of orbital periods of
the system. This situation is illustrated by Fig. 11 showing
time-dependent variations in the average density of matter
passing through the halfplane perpendicular to the system
plane that cuts the disk along the line connecting the
components in the direction from the accretor to the outer
Lagrange point (planeXZ,Y � 0,X > A). The three curves in
Fig. 11 describe a 2-, 10-, and 105-fold decrease in the mass
transfer rate (top, intermediate, and bottom curves, respec-
tively). Evidently, the general alteration of density is accom-
panied by its quasiperiodic fluctuations caused by the
traveling bunch. Analysis of the above curves indicates that
a change (decrease) in themass transfer rate is followed by the
formation of a compact mass that moves in the disk with the
period � �0:15ÿ0:18�Porb. It can be concluded from the
previously cited data that the bunch does not spread out
under the action of dissipative processes (�r changes only in
the initial transition period), and its rotation frequency
remains practically unaltered until the disk disappears.

Papers [33, 76] give evidence of the wave nature of this
bunch, which is actually nothing but a single-arm spiral
density wave. It is known from the well-developed theory of
galactic spiral density waves that such a wave rotates in a
solid-state mode and is not extended by differential rotation.

As mentioned in the Introduction, the flow of matter in a
binary system is determined by the field of forces given by
Roche potential (1). To clarify the bunch nature, we first
consider oscillations that the gravity potential can excite in
the disk plane. We subtract the spherically symmetric
potential of the accretor FA from the total potential,
~F � Fÿ FA, and examine the Fourier spectra in the
azimuthal harmonics of ~F in different radial regions of the
disk. Figure 12a shows amplitudes of the Fourier spectrum
components of ~F for different radial regions of the accretion
disk. Evidently, the entire region under consideration is
dominated by the harmonic m � 2. The predominance of
the second harmonic reflects the character of the tidal
influence of the donor, also confirmed by the monotonic

increase in the absolute value of the potential with increasing
the disk radius. The maximum absolute value of the
nonspherical part of the potential is recorded in the periph-
eral disk region closest to the donor.

However, results of calculations show convincingly that
the gravity force is not crucial for the distribution of disk
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matter. We consider the spectrum of the `refined' 6 surface
density ~s following the perturbation, i.e., after the mass
exchange rate is altered and a bunch is formed in the
accretion disk. The corresponding harmonics of the surface
density spectrum are presented in Fig. 12b. Here, the Fourier
spectrum of the surface density is dominated by the mode
m � 1, in agreement with the presence of a compact mass. A
similar picture is observed in the distribution of radial velocity
harmonics (Fig. 12c).

Analysis of the maximum density phase curve of the first
azimuthal harmonic of the density profile at different time
instants shows that the position of the maximum-density
phase curve of the m � 1 mode is at any time closely
associated with the bunch. Moreover, consideration of all
maximum-density phase curves of the first azimuthal harmo-
nic of the density profile during the bunch orbital period
(Fig. 13a) reveals that a curve does not appreciably change its
shape after complete revolution. This observation suggests
that differential rotation of the disk does not degrade this
harmonic.

Taken together, the phase rotation velocity of the m � 1
mode differing from that of the tidal mode and the solid-state
character of its rotation give evidence that the bunch is a
spiral density wave. According to the theory of spiral density
waves in galactic disks, a single-arm spiral wave is associated
with an anticyclonic eddy having its center on the corotation
radius (see, e.g., Ref. [77]). The center of the anticyclone must
be located in the vicinity of the surface density maximum.
Analysis of the field of velocities on the disk plane in a

coordinate system connected with the bunch shows the
presence of an anticyclonic eddy behind the compact mass
(Fig. 13b). The center of the anticyclone marked by a black
star is situated in the neighborhood of the surface density
maximum (i.e., close to the bunch), in perfect agreement with
the theory. Moreover, the center of the anticyclone lies
exactly on the corotation circle (shown by the light solid line
in Fig. 13b) as predicted by the theory of spiral density waves.

To summarize, the following argument leads to the
conclusion that the m � 1 mode is a spiral-whirling single-
arm structure.

(1) Them � 1mode rotates with a phase velocity different
from that of the tidal m � 2 mode.

(2) Them � 1mode undergoes practically no deformation
of the maximum disk surface density phase by differential
rotation.

(3) Because the computed corotation radius of the m � 1
mode lies in the region strongly dominated by this mode, we
could expect (in analogy with galactic disks) a single anticy-
clone with its center on the corotation circle and in the
respective region (i.e., in the vicinity of surface density
maximum). The anticyclone actually turned out to be located
exactly in this region of the disk.

