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Abstract. The mixing formulas for calculating the effective
parameters of composite materials with inclusions having a
negative permeability or permittivity are analyzed. The pro-
blems appearing when various formulas are utilized were out-
lined, and the computation algorithms yielding physically
meaningful solutions were described. The problem of the calcu-
lation of a refractive index for media with arbitrary values of
permittivity and permeability is discussed.

1. Introduction

Metamaterials have recently received much attention in
electrodynamics and optics [1—10]. The term metamaterials
has been born during the study of artificial media to
distinguish such media inside which the interaction of
electromagnetic waves with inclusions is of substantially
nonpotential (retardation) character. Retardation over an
inclusion size results in many interesting phenomena, such as
chirality [11], artificial magnetism [12—18], and so forth.
These new properties become most pronounced upon
resonance excitation of inclusions.

Beyond these properties, in resonance excitation of
inclusions there are frequencies at which the induced electric
(magnetic) moment and an applied field oscillate in antiphase
that can result in negative values of effective permeability and
permittivity. Composites containing highly conducting nee-
dles [19] or inclusions with a more complex shape [16, 20 —23]
can serve here as examples. In a restricted sense, by
metamaterials are meant media with negative permeability
and permittivity. According to this definition, many natural
substances can also be attributed to metamaterials; some of
them are ferrites and semiconductors at frequencies close to
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ferromagnetic and exciton resonances, respectively, and
many are metals in the IR and optical regions.

Even if only one of the two characteristics (permeability
and permittivity) has a negative value we can encounter many
interesting phenomena, namely, the excitation of surface
waves and volume Mie resonance modes in individual
inclusions [24, 25]. If both permeability and permittivity
become negative, this qualitatively changes the optics of
such media and allows one to reproduce near-field effects
(superresolution, energy transfer by evanescent waves, etc.)
on scales comparable to or larger than a wavelength (see
Ref. [2]).

In this work, we will not dwell on the physics of all these
phenomena and will focus on the mathematical difficulties
that appear when media with negative permeability and
permittivity are examined. To describe the properties of
metamaterials, one has to separate single-valued branches of
analytical functions of several complex variables. At present,
mathematics yields no unambiguous algorithm to separate
such branches. Therefore, researchers use a variety of
approaches and statements [26—28]. The purpose of this
work is to formulate a problem for mathematicians and to
provide some recommendations for physicists, which allow
them to yield physically sound solutions.

2. Mixing formulas (homogenization theory)

We will first consider a case where the problems discussed
above can be reduced to solving well-known problems,
namely, the quasistatic case. In the quasistatic approxima-
tion, the electric and magnetic problems are known to be
solved separately [29]. Actually, this means that we are
dealing with single-negative (SNG) media, where either
permeability or permittivity takes on negative value, rather
than with double-negative (DNG) media, where both perme-
ability and permittivity become negative.

The theory of the effective parameters of composite
materials has a long history (see review [30]). It contains
both exact results (the so-called two-scale homogenization
theory [31, 32], the Dykhne formula [33]) and a whole set of
phenomenological theories giving mixing formulas, i.e.,
formulas that can be used in calculating the effective
permeability and permittivity from a given composition of
the composite [34 —57]. The best known mixing formulas are
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represented by the Garnett [34], von Bruggeman [46], and
symmetrized Garnett [53 —57] formulas. Notice that the two-
scale homogenization theory can be rigorously grounded only
in the case of problems with a positively defined operator [32].
The extension of the results of this theory to the case of
metamaterials has a ‘force’, i.e., phenomenological, charac-
ter. From a rigorous theory viewpoint, the application of
phenomenological theories, as it usually is, has an uncon-
trolled character. Moreover, in contrast to a rigorous theory,
each of the phenomenological theories qualitatively describes
only some properties of a system. !

The Bergman—Milton spectral theory should also be
noted; negative permittivity (permeability) inclusions play a
specific role in this theory. For example, in terms of the
Bergman—Milton theory, Bergman [62] showed that the
calculation of effective permittivity &g can be reduced to
finding a spectral function which, in turn, is determined by the
distribution of &g poles as a function of the permittivities of
the inclusions. Although the Bergman —Milton theory does
not generate an algorithm to calculate the spectral function, it
demonstrates that all effective permittivity poles lie on a
negative real axis [62].

Below, we will consider the application of the best known
phenomenological theories to describing metamaterials.

In some way or other all phenomenological mixing-
formula theories reduce a multiparticle problem to solving a
single-particle problem. As a preliminary we analyze the
‘perturbation theory’ or the ‘gas approximation” — that is,
the case where the inclusion concentration is so low that we
may neglect the effect of particles on each other.

