
Abstract. Experimental and theoretical research on nonadia-
batic effects in metals is briefly reviewed. It is shown that these
effects are most manifest in optical phonon spectra at small
wave vectors q satisfying the condition qvF < x0�q�, where vF
is the electron Fermi velocity, and x0�q� is the phonon fre-
quency. Various theoretical approaches to calculating nonadia-
batic effects are examined. FroÈ hlich's phenomenological field-
theoretical model, the most widely used in such calculations, is
discussed in detail, some aspects of its application are consid-
ered, and its efficiency as a tool for studying nonadiabatic
effects is demonstrated.

1. Introduction

The concept of adiabatic separation of slow vibrational and
fast electronic degrees of freedom was first introduced by
Born and Oppenheimer [1]. The essence of the adiabatic
approximation for calculating phonon spectra of crystals [2]
is rather simple and can be formulated in the following way.
To take into account the electron contribution to the phonon
spectra, it suffices to calculate the electron response to the
static ion density redistribution by considering the latter as an
external field of a charge wave. Allowance made for the fact
that ions actually vibrate at a finite velocity results, for most
of the spectrum, in small corrections with respect to the
parameter

�����������
m=M

p
, where m and M are the electron and ion

masses, respectively. The adiabatic approximation is ade-

quate in describing insulators and wide-gap semiconductors.
The situation is much more complicated in metals [3].
Engelsberg and Schrieffer [4] were the first to notice that the
magnitude of nonadiabatic effects may not be small for
optical phonons with wave vectors satisfying the condition
qvF < o0�q�, where vF is the electron Fermi velocity, and
o0�q� are bare frequencies for optical phonons. In this case,
the nonadiabatic effects may result in appreciable (i.e., not
proportional to

�����������
m=M

p
) renormalization of phonon fre-

quencies, strong dispersion of phonon frequencies at low q,
and a finite linewidth of such phonons [5]. It should be
mentioned, however, that the authors of paper [4] said
nothing about the adiabaticity or nonadiabaticity of the
corresponding phonons. A similar phenomenon has been
observed in Raman scattering of light in some semiconduc-
tors and metals [5 ± 8]. The adiabaticity problem was thor-
oughly considered in Ref. [9] for the normal state of metal.
These effects may become even more important in the
superconducting state at phonon frequencies oph � 2D,
where D is the superconducting energy gap. Variation in the
phonon frequencies and linewidths in a transition to the
superconducting state was observed in the standard super-
conducting metal Nb [10]. The theory of nonadiabatic effects
in superconductors was developed by Schuster [11] in the
Bardeen ±Cooper ± Schrieffer (BCS) approximation, how-
ever, similarly to paper [4], without emphasizing the non-
adiabaticity of the effects. In Ref. [4], a very interesting
possibility for the phonon mode to split into two modes was
predicted if themode energy was close to the superconducting
gap: oph � 2D. Later on, a similar effect was examined
experimentally [12, 13].

Even earlier, in work by Migdal [14] the interrelation
between electrons and phonons was studied in the framework
of the FroÈ hlich field-theoretical model in more detail. In
Ref. [14], the phonon frequencies were strongly renormalized
due to electron ± phonon interaction (EPI). In the work by
Migdal, the renormalization actually arose in the framework
of the adiabatic approach. This result and the very possibility
of utilizing the FroÈ hlich model for describing the renormali-
zation of phonon frequencies were repeatedly criticized [15 ±
17]. The existence of nonadiabatic effects in phonon spectra
of metals was also criticized in Refs [18, 19], as well as in
Physics ±Uspekhi [20].
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In this review, based on our work in this field [9, 21, 22]
and on experimental and theoretical investigations of other
authors, we will consider the nonadiabatic effects in phonon
spectra of metals in more detail. Hereinafter, we use the
system of atomic units �e � me � �h � 1�.

2. Adiabatic approximation

Recall the principal items of the adiabatic approach [1, 2]. The
criterion for system adiabaticity is the absence of excitations
with energies on the order of ion vibration frequencies in its
electronic spectrum. At first glance, this criterion is a fortiori
broken in metals, because there are electron excitations with
arbitrarily small energy near the Fermi surface. However, the
number of such excitations in metals is rather small as
compared to the total number of electrons, which makes it
possible to employ the adiabatic approximation in determin-
ing the parameters that are integral over the electronic
spectrum.

We can write down the total electron ± ionHamiltonian in
the form

H � He�r� �Hi�R� �Hei�r;R� : �2:1�

The adiabatic approach to the solution of the SchroÈ dinger
equation with Hamiltonian (2.1) implies that its eigenfunc-
tionC�r;R� will be sought in the form of an expansion in the
eigenfunctions c�r;R� of electron energy operator
He�r� �Hei�r;R� for arbitrary ion configuration fRg:�

He�r� �Hei�r;R�
�
cm�r;R� � Em�R�cm�r;R� ; �2:2�

C�r;R� �
X
m

wm�R�cm�r;R� : �2:3�

Here, the functions wm�R� describing the properties of the ion
subsystem can be found from the equations�

Hi�R� � Em�R�
�
wm�R� �

X
n

�Amn � Bmn� wn�R�

� Ewm�R� ; �2:4�

where

Amn � 1

M

X
j

�HRj
�mnHRj

; Bmn � 1

M

X
j

�H 2
Rj
�mn ; �2:5�

Rj is the coordinate of the jth ion, and �HRj
�mn is a matrix

element of gradient HRj
expanded in functions cm�r;R�. If the

off-diagonal terms Amn and Bmn in Eqn (2.4) are neglected,
then we obtain two independent subsystems, namely, the
electron subsystem described by Eqn (2.2), and the ion
subsystem defined by Eqn (2.4). Equation (2.4) describing
the vibrational spectrum of metal comprises the term Em�R�
as a potential energy, which is the energy of electrons in a
given static field of ions:

Em�R� �
�
He �

X
n

Vei�rÿ Rn�
�
: �2:6�

Here, Vei�rÿ Rn� is the electron ± ion interaction potential.
By expanding Hi�R� and Em�R� in an ordinary way near
equilibrium positions of ions fR0

ng in terms of the small
deviations un � Rn ÿ R0

n, one can obtain the expression for
the force matrixC ab

nn 0 . In this case, the electron contribution to

C ab
nn 0 has the form

C ab
nn 0 �

q2Em

qR a
n qR

b
n 0
� q2

qR a
n qR

b
n 0

�
He �

X
m

Vei�rÿ Rm�
�

� q
qR a

n

�
d3r r�r� q

qR b
n 0

Vei�rÿ Rn 0 � ; �2:7�

where r�r� is the electron density. In writing out the last term
in formula (2.7) we used the Hellmann ±Feynman theorem.
Finally, we can rewrite C ab

nn 0 in the form

C ab
nn 0 �

�
d3r

q
qR a

n

r�r� q

qR b
n 0

Vei�rÿ Rn 0 �

� dnn 0
�
d3r r�r� q2

qR a
n qR

b
n

Vei�rÿ Rn� : �2:8�

One can see from expression (2.8) that the calculation of the
electron contribution to the force matrix C ab

nn 0 mainly reduces
to the calculation of the derivative of electron density r�r�,
because determination of the derivatives of electron ± ion
potential is not a particular problem. In the framework of
the standard quantum perturbation theory, a derivative of
r�r� can be written out in the following form

q
qRn

r�r� �
�
d3r 0 w�r; r 0;o � 0� q

qRn
Vei�rÿ Rn� : �2:9�

Here, w�r; r 0;o � 0� is the static electron susceptibility in a
crystal. The vibrational frequencies are determined in an
ordinary way from the equation

det
��Fab�q� ÿMo2�q�dab

�� � 0 ; �2:10�

where F
ab�q� � Fab�q� ÿ Fab�0� is the dynamic vibrational

matrix, which for a crystal with a single atom per unit cell is
given by the following expression

Fab�q� � 4pe 2Z 2

O0

X
G

�q�G�a�q�G� b
�q�G�2

� 1

O0

X
GG 0
�q�G�a�q�G 0� bVei�q�G�

� w�q�G; q�G 0;o � 0�Vei�q�G 0� : �2:11�

The first summand in expression (2.11) is a contribution of
lattice ions to the dynamic vibrational matrix, and the second
summand is determined by the electron system in a periodical
lattice field. Here,Z is the ion charge,G,G 0 are the vectors of
reciprocal lattice, Vei�q�G� is the matrix element for
electron ± ion interaction, w�q�G; q�G 0;o � 0� is the
Fourier component of static electron susceptibility, which is
an infinite-dimensional matrix in the space of reciprocal
lattice vectors G, G 0, and, finally, O0 is the unit cell volume.
The consistent multiparticle theory of lattice dynamics
resulting in formulas (2.9) ± (2.11) was developed in 1960s ±
1970s (see, e.g., reviews [23, 24]), however, no consistent
microscopic calculations of crystal phonon spectra were
made in the framework of this approach. We may only
mention the calculations of lattice dynamics for simple
metals in the framework of the perturbation theory for the
small electronic ± ionic pseudopotential (see review [16]). The
difficulties in the phonon calculations by formulas (2.9) ±
(2.11) are mainly related to the calculation of the electron
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susceptibility matrix. However, it should be noted that
expression (2.11) for the electron contribution to the
dynamic vibrational matrix is general and absolutely rigor-
ous in the adiabatic and harmonic approximations, which has
proved to be rather useful in solid-state theory. Many
rigorous and exact relationships in lattice dynamics were
established by using this expression and numerous approx-
imate and semiphenomenological approaches to the calcula-
tion of phonon spectra in crystals [16, 23, 24] were developed.
In particular, certain problems were solved concerning the
instability of phonon excitations due to anomalies in the
electronic spectra, namely, so-called nesting [21]. We will
revert to the calculation problem for electron susceptibility
matrix in Section 4, which is devoted to the microscopic
theory of lattice dynamics. We would like to emphasize here
the fact that the success of the linear response theory in the
method of the density functional allowed escaping the
computation of the electron susceptibility matrix at all,
while finding the phonon spectra in the adiabatic approxima-
tion. In the framework of this approach, one can directly
calculate the derivative of electron density distribution r�r�,
which, in accordance with formula (2.8), determines the
electron contribution to a force matrix of a crystal (see
reviews [25, 26]).