3.4 Observational manifestations of waves
in accretion disks
3.4.1 Hot line. Analysis of light curves is one of the most
informative methods for the study of CBSs. The short orbital
period (a few hours) of these stars allows determining the
major properties and characteristic parameters of the
processes proceeding in the system in a relatively short
observational time. Light curves of an eclipsing CBS have
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distribution.
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additional peculiar features that cannot be explained in terms
of the `cold star ± white dwarf ± accretion disk' model.
Specifically, most light curves of eclipsing CBSs show the
so-called hump. It was suggested in [78, 79] that the hump is
produced by the glow of the hot spot arising at the border of
the accretion disk where a stream of matter from L1 hits it.
During the last 30 ± 35 years, the hot-spot model has been
widely used to interpret light curves of cataclysmic binary
systems.

Gasdynamic studies of matter exchange in CBSs have
shown (see Section 3.1) that the stream and the accretion disk
make up a morphologically integrated entity and interact in a
shockless manner. Naturally, there is no temperature increase
in the stream± disk contact region, and the hot-spot hypoth-
esis is inapplicable to the explanation of humps on the light
curves of eclipsing CBSs. Three-dimensional computation of
the structure of matter flow in an interacting CBS indicates
that shock interaction in the stationary case causing an
increase in temperature occurs when the stream of matter
outflowing from L1 collides with the circumdisk halo. This
interaction produces an extended shockwave (hot line) whose
emission may be used to explain effects observed on the light
curves of cataclysmic variables, such as the appearance of

normal and abnormal humps when the donor star eclipses the
accretion disk

The solution of the inverse problem of interpreting
eclipsing light curves of cataclysmic variables in the frame-
work of two alternativemodels demonstrates that the hot-line
model describes the observed light curves better than its hot-
spot counterpart, both in a quiescent system and in a
superflare (see, e.g., Refs [80 ± 83]).

The two models are compared in Fig. 14a, b showing the
observed and synthetic light curves for the system IPPeg at
rest, in the V-filter. The hot-line model better reproduces the
hump width on the light curves, the eclipse type, and the
details of noneclipsing brightness changes. Comparison of the
hot-spot and hot-line models convincingly confirms the
advantages of the latter for the interpretation of CBS light
curves. This means that a theoretical shock wave (hot line) is
in fact a real structure of accretion disks in CBSs.

Other evidence of the existence of the hot line was
obtained in a study of dips in the light curves of semidetached
binary systems with stationary disks [71].

Observations of low-mass X-ray binaries (LMXBs) have
revealed dips in the X-ray light curves of certain systems.
There have been attempts to explain these dips in terms of a
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hypothesis that postulates a thickening at the outer edge of
accretion disks with the phase � 0:8 corresponding to the
position of this feature on the light curve. The presence of
matter surrounding the X-ray source very high above the
orbital plane of the system coupled to its nonuniform
distribution along the azimuth may be attributed either to
the gravitational action of the companion on the accretion
disk or to the interaction of the matter stream from L1 with
the disk. The coincidence of the phase of the observed dips
with the postulated location of the region in which the stream
from L1 approaches the outer edge of the disk has attracted
the attention of researchers to this region. Today, the
appearance of matter at heights much larger than the disk
thickness is most plausibly explained by a rebound of the
stream from the outer edge of the disk. This explanation also
holds for the presence of dips on the light curves of LMXBs.

Dips in the light curves produced by the appearance of
matter in certain places high above the disk are most readily
identified in LMXBs because LMXBs have a very compact
source in the disk center. At the same time, similar features of
light curves in different wavelength ranges were recorded in
many other cataclysmic binary systems during a flare
(UGem, OYCar, ZCha). Further studies have shown that
dips in the light curves may just as well occur in steady-state
systems. This hypothesis was confirmed by observations of
UV light curves of eclipsing cataclysmic binary systems
UXUma and RWTri [84]. These findings suggest the
universal character of this phenomenon in semidetached
binary systems with accretion disks. Interestingly, stars with
stationary disks, unlike explosive systems, exhibit preeclip-
sing dips in much earlier phases, 0.6 ± 0.7 [84, 85]. 7

The question is: what causes the presence of matter much
above the accretion disk in the case of its steady-state
interaction with the stream? Results of gasdynamic studies
of the established stream flow in semidetached binary systems
suggest the shockless nature of such interaction. In this
situation, unlike in the nonstationary case (hot-spot model)
where the stream is supposed to hit the disk edge, the stream
interacts with the gas of the disk halo and forms an extensive
region of enhanced energy release (hot line). This means that
no rebound of the stream occurs in the established regime,
and this effect cannot be used to account for the dips in the
light curves of binary systems with stationary disks.

