
Abstract. This article deals with the linear ordinary differential
equations for one or several coupled oscillators. Emphasis is
placed on the separate notions of the frequency matrix (as a
kinematic entity) and the impedance matrix. The latter matrix
is explicitly introduced in this article, and its time dependence is
shown to be responsible for parametric excitation and for non-
conservation of adiabatic invariants.

1. Introduction

One of the favorite examples of parametric resonance in
everyday life is a swing. Everybody believes that changing
the length from the pivot axis of the swing to the mass center
of the swinger is a simple and efficient way to excite the
oscillations of the swing. We temporarily put aside the
question of whether this belief describes physical reality
correctly. What is more important to us is the following. In
accordance with folklore tradition, the parametric excitation
of the swing is attributed to the modulation of frequency,
o�t� � ��������

g=L
p

, where g [m sÿ2] is the gravity acceleration and
L [m] is the length from the mass to the pivot axis. The most

appealing part to connoisseurs is the Mathieu equation,
which we write here in the form

d2x

dt 2
� o 2

0

�
1� 2o1

o0
cos � pt�

�
x�t� � 0 : �1:1�

It is common knowledge that if the `instantaneous frequency'
o�t� � o0 � o1 cos � pt� is modulated with the period
T � 2p=p that is close enough to half of the period
T0 � 2p=o0 of the unmodulated motion, then parametric
instability of the solutions of Mathieu equation (1.1) occurs.
But in a laboratory environment, it is possible tomodulate the
length L�t�, i.e., the distance from the pivot axis to the
swinging mass, and the effective gravity acceleration g�t�
separately. The latter can be done by moving the pivot axis
up and down with an acceleration a�t�, with the result that
geff�t� � g0 � a�t� (Fig. 1).

Somewhat oversimplifying the main point of this paper,
we try to answer the following question here: Is it true that
just the modulation of the instantaneous frequency o�t� ��������������������
g�t�=L�t�p

leads to parametric excitation?
Surprisingly, most experts in parametric processes give

the answer `yes' to this question, while the correct one is `no'!
Indeed, in this article, we introduce the notion of impedance
for lumped systems, including mechanical ones, and show that
it is the modulation of the pendulum impedance Z�t� �������������������������������
m 2L3�t� geff�t�

p
that results in parametric excitation. In

other words, if the instantaneous frequency o�t� ��������������������
g�t�=L�t�p

does not change in time, but the impedance Z�t�
does, then parametric excitation is possible. On the contrary,
if the impedance Z�t� is constant in time, but the instanta-
neous frequency o�t� � �������������������

g�t�=L�t�p
is time-modulated, then

there is absolutely no parametric excitation of the oscillator.
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The apparent contradiction with the well-known mathe-
matical facts about Mathieu equation (1.1) is resolved in a
rather simplemanner. Namely, one should start with a system
of two first-order ordinary differential equations (ODEs). It is
in the process of the reduction of that system to the second
order ODE in (1.1) where additional assumptions (sometimes
correct, sometimes incorrect) are usually made.

This situation has its analogs in electric LC-circuits with
inductance L and capacitance C, where the frequency equals
o � 1=

�������
LC
p

and the impedance is Z � ����������
L=C

p
. And again,

most experts assume (incorrectly) that the frequency modula-
tion is the reason for parametric excitation, while actually
only the modulation of the impedance leads to parametric
resonance.

A similar situation occurs in classical electrodynamics.
Most people working in optics think that Fresnel reflection at
normal incidence to the boundary of two media is governed
by the step of the propagation speed v � c=n. Actually, it is
the step of the impedance Z � �������

m=e
p

that leads to the
reflection at normal incidence, while the step of the propaga-
tion speed v � 1=

�����
em
p

may be arbitrary. The `stealth technol-
ogy' of magneto-dielectric covers is based on matching the
cover impedance to 377 O, i.e., to the impedance of the
vacuum. In the television industry, a 75O coaxial cable must
be matched with another 75O one, while the propagation
speeds in the cables to be connected do notmatter. The reason
for people in optics to be confused is that m � mvac in the
optical spectral range, and therefore the impedance and
propagation speed are rigidly connected there: v � c=n and
Z � �377 O�=n in optics.