In the framework of the adiabatic approximation, the
electron ± phonon interaction is included in the off-diagonal
summands Amn and Bmn of Eqn (2.4). According to Brovman
andKagan [15, 16], this interaction can be taken into account
in the following way. With the perturbation theory we can
calculate nonadiabatic correction DE to the total energy of
the system. Then, by varying energy over the corresponding
occupation numbers we obtain the corrections to the phonon
�oql� and electron �ek� energies:

doql � d�DE �
dNql

; dek � d�DE �
dnk

: �2:12�

Taking into account the fact that

�HRi
�mn � ÿ

�
HRi

Hei�r;R�
�
mn

Em ÿ En
;

and passing to the momentum representation for electrons
and phonons, one can show [15, 16] that

doql �
X
k

jMkqlj2 nk ÿ nk�q
Ek ÿ Ek�q ÿ oql � id

ÿ
X
k

jMkqlj2 nk ÿ nk�q
Ek ÿ Ek�q

; �2:13�

whereMkql is the matrix element for the operatorX
j

�
HRj

Hei�r;R�
�
mn
:

It is easy to verify from (2.13) that for the greater part of
the phonon spectrum satisfying condition qvF > oql the
corrections caused by nonadiabatic effects are as small as

Doql � Re doql � oql

�
o
eF

�2

; Gql � Im doql � oql
o
eF
:

�2:14�

Here, o is the quantity on the order of the mean phonon
frequency. It was stressed by Brovman and Kagan [15, 16]
that the smallness of nonadiabatic renormalization of

phonon frequencies for qvF > oql arises due to a mutual
compensation of two summands in formula (2.13), though the
summands themselves are not small in

�����������
m=M

p
. For the

acoustic spectrum, the condition qvF > oql holds over the
whole Brillouin zone. However, the first summand in formula
(2.13) vanishes for optical phonons at small wave vectors q. In
the range of the wave vectors meeting the condition
qvF < oql, the second summand results in the strong
renormalization of adiabatic phonon frequencies:

do�q � 0� �
�

d3k

�2p�3 M 2�k; q � 0� : �2:15�

Unfortunately, it is difficult to obtain an exact expression for
thematrix elementM�k; q� in the frameworks of the adiabatic
approach. Simple model estimations of expression (2.15)
show that do � lhoadi [17], where l is the constant of
electron ± phonon interaction, and hoadi is the mean adia-
batic frequency of optical phonons.

We obtain the following expression for renormalization of
the electronic spectrum:

DEk �
X
ql

jMkqlj2 oql�1ÿ 2nk�q�
�Ek ÿ Ek�q�2 ÿ o2

ql

: �2:16�

One can readily see that expression (2.16) is not small for
electrons near the Fermi surface, and falls as they move away
from it. In particular, the nonadiabatic interaction determines
the energy relaxation in metals and their superconducting
properties. Based on the formulas for the adiabatic approx-
imation given above, one can make the following conclusions
concerning the role of electron ± phonon interaction in
metals.

(1) If inequality qvF > oql is met, then the dynamic
interaction between electrons and phonons, arising due to
the nonadiabatic corrections Amn and Bmn, weakly renormal-
izes the phonon spectrum. Hence, phonon frequencies in
metals can be calculated in the framework of the adiabatic
approximation with an accuracy on the order of

�����������
m=M

p
for

the greater part of the Brillouin zone.
(2) Subject to the following inequality qvF<oql, the

frequencies of optical phonons are strongly renormalized
due to nonadiabatic corrections which should be taken into
account in all calculations involving such phonons.

(3) Renormalization of electrons near the Fermi surface,
caused by nonadiabatic electron ± phonon interaction, is
strong and substantial in describing many physical phenom-
ena occurring in an electron system.

(4) Instability of the system in the framework of the
adiabatic approximation shows its worth in the appearance
of negative values of o2

ql in adiabatic equation (2.10).
A particular discussion concerning the reasons for these

instabilities and their possible connection with electron ±
phonon interaction will be postponed until the next section.
It is worth noting here that due to the non-Hamiltonian
character and lack of convenient diagram techniques for
calculating the corresponding corrections, the adiabatic
approximation can hardly be used for self-consistent compu-
tations of electron and phonon systems.

3. Nonadiabatic effects in the FroÈ hlich model

Most works investigating nonadiabatic effects in both normal
and superconducting states of metal have been carried out in
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the framework of the FroÈ hlich model. The Hamiltonian of
this model can be written out in the form [27]

H �
X
p;s

xpc
�
pscps �

X
p; q; s; s

gs�p; q�c�p�q; scps�bqs � b�ÿqs�

�
X
qs

o0�q; s�
�
b�qsbqs �

1

2

�
; �3:1�

where c�ps and cps are the electron creation and annihilation
operators, xp is the electron spectrum counted off from the
chemical potential, gs�p; q� is the matrix element for EPI,
and b�qs and bqs are the creation and annihilation operators
for the phonon mode s with the momentum q and energy
o0�q; s�.

The expression for the phonon Green function Ds�q;o�
can be written in the form

Dÿ1s �q;o� � oÿ20 �q; s�
�
o2 ÿ o2

0�q; s�
�ÿPs�q;o� ; �3:2�

where Ps�q;o� is the polarization operator. The phonon
frequency o�q; s� renormalized due to EPI is derived accord-
ing to expression (3.2) from the equation

o2�q; s� � o2
0�q; s�

n
1�RePs

�
q;o�q; s��o : �3:3�

In the simplest single-loop approximation, by using the
electron Green functions for free particles and assuming
gs�p; q� � g, we obtain the following expression for the
polarization operator

P�q;o� � 2g 2
X
p

np ÿ np�q
oÿ xp�q � xp � id

: �3:4�

Consider now the behavior of phonon modes o�q; s� in
the two limiting cases: qvF 4o0�q; s�, and qvF 5o0�q; s�. In
the first case, we obtain the well-known expression that
coincides with the formula prepared by Migdal [14]:

o2�q� � o2
0�q; s�

�
1ÿ 2g 2N�0�� : �3:5�

The quantity g 2N�0� represents the dimensionless EPI
constant

l � g 2N�0� : �3:6�

In metals, coupling constant (3.6) is not usually small and
can be on the order of unity. Hence, it follows from
relationships (3.5), (3.6) that EPI strongly renormalizes
phonon frequencies. Migdal thoroughly considered the case
of acoustic phonons, for which the condition qvF 4o0�q; s�
always holds, and obtained just the same result. We have
already mentioned that this result obtained by Migdal was
instantaneously criticized on the grounds that it contradicts
the adiabatic approximation in which, as we have just
shown, nonadiabatic EPI does not renormalize acoustic
phonons. This criticism might be correct if anyone could
show that the frequency o0�q; s� in the FroÈ hlich Hamiltonian
is just the adiabatic phonon frequency. The fact is that the
FroÈ hlich Hamiltonian, similarly to any model system,
implies, in contrast to an exact Hamiltonian, an optimal
(based on intuition or experiment) choice of bare quasipar-
ticles and interaction constants, at which such a simplified
model has physical meaning. Later on, we will revert to a

discussion on the possible physical meaning of the FroÈ hlich
model and the parameters involved. For the reasons given
below, we now make the convention that the quantity
o2�q� � o2

0�q; s��1ÿ 2l� may be considered the adiabatic
phonon frequency, and systems with l < 1=2 will be
concerned.