Examination of disk halo thickness in CBSs with sta-
tionary disks in Ref. [71] demonstrated thickening of the halo
above the disk even in the absence of its direct collision with
the stream. In the gasdynamic flow pattern described by the
hot-line model, a large fraction of matter undergoes vertical
acceleration in the course of the stream ±halo interaction.
Vertical motion of the gas induced by the z-component of
velocity coupled to its motion along the outer edge of the disk
causes a gradual increase in the halo thickness. The vertical
acceleration region is delimited by the hot-line region, whose
angular dimension does not exceed � 65�. But the gas that
passed this region acquires a large vertical component of
velocity that causes it to ascend progressively until its kinetic
energy is exhausted. The point at which the vertical motion
stops lies at a maximum height and corresponds to the phase
� 0:7, i.e., it is located far beyond the hot line. The height of
the thickening is several times the characteristic height of the

disk and can reach � 0:04A (this value corresponds to the
ratio of the height of the thickening to its distance from the
accretor > 0:1); its angular dimension exceeds � 130�. The
estimated maximum of the halo thickness over the outer edge
of the disk falls within the phase� 0:7 (Fig. 14c), in agreement
with the observed values for cataclysmic variables with
stationary disks. This finding confirms the validity of the
hot-line model proposed earlier for the description of matter
flow in semidetached binary stars and opens up the possibility
for interpreting the light curves of such systems.

3.4.2 Spiral tidal wave. The use of gasdynamic models
combined with Doppler tomography allows identifying the
main flow elements on Doppler maps without solving an ill-
posed problem.

In recent years, results of observations of binary systems
have been extensively used in the form of serial spectrograms
of a selected emission line, I�l; t� [in other words, I�VR;f�].
Doppler tomography is the best method for the analysis of
such spectrograms [86], allowing orbital variability of the
emission line intensity to be converted to a luminosity map in
the two-dimensional velocity space. The Doppler tomogram
is a product of the transformation of a series of spectrograms
obtained at successive time instants I�VR; t� [or at sequential
orbital phases I�VR;f�, which is the same]. A Doppler map is
easier to interpret than initial spectrograms; in certain cases, it
reveals details of the flow structure, or at least offers
suggestions. For example, lines with a two-hump profile
corresponding to circular motion (e.g., in the accretion disk)
turn into a blurred circle on theDoppler map. In other words,
components of a binary system are resolved in the velocity
space, although they cannot be spatially resolved by direct
observations. Thus, Doppler tomography provides a power-
ful tool for the study of binary systems.

Unfortunately, the problem of reconstructing the spatial
distribution of the emission line intensity with the use of
Doppler maps has no solution in the general case because
points spaced far apart may have equal velocities and
contribute to the same region of the Doppler map. For this
reason, the transformation I�Vx;Vy� ! I�x; y� is impractical
without certain a priori assumptions regarding the structure
of the velocity field.

The situation changes dramatically when Doppler tomo-
graphy is supplemented by gasdynamic calculations [87]. In
this case, there is no need to solve the inverse problem
because the Doppler tomogram can be obtained directly:
r�x; y�ÿT�x; y� ! I�x; y� and I�x; y�ÿVx�x; y�ÿVy�x; y�!
I�Vx;Vy� ! I�VR;f�.

Recently, a large number of publications were devoted to
the binary system IP Peg and the analysis of its Doppler
tomograms. One generally recognized conclusion from these
observations is the absence of the traditional hot spot in
IP Peg, in agreement with the hot-line model considered in
this review. Observational Doppler tomograms of IP Peg are
categorized into two groups: for the system in a quiescent
state and for that in an active state. The dwarf nova IP Peg
produces flares with a period of approximately 3 months, the
flare duration being about 10 days and the resting state
around 80 days (� 60 and � 480 orbital periods, respec-
tively).

Tomograms obtained for the system at rest correspond to
solutions with a hot accretion disk. The intensity distribution
in the equatorial plane of IP Peg at rest and synthetic Doppler
maps are presented in Fig. 15a, b.

7 The phase anglef is referenced as in the analysis of observational data, to

the line connecting the centers of the stars in the direction opposite to the

rotation of the system.
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Summarized results of the analysis of a synthetic Doppler
tomogram of the quiescent IP Peg lead to the conclusion that

the main contribution to luminosity is made by four elements
of the flow: the hot line, the brightest part of the stream
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from L1, the compact mass near the apogee of the disk, and
the compact mass behind the arm of the spiral shock wave.
Evidently, the contribution of these elements to the total
luminosity differs depending on specific features of the system
of interest. It is equally understandable that based on the
results of model calculations, it is impossible to say which
element prevails in the system. Nevertheless, comparison of
synthetic and observed tomograms may help to answer this
question, determine the parameters of the gasdynamic model
that need correction, and clarify details of the flow pattern in
the system.

A typical example of an observational Doppler tomogram
for the quiescent state of the system is presented in Fig. 15e
[88]. Characteristic features of such tomograms are a bright
spot in region A and enhanced brightness of region C
(Fig. 15a). Comparison with a synthetic tomogram
(Fig. 15b) shows that the main contribution to luminosity
on the observational tomogram of IP Peg at rest is made by
the shock wave at the edge of the stream (i.e., the hot line) and
the compact mass near the apogee of the disk. Contributions
from the spiral wave and matter stream are small.