A considerable part of the material below is presented
using the terminology of Lagrangian or Hamiltonian equa-
tions, with canonical (symplectic) transformations and
generating functions (see, e.g., Refs [1 ± 6]). But the state-
ments we make about the separate roles of impedance and
frequency may be well understood directly from the systems of
the ODE in question, without references to Hamiltonian or
Lagrangian mechanics. In particular, the reader is advised to
start from Eqns (3.5), read to the end of Section 3, and proceed
with Section 4.After that, if the reader is still interested, he or
she may return to the discussions of Lagrangians and
Hamiltonians in Section 2.

2. The Lagrangian, momenta,
and the Hamiltonian:
basic definitions and equations

We consider a system of linear ordinary differential equa-
tions. It is not the most general system of linear ODEs, but
one that may be produced as Euler ±Lagrange equations of
the variational principle with a bilinear Lagrangian. It is no
surprise that the corresponding Hamiltonian is then also
bilinear.

We use the `vectors' and `transposed vectors' of n
coordinates and corresponding velocities:

x�t� �
x1�t�
� � �
xn�t�

 !
; _x�t� �

_x1�t�
� � �
_xn�t�

 !
;

�2:1�
xT�t� � ÿx1�t�; . . . ; xn�t�

�
; _xT�t� � ÿ _x1�t�; . . . ; _xn�t�

�
:

We assume the general Lagrange function to be bilinear in the
coordinates and velocities:

L�x; _x; t� � ÿ 1

2
xTK̂x� 1

2
_xTM̂ _x� xTb̂ _x

� ÿ 1

2
xiKi jxj � 1

2
_xiMi j _xj � xibi j _xj : �2:2�

Here,Ki j�t�,Mi j�t�, and bi j�t� are n� nmatrices; K̂ and M̂ are
symmetric, while b̂ may or may not be symmetric in general;
all three matrices may be time dependent. As usual, summa-
tion over repeated indices is assumed, and the hat denotes a
matrix. The choice of signs and of the letters K, M, and b is
aimed at bringing to mind the elasticity constant K of an
oscillator, the massM, and themagnetic fieldB. According to
Faraday's law of electromagnetic induction, the time depen-
dence of the antisymmetric part of b̂ leads to the curly electric
field, i.e., to an electromotive force.

Using the standard notation for the vectors of momenta p
and of forces f, we have

pi � pi�t� � qL
q _xi
�Mi j _xj � b̂T

i j xj ;

fi � fi�t� � qL
qxi
� ÿKi jxj � b̂i j _xj ; �2:3�

p � M̂ _x� b̂ Tx ; f � b̂ _xÿ K̂x :

We can express the velocities in terms of the momenta:

_x � M̂ÿ1�pÿ b̂ Tx� : �2:4�

This expression is also needed for the transition to the
Hamiltonian:

H�p; x; t� � pT _x�p� ÿ L
ÿ
x; _x�p�; t�

� 1

2
�pT ÿ xTb̂� M̂ÿ1�pÿ b̂Tx� � 1

2
xTK̂x : �2:5�

The standard Euler ± Lagrange variational equations are
written as dp=dt � f. Another way to express the same idea
is to write the canonical Hamiltonian equations

_p � ÿ qH
qxT

; _x � qH
qpT

: �2:6�

a�t� � d2Y=dt 2

m�g0 � a�t��

Y�t�

L�t�

Figure 1. A pendulum (or a swing), where the pivot point height Y�t� and
the length L�t� from the mass to the pivot point are modulated. The

vertical acceleration of the pivot point a�t� � d2Y=dt 2 results in an

effective change of the gravity force, mgeff�t� � m
ÿ
g0 � a�t��.
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For our Hamiltonian (2.5) or, equivalently, for our Lagran-
gian (2.2), these equations are

_pi�t� � bi j _xj ÿ Ki jxj � �b̂M̂ÿ1�i j pj ÿ �K� b̂M̂ÿ1b̂T�i jxj ;
_xi�t� �Mÿ1

i j pj ÿ �M̂ÿ1b̂T�i jxj : �2:7�

The same equations can be written as

d

dt

p�t�
x�t�

� �
� V

p�t�
x�t�

� �
;