Let us consider here the renormalization of optical
phonons in the FroÈ hlich model confining ourselves, for
simplicity, to zero-dispersion bare phonons with the fre-
quency o2

0�q; s� � o2
0, similarly to paper [4]. At large wave

vectors q meeting the conditions qvF 4o0 and q4 kF, the
phonon frequency is renormalized according to expression
(3.5) in the following way:

o2�q� � o2
0

�
1ÿ 2g 2N�0�� : �3:7�

For small wave vectors q! 0, from formulas (3.3) and (3.4) it
follows that Ps�q � 0;o� � 0 Ð that is, the phonon
frequency is not renormalized in this case:

o2�q! 0� � o2
0 : �3:8�

One can see from (3.7) and (3.8) that the frequency of optical
phonons with q! 0 may be noticeably higher than the
frequencies of phonons with large wave vectors q > o0=vF.
The difference Do2 � o2�q � 0� ÿ o2�q > o0=vF� in these
frequencies is not small in the nonadiabatic parameter�����������
m=M

p
:

Do2 � 2lo2
0 : �3:9�

As we have already agreed earlier, we will consider the
frequency in formula (3.7) for qvF 4o0 as adiabatic,
whereas at q � 0 we assume it renormalized by a nonadia-
batic interaction. Thus, for the weak coupling we obtain the
expression o2

nonad � o2
ad � 2lo2

ad, which is absolutely the
same as in the case of the adiabatic approach [see formulas
(2.13), (2.15)]. The only difference resides in the redesignation
of the adiabatic frequency, in which allowance was made for
the coupling between the bare spectrum of the FroÈ hlich
Hamiltonian and the adiabatic spectrum of the o2

ad�q; s� �
o2

0�q; s��1ÿ 2l� type. The coupling constant l will be
estimated later in Section 4.

We can also evaluate the dispersion of the optical
phonon for qv4o0 by writing the expression for P�q;o�
in the form [9]

P�q;o� � 2g 2

�
dSF

vF

qvF
oÿ qvF � id

: �3:10�

Here, the integral is taken over the Fermi surface. For the
quantity o2�q� we have

o2�q� � o2
0 � al�q�vF�2 : �3:11�

Here, a is a constant on the order of unity, and �vF is the mean
Fermi velocity. Hence, one can see that at small wave vectors
the dispersion of optical phonons may considerably exceed
the ordinary speed of sound inmetals andmay be comparable
with the Fermi velocity. One can also calculate the phonon
linewidth:

g�q;o� � 2g 2

�
dSF

vF
d�oÿ qvF� : �3:12�
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From this formula it follows that at T � 0 the linewidth of
optical phonons vanishes at q � 0. There is a threshold at
o � �qvF�min and a maximum at o � q�vF.

As a matter of fact, just these effects, namely, the large
difference between optical phonon frequencies at q � 0 and
for q > o0=vF, which is independent of the nonadiabatic
parameter

�����������
m=M

p
, and the presence of strong dispersion for

the phonon mode at qvF � o0, have been subsequently
termed the nonadiabatic effects. Similar effects were studied
theoretically in Refs [4, 9, 28 ± 30] (see also review [5]). In
addition to the nonadiabatic renormalization of the optical
phonon frequency at q � 0 and the change in the dispersion of
these phonons at small q, one can also evaluate the
temperature variations for the nonadiabatic effects. To this
end, one should take into account the variation in the electron
Green function due to EPI in calculating the polarization
operator [9].

The influence of conduction electrons on longitudinal
optical modes in semiconductors and ordinary metals has
been examined experimentally [5]. In most experimental
works on doped semiconductors [5], a sufficiently trivial
phenomenon was mainly observed, which was mentioned in
an early work [28]. It was the vanishing of the frequency
splitting for longitudinal and transverse optical modes at
q � 0, when free charge carriers were injected into an ionic
crystal. In doped semiconductors and metals, variations in
phonon frequencies and linewidths were also observed [5,
10, 31].

Themost impressive experimental results on nonadiabatic
effects in phonon spectra of metals were obtained by Ponosov
and co-authors [6 ± 8]. It is usually believed that Raman
scattering is used to measure the frequencies of optical
phonons at the wave vectors q � 0. Actually, in measuring
Raman scattering by laser radiation with different energies,
the phonons are excited with different, even if small, finite
vectors q. Ponosov and co-authors [6 ± 8] suggested a method
capable of measuring the phonon frequencies and dispersion
at the wave vectors q � oph=vF, as well as the phonon
linewidth. In addition, the dependence of these quantities on
temperature was also studied. In Fig. 1, the measured
dispersion of optical phonons and their linewidths in metal
osmium are shown. The results obtained agree well qualita-
tively with the theoretical predictions made in Ref. [9]. A
possible quantitative description of these experiments will be
discussed in Section 4.

In the above-given consideration of the nonadiabatic
effects in the FroÈ hlich model, the simplest single-loop
approximation was used for the polarization operator. As
early as in work by Migdal [14] it was stressed that in
calculating the polarization operator at small wave vectors q
one should take into account vertex corrections. Similar
results have been obtained by other authors [4, 9, 29, 30]. It
was mentioned that these corrections to the polarization
operator for qv4oph are not small with respect to the
parameter

�����������
m=M

p
. Such corrections result, first, in a trivial

quantitative change in certain results discussed above, in
particular, for the parameter a in the phonon dispersion
(3.11). We use the term `trivial' because even without taking
into account the vertex corrections we do not know the
exact values of all the parameters in the FroÈ hlich model.
Hence, there are no reasons to calculate an additional
renormalization for them. However, more significant
effects may arise due to the vertex corrections. One of
them was predicted even by Engelsberg and Schrieffer [4].

Having calculated the second-order vertex function with
respect to small momenta q, they showed that the zero-
dispersion optical phonon mode may split into two modes
o2�q� � o2

0 � c�qvF�2, where c is a parameter expressed via
the electron ± phonon coupling constant. No such phenom-
enon has been discovered experimentally. Moreover, after
issuing paper [4] this question was only briefly discussed in
work [30] and it is still not clear whether the splitting of the
optical mode is a consequence of the approximations made
in paper [4] or will take place in more exact calculations. It
is worth noting that similar splitting of phonon modes is
truly observed in superconductors. The vertex corrections
also result in one more nontrivial consequence which we
prefer to discuss in the following by the example of
nonadiabatic effects in the superconducting state.

Phonon frequencies in the superconducting state are still
determined by expression (3.2). The polarization operator in
the superconducting state [32] is an analytic continuation of
the expression

P̂s�q; ion� � T
X
m; p

gs�p; q�Tr
�
t̂3Ĝ�p� q; iom � ion�

� Ĝs�p� q; iom � ion; p; iom�Ĝ�p; iom�
�
; �3:13�

where om � pT�2m� 1�, Ĝ�p; ion� is the Green function for
electrons in Nambu representation, and Ĝs is the matrix
vertex part satisfying the equation of the Bethe ± Salpeter
type. In the FroÈ hlich model, the electron ± electron interac-
tion giving rise to superconductivity is EPI, which is
expressed via the Green function for phonons and depends
on momenta and energy. It is will known that in the case of
weak coupling the Eliashberg theory [33] for superconduc-
tors with EPI reduces to the BCS model. We will restrict
ourselves just to this approximation. The effects of strong
electron ± phonon coupling will be considered in this section
below.
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Figure 1. The experimental linewidth (a) and frequency (b) of the phonon

E2g along the symmetric directions of the Brillouin zone (taken from

Ref. [8]).
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In the framework of the BCS model, the vertex part Ĝs

satisfies the equation of the type

Ĝs�p� q; iom � ion; p; iom� � gs�p� q; p�t̂3
ÿ T

X
m 0; p 0

t̂3Ĝ�p 0; iom 0 � Ĝs�p 0 � q; iom 0 � ion; p
0; iom 0 �

� Ĝ�p 0 � q; iom 0 � ion� t̂3V�p 0; p� ; �3:14�

where the electron ± electron interaction potential V�p 0; p�
simulates the behavior of combined electron ± phonon and
Coulomb interactions in the range of energies o4oc:

V�p 0; p� � ÿ
X
sL

g 2
sLC

�
L�p 0�CL�p�Y

ÿ
oc ÿ jxpj

�
Y
ÿ
oc ÿ jxp 0 j

�
:

�3:15�

Here, oc is the cut-off energy equal by order of magnitude to
the characteristic phonon energy hOphi, andCL is a complete
set of orthogonal functions. The latter can be chosen, for
example, as Fermi-surface Allen harmonics [34]. Their
particular form is not important for our purposes. The
Green function for electrons in the BCS model is given by

Ĝ�p; ion� � ÿ
iont̂0 � Dpt̂1 � xpt̂3

o2
n � D2

p � x 2
p

; �3:16�

where xp is the spectrum of single-electron excitations, and Dp

is the superconducting gap that satisfies the principal BCS
equation

t̂3Dp � ÿT
X
np 0

t̂3Ĝ�p 0; ion�t̂2Dp 0 t̂3V�p 0; p� : �3:17�

The matrix vertex part Ĝs in equation (3.14) may be written
out in the form

Ĝs � G �2�s t̂2 � G �3�s t̂3 ; �3:18�
where

G �2; 3�s �p 0; p� �
X
L

G �2; 3�sL C �L�p 0�CL�p� :

In the simplest case of isotropic s-pairing, the energy gap Dp

will have only one harmonic with L � 0:

Dp � CL� 0�p�DL� 0 : �3:19�

In the framework of the standard approximations for the
BCS model given above, the vertex function only depends on
the transferred momentum and energy; thus, Eqn (3.14) can
be solved exactly. The analytic continuation for the solution
(3.14) has a simple, though lengthy, form. The result is as
follows:

G �2�sL �q;o�

� gsL�q� ig 2
LI

L
2 �q;o��

1� g 2
LI

L
3 �q;o�

��
1ÿ g 2

LI
L
1 �q;o�

�� �g 2
LI

L
2 �q;o�

�2 ;
�3:20�

G �3�sL �q;o� � gsL�q�

�
�
1ÿ g 2

LI
L
3 �q;o� ÿ g 4

L

�
IL1 �q;o�IL3 �q;o� ÿ

�
IL2 �q;o�

�2	�
1� g 2

LI
L
3 �q;o�

��
1ÿ g 2

LI
L
1 �q;o�

�� �g 2
LI

L
2 �q;o�

�2� ;
�3:21�

where the notations gsL�q� � gsLCL�q�, G �2; 3�sL �q;o� �
G �2; 3�sL �o�CL�q�, and g 2

L �
P

s g
2
sL were introduced. The

explicit form of functions ILj �q;o� for each value of
j � 1; 2; 3 is determined by a combination of indices a, b, g
in the integral

ILabg�q;o� �
1

4

X
p

��CL�p�
��2 tanh�Ep

2T

�
��M�

abgK
ÿ�p� q; p;o��Mÿ

abgK
��p� q; p;o��Yÿocÿ jxpj

�
;

�3:22�

which comprises the coherence factors

M�
abg � a� bD2 � gxp�qxp

Ep�qEp
�3:23�

and functions

K��p� q; p;o� � 1

Ep�q � Ep � o� id
� 1

Ep�q � Ep ÿ oÿ id
:

Here, Ep � �x 2
p � D2�1=2 is the spectrum of quasiparticles in a

superconductor. Indices j in functions ILj �q;o� correspond to
the following combinations of a, b, g in formulas (3.22) and
(3.23):

j � 1 a � 1 ; b � ÿ1 ; g � ÿ1 ;
j � 2 a � 0 ; b � o

D
; g � 0 ; �3:24�

j � 3 a � 1 ; b � ÿ1 ; g � 1 :

The expressions obtained for the vertex functions are similar
in form to those obtained in works [35 ± 37] in the calculations
of dielectric response in a superconductor. Having used the
results of these works, one can show that in the framework of
the adiabatic approximation Ð that is, at o � 0 Ð super-
conductivity has a negligible effect, whose magnitude is of
order �D=eF�2, on phonon frequencies. In our consideration,
however, we make no allowance for long-range Coulomb
interaction which, as we will ascertain, has no direct influence
on the nonadiabatic phenomena under study.

The expression for the Lth harmonics of the phonon self-
energy is given by

PsL�q;o� � ÿ2g 2
L

~IL3 �q;o�

ÿ 2g 2
L

IL3 �q;o�
�
1ÿ g 2

LI
L
1 �q;o�

�� g 2
L

�
IL2 �q;o�

�2�
1� g 2

LI
L
3 �q;o�

��
1ÿ g 2

LI
L
1 �q;o�

�� �g 2
LI

L
2 �q;o�

�2 :
�3:25�

Here, function ~IL3 �q;o� is also determined by an integral of
the (3.13) type but with Y

ÿ
oc ÿ jxpj

�
replaced by

Y
ÿjxpj ÿ oc

�
. This function describes the contribution of

EPI to the self-energy of phonons from the domains distant
from the Fermi surface. Hence, the expression for ~IL3 �q;o� is
completely independent of the superconductivity parameters,
and we may put the superconducting gap D to zero in the
related calculations. The formulas obtained above completely
describe systems with s-pairing for all values of wave vectors q
and frequencies o. They may be utilized in studying
nonadiabatic effects in quasiisotropic systems and investigat-
ing phonon modes near Kohn anomalies, in particular, in
systems with nesting.
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Let us consider the limiting case of q � 0 and T � 0, in
which functions ILj �q;o� have the simple form

IL1 �0;o� � gÿ20 �
�
o
2D

�2

N�0�I�o� ;

IL2 �0;o� � ÿ
o
2D

N�0�I�o� ; �3:26�

IL3 �0;o� � N�0�I�o� ; ~IL3 �0;o� � 0 ;

where

I�o� � 2D
o

arcsin �o=2D���������������������������
1ÿ �o=2D�2

q ; o < 2D ;

ip=2ÿ arsinh

��������������������������
�o=2D�2 ÿ 1

q
��������������������������
�o=2D�2 ÿ 1

q ; o > 2D :

8>>>>>><>>>>>>:
�3:27�

One can see from formulas (3.25) and (3.26) that

Ps;L� 0�q � 0;o� � 0 : �3:28�

This result presents an important consequence of the Ward
identity which is valid in the FroÈ hlich model, as well as in any
system with a gradient-invariant Hamiltonian. The identity
only holds true at the proper allowance made for the vertex
corrections [35]. It is just that nontrivial consequence of
accounting for the vertex corrections mentioned above. The
value of phonon self-energy without taking into account the
vertex corrections (i.e., at G � g) does not satisfy identity
(3.28). As was shown in Refs [32, 38], the isotropic long-range
Coulomb interaction related directly to the L � 0 component
of the self-energyPs;L� 0�q;o� turns it to zero at q � 0. As we
ascertained in systems with a gradient-invariant Hamilto-
nian, this quantity is zero on its own accord. Hence, phonons
with q � 0, possessing the representationwithL � 0 (or, from
the viewpoint of the crystal group theory, the identical
representation with total point-group symmetry), interact
with electrons in neither normal, nor superconducting states
and possess no nonadiabatic corrections. This fact, in
contrast to the assertions in papers [32, 38], arises from the
accurate consideration for the vertex corrections even in the
absence of the long-range Coulomb interaction. Of course,
the allowance made for Coulomb interaction may result,
similarly to the case of dielectric response [35 ± 37], in the
renormalization of the corresponding polarization operators
and characteristic constants, such as N�0�. Nevertheless, this
circumstance does not change the underlying physics of
nonadiabatic effects as long as there are no low-energy
collective excitations of the charge density or electron spin.

Consider now the L 6� 0 components of the self-energy of
phonons that are independent of the long-range isotropic
Coulomb interaction:

PL�q;o� � ÿ2lL I�o�
1ÿ lLbL�o=2D� I�o�

; �3:29�

where lL � g 2
LN�0� is the coupling constant in the L-channel,

and

bL

�
o
2D

�
�
�
o
2D

�2 l0
l0 ÿ lL

ÿ 1 : �3:30�

Expression (3.29) illustrates the possibility of existing a pole
in the polarization operator in the L 6� 0 channel, which is
known in the theory of superconductor electromagnetic
response [35]. The corresponding condition is formulated as

1ÿ lLI�ob� bL
�
ob

2D

�
� 0 : �3:31�

From this expression one can find the energy of collective
excitations:

ob � 2Dÿ Dl2L

�
lL
l

�2

: �3:32�

It was shown in early work byMaki and Tsuneto [39] that the
allowance made for the impurity scattering of electrons may
noticeably change the expressions obtained above for the
electron response functions. In particular, this may result in
the disappearance of the pole in the polarization operator
and, consequently, in vanishing the collective electron
excitations. This problem was thoroughly discussed in
Ref. [40] when studying Raman light scattering spectra in
superconductors. That work provided the support for the
results obtained in Ref. [39] and it was demonstrated that the
vertex corrections may be neglected in the case of strongly
disordered systems. These results can be easily generalized to
the case of the nonadiabatic effects in phonon spectra of
superconductors under discussion. Such a generalization was
made for optical phonons with q � 0 in Ref. [41], where the
cases of isotropic s-pairing, as well as anisotropic d-pairing,
were considered. In that work it was, in particular, shown that
in the weak coupling approximation the allowance made for
the vertex corrections does not lead to a considerable change
in phonon spectral functions, even for impurity-free systems.

Consider now the nonadiabatic corrections for optical
phonons with L 6� 0 in the simplest approximation without
accounting for vertices. For this purpose let us rewrite
Eqn (3.3) which defines the renormalization of phonon
frequencies:

o2
sL � o2

0�0; s;L�
�
1�PsL�0;osL�

�
: �3:33�

In this approximation, the polarization operator takes the
form [22]

PsL�0;o�

� ÿ2lsL
�
2D
o

� arcsin �o=2D���������������������������
1ÿ �o=2D�2

q ; o < 2D ;

ip=2ÿ arsinh

��������������������������
�o=2D�2 ÿ 1

q
��������������������������
�o=2D�2 ÿ 1

q ; o > 2D :

8>>>>>><>>>>>>:
�3:34�

To begin with, notice that in the framework of the simplest
approximations used a number of very nontrivial effects show
their worth. First, the phonon linewidth at energies o4 2D
vanishes at T � 0; however, it is distinct from zero in the
superconducting state for T < Tc. For o5 2D, the linewidth
of optical phonons in the superconducting state is nonzero,
even at T � 0. The zero linewidth for energies o4 2D only at
first glance is a natural consequence of the presence of a gap in
the electron excitation spectrum. One should remember that
in a normal state the linewidth of optical phonons is zero at
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q � 0 for all frequencies. In the superconducting state, the
nonzero linewidth at all energies and also at T � 0 when
o5 2D is a consequence of appearing the new channel in EPI
and is related to a possible decay of aCooper pair of electrons.