The flow structure in the active state can be assessed from
the solution with a cold accretion disk. The intensity
distribution in the equatorial plane of IP Peg in the active
condition and the synthetic Doppler map are presented in
Fig. 15c, d. In this case, two arms of the spiral tidal wave are
the main contributors to luminosity. A typical example of an
observedDoppler tomogram for the active state of the system
is presented in Fig. 15f [89]. Characteristic features of such
tomograms are bright spiral arms in two quadrants of the
Doppler map. It follows from the comparison with Fig. 15c, d
that in the active state, both bright spots are due to the
emission of radiation from high-density regions located
behind the two arms of the spiral tidal shock wave.

Comparison of the observed and synthetic tomograms
permits not only verifying the gasdynamic model but also
identifying shock waves in accretion disks of CBSs. The
tomograms show both the hot line and the arms of the spiral
tidal wave.

3.4.3 Precession spiral density wave in cold disks. It is known
from gasdynamic calculations that the formation of a
precession density wave in a disk is followed by a very sharp
increase in the accretion rate (up to several orders of
magnitude), leading to a flare. Matter comes up to the
surface of the accretor along the precession wave; therefore,
the region where it accretes is localized in azimuth and looks
like a luminous spot on the accretor surface. The light curve
acquires a hump. The wave slowly precesses in the stationary
observer reference frame and causes a shift of the region with
the enhanced accretion (i.e., the hump) upon each new
revolution of the system. The period of the hump is
determined by beats between the orbital period of the system
and the precession period of the wave.

These phenomena are actually observed in certain
systems. Superhumps, i.e., modulations on the light curve of
a binary system, whose period differs by several percent from
the orbital period, largely occur during superflares in systems
of the SU UMa type. The main observational features of
superhumps are described in monograph [38]. A number of
models have been proposed to explain the phenomenon of
superhumps (their brief characteristics and criticism can be
found in Ref. [38]). The currently most popular model
attributes these variations in brightness to the precession of

the outer parts of the accretion disk. The Lindblad 3 : 1
resonance present in the disk causes an instability that gives
rise to precession of its outer regions with the period several
times the orbital period. Beats between the two periods,
orbital and precessional, are responsible for periodic oscilla-
tions of brightness manifested as a superhump. We note that
this model is not free from drawbacks, the most important
being the limitation on the maximum value of the component
mass ratio. For the Lindblad 3 : 1 resonance to be present
inside the accretion disk, this ratio q (the donor-mass to
accretor-mass ratio) must not exceed � 0:33 [90]. But there
are systems in which superhumps are observed at a signifi-
cantly higher q. They are exemplified by TV Col with q in the
range � 0:6ÿ0:9.

In 2004, a new mechanism of superhump formation was
proposed for SU Uma-type systems, assuming the generation
of a precession density wave in the accretion disk [69]. The
superflare model postulates the presence of a precession spiral
wave in the accretion disk. It permitted the first explanation
of all meaningful observational manifestations of superflares
and superhumps in the systems of the SU Uma type,
including the period, length, energy release, anticorrelation
of brightness and color temperature at an ordinary super-
hump maximum, and the `late superhump' phenomenon.
Moreover, the new model places no strict limitation on the
component mass ratio in a binary system and can be used to
explain the superhump formation mechanism in systems with
a large mass ratio, up to q � 0:93.

3.4.4 Spiral density wave in hot disks. A bunch rotating in the
accretion disk manifests itself as a change in the brightness of
the CBS. Eclipsing cataclysmic variables with large orbital
plane angles are good candidates for the search for a bunch. It
can be supposed that the presence of a bunch rotating in the
accretion disk is a cause of brightness fluctuations in non-
eclipsing sections of light curves. We chose to search for
observational evidence of a single-arm spiral density wave in
the accretion disks of systems IP Peg and WX Ari. IP Peg is
an eclipsing cataclysmic variable with the orbital period 3.8 h.
The component mass ratio of the system is q � 1:7, and the
orbital plane angle is� 68�. The systemWX Ari II is likewise
an eclipsing cataclysmic variable with the orbital period 3.34 h
and the orbital plane angle � 72�. Fluctuations in brightness
in noneclipsing regions of the light curves are apparent even at
a superficial glance, but Fourier analysis is needed for precise
measurements.

Figure 16 presents light curves of IP Peg [88] obtained 5
and 6 days after a flare in the continuum, lines Hb, Hg, HeI
4472 A

�
, and HeII 4686 A

�
. Fourier analysis shows that the

maximally distinguished harmonic in the curves has the
frequency 5.5Oorb. These spectral characteristics of light
curves reflect the presence of a spiral density wave in the
accretion disk of the cataclysmic variable IP Peg; the wave
rotates with the frequency 5.5 times the orbital frequency of
the system. The light curve in line HeII most obviously
demonstrates the presence of a bunch because the density
wave of high optical density propagating over the accretion
disk periodically blots out the view of the hot region emitted
in this line between the wave and the second component. The
same phenomenon is less noticeable in the light curve for the
continuum.