�2:8�

V � b̂M̂ÿ1 ÿ�K̂� b̂M̂ÿ1b̂T�
M̂ÿ1 ÿM̂ÿ1b̂T

 !
;

whereV is a 2n� 2nmatrix. If the properties of our system are
stationary, i.e., if the three matrices M̂, K̂, and b̂ are time-
independent, then we can also write these equations in the
form of `Newton's second law':

M̂
d2x

dt 2
� �b̂ÿ b̂T� dx

dt
ÿ K̂x �stationary case� : �2:9�

This means that in the stationary case, only the antisymmetric
part of the b̂ matrix is important, in accordance with the
expression B � curl

ÿ
A�r�� in the familiar case of the motion

of a charged particle in the presence of a magnetic field B in
3-dimensional space. By itself, Eqn (2.9) is valid in the
stationary case in any number of dimensions. Below, we
prefer to work with system (2.8) for momenta and coordi-
nates.

3. One-dimensional oscillator

For a one-dimensional oscillator (one coordinate x and one
momentum p), the equations of motion become

dp

dt
� b�t�

m�t� pÿ
�
K�t� � b 2

m

�
x ;

dx

dt
� 1

m�t� pÿ
b�t�
m�t� x :
�3:1�

In this one-dimensional case, we can pass to the new
canonical variables via a symplectic transformation, and to
a new elasticity constant:

pnew � pold ÿ b�t�xold ; xnew � xold ;
�3:2�

Knew�t� � Kold�t� ÿ db
dt

:

This transformation is based on the generating function
G� pnew; xold� (see, e.g., Refs [1 ± 6]),

G� pnew; xold; t� � pnewxold ÿ 1

2
b�t�x 2

old ;

�3:3�
xnew � qG

qpnew
; pold � qG

qxold
; Hnew � Hold � qG

qt
:

It is worth noting that a similar transformation xnew � x,
pnew � pÿ b̂Tx is not symplectic (i.e., not canonical) already
for a two-dimensional x. (It is rather ironic that exactly this
nonsymplectic transformation is suggested to the readers of
book [7] entitled An Introduction to Symplectic Geometry.)

Returning to the one-dimensional case, we have the
resulting Hamiltonian

Hnew� pnew; xnew; t� � 0:5

�
p 2
new

m�t� � Knew�t�x 2
new

�
; �3:4�

and the equations

dp

dt
� ÿK�t�x ; dx

dt
� 1

m�t� p ; �3:5�

where we dropped the subscript `new' in Eqns (3.5) for
brevity. Actually, in the one-dimensional case, the reader may
start directly with system (3.5), completely ignoring all the
previous `high-brow matter' of b-terms.

Now we can introduce two different quantities: the
instantaneous frequency o�t� and the instantaneous impe-
dance Z�t� by the definitions

o�t� �
����������
K�t�
m�t�

s
; Z�t� �

������������������
K�t�m�t�

p
;

�3:6�
K�t� � oZ ;

1

m�t� �
o
Z
:

Using the frequency and the impedance, we can rewrite
Eqns (3.5) as

dp

dt
� ÿo�t�Z�t�x�t� ; dx

dt
� o�t�

Z�t� p�t� : �3:7�

A possible reason to call the quantity Z�t� `impedance' may
be the following. The verb `to impede' means ``to hinder; to
stop in progress; to obstruct; as, to impede the advance of
troops.'' If the viscous force term fvisc � ÿZvisc dx=dt is
added (see Appendix C), then the dimension of Zvisc is the
same as the dimension of the impedance Z�t�. The critical
value of the damping corresponds to Zvisc � 2Z, when both
eigenvalues of time evolution switch from the damped-
oscillatory type to the purely damped type. The so-called
quality factor Q of an oscillatory system (e.g., of an LRC-
circuit in electronics) is defined as Q � Z=Zvisc; it equals the
ratioQ � o0=g of the frequencyo0 to the damping constant g
[sÿ1] (for power), g � Zvisc=m. Incidentally, the quantity b�t�
also has the dimension of impedance. The dimension of
impedance depends on the units for the coordinate x.
Another physical interpretation of the impedance in the one-
dimensional case is discussed below in terms of the aspect
ratio of the phase-space cell.