Second, phonons soften foro4 2D, i.e., their frequencies
become lower. Moreover, the polarization operator at low
frequencies may be represented in the form

PsL�o� � ÿ2lsL
�
1� 2

3

�
o
2D

�2�
: �3:35�

This means that the superconducting system, figuratively
speaking, becomes `more adiabatic' with respect to low-
frequency phonons. The renormalization of phonon frequen-
cies and occurrence of phonon attenuation in the super-
conducting state for o < 2D resembles the behavior of
underdoped narrow-gap semiconductors.

The expression for the polarization operator, coinciding
with Eqn (3.34), was obtained by Zeyher and Zwicknagl [42].
In their later work, the authors, however, subtracted the
constant term ÿ2ls from the polarization operator. The
reason for doing so is as follows. In works [32, 42], the EPI
constant l � 2:9 was utilized. However, Eqns (3.33) and
(3.34) have no solutions for o < 2D and l > 1=2, which, in
turn, is a consequence of the instability of bare phonons for
l > 1=2 [see formulas (3.5) and (3.7)]. The subtraction of the
constant term PsL�0� � ÿ2lsL from the polarization opera-
tor eliminates this peculiarity of the FroÈ hlich model. In this
case, however, physically clear `adiabatic' behavior of
phonon modes, occurring in a superconducting system for
o < 2D and obtained by us earlier [see formula (3.35)],
vanishes from the solutions to Eqns (3.33), (3.34). We will
discuss these problems in the next section of the review.

The frequencies of optical phonons for oph 5 2D, as
follows from formulas (3.34), harden as compared to the
spectra in a normal state. Magnitudes of the corresponding
effects in this case are at their maxima at oph � 2D. Similar
effects were observed in studying phonons in high-tempera-
ture superconductors [31, 43].

It should be immediately noted that a number of
additional effects show themselves at oph � 2D in the frame-
work of the approximation considered above and that they
are more interesting than simple changes in phonon frequen-
cies. Due to the root singularity in the dependence of the
polarization operator (3.34) at o � 2D, two solutions to
Eqn (3.33) may exist for the phonon frequency squared. As
mentioned above, such a possibility was first predicted by
Schuster [11] for acoustic phonons. Nevertheless, no such
lines were observed in the spectra of acoustic phonons [10].
Later on, the corresponding behavior of the phonon spectral
function was observed in NbSe2 for a low-frequency optical
phonon withoph � 2D [12]. Theoretical interpretation of this
phenomenon was given in Ref. [44], being close to that
suggested by Schuster [11]. The existence of two solutions to
Eqn (3.33) can be easily understood by considering the mode
with o0 4 2D. In this case, for the first solution
�o1 � o0 4 2D� we have

o2
1 � o2

0

�
1� 2ls ln

o0

2D

�
: �3:36�

While the second solution �o2 < 2D� is given by

o2
2 � �2D�2�1ÿ p2l2L� : �3:37�

Thus, the split modewith energyo2 exists for optical phonons
possessing arbitrary energy o0, and the frequency of this
mode is actually independent of the phonon energy o0. For
obtaining more accurate results in this range of phonon
energy one should numerically calculate both the energy and
intensity of the split mode. Certain results of such calculations
will be presented below.

In Refs [11, 44], the nonadiabatic effects in phonon
spectra of superconductors were considered using the above-
described standard FroÈ hlich Hamiltonian without direct
Coulomb electron ± electron interaction. Based on this fact,
the results obtained in Ref. [44] were criticized by Littlewood
and Varma [38]. They asserted that the allowance made for
the long-range Coulomb interaction at small wave vectors
results in the complete screening of all contributions
(including nonadiabatic) from electron ± phonon interac-
tions to the phonon frequencies. To explain the experimen-
tally found phenomena, they invoked the specificity of the
low-frequency optical mode in NbSe2, considering it as an
amplitude mode of the charge density wave which, according
to their hypothesis, exists in the system. It should be noted
that this optical mode possesses no particular specificity,
being related to a structural transition into an incommensur-
able phase. This mode is specific, first, in that its frequency is
noticeably lower than the frequencies of all other optical
phonons in themetal and is close to 2D in magnitude. Second,
this mode does not possess a total symmetry of the crystal
lattice, hence, it is not screened by the Coulomb interaction
and the matrix element of its nonadiabatic interaction with
electrons is distinct from zero.

The appearance of the new phonon mode with the energy
o�q�4 2D in the superconducting state may also occur at
large wave vectors q. The phonon spectra of low-energy
acoustic and optical branches in superconducting nickel
boron carbides YNi2B2C and LuNi2B2C were studied by
application of inelastic neutron scattering [13, 45, 46]. It was
found that the frequencies of both branches in the direction
�x; 0; 0� at wave vectors q on the order of the half reciprocal
lattice vector �x � 0:55� in a normal state reduced with
decreasing temperature, and below the superconducting
transition temperature Tc the phonon spectrum changed
drastically. A narrow peak arose at the energy of about
4 meV, which is slightly lower than 2D, as well as the wide
maximum appropriate to the energy of the phonons under
study. This effect was explained in Refs [47, 48], where the
polarization operator PsL�q;o� was calculated for finite q in
the quasiisotropic approximation. The results of these
calculations are very close to those obtained by Schuster [11]
and can be confirmed by using formulas (3.22) ± (3.25) for
momenta q 6� 0 meeting the condition

kF > q >
o
vF

;
2D
vF

: �3:38�

It can be easily shown that functions ILj �q;o� reduce in this
case to the following expressions

~I3�q;o� � N�0� ;
I2�q;o� � ÿ o

2D
N�0� I3�q;o� ; �3:39�

I1�q;o� � N�0� I3�q;o� :

From formulas (3.34) and (3.25) it follows that the vertex
corrections at large values of phonon momenta q do not lead
to an origin of the pole in the vertex functions and can be
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neglected in the weak coupling approximation considered.
The self-energy of the phonon Green function in this case
takes the form

Ps�q;o� � ÿ2g 2
s N�0� ÿ 2g 2

s N�0� I3�q;o� ; �3:40�

where at energies o! 2D we have

I3�q;o� � po
2qvF

�
ln

2D
j2Dÿ oj � iY�oÿ 2D�

�
; �3:41�

which exactly coincides with the result obtained in Refs [11,
47]. One can show [48] that in this case the spectral weight of
the split mode and the split magnitude j2Dÿ o�q�j=2D
comprise exponential smallness of order exp �ÿqvF=lD�5 1.
From the formal point of view, these formulas, as was shown
in Ref. [47], can be used to describe the experimental data
presented in Refs [13, 45, 46]. Actually, the quasiisotropic
model suggested inRefs [47, 48] is not, obviously, appropriate
for this purpose because the weak logarithmic singularity in
polarization operator (3.41) determines the choice of the
parameters needed for describing the case of T < Tc, which
we do not consider realistic.

Theoretical evaluations [49] of the electron polarizability
of LuNi2B2C compound, in addition to the fact that the
frequencies of phonons of both branches with wave vectors
on the order of the half reciprocal lattice vector fall at lower
temperatures, point to the presence of so-called nesting in the
electronic spectrum for sufficiently large sections of the Fermi
surface. The term `nesting' usually means the fulfillment of
the relationship

xp � ÿxp�Q �3:42�
for single-electron energies in a finite phase volume near the
Fermi surface. Vector Q, for which relationship (3.42) is
valid, is called a nesting vector. It is known [50] that under
the exact fulfillment of condition (3.42) (the ideal nesting) the
static electron polarizability w�q; 0� has a singularity (pole) at
the wave vector q � Q. This fact, in turn, may lead to
considerable softening of the phonon modes with wave
vectors q that are close to nesting vector Q; in particular, it
may result in a structural transition.

By using formulas (3.22) ± (3.25) one can find PsL�Q;o�
for the case of ideal nesting:

I1�Q;o� � N�0�I�o� ; I2�Q;o� � ÿ o
2D

N�0�I�o� ;

I3�Q;o� � N�0� ln
�
2oc

D

�
�
�
o
2D

�2

N�0�I�o� ; �3:43�

~I3�Q;o� � N�0� ln
�
eF
oc

�
:

Correspondingly, for the channel L � 0 at T � 0, assuming
for simplicity that lL� 0 � l � lQ, one can find for
PsL� 0�Q;o! 2D� the following expression:

PsL�Q;o� � ÿ2lQ ln

�
eF
D

�
ÿ 2lQ

1=lÿ I�o�
2ÿ lQI�o� : �3:44�

Here, lQ � g 2�Q�N�0�, and l is the total electron ± phonon
coupling constant determined by the condition

1 � l ln
�
2oc

D

�
: �3:45�

The first summand in expression (3.44) is well known [50, 51]
and describes the cancellation of singularity of static response
functions in the systems experiencing nesting, when the
system transfers to a superconducting state. In a normal
state, this term equals ÿ2lQ ln �eF=max fo;T g�. This cir-
cumstance, in particular, stops the softening of phonon
modes in the adiabatic approximation and leads to the
absence of structural transformations for T < Tc. The
second summand describes the singular behavior of function
PsL�Q;o� at the energies o � 2D and is just connected with a
transition to a superconducting state. It can be inferred from
formula (3.44) that Ps�Q;o�, similarly to the case of q � 0,
has a pole responsible for collective excitations. By comparing
the expressions (3.44) and (3.29) for the polarization operator
in zero approximation one can see thatPsL�Q;o� in the case
of nesting at o � 2D has just the same singularity as at q � 0,
namely, � 1=�1ÿ �o=2D�2�1=2, but already in the isotropic
channel with L � 0.