In-depth studies of light curves in cataclysmic variables
revealed similar harmonics in other objects of this class, e.g.,
WX Ari. Light curves of WX Ari are dominated by the
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harmonic with the frequency around 6.25Oorb. Thus,
analysis of light curves actually observed in cataclysmic
variables with characteristics matching those of a numerical
model reveals variations in brightness in the noneclipsing
part of these curves with the frequency about 1=5 of the
orbital period, in agreement with the theoretical orbital
period of the bunch.

4. Developed turbulence in accretion disks
of close binary systems

4.1 Overreflection instability
Sections 3.3 and 3.4.4 show that periodic variations in the
quasi-stationary regime of the accretion disk in three-
dimensional numerical simulations are caused by a single-
arm spiral vortex structure with the period ~T1 ' �1=6�Porb

(in a coordinate system rotating with the angular velocity of
the system). This period is not related to the period of the
donor tidal interaction force. In this section, we show that
the above-mentioned single-arm spiral vortex structure is
generated by an overreflection instability in the accretion
disk.

To clarify why this mode originates and to reduce the
influence of tidal force, we undertook the following steps.

(1) The results of three-dimensional numerical simula-
tions were transformed to a new coordinate system fx 0; y 0; zg
with the origin at the accretor. This reference frame rotates
around the center of mass of the binary star following the
motion of the accretor, with its axes remaining parallel to the

axes of the inertial reference frame. 8 Next, the transformation
to the fr;f; zg frame was made (the plane z � 0 is shared by
the new and the old reference frames).

(2) All distributions are integrated over z and averaged
over the period Porb. In this way, we analyze the dynamics of
small (linear) perturbations in an isolated two-dimensional
model of a disk with stationary axisymmetric parameters
s0 r� �, O0 r� �, P0 r� �, and F0 r� �, which are the surface density,
angular velocity, pressure, and gravity potential, respectively,
in the plane z � 0 (see, e.g., Fig. 17a) [33, 76]. This two-
dimensional model of the accretion disk inherits basic large-
scale features of the initial three-dimensional disk but does
not include the tidal effect caused by the gravitational
influence of the donor.

An analysis of the parameters of the disk model shows
that the radial distribution of specific (per unit mass)
angular momentum has an important feature, a
(smoothed) slope discontinuity around the radius where
the region of a single-arm structure begins in the initial
three-dimensional disk (see Fig. 17b). To understand the
importance of the slope discontinuity in the radial distribu-
tion of the specific angular momentum,9 we write the
dynamic equations describing a perturbed state of the two-
dimensional model of an isolated accretion disk in the new
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coordinate system:
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where s is the surface density. Assuming that all the perturbed
quantities are characterized by small deviations d ~F from their
unperturbed stationary values F0,

F�r;j; t� � F0�r� � d ~F�r;j; t� ;

where

d ~F�r;j; t� � dF�r� exp �i�mjÿ ot�� ;
we can reduce the system of equations (27), after lineariza-
tion, to an ordinary second-order differential equation for the
enthalpy perturbation dW [91]:

w
rs0
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dr
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�
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rs0ô

�
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�
2mO0s0

w

��
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ÿ
�
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r 2
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c 20

�
dW � 0 : �28�

Here, the following notation is introduced:

w�r;o� � �ô2�r� ÿ K 2
0 �r�

�
; K 2

0 � 2O0

�
2O0 � r

dO0

dr

�
;

ô�r;o� � oÿmO0�r� ; c 20 �
qP0

qs0
:

In the limit case of a sharp slope discontinuity of O0�r� at the
radius r � R0, its first derivative dO0�r�=dr is proportional to
y�rÿ R0�, whereas its second derivative d2O0�r�=dr 2 is
proportional to d�rÿ R0�, and hence

dw
dr
/ dK 2

0

dr
/ d2O0

dr 2
/ d�rÿ R0� :

Eliminating the first derivative fromEqn (28), we reduce it
to the SchroÈ dinger equation with a `d-well' [91], which always
contains an energy level (Fig. 17c). In a real accretion disk, the
d-well transforms into an ordinary well (Fig. 17d). In this
case, the potential well hosts two waves, the incident and
reflected ones. The latter is reflected from the resonance layer
(the vicinity of the corotation circle) with an increase in its
amplitude. The additional kinetic energy is drawn from the
kinetic energy of disk rotation, which increases in approach-
ing the center. This leads to the overreflection instability that
generates a single-arm density wave [91].

To explore the spiral density waves excited in the accretion
disk by the overreflection instability, the boundary-value
problem for Eqn (28) was solved numerically. In particular,
the eigenvalues of this problem were computed giving the
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angular phase velocity Oph � Re �o�=m and the instability
increment g � Im �o�.