Following Ref. [29], we write out the integral

1
L:;ﬁn—wmmdv:a»—QME» (1)

where ¢, and & are the permittivities of the matrix and
inclusion, respectively. Effective permittivity e is deter-
mined from the equation (D) = ¢(E) and can be expressed
through the integral I:

<D> = Seff<E> = &m <E> +1. (2)

Taking into account that the integrand is nonzero only
inside an inclusion, where D = gE, for integral I we obtain

I:%/J(D—smE) dv:Il/J.(ei ~ em)Edy, 3)

where the last integral is taken over the volume of the
inclusions.

We neglect the spatial change in the so-called local field
Eio, in which the inclusion is located, and obtain the well-
known expression [29]

3em

:7Eoc 4
& + 2em : ()

E;

for the field inside the inclusion, which yields the equation
3em(&i — &m)

D) = en(E
(D) = s (E) +p =0

Eloc 5 (5)

where p is the inclusion volume concentration.

! Here, we do not consider the problem of the validity of introducing the
effective permeability and permittivity for composites in circumstances
where the resonance interaction of electromagnetic waves with inhomo-
geneities occurs. We refer the reader to works [23, 58—61] where this
problem is discussed.
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Figure 1. Effect of concentration p on (a) & and (b) se}fl at various values
of & /em. The curves were constructed using the Garnett formula (8).

To this point, we have only assumed that particles are
located in a uniform external field and that the interparticle
distance is much larger than the particle size, so that we may
neglect the changes in the fields of other particles on the scale
of any individual inclusion.

We then assume that the fields of other particles are
neglected (gas approximation), i.e., Ejo,c = E¢y, and obtain
the following expression for calculating the effective permit-
tivity:

3 P
Eeff = &m + P 7%(81 m)

(6)

If we calculate the local field using the Lorentz— Lorenz
formula [36—39]

4n
E. = (E) + 5 P, (7)
where (E) is the mean field, Ejo is the local field, and P is the
particle polarization, we derive the well-known Garnett
formula

8m(‘gi - gm)
(& + 2em) — p(&i — ém)

Eeff = &m + 3P (8)

where ¢, and ¢ are the permittivities of the matrix and
inclusion, respectively, and p is the inclusion volume con-
centration. This formula is notable, since it takes into account
real boundary conditions, which is extremely important in the
presence of volume and surface modes [63].

As applied to negative permittivity inclusions, Eqns (6)
and (8) bring up no mathematical problems. Figure 1 depicts
the concentration dependences of &.

Until & > —2éy,, g changes monotonically from &, to g
as the inclusion concentration increases from zero to unity
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Figure 2. Dependences of the effective permittivity on concentration p that illustrate a percolation transition as &y, /& — 0 in accordance with the EMT:
(a) & = 1, (b) incorrect result (13) at & = —1, and (c) correct result obtained from Eqn (14) at g = —1.

(Fig. 1a).? For negative permittivity inclusions there is a
concentration at which the effective permittivity vanishes,
which is in complete agreement with the Bergman—Milton
spectral theory. For & < —2¢y, it is more convenient to
analyze the function ¢, because a permittivity pole other

than zero appears — that is, the effective permittivity
becomes infinite, which is related to an ‘electromagnetic
trap’ phenomenon at & = —2¢;,. To meet this condition, the

dipole moment of the inclusion and the local field along with
it become infinite, which gave the name to this phenomenon.
When delay effects are taken into account, the field and dipole
moment become restricted, which follows from the rigorous
Mie theory [23, 24].

When the condition ¢ = —2g,, is exactly satisfied, the
effective permittivity ceases to depend on the concentration
(the pole is located at p = 0): e = —2¢&,. When ¢; tends to
minus infinity, the pole moves toward unity (see Fig. 4,
dashed line). Given permittivity and permeability, &g/
changes monotonically from ¢! to ¢! (Fig. 1b).