We can perform one more canonical (symplectic) trans-
formation to new variables: a new coordinate X and a new
momentum P:

p�t� �
���������
Z�t�

p
P�t� ; x�t� � 1���������

Z�t�p X�t� : �3:8�

The corresponding system of ODEs for these new variablesX
and P is

d

dt

P�t�
X�t�

� �
� ÿg�t� ÿo�t�

o�t� g�t�
� �

P�t�
X�t�

� �
;

�3:9�
g�t� � 1

2

d

dt
ln
ÿ
Z�t�� :

It is easier to obtain Eqns (3.9) directly from (3.7) and (3.8); it
can also be verified that the corresponding generating
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function and the new Hamiltonian are

G�x;P; t� � xP
���������
Z�t�

p
;

�3:10�
Hnew�P;X; t� � Hold � qG

qt
� g�t�PX� o�t�

2
�X 2 � P 2� ;

with Eqns (3.9) being a direct consequence of Hamiltonian
(3.10).

It is convenient to introduce complex amplitudes a�t� and
a ��t� and the corresponding slowly varying complex ampli-
tudes b�t� and b ��t� by the definitions

a�t� � X�t� � iP�t������
2�h
p ; a ��t� � X�t� ÿ iP�t������

2�h
p ; �3:11�

b�t� � a�t� exp
�
i

� t

0

o�t 0� dt 0
�
;

�3:12�
b ��t� � a ��t� exp

�
ÿi
� t

0

o�t 0� dt 0
�
:

From the standpoint of classical mechanics, the constant
2�h may be arbitrary, e.g., even 2. The convenience of
interpreting �h as the Planck constant can be seen in quantum
mechanics, since the energy (Hamiltonian) for static o and Z
is H � �ho�aa � � a �a�=2, with a interpreted as the annihila-
tion operator of one quantum �ho. Remaining within classical
mechanics, we obtain the exact linear ODE for `fast'
amplitudes a�t� and a ��t� and for `slowly varying' ampli-
tudes b�t� and b ��t�:

da

dt
� ÿioa�t� � g�t� a ��t� ; da �

dt
� g�t�a�t� � ioa ��t� ;

�3:13�
g�t� � 1

2

d

dt
ln
ÿ
Z�t�� ; �3:14�

db

dt
� g�t�b ��t� exp

�
2i

� t

0

o�t 0� dt 0
�
;

�3:15�
db �

dt
� g�t�b�t� exp

�
ÿ2i

� t

0

o�t 0� dt 0
�
:

These systems, (3.13) or (3.15), allow coming to an
important conclusion: even in the case of a time-dependent
frequency o�t�, the adiabatic invariant aa � � bb � � H=�ho is
strictly conserved if the impedance Z�t� is constant in time and
therefore g�t� � 0.

Following the ideas expressed in [8] by P Paradoksov, we
may introduce a quantum-mechanical interpretation of the
above result of classical theory. Indeed, the wave functions
cn�x� of the nth state of a stationary quantum oscillator are
the well-known Hermit ±Gauss functions, with the expecta-
tion values easily calculated in terms of a�t� and a ��t� as
ÿ
a�t� � a ��t��2� � 2n� 1, and hence

cn�x� � constHn

�
x

�����
Z

�h

r �
exp

�
ÿ
ÿ
x
���������
Z=�h

p �2
2

�
; �3:16�

hx 2i �
�
n� 1

2

�
�h

Z
; h p 2i �

�
n� 1

2

�
�hZ ;

�3:17�

hx 2ih p 2i �
�
n� 1

2

�2

�h 2 ;

with the minimum value of dispersions realized in the
Gaussian ground state, n � 0.