A comparison of the main results obtained in the frame-
work of the two-dimensional disk model with the respective
results of numerical simulations of the accretion disk in a
binary system shows that they practically coincide [33, 76].
The results obtained in the linear approximation are illu-
strated in Figs 17e, f. Figure 17e displays instability incre-
ments of the first, second, and third modes in units of the
phase velocity Oph. Figure 17f shows the main eigenfunctions
for the most unstable single-arm spiral �m � 1�. The
perturbed surface density (only the excess over the stationary
background) is represented by shading, and the solid curve is
the phase curve of the maximum surface density. The
perturbed velocity vector field (in the reference frame
corotating with the single-arm mode) is displayed with
arrows, and the star marks the center of the anticyclonic
vortex. The dashed circle corresponds to the corotation
radius rc, and the dotted ± dashed line corresponds to the
outer Lindblad resonance (OLR). It is seen that the corota-
tion circle passes through the center of the anticyclone, in
agreement with the theory of density waves [77].

We note that (1) the whole spiral-vortex structure rotates
with the period T �m� 1� � 2p=O �m� 1�

ph ' T1 ' �1=5�Porb in
the same sense (counterclockwise) as the accretion disk, such
that the spiral density wave is lagging; (2) the phase curve of
the density wave rotates through p=2 in the positive direction
in the interval �rc; rOLR�; and (3) the center of the anticyclonic
vortex in the perturbed vector velocity field is located, as
previously mentioned, at the corotation circle, and rotates
together with the spiral density wave at the same angular
velocity O �m� 1�

ph . It plays an important role in redistributing
the angular momentum of the disk.

All large-scale modes explored here share a similar
feature: they are localized in the vicinities of their corotation
radii. These radii are close to each other, are located in the
internal part of the disk, and can be approximated as

r �m�c ' r �1�c �1� b�mÿ1 ; r �1�c ' 0:25A ;

b ' 0:024 ; m � 1; 2; 3 :

These quantities are close to r
�1�
c ' 0:21A estimated from

three-dimensional simulations. The rotational frequencies

can be approximated as 10

o �m�r � 2p f �m� � mO �m�ph ' mO �1�ph �1� b1�ÿ�mÿ1� ;
b1 ' 0:045 :

Hence, it follows for some frequency shifts that

Df �m� � f �m� ÿmf �1�

f �m�
' ÿb1�mÿ 1� ; m � 2; 3 :

The results described above for the model of a two-
dimensional isolated accretion disk with real parameters,
coinciding with those of the three-dimensional model of an
accretion disk in a close system of binary stars, are not
unexpected. The observed rotation velocity of the `nuclear'
ionized disk at the center of the Galaxy also shows a
smoothed slope jump in the vicinity of the radius 0.9 ps
(Fig. 18a). Such a shape of the rotation velocity dependence
owes its existence to the presence of a massive black hole in
the disk center, which is surrounded by an `isothermal'
spherical constellation11 with the density r0 / rÿ2. Numer-
ical simulation [92] shows that the single-arm `mini-spiral'
observed in the nuclear disk can be caused by the over-
reflection instability excited through the presence of a
smoothed jump in the rotation velocity. We note for clarity
that (1) only two of four structures of the mini-spiral belong
to the nuclear disk: TheNorthArm andWest Arch (Fig. 18b);
and (2) the nuclear disk is inclined to the observer's sight by
the angle� 60�. Figure 18b demonstrates the good agreement
between the observational data and the results of numerical
simulation [92].

4.2 Estimated turbulent viscosity coefficients
and the quantity a in accretion disks
In monographs and reviews on plasma physics, the estimate
of the turbulent viscosity coefficient nturb is written as

nturb � �gL�max
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density wave obtained in Ref. [92] and caused by the overreflection instability.

10 For purely Kepler's rotation, o�m�r ' mO �1�ph �1� b�ÿ3�mÿ1�=2.
11 The black hole in the center of the Galaxy causes Keplerian rotation

v0f � rÿ1=2, while the spherical constellation gives v0f � const.
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(see, e.g., Ref. [93]), where �gL�max is the maximum increment
of linear instability that leads to the respective turbulent
viscosity and �k?�min is the minimum wave number that
corresponds to the maximum wavelength generated by this
instability.

Formula (29) can be readily derived from dimensional
considerations. Indeed, the dimension of the turbulent
viscosity nturb, as well as the molecular viscosity nmol, is

�nturb� � �nmol� � cm2 sÿ1 :

Substituting quantities with the appropriate dimensions in
the right-hand side of this expression, �cm2� � �kÿ2�, and
�sÿ1� � �g�, we arrive at formula (29).