In the von Bruggeman theory, which is often called the
effective medium theory (EMT), a matrix and inclusions are
considered to be equivalent. This formula is often called a
symmetric mixing formula. The EMT assumes that, on
average, particles do not disturb an external field — that is,
on average, the field inside the particles is equal to the applied
field. In this case, particles consisting of the inclusion material
and those consisting of the matrix material are considered to
be embedded in a certain homogeneous medium with the
desired permittivity &r. An equation for finding e takes the
form

Z plEl(nIZ = EO )

where summation is taken over all types of materials.
With Eqn (4), we can rewrite this equation for a two-
component mixture in the form

Ceff — &

Eeff — €m
Ll T8 L () p) 2T 9
2eefr + & (1=r) ®)

2geff + ém

The EMT has many modifications which try to take into
account specific phenomena or properties of composites that
are not described by the von Bruggeman formula. For
example, the authors of Refs [22, 64] obtained an expression
that takes into account the skin effect in metallic inclusions,
and the formula proposed in Ref. [47] includes a percolation

2 Note again that these formulas were derived in the low-concentration
approximation, where the interparticle distance is much larger than the
particle size. Researchers often forget this assumption and apply these
formulas at high concentrations, which can lead to physically unreason-
able results.

threshold as a free parameter. In Refs [23, 65, 66], researchers
tried to take into account correlations in a particle distribu-
tion. All these approaches are based on Eqn (9).

The popular appeal of Eqn (9) is based on the fact that it
describes a percolation transition at p. = 1/3 (in the Garnett
theory, the percolation threshold is equal to unity). In other
words, at &, = 0, the effective permittivity &g is identically
zero at concentrations below a percolation threshold and
changes from zero to ¢ as the inclusion concentration
increases from the percolation threshold to unity. However,
even to obtain this result, one has to carefully manipulate the
functions of a complex variable.

Indeed, when &, tends to zero, the second term in Eqn (9)
has the form of an uncertainty of the 0/0 type, and to obtain
the right answer, we have to utilize the general solution to
Eqn (9) in the form

geff = 0.25 {81(3p — 1) + 8m(2 - 317)

+\/[£i(3p— 1)+sm(2—3p)]2+8£ism (10)

Here, we encounter the problem of choosing a single-valued
analytical branch of the root for the first time. The physically
right answer (passive inclusions give a passive effective
medium, and active inclusions give an active effective
medium) generates a cut along the negative real axis and
defines the square root as follows

Vz=4+/|7| exp(iéq)z> for —n<ep.<m. (11)

Then, in the limit &, — 0 and & > 0, the EMT yields the
percolation behavior (Fig. 2a):

gerf = 0.25 {ai(3p -1+ [si(Sp — 1)}2 }

0, P <Pe,

—0.25 [8i(3p — 1)+ |a(Gp - 1)]} = aGp-1)
2 P> Pe-
(12)

However, to obtain analogous behavior for ¢ < 0, we should
choose another branch of the square root; otherwise, the
strange result

&(3p—1
%7 P<PC7

0, P > Pe

(13)

Eeff =

is obtained (Fig. 2b), which robs this approach of univers-
ality. This is caused by the fact that we are dealing with a
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Figure 3. Dependences of Re & (solid line) and Im & (dashed line) on the volume fraction p of inclusions according to the EMT at &, = 1 and various

values of the parameter &;.

function of many complex variables. The problem of
separating a single-valued analytical branch of a function of
several complex variables still has no final solution [67, 68]. It
seems reasonable to reduce the problem to the calculation of
the functions of one variable by factorizing the argument

VI X X 2, = 21 X ... X \/Z, [67, 68]. As a result, we

obtain the expression

eefffozs[ (p—1)+Vava <3p—1>2] (14)

instead of formula (12), which furnishes the right percolation
behavior (Fig. 2¢). It should be noted that we employed the
expression

Ve = Ve ve =

in order to extract the root of the permittivity squared, and we
applied the traditional formula

2
Gp—1)"=1[3p—1
from the theory of functions of a real variable in order to
extract the root of the remaining expression.

To find the solution in the general case of &, # 0, we
propose using an expression of the type

e = 0.25 |:81(3p —1)+em(2 —3p)
+\/s- . 9p2—9p—2+6+/2p(1 —p)

(1-3p)°
9p2—9p—2—

x\/si—s =

(15)

log, (—&i/em)

Figure 4. Characteristic points of the e( p) curve depending on the & /en
ratio. The unhatched region corresponds to the complex values of e
obtained from the EMT; the horizontal hatching corresponds to the
region where the eqr( p) function is convex up (d’e.r/dp? < 0), while the
vertical hatching corresponds to the region where this function is convex
down. In the unhatched region, one has Re (dzseﬁ\/dpz) = 0. The dashed
line illustrates the position of the pole according to the Garnett formula.

The results of calculations utilizing this formula are given in
Fig. 3. The absence of poles is a specific feature, which is
related to breaking the plasmon resonance condition
(effective rather than real boundary conditions are consid-
ered) and to the presence of a concentration region where the
effective permittivity has an imaginary part (Fig. 4). The
appearance of ‘dissipation’ is associated with energy ‘pump-
ing’ into the forming resonance configurations [33].