We know from the Heisenberg commutation relations that
the elementary area of the phase-space cell dp dx is about �h [J s]
[actually, 2p�h�n� 1=2� for the nth state of an oscillator].
Therefore, the elementary quantum of energy, according to
Planck, is �ho [J] [see Eqn (D.8) below], with the frequency o
[rad sÿ1] being the `kinematic parameter.' The shape of a
trajectory in the phase space for the oscillator is an ellipse. 1

The physical meaning of the impedance is the aspect ratio dp=dx
of that trajectory:

dp dx � �h

�
n� 1

2

�
;

dp
dx
� Z : �3:18�

It is important that this aspect ratio dp=dx characterizes the
orbit of oscillatory motion in any stationary state, including a
state of motion in classical mechanics. The impedance has the
dimensions �Z� � [J s xÿ2] for any dimensions �x� of the
coordinate x.

If the impedance Z�t� does not change with time, then
each of the Hermit ±Gauss wave functions keeps its shape,
size �Dx � ����������������������������

�h�n� 1=2�=Zp �, and the number n. The only
changes are in the temporal phase factor of the corresponding
wave function. This can also be interpreted somewhat
differently. Liouville's theorem in classical mechanics
informs us that the area of phase space is always conserved.
If the aspect ratio (i.e., the impedance) is also conserved, then
the adiabatic invariant is conserved.

Another way of understanding the exceptional case of
constant impedance is to write the expression for Hamilto-
nian (3.4) in the old coordinate x and momentum p with the
use of Eqns (3.6) for m and K via frequency and impedance:

H�x; p� � p _x� p� ÿ L
ÿ
x; _x� p�� � 1

2
o�t�

�
x 2Z�t� � p 2

Z�t�
�
:

�3:19�
This form shows that for a constant (i.e., time-independent)
impedance Z of our one-dimensional problem, time depen-
dence of the frequency o�t� amounts to a time-dependent
rescaling of the Hamiltonian [also cf. (3.10)]. This time
dependence ofH corresponds to a change of the time variable,

t�t� �
� t

0

o�t 0� dt 0 : �3:20�

Therefore, time dependence of the frequency at a constant
impedance results in no changes in actual trajectories in the
phase space �x; p�, although they change in the extended space
�x; p; t�. However, for multi-dimensional coupled oscillators,
we show in what follows that the assumption of a time-
independent impedance matrix is not sufficient for preserving
the trajectories in the phase space �x; p�.

Figure 2 shows different actions on the phase plane �x; p�
of two kinds of perturbation of a Hamiltonian that is initially
stationary. Figure 2a depicts the vector field of frequency
perturbation, and Fig. 2b does the same for impedance
perturbation. It can be seen that the perturbation of
impedance tends to introduce nontrivial changes to the
original stationary ellipse.

The adiabatic invariant E=�ho is conserved with reason-
ably good accuracy if Z�t� changes adiabatically, i.e., slowly

1 Here is the definition of an ellipse by a military person: ``Ellipse is a circle

inscribed into a square 3 by 4'' (I learned this from the late Alexandr

`Sania' Ovchinnikov). In a sense, the transition from amplitudes a and a �

to the regularmomentum p and coordinate x is exactly changing the aspect

ratio of a circle to dp=dx � Z 1=2=Zÿ1=2 instead of (3 by 4).
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at the time scale t � 1=o, since in that case the coupling
between slow amplitudes b�t� and b ��t� oscillates very fast
and does not yield an accumulating effect. Following [8], we
can say that the parametric transitions between a state n and
states �n� 2� are out of resonance with the external perturba-
tions. This interpretation shows that approximate conserva-
tion of the adiabatic invariant is mostly due to the absence of
parametric resonances of the first order �oparameter � 2o0� or
of some higher order of the perturbation theory, and not
necessarily due to slowness of the parameter change (see
`Arnold's tongues' [2]).