Inasmuch as ideal nesting in real physical systems is
hardly probable, in our work [22] on more thorough
modeling of the experiment we made numerical calculations
of ImDs�q;o� by employing themodel in which nesting varies
from the ideal case to an absolute absence. We applied the
two-dimensional model of a square lattice of strongly bound
electrons with nearest-neighbor overlapping. The electronic
spectrum of such a system can be represented in the form

xp � ÿ2t�cos px � cos py� ÿ m ;

where m is the chemical potential of the system that
characterizes the degree of band filling, and t is the overlap
integral. If the band is half-filled �m � 0�, the Fermi surface is
a square, which means that the system is characterized by
ideal nesting. At poor filling, the Fermi surface is close to a
circle, which corresponds to a standard quasiisotropic system.
By varying the degree of band filling one can study the whole
transition range from ideal nesting to an isotropic system.
Earlier, this model was used in Ref. [52] for calculating the
self-energy of phonon Green functions in superconductors.
However, the phonon Green functions themselves and the
corresponding spectral densities ImDs�q;o� were not calcu-
lated in that work. We made numerical calculations of
function ImDs�q;o� in the framework of the model with
isotropic pairing bymaking complete allowance for the vertex
corrections. Two phonon modes o�1��q� and o�2��q� with
different coupling constants were considered as functions of
temperature. It was assumed that the bare frequencies for
these modes (without EPI) are degenerate, i.e.,
o�1�0 �q; s� � o�2�0 �q; s� � 250 K. The electron ± phonon cou-
pling constants for these modes were chosen as l1 � 0:1 and
l2 � 0:085, respectively, so that l1 > l2. The total coupling
constant l � 0:372 was determined from condition (3.32) in
such a way thatD � 3meV atoc � 3meV. Such a choice ofD
and oc approximately corresponds to the values observed in
boron carbides. In Fig. 2, the calculated intensity is shown for
phononmodeso�1; 2��q�with the quasinesting vector q joining
the sections of the Fermi surface possessing close curvatures
for the band fillings 1.11 and 0.89 electrons per center
�m � �0:2� and temperatures T � Tc and T � 0. The theore-
tical curves in Fig. 2 qualitatively agree with the experimental
data taken from Refs [13, 45, 46]. In this figure, one can
clearly see an additional narrow mode with the energy below
2D, which appears for T < Tc. The sharp broadening of
phonon lines at energies greater than 2D, occurring in the
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superconducting state, can also be evidenced. The intensities
of these lines are appreciably transferred to the additional
mode. The closer the mode energy to 2D, the more noticeable
this transfer (the intensity is more noticeably transferred from
softer mode 1 than from mode 2).

Let us briefly dwell on the temperature dependences of the
characteristics of the phonon mode which is observed in the
superconducting state below 2D. In the framework of the BCS
model considered above, the temperature dependences of the
energy and intensity of this mode are determined by the
dependence of the parameter 2D on temperature. The
experimental data from Refs [13, 45, 46] show a distinct
deviation from such a behavior. The energy of the additional
mode is actually independent of temperature, whereas its
intensity is reduced with increasing temperature much faster
than the parameter 2D does. This fact can be naturally
explained in the framework of the strong coupling theory
based on Eliashberg equations [33]. The fact is that due to EPI
the lifetime of electrons becomes finite, even in a super-
conducting state and depends on energy and temperature. In
addition, EPI removes singularities from the response
functions and from the density of electron states [53]. The
relaxation time of electrons rises drastically as Tc is
approached, which leads to an abrupt fall in the intensity of
the additional mode. It is natural that in the framework of the

strong coupling theory the mode energy noticeably falls as T
tends to Tc. However, this occurs in the temperature range in
which the mode intensity is small and cannot actually be
observed. The results of numerical calculations for the energy
of the split mode and its intensity are depicted in Fig. 3. They
definitely confirm the qualitative explanation given above.

4. Microscopic theory of lattice dynamics

To answer the question whether the FroÈ hlich Hamiltonian
has a physical meaning and what the adiabatic phonons and
nonadiabatic corrections are in essence, it is necessary to
revert to the exact microscopic theory of lattice dynamics,
since in the framework of the adiabatic approximation it is
difficult to apply the standard methods of many-body theory.

In the framework of the standardmany-particle perturba-
tion theory for the electron ± ion Hamiltonian, the exact
equations for single-particle Green functions of electrons
and phonons have been obtained [23]. The phonon contribu-
tion to the electron excitation spectrum formally has the same
form as the nonadiabatic corrections to the electron energy in
the framework of the adiabatic approach [see formula (2.15)].
We get just the same answer in the framework of the FroÈ hlich
model. Problems arise in making consistent microscopic
calculations of the EPI matrix element. In this calculation
one should take into account the vertex corrections arising
due to Coulomb interelectron interaction, in addition to the
screening of the electron potential gradient. There is onemore
difference between the results of electron spectrum renorma-
lization, which were obtained in the adiabatic approach (2.15)
and in the microscopic lattice theory. It is mainly related to
the differences in the mathematical apparatus utilized in these
approaches. In the microscopic approach, the Green function
technique is used and the self-energy is calculated for the
single-particle electron Green function. One can show that,
similarly to the FroÈ hlichmodel, the self-energy is independent
of the electron momentum p, but depends on energyo, which
is connected with the retarded character of EPI. This fact is
rather important in describing many properties of an electron
subsystem in crystals, in particular, the photoemission spectra
[54]. The Green function for an electron is given in the form

Gÿ1�p;o� � oÿ xp ÿ X�o� ; �4:1�

where X�o� is the self-energy [58]. At zero temperature and
low energies, X�o�may be written out in the simple form

X�o� � lo ; �4:2�

where l is the electron ± phonon coupling constant. From the
condition Gÿ1�q;o� � 0, one can calculate the spectrum of
electron excitations and it will coincide with the results
obtained in the adiabatic approach. In the framework of the
density functional theory, an efficient method was developed
[55] for calculating EPI matrix elements and their subsequent
employment in the FroÈ hlich model for determining the
electron properties of normal and superconducting metal
states. In particular, the EPI constant may be calculated. A
description of this method is beyond our review.

It was also shown [23] that the single-particle Green
function for phonons in the harmonic approximation is
governed by just the same equation as in the adiabatic
approximation; however, the electron contribution to the
dynamic vibrational matrix is made by the frequency-
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dependent electron susceptibility. This means that in
Eqns (2.10) and (2.11) for matrix F

ab�q� we must replace the
matrix of static susceptibility w�q�G; q�G 0;o � 0� by
matrix w�q�G; q�G 0;o�. In such a multiparticle
approach, the nonadiabatic corrections to phonon spectra
of metals arise for the following reasons. First, because of the
frequency dependence of the electron susceptibility matrix;
second, because this susceptibility should now be calculated
with allowance made for EPI rather than for a stationary
lattice, as it is in the adiabatic approximation. Thismeans that
in calculating the electron loops one should rely on single-
electron Green functions which make allowance for the EPI
contribution. Whenever essential, it is necessary to take into
account the contributions from the electron ± phonon inter-
action to vertex functions, as well.

As was already mentioned, the exact quantitative calcula-
tions for the infinite-dimensional matrix of electron suscept-
ibility are beyond our computation possibilities. In the theory
of the density functional, direct methods are used for
calculating the variations in electron density under static ion
displacements. This makes it possible to find forces acting on
ions and, correspondingly, calculate the dynamic matrix of
vibrations (see reviews [25, 26]). Unfortunately, such ab initio
methods for calculating nonadiabatic effects are not devel-
oped yet. For this purpose, at least, the method of density
functional should be generalized in such a way that it would
be the functional not only of electron density but of ion
density as well. Nevertheless, it is possible to answer many
principal questions related to nonadiabatic effects in the
phonon spectra of metals by using the general expressions
for the dynamic vibrational matrix presented in Section 2.