The presence of a well-developedKolmogorov turbulence
in accretion disks implies that the maximum size of turbulent
pulsations is much smaller than the disk half-thickness h, i.e.,
k?h4 1, or, in the limit case, �k?�min h5 1.With the estimate
for the maximum increment of overreflection instability for
the m � 1 mode (Fig. 17e) and the condition of disk
equilibrium in the z-direction, h � c0=O0, we then obtain

�gL�max ' 0:035Oph � 0:035Ocor � 3:5� 10ÿ2
�
c0
h

�
;

�k?�min � hÿ1 :

Substituting these expressions in Eqn (29), we obtain the
turbulent viscosity coefficient

nturb � 3:5� 10ÿ2 c0h :

Following [41, 42], we find

a � 3:5� 10ÿ2 ;

which agrees both with the interval of numerical viscosity in
our computations, 10ÿ2 < a < 10ÿ1, and with the interval of
a reported in observations and by theoreticians (see, e.g.,
Refs [50, 52, 94, 95]).

4.3 Turbulence spectrum
It is well known that the Kolmogorov scenario of well-
developed stationary turbulence predicts the energy transfer
from small to large wave numbers k?. The energy flux per unit
mass remains constant in this scenario:

e � �dV �2tÿ1 � �dV �3lÿ1 � const : �30�

Here, it is assumed that turbulent fluctuations at the spatial
scale � l imply characteristic velocity fluctuations dV. 12

From (30), we derive the well-known Kolmogorov ±Obu-
khov spectrum of turbulence [97, 98]

dV � �le�1=3 ; e � const :

We note that condition (30) is valid only for homogeneous
and isotropic turbulence, which is not the case for the
accretion disks explored here, which are inhomogeneous
and rotate differentially.

If one immerses both hands in a vessel with shallow water
and rotates them in the same sense one observes two vortices
that tend to merge into a single vortex (Fig. 19), i.e., the
characteristic scale in this case increases, opposite to the scale
in the Kolmogorov cascade, which decreases. This case
corresponds to the two-dimensional, Kraichnan ±Batche-
lor ± Leith turbulence, for which the condition k?h5 1 or
�k?�maxh4 1, opposite to the Kolmogorov one, holds.

As we saw in Section 3.4.4, the visible amplitude of
variations in the noneclipsed part of brightness curves varies
with the period T1 ' �1=5�Torb (where Torb is the orbital
period of a binary system). 13 These variations are most
expressed in the emission line of double ionized HeII 4686 A

�

(see Fig. 16). In the system IP Peg, the orbit inclination angle
is� 68�, and hence the colder and denser part (the single-arm
density wave) periodically covers the internal hot region from
the observer. This explains the visible variations at non-
eclipsed parts of brightness curves. The line HeII 4686 A

�

originates in the internal parts of the disc with a high
temperature exceeding the HeII ionization threshold
' 51 eV. Analyzing the brightness variations of this line
allows understanding the structures that screen the radiation
in the outer parts of the accretion disk.

In agreement with the results described in Section 4.1, the
single-arm spiral density wave in the accretion disk can be
excited by the overreflection instability. This dense structure
is localized in the radial range r � �0:15ÿ0:30�A and has a
period close to T1.

We represent the density in the equatorial plane of the
accretion disk �z � 0� at some radius r and for a fixed azimuth
angle j as

r�t� � hri � Dr�t� ; Dr�t� � drtdl�t� �
Xmmax

m� 1

dr �m��t� :

Here, we assume that density variations around the mean
level h ri are a superposition of the tidal harmonic drtdl�t� and
principal eigenmodes in the azimuth direction m
�mmax 4 3ÿ4� generated by the overreflection instability.
We can similarly write the observed intensity of radiation in
the line HeII 4686 A

�
as a superposition of the mean value hI i

and fluctuations DI�t� around it, i.e.,

I�t� � hI i � DI�t� ; DI�t� � dItdl�t� �
Xmmax

m� 1

dI �m��t� :

Figure 19. A schematic showing two vortices in shallow water. Their

characteristic feature is the tendency to merge into a single vortex.

12 A comprehensive description of turbulent motion as the superposition

of mean and fluctuating components can be found, e.g., in [96].

13 Obviously, large-amplitude tidal variations are also present. Their

period is Ttdl ' Torb=2.
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Here, dItdl�t� is the tidal harmonic with the frequency
ftdl ' 2 forb, forb � 1=Torb. Other fluctuations correspond to
the principal eigenmodes and have a simple harmonic
dependence,

dI �m��t� � Am cos
�
2p fm�tÿ t0m�

�
:

In this way, the amplitude of themth harmonic Am should be
proportional to the amplitude jdr �m�j of the respective
eigenmode, Am � A�k �m�? � / jdr �m�j. The Fourier spectrum
[99] (the absolute value of the amplitude squared jAmj2 of the
normalized orbital frequency forb) of fluctuationsDI�t� shows
four main peaks, in addition to the tidal harmonic (Fig. 20a).
The first peak at the frequency f1 ' 4:94 is presumably
related to the m � 1 mode. Accordingly, in agreement with
the results of our linear stability analysis for an isolated two-
dimensional accretion disk with the main parameters of a
three-dimensional disk in a binary system (see Section 4.1),
the next two peaks should correspond to themodesm � 2 and
m � 3. 14