In our notation, parametric excitation is a change in the
adiabatic invariant bb � (i.e., a change in the number of
quanta); it may occur only when the impedance Z�t� is time
dependent, and hence g�t� � 1=2 d ln

ÿ
Z�t��=dt 6� 0. Para-

metric excitation is especially effective when the impedance
parameter of the system, Z�t�, changes in time at the doubled
frequency of oscillations: this results in a slowly varying
coupling between b�t� and b ��t�. For example, if

o�t� � o0 � const ; �3:21�
Z�t� � Z0 � Z1 cos �2o0t� ; jZ1j5Z0 ;

then

g�t� � g1 sin �2o0t� ; g1 � ÿZ1

Z0
o0 : �3:22�

For a small modulation Z1=Z0 in the vicinity of a parametric
resonance, the fast-oscillating terms can be neglected in the
equations for b�t� and b ��t�. Then the equations and their
solutions become

db

dt
� i

g1
2

b ��t� ; db �

dt
� ÿi g1

2
b�t� ;

�3:23�
b�t� � cosh

jg1jt
2

b�0� � i
g1
jg1j sinh

jg1jt
2

b ��0� ;

clearly demonstrating parametric amplification with the
amplitude growth rate jg1j=2 [sÿ1]. This is quite in agreement
with the picture of resonant transitions between quantum
states n and states �n� 2�, whose energy differences are equal
to �2�ho0.

We compare (3.23) with solutions of the Mathieu
equation. Representing the unknown variable x�t� in the
form of a complex amplitude plus its conjugate,

x�t� � 1

2

�
c�t� exp �ÿio0t� � c ��t� exp �io0t�

�
; �3:24�

we can reduce Mathieu equation (1.1) at p � 2o0, i.e., at the
exact parametric resonance and in the same approximation,
to the following coupled equations and their solutions:

dc

dt
� ÿi o1

2
c ��t� ; dc �

dt
� i

o1

2
c�t� ;

�3:25�
c�t� � cosh

jo1jt
2

c�0� ÿ i
o1

jo1j sinh
jo1jt
2

c ��0� :

In this case, we see parametric amplification with the
amplitude growth rate jo1j=2 [sÿ1].

We now consider two cases for a pendulum, where either
the length or the gravity is modulated (see Section 4). In the
first case, geff � const, and it follows from (4.4) that

L�t� � L0 � L1 cos �2o0t� ;

o�t� � o0

�
1ÿ L1

2L0
cos �2o0t�

�
; �3:26�

Z�t� � Z0

�
1� 3L1

2L0
cos �2o0t�

�
:

In the second case, L�t� � const and

geff�t� � g0 � a1 cos �2o0t� ;

o�t� � o0 � o0

�
a1
2g0

�
cos �2o0t� ; �3:27�

Z�t� � Z0 � Z0

�
a1
2g0

�
cos �2o0t� :

Comparing solutions (3.23) and (3.25), we conclude that
Mathieu equation (1.1) for the length modulation at a
constant effective gravity and for x�t� interpreted as the
angle j�t� yields a wrong result for the parametric amplitude
gain rate (3 times less than the correct one, equal to
3o0jL1j=4L0) and a wrong phase for the amplified compo-
nent. The same Mathieu equation (1.1) gives the correct
amplitude gain rate o0ja1j=4g0 and the correct phase for the
gravity modulation at L � const.

This can be formulated in a slightly different manner. If
we interpret x�t� in Mathieu equation (1.1) as the angular
momentum Mz of a pendulum,, then the length modulation,
according to (1.1), would give a gain rate 3 times smaller than
the correct one, but the correct phase of the amplified
component, while the modulation of the effective gravity at
constant length leads to the correct result for gain, but a
wrong result for the phase of the amplified component. 2

a

p

x

b

p

x

Figure 2. (a) Vector field corresponding to a frequency perturbation, and a

stationary trajectory. (b) Vector field corresponding to an impedance

perturbation, and a stationary trajectory.