The symmetrized Garnett formula [53 —57] generates both
a percolation transition and resonance behavior. In this
approach, one considers the probability P; of those config-
urations where an inclusion is surrounded by matrix material,
and the probability Py of configurations where a matrix
particle is surrounded by an inclusion material. As was shown
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Unfortunately, the approach developed above cannot always

Figure 5. Dependences of Re . (solid line) and Im & (dashed line) on the
volume fraction p of inclusions according to the symmetrized Garnett
formula at the following values of the parameters: (a) &, — 0, & = 1;
D em=1,=—1,and (c) e, = 1,4 = —4.

in Ref. [53], the appropriate probabilities are given by

_ ui _ um
! ur 4 unn " uy +up
where
3
w=(1-p"P o =[1-(1-p""

For each of the configurations I and II, we calculate the
effective permittivity using the Garnett theory,

&m (& — &m)
(& + 2em) — p(&i — &m)

& = é&m + 3p

)

&i(em — &)
(em + 2¢1) — (1 = p)(em — &)

en =&+ 3(1—p)

I

which correctly describe possible resonances. At the second
step, we perform averaging over the configurations in terms
of the EMT. Since other configurations are assumed to be
absent, the equation for the effective permittivity has the
form

Eeff — €1

Geff — €11
I
2eepr + &1

It =
2eefr + €I

This theory gives a finite percolation threshold p. = 0.455
(Fig. 5a). On the whole, the behavior of the effective

be extended to other problems, e.g., to the refractive index
calculation. Specifically, we cannot factorize the argument to
restrict ourselves to only one analytical branch. This is related
to the fact that we should determine both the refractive index
and impedance. In the case where both permittivity and
permeability are passive (¢” > 0, u” > 0) or active (¢” < 0,
u” <0), we can utilize the factorization algorithm
VZ1Z2 = /71 /Z2 described above and can determine the
refractive index using the formula n = \/Z\/ﬁ [58]. One can
readily see that, when losses for the Veselago medium are
neglected (¢/ <0, u’ <0), the refractive index becomes
negative. However, in a mixed case, for example, when the
medium is electrically active and magnetically passive, we
have to take another branch of the root, which makes it
necessary to search for a more reliable and unambiguous
algorithm for finding the refractive index.

Against the background of these difficulties, researchers
discuss the method and validity of the introduction of a
negative refractive index (see Ref. [26]). The authors of
Refs [26, 28] believe that the refractive index and impedance
describe the properties of a wave propagating in the medium
rather than the properties of the medium, and that researchers
should operate with permittivity and permeability rather than
with these variables. Although this approach makes some
sense, we will inevitably come to the problem of the
calculation of square roots for practical purposes (solution
of integral equations in diffraction problems, waveguide
system calculation, etc.).

Note that the conventional Maxwell equations with
permeability and permittivity, viz.

[k x E] = kouH, (16)

[k X H] = —k()EE7
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where kg = w/c, can be rewritten using the refractive index
n = ,/epand impedance { = /p/e:
[k x E] = (kon)({H),

[k x ((H)] = —(kon)E

Although this approach has many disadvantages (especially
when moving to statics), it turns out to be useful in our case. It
is seen from the relations

n
w=n{,

(17)

&=

{

that the signs of n and { for the Veselago medium should be
different; whence it follows that the propagating wave is a
backward wave. Indeed, the Poynting vector in the absence of
losses is expressed through a wavevector, refractive index,
and impedance as follows:

(18)

k 1

S=S Re[ExH]=— (EE) ..

8 8n ko (19)
For media with a negative permittivity and permeability, we
have {n = u < 0. As a consequence, the Poynting vector and
the wavevector are oppositely directed.

It should be noted that the sign of the refractive index is
still undetermined, and we face the following two variants (in
complete accordance with the conclusions of Ref. [26]):

(>0,
(<0,

n<o, (20a)

n>0. (20b)
In addition, the authors of Ref. [26] stated that this dilemma is
likely to be insolvable in terms of the Maxwell equations. The
formal use of the dispersion equation

k* = (kon)* = k = £kor/e1 (21)
needs additional information for choosing the analytical
branch required at a certain time.