The magnitude of specific thermal (elastic) energy of the
mth harmonic of the density wave can be estimated as

dE �m�T � c 20
2h ri

ÿ
dr �m�

�2 / ÿdr �m��2
(see, e.g., Ref. [100]). The specific kinetic energy in the same
wave is expressed as [100]

dE �m�K � h ri
2

ÿ
dV �m�

�2 / ÿdV �m��2
where dV �m� is the velocity perturbation amplitude in themth-
wave harmonic. According to Ref. [100], dE �m�T ' dE �m�K , and
hence

dE �m�T dk / ��dr �m���2 / ��A�k �m�? ���2 :

Assuming that spectral amplitudes of the maxima follow a
power law, we can write

�dV �m��2 / ��A�k �m�? ���2 ' B

�k �m�? � m
'

~B

m m ; �31�

where

k
�m�
? ' k �m�j ' m

r
�m�
c

' m

r
�1�
c

�1� b�ÿ�mÿ1� ; m � 1; 2; 3 ;

and the corotation radii r
�m�
c of large-scale modes are

assumed to be close to each other (in agreement with results
in Section 4.1, we can take b � 0:055 1).

Taking the logarithm of (31), we obtain

ln
�jAmj2

	 ' ln ~Bÿ m lnm :

As is apparent from Fig. 20b, the three peaks correspond-
ing to the modes m � 1; 2; 3 follow a linear law (with
reasonable accuracy). The slope of this linear dependence
gives the following value for the power-law exponent n:

dV �m� / �k �m�? �ÿn ; n � m
2
' 0:74� 0:18 :

The estimated error corresponds to the ambiguity of the
computed (using the discrete Fourier transform) power-law
spectrum shown with crosses in Fig. 20.

The exponent n ' 0:74 ' 3=4 computed for the accretion
disk in IP Peg is substantially different from the exponent of
the well-developed turbulence nK � 1=3 computed by Kol-
mogorov and Obukhov, Dn ' 0:4. Such a large difference
arises because no accretion disk satisfies two conditions
implicit in the Kolmogorov ±Obukhov spectrum: the homo-
geneity and the isotropy.

5. Conclusion

The following main results were obtained in a combined
analysis of large-scale processes in accretion disks of binary
stars, including three-dimensional numerical simulations, a

Frequency f=forb

a
1.6

jAj2

1.4

1.2

1.0

0.8

4 6 8 10 12 14

m � 1
f1 � 4:94

jA1j2 � 1:46

0.6

0.4

0.2

0

m � 2

f2 � 9:04
jA2j2 � 0:51

m � 3
f3 � 11:88

jA3j2 � 0:29

m � 4

f4 � 13:43

jA4j2�0:13

lnm

b

0 0.2 0.4 0.6 0.8 1.0

m � 1

m � 1:47� 0:37

n � 0:74� 0:18

jnÿ nkj � 0:4

m � 2

m � 3

ln
jA

m
j2

0.6

0.4

0.2

ÿ0.2
ÿ0.4
ÿ0.6
ÿ0,8
ÿ1.0
ÿ1.2
ÿ1.4

0

Figure 20. (a) The Fourier spectrum of a fluctuating part of the brightness for the system IP Peg in line HeII 4686 A
�
(the first night in Fig. 16). The

horizontal dashed line marks the level where the observed signal/noise ratio is equal to one. (b) Linear representation of the power law spectrum. The

dashed lines give limits which correspond to maximum errors.

14 Frequency shifts in the spectrum shown in Fig. 20a are estimated as

Df �2� ' ÿ0:09 and Df �3� ' ÿ0:25. They are in qualitative agreement with

the results obtained in our model.
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numerical solution of the boundary value problem to
determine eigenfunctions and eigenfrequencies of a two-
dimensional isolated accretion disk with parameters inher-
ited from three-dimensional computations, and Fourier
analysis of the power-law spectrum of fluctuations of the
noneclipsed part of the brightness curve for the accretion disk
IP Peg.

(1) The presence of the global tidalm � 2 mode caused by
the gravitational influence of the donor star on the accretion
disk is demonstrated.

(2) The existence of increasing global oscillatory modes
m � 1, 2, 3 caused by the overreflection instability is revealed.

(3) The maximum increment g ' 0:035Oph is shown to be
achieved for the first mode m � 1.

(4) The maximum instability increment computed by us
and the estimate of the minimum magnitude of the wave
vector �k?�min ' hÿ1 have allowed us for the first time to
obtain the turbulent viscosity coefficient and the parameter
a � 0:035 from first principles. This value of a agrees with the
observational and theoretical estimates of many authors.

(5) For the first time, the spectrum of developed
turbulence in the accretion disk of the system IP Peg was
determined. It follows a power law with the exponent
n ' 3=4.
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