We may write the electron contribution to the matrix of
vibrations in the form of two summands by using the method
suggested by Allen [56]. For simplicity, this procedure can be
presented in a symbolic form by writing out the electron
susceptibility as

w � Peÿ1 ; �4:3�
where P is the polarization operator. Now we may multiply
the left-hand side of this equality by 1 � ~eÿ1~e, where ~e is the
transposed matrix of electron dielectric function. Then we
arrive at

w � ~eÿ1�1ÿPVc�Peÿ1 � ~eÿ1Peÿ1 ÿ ~wVc w : �4:4�
Here, Vc is the matrix element for the Coulomb electron ±
electron interaction. The electron contribution to the matrix
of force constants C ab

nn 0 can be written in the form

C ab
nn 0 �

�
dr dr 0 Ha ~Vei�rÿ Rn�P�r; r 0;o�Hb ~Vei�r 0 ÿ Rn 0 �

ÿ
�
dr dr 0 dra�rÿ Rn�Vc�rÿ r 0� drb�r 0 ÿ Rn 0 � : �4:5�

We introduced the following notations for the screened
electron interaction potential Ha ~Vei�rÿ Rn� and the varia-
tion dra�rÿ Rn� of electron charge density:

Ha ~Vei�rÿ R� �
�
dr 0 HaVei�r 0 ÿ Rn�~eÿ1�r; r 0;o� ; �4:6�

dra�rÿ Rn� �
�
dr 0 HaVei�r 0 ÿ Rn� ~w�r; r 0;o� : �4:7�

The second summand in expression (4.5) is the Coulomb
interaction of distributed electron charges. One can exactly

show [56], and we will do so later on in the simplest
approximation for electron response matrices, that this
summand yields, along with the ion contribution in metals,
the `correct' metal behavior for phonon frequencies. This
means that the longitudinal acoustic modes, with the ion
contribution and second summand in expression (4.5) taken
into account, are of acoustic character and the longitudinal
and transverse optical modes are not split. The allowance
made for these summands in itself does not result in exact
phonon frequencies in metal since the first summand in
expression (4.5) contributes to the dispersion of phonons as
well and this contribution is not small. Let us consider the first
summand in expression (4.5) more thoroughly. It resembles
the contribution that arises from the electron ± phonon
interaction in the FroÈ hlich model. We will show that it is
precisely from this contribution that the main nonadiabatic
corrections to phonon frequencies come. It is natural that it
makes, as was mentioned, a nonzero contribution to the
phonon dispersion, as well. From this point of view, the
separation of the electron contribution into the dynamic
matrix of vibrations can be considered, in some sense, as a
`ground' for the FroÈ hlich model in which the bare phonon
frequencies arise due to ion ± ion interaction and the second
summand in formula (4.5). Literally, as we will see below, the
FroÈ hlich model cannot be completely substantiated in the
framework of the microscopic theory.

Let us now consider the simplest approximation formetal,
assuming its electrons are free particles. Such an approach
was fruitful in describing the lattice dynamics of simplemetals
(see review [16]). Its employment was substantiated by a low
electron ± ion pseudopotential as compared to the direct
Coulomb electron ± ion interaction. In the first approxima-
tion in this small pseudopotential, the electron response
matrix can be written out in the form

e�q�G; q�G 0;o� � dG;G 0 e�q�G;o� ; �4:8�
where e�q;o� is the dielectric function of free electron gas with
the Coulomb electron ± electron interaction taken into
account, however. The electron contribution to the dynamic
vibrational matrix (4.5) can be written in the form

Fab�q� � 1

O0

X
G

�q�G�aVei�q�G�
e�q�G;o� P�q�G;o�

� �q�G� bVei�q�G�
e�q�G;o�

ÿ 1

O0

X
G

�q�G�aVei�q�G� P�q�G;o�
e�q�G;o�

4pe 2

�q�G�2

�P�q�G;o�
e�q�G;o� �q�G� bVei�q�G� : �4:9�

Wewrote expression (4.9) for the case of a crystal with a single
atom per unit cell to simplify the formula. Notice that for
G 6� 0 we may neglect the dependence of functions
e�q�G;o� and P�q�G;o� on o, since GvF 4o. Consider
the second summand with G � 0 in more detail:

ÿ 1

O0
q aVei�q� P�q;o�e�q;o�

4pe 2

q2
P�q;o�
e�q;o� q bVei�q� : �4:10�

By writing e�q;o� in the form

e�q;o� � 1ÿ 4pe 2

q2
P�q;o� ; �4:11�
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one can easily see that the dependence on o completely
vanishes in expression (4.10) as q! 0, so that instead of
formula (4.10) we obtain

ÿ 4pe 2Z 2

O0

q aq b

q 2
: �4:12�

In deriving this formula we retained in the electron pseudo-
potential at small q its most substantial part only, i.e., the
Coulomb contribution Vei�q� � 4pe 2Z 2=q 2. It is easy to
verify that the electron contribution (4.12) to the dynamic
matrix of vibrations completely compensates for the same
contribution from the ion vibrations in the acoustic long-
itudinal mode, thus transforming this plasma mode into an
acoustic one. In the case of optical vibrations, this contribu-
tion completely compensates for the splitting of the long-
itudinal and transverse modes, present in an ion contribution,
and we thus obtain

o2
LO�q � 0� � o2

TO�q � 0� : �4:13�

Therefore, we have shown that the second summand in
expression (4.9), along with the ion contribution, gives rise to
a crystal spectrum of the metal type. This summand
comprises no nonadiabatic corrections except for those
small with respect to

�����������
m=M

p
, at least in the approximation

of free electrons.
Consider now the first summand in expression (4.9). It is

easy to verify that in the adiabatic approximation, i.e.,
neglecting the dependence of the response function on
frequency o, this summand contributes only to the disper-
sion of acoustic and optical modes. This contribution, at least
to the longitudinal modes, is not small. Then, for the
frequency of the longitudinal optical mode we obtain the
following expression as q! 0:

o2
LO � o2

TO �
4pe 2Z1Z2

O0
~M

1

e�q;o� : �4:14�

Here, ~M is the reduced ion mass in the lattice. In the
adiabatic approximation, the second summand in expres-
sion (4.14) vanishes as q! 0, whereas in the nonadiabatic
limit we have

o2
LO � o2

TO ÿ
4pe 2Z1Z2

O0
~M

o2
LO

o2
pl

; �4:15�

where opl is the electron plasma frequency:

o2
pl �

4pne 2

m
: �4:16�

From expressions (4.15) and (4.16) it follows that in the
nonadiabatic limit the longitudinal and transverse modes
split. The longitudinal mode frequency becomes lower than
that of the transverse one Ð that is, the antiscreening of
longitudinal modes arises. The magnitude of this splitting in
the free electron approximation is small to the extent of
smallness of the parameter

�����������
m=M

p
. Of course, one can

calculate the linewidth of phonon modes determined by the
nonadiabatic effects, but from the above consideration it is
evident that in a metal in the approximation of free electrons
no nonadiabatic effects arise that lack the smallness of order�����������
m=M

p
.

True nonadiabatic effects in both phonon frequencies and
their dispersions for qvF 4oph are contained in off-diagonal
matrix elements of the electron response functions. In metals
that can be described by means of the weak electron ± ion
pseudopotential, the off-diagonal matrix elements are small
to the extent of smallness of the ratio Vei�G�=eF, where eF is
the Fermi energy. The method for calculating off-diagonal
elements by expanding in series of the small parameter
Vei�G�=eF was suggested in Ref. [57]. The greatest nonadia-
batic effects arise from the first summand in formula (4.5),
which can be written in the form

Fab�q� � 1

O0

X
G 6�G 0

�q�G�aVei�q�G�
e�q�G;o� P�q�G; q�G 0;o�

� �q�G 0� bVei�q�G 0�
e�q�G 0;o� : �4:17�

In writing down this expression we neglected the off-diagonal
matrix elements in thematrix of the inverse dielectric function
eÿ1�q�G; q�G 0;o�, because they lead to nonadiabatic
corrections which contain higher-order smallnesses with
respect to pseudopotential as compared to those taken into
account in formula (4.17). It is natural to neglect the
dependence of permittivity e�q�G;o� on o. The off-
diagonal matrix element of the polarization matrix
P�q�G; q�G 0;o�, according to Ref. [57], can be written
in the form

P�q�G; q�G 0;o� � Vei�G 0 ÿG�
e�G 0 ÿG; 0� L

3�o; q�G; q�G 0�

�
X
G1;G2

Vei�G1�
e�G1; 0�

Vei�G2�
e�G2; 0� L

4�o; q�G; q�G 0;G1;G2� :
�4:18�

The notation introduced in these equations, namely

L3�o; q�G; q�G 0� and L4�o; q�G; q�G 0;G1;G2�;

refers essentially to those `multitails' that were thoroughly
studied by Brovman and Kagan [15, 16] in the adiabatic
approximation (i.e., at o � 0). The four-tail term
L4�o; q�G; q�G 0;G1;G2� comprises the delta function of
momenta, so that

G�G 0 �G1 �G2 � 0 : �4:19�

We do not write down here the cumbersome expressions for
`multitails' L3 and L4, but emphasize that no strong
nonadiabatic effects are contained in L3, whereas the
second summand in formula (4.17) comprises the nonadia-
batic contribution connected with the terms under the sum
sign for G1 � ÿG and G2 � ÿG 0. For small q, the term
P�q�G; q�G 0;o� can be written in the form

P�q�G; q�G 0;o� � Vei�G�
e�G; 0�

Vei�G 0�
e�G 0; 0�

�
X
p

np�q ÿ np

oÿ xp�q � xp ÿ id
2

�xp ÿ xp�G��xp ÿ xp�G 0 �
: �4:20�

For a two-atomic crystal along the high-symmetry direction,
the contribution of dynamic matrix (4.14) to the frequency of
the optical phonon can be written down, in view of formula
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(4.20), in the form