In Ref. [26], both n and k (wavevector magnitude) were
assumed to be positive, and the sign ambiguity is then
transferred to the choice of the direction of the unit vector:
k = kr. If the refractive index is taken to have a positive sign,
we should direct t oppositely to the Poynting vector and
change the sign in the formulas that describe the phenomena
depending only on the refractive index in the case of the
Veselago medium. For example, the Snell law takes the form

sin v

sing’ (22)
where 9 is the angle of incidence in a vacuum, and ¥’ is the
angle of refraction. This is rather inconvenient, since we have
to know the type of medium a priori in order to write out a
certain formula. Moreover, this does not save the situation,
because the question of choosing the t direction is still open.

It is more convenient and, apparently, correct to fix the
sign of the real part of impedance rather than the sign of the
refractive index, as was done in Ref. [26]. In addition, it is
generally accepted that the real part of impedance is chosen to
be positive [29], which leads to version (20a) in the case of the
Veselago medium, and to the standard expression for the
refractive index in the case of ordinary media. As in the case of
work [26], this unambiguously determines the sign of the
refractive index, and the only difference consists in the fact

that all the formulas (the Snell law, the Doppler effect, etc.)
have the same form for all cases. Any branch of the square
root can be used here, but the same branch should be used
when calculating » and {. If the sign of Re{ proved to be
negative, this means that we are dealing with a wave
propagating in the opposite direction.

To support the correctness of this approach, we address
work [69], where the following expression for the electro-
magnetic energy density in a dispersive medium was rederived
in an original manner:

_ L fd(ee) pe. dlon)
- 167:{ do EE” dw HH
_ L fd(we) wdlop)) ...
B 1675{ do * ¢ do EE
¢ [e dk c 1 .
“8\ 1 do EE” = 8x Cog EE™. (23)

It is natural to assume that the energy density is positive.
Following Sivukhin [69] (see also Ref. [29]), we write out
Eqn (23) in the form

uc ¢ dk . C . 1 do\ !
"= u 8w ,udu)EE 781tEE ('u\/s_,udk
1 . odo -

“This inequality should hold true for any media in which the
signs of ¢ and p coincide, since it was derived on the
assumption that a homogeneous monochromatic wave, for
which

2
w
k2:?8u>0,

can propagate in a medium. With the same assumption, we

can also speak about group and phase velocities...; as a result,
the following inequality can readily be obtained:
o do .
u Ak HUphVgr > 0.7 [69] (25)

Thus, at negative values of ¢ and , the signs of the group and
phase velocities are different. Recall that a group velocity is
related to energy and information transfer [70, 71]. Therefore,
it is precisely this quantity that should be considered as a
positive quantity [28]. We return to expression (23) and find
that impedance should be positive. Indeed, formulas (23) and
(24) yield vy > 0.

The final algorithm for the determination of the refractive
index consists in the choice of the single-valued branch of the
square root that gives a positive real part of the characteristic
impedance. The position of the cut that specifies two single-
valued analytical branches of the square root is of no
importance here. The branch with a negative real part of the
impedance corresponds to a wave moving in the negative
direction — that is, the minus sign should be used in
expression (21). Finally, the dispersion relation takes the form

k =sgn (Re{) kon. (26)

Thus, to determine the sign of the refractive index and the
right sign in the dispersion relation, we should consider the
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wave with which these notions are related (see also Ref. [28]).
Using relation (26) and one of the pairs in Eqn (20), we will
correctly describe the wave propagation.

Although we have analyzed nondissipative media, algo-
rithm (26) gives the right sign of the refractive index in the
general case, in particular, in the case where the permittivity
of the medium is passive and its permeability is active, or vice
versa.

4. Conclusion

When calculating the material parameters of metamaterials,
researchers encounter the problem of choosing a single-
valued analytical branch of a function of several complex
variables. Although a developed mathematical theory is
absent, we used a quasistatic approximation and constructed
an algorithm that gives an unambiguous, physically correct
solution to finding the effective permittivity and permeability
of composite materials with a negative permittivity or
permeability. However, the solution to the problem of
choosing a single-valued branch that appears when electro-
dynamic phenomena are described using the refractive
index —impedance pair rather than the permittivity — perme-
ability pair requires additional physical concepts, namely, the
requirement of a positive real part of impedance. The
necessity of using different branches of an analytical function
appears when researchers analyze media that are simulta-
neously magnetically passive (the imaginary part of the
permeability is positive) and electrically active (the imagin-
ary part of the permittivity is negative), or vice versa. [t should
be noted that in all other cases, including the case of positive
permittivity and permeability, we can define the refractive
index as n = /& /1 and restrict ourselves to only one branch
of the square root with a cut running along the negative real
axis.
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