Do2
a�q! 0� � 1

O0M

X
G;G 0 ; p

G aG 0b
V 2

ei�G�
e 2�G�

V 2
ei�G 0�

e 2�G 0�

� np�q ÿ np

oÿ qvF

2 sin �Gl� sin �G 0l�
�xp ÿ xp�G��xp ÿ xp�G 0 �

; �4:21�

where l is the vector connecting two nearest atoms in a unit
cell. This expression can be rewritten in a more convenient
form

Do2
a�q! 0� � 1

M

X
p

�V a
p �2

np�q ÿ np

oÿ qvF
; �4:22�

where

V a
p �

1

O0

X
G

G a 2V 2
ei�G� sinGl

e 2�G��xp�G ÿ xp�
: �4:23�

These results, however, with a slightly distinct approach to
the calculation of `multitails', were obtained over 30 years ago
by Ipatova and Subashiev [29]. Formula (4.22) demonstrates
that the electron contribution to the phonon frequencies in
the microscopic approach comprises the summand which
formally exactly corresponds to that in the FroÈ hlich model.
The contribution of this summand to both the adiabatic
phonon frequencies for qvF 5oph and nonadiabatic effects
for qvF < oph contains a fourth-order smallness with respect
to pseudopotential. Notice that the adiabatic contributions to
optical frequencies from other electron summands yield the
second-order smallnesses in powers of pseudopotential.
Nevertheless, the nonadiabatic corrections, though having
fourth-order smallnesses in powers of pseudopotential, are
not small with respect to the nonadiabaticity parameter. It
should also be noted that the parameterVei�G�=eF is not small
for polyvalent and especially for transition metals. There is
one more essential circumstance which follows from formula
(4.21), namely, that the nonadiabatic corrections arise due to
umklapp processes (i.e., whenG andG 0 are nonzero). Hence,
they act similarly on both longitudinal and transverse modes.
The only summand differing in its action on longitudinal and
transverse optical modes arises from the diagonal summands
with G � G 0 � 0. It eliminates the splitting of longitudinal
and transverse modes, which occurs in the ion contribution in
the adiabatic approximation and only results, as was shown in
the foregoing [see formula (4.15)], in a weak antiscreening of
the longitudinal optical mode.

Summarizing the above results, we may assert that the
nonadiabatic effects in spectra of optical phonons, predicted
in the framework of the FroÈ hlich model, may be obtained in
both the adiabatic approximation and themicroscopic theory
of lattice dynamics. Surely, the particular magnitudes of these
effects obtained in the framework of the FroÈ hlich model
should be used with caution. One should remember that
electronic and phonon spectra are renormalized due to EPI
with different coupling constants. A similar situation takes
place in the simplest case of the FroÈ hlich model, in which the
self-energy is X�o� � ÿolel [58], where

lel � g 2N�0�
� 2kF

0

q dq

2k 2
F

D�q;o � 0�

� l
� 2kF

0

q dq

2k 2
F

o2
0

o 2�q� �
l

1ÿ 2l
: �4:24�

Aswasmentioned previously, the coupling constant in papers
[32, 42] was chosen as lel � 2:9. Such a large value of lel was
used for obtaining Tc � 91 K in the YBa2Cu3O7 compound.
Renormalization of the electronic spectrum and the critical
temperature of superconducting transition are determined
just by lel. From formula (4.24) it follows that in this case the
phonon spectrum renormalization constant is as low as 0.4.
Hence, no problem must have been arisen in solving
Eqns (3.33), (3.34) in Refs [32, 42], if one consistently applied
the FroÈ hlich model.

The real difference in the coupling constants that
renormalize the electronic and phonon spectra is not only
related to the employment of renormalized phonons in
calculating the electronic spectra, as it occurs in the case of
the FroÈ hlich model. It is also related to a substantial
difference in the matrix elements of EPI, which determine
the renormalization of both the spectra. This can be clearly
seen in metals with a weak pseudopotential. Renormalization
of electronic spectra in such metals will contain a second-
order smallness with respect to Vei�G�=eF, whereas the
nonadiabatic renormalizations of phonon spectra will have
a fourth-order smallness. This circumstance, in particular,
makes it possible to understand why the nonadiabatic
dispersion of phonons for qvF 4oph, observed in Refs [6 ±
8], has a magnitude of the order of do=dq � 106 cm sÿ1,
although the Fermi velocity in osmium is vF �
�3ÿ5� � 107 cm sÿ1 Ð that is, the dispersion of phonons is
lower than the Fermi velocity by an order of magnitude. Keep
in mind that the speed of sound in osmium reaches
� 104 cm sÿ1, i.e., two orders of magnitude lower than the
dispersion of optical phonons for qvF < oph. This only means
that the coupling constant describing the nonadiabatic effects
is l ' 0:1, although the EPI constant renormalizing the
electronic spectrum in osmium is lel � 0:4.

It should be noted that in the FroÈ hlich model, as in the
microscopic theory of lattice dynamics, an electron contribu-
tion to phonon frequencies exists [see formula (4.22)], which is
efficient for both adiabatic and nonadiabatic processes.
Hence, in our point of view there is little sense in enhancing
the FroÈ hlich model by various empirical rules, for example,
by using P�q;o� ÿP�q; 0� instead of the polarization
operator P�q;o� in calculating the phonon spectra [17, 20].
Such a procedure does eliminate the renormalization of bare
phonon frequencies in the adiabatic limit, however, it would
not result in the nonadiabatic effects for optical phonons for
qvF < oph vanishing. In addition, this procedure produces
serious problems in considering the nonadiabatic effects in
the superconducting state of a metal. The FroÈ hlich model
cannot be corrected by minor updates without losing the
sensible physical basis which is contained in it and which
agrees with the microscopic theory.

Concluding this section, we would like to briefly answer
the criticism against both the idea concerning the existence of
nonadiabatic effects in phonon spectra of metals and our
work in this field. This criticism is more pronounced in the
work by Falkovsky [19, 20, 59], in which it is asserted that the
idea itself is wrong on the existence of nonadiabatic effects
that are not small quantities with respect to the ratio

�����������
m=M

p
,

and, consequently, that most works concerning these effects
are wrong. So, in discussing the experimental data obtained
by Ponosov et al. [6 ± 8] it is asserted [19, 20, 59] that the
dispersion of an optical phonon in osmium, observed in
Refs [6 ± 8], does not prove the existence of nonadiabatic
effects in this metal. This conclusion is made on the grounds
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that the dispersion is lower than the Fermi velocity by a factor
of 10. In so doing, the author of papers [19, 20, 59] ignores the
fact that the dispersion mentioned is 100 times as great as the
speed of sound and the standard dispersion of optical
phonons, and that there is no other possibility for explaining
such a great difference without invoking nonadiabatic effects.
In Ref. [59], formulas for the phonon frequency of the
transverse optical mode are presented for the cases of
qvF < oq and qvF > oq, which we rewrite (see formulas (35),
(36) in [59]) as

o2
TO ÿ io2

TOG � o2
q � lo2

0

oq

oq � ig
�qvF < oq� �4:25�

and

o2
TO ÿ io2

TOG � o2
q � lo2

0

�
oq

qvF

�2

�qvF > oq� : �4:26�

Here, oq is the bare phonon spectrum, which in Ref. [59] is
considered adiabatic, and o2

q � o2
0 � s 2q 2, where s is the

speed of sound, and l is the electron ± phonon coupling
constant. One can clearly see that these formulas for a
TO-phonon not only fail to disprove the results of Refs [4, 6 ±
9, 29, 30] criticized in paper [59], but also completely coincide
with the results obtained earlier in the FroÈ hlich model with
slightly different notations. So, the difference between the
nonadiabatic frequency squared for the TO-phonon and the
adiabatic one, in accordance with formulas (4.25) and (4.26),
amounts to lo2

0. This is not surprising, since the approach
utilized in Refs [19, 20, 59] appreciably coincides with the
FroÈ hlich model, at least for TO-phonons.

5. Conclusion

Let us briefly formulate the results of the discussion presented
in this review. First, nonadiabatic effects in the phonon
spectra of metals undoubtedly exist and are examined
experimentally. They arise due to EPI and are not small with
respect to the parameter

�����������
m=M

p
. In addition to the simplest

effects, such as the shift of optical phonon frequencies and
increase or reduction of the corresponding widths of phonon
lines, they may also lead to more noticeable changes in
phonon spectra. Those are the anomalously large dispersion
of phonons that arise for qvF < oph, which is a few orders of
magnitude greater than the corresponding speed of sound,
and additional phonon lines arising in the superconducting
state at oph � 2D. Second, it was shown that such effects
occur in both the FroÈ hlich model and microscopic theory of
lattice dynamics. By comparing these two approaches to the
calculation of nonadiabatic effects one may conclude that the
FroÈ hlich model can be used for describing the nonadiabatic
effects in metals, and the influence of EPI on the properties of
an electron subsystem in a metal therewith can be calculated
with a high quantitative accuracy. In evaluating the non-
adiabatic effects for the phonon spectra of metals the
FroÈ hlich model yields only a qualitative, albeit a physically
rational, description of these effects.
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