2 A possible source of this confusion is the traditional use of the term

`hyperbolic rotation' for a vector field with a time-dependent impedance

(Fig. 2b). The symplectic group Sp2n�R� has the dimension n�2n� 1�,
which is 3 for n � 1 (one momentum and one coordinate; real 2� 2

matrices with unit determinant). One of the generators of this group is

given by the infinitesimal rotation around the origin in the �P;X � plane;
only one type of such rotation exists in a proper sense. But there are two

linearly independent generators for `hyperbolic rotations,' one of which

contracts theP-direction and dilates theX-direction by the same factor (as

is shown in Fig. 2b), and the other contracts the direction at �45� and
dilates the one at ÿ45� by the same factor. The phase of an external

perturbation (as we have seen, the impedance modulation phase) involves

a certain linear combination of these two generators; on the other hand,

although the time modulation of a kinematic parameter (i.e., the

frequency) also makes the system nonautonomous, it does not select any

preferred phase of motion because it corresponds just to a rotation in the

�P;X � plane in the usual sense.
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4. Particular examples:
pendulum, LC-circuit in electronics

We consider the pendulum shown in Fig. 1.We letj�t� denote
the angle of the pendulum from the vertical. The angular
momentum of the pendulum with respect to the pivot axis z is
Mz � I�t� _j � mL2�t� _j, where I�t� � mL2�t� is the moment
of inertia with respect to the z axis. The quantities j and Mz

are the generalized canonical coordinate and momentum,
respectively. The vertical component of the force Fy acting on
the mass and the corresponding torque T in the coordinate
system of the pivot are given by

jFyj � m
ÿ
g0 � a�t�� � mgeff�t� ; a�t� � d2Y�t�

dt 2
; �4:1�

T�t� � ÿL�t�Fy�t� sinj�t� � ÿL�t�mgeff�t�j�t� : �4:2�

The last expression for the torque T corresponds to lineariza-
tion in the small amplitude of oscillations j�t� [rad]. In (4.1),
we took the inertia force ma�t� into account, where a�t� is the
vertical acceleration of the pivot axis. The equations of
motion for the canonical variables j andMz are

dj
dt
� 1

mL2�t� Mz ;
dMz

dt
� ÿmL�t�geff�t�j : �4:3�

Introducing the instantaneous values of frequencyo�t� and of
impedance Z�t� (with respect to the coordinate j) as

o�t� �
�������������
geff�t�
L�t�

s
; Z�t� �

�����������������������������
m 2L3�t�geff�t�

q
;

�4:4�
1

mL2�t� �
o�t�
Z�t� ; mL�t�geff�t� � o�t�Z�t� ;

we reduce our system to the form

dMz

dt
� ÿo�t�Z�t�j�t� ; dj

dt
� o�t�

Z�t� Mz�t� ; �4:5�

identical to Eqn (3.7) up to the change of notation j! x,
Mz ! p.We have seen in Section 3 that just themodulation of
impedance [Z�t� � �����������������������������

m 2L3�t�geff�t�
p

for the pendulum] is
responsible for the parametric excitation. It is worth noting
that even the linearized equations for the coordinate
x�t� � L�t� sinj�t� are rather complicated in the case of a
time-dependent length L�t�; therefore, we use the angle j and
the angular momentumMz here.

We now consider another important example of a lumped
element system: the LC-circuit in electronics, with the
notation presented in Fig. 3. A voltage V�t� [V] in the
capacitor results in the charge Q�t� � ÿC�t�V�t� (in the
lower electrode of the capacitor in Fig. 3). Here, C�t� [F] is
the time-dependent capacitance, and the dimension of the
chargeQ is [Coulomb]. The voltage V�t� tends to increase the
magnetic flux F�t� in the inductor. This magnetic flux
(summed over all the coils of the inductor) equals
F�t� � L�t�I�t�, where I�t� [A] is the current and L�t� [H] is
the time-dependent value of inductance.

The following equations describe the system:

dF
dt
� V�t� ; dQ

dt
� I�t� ;

�4:6�
F�t� � L�t�I�t� ; Q�t� � ÿC�t�V�t� :

The first equation in (4.6) is Faraday's law of electromagnetic
induction (an analog of _p � f ), the second expresses the idea
of continuity of charge (an analog of v � _x), and the third and
forth equations are the material relations (analogs of p � mv
and f � ÿkx). Eliminating the intermediate quantities V and
I, we can write the system in the form of two coupled linear
equations:

dF
dt
� ÿQ�t�

C�t� ;
dQ

dt
� F�t�

L�t� : �4:7�

We introduce the frequency o [rad sÿ1] and impedance Z [O]
by the formulas

o � 1�������
LC
p ; Z �

�����
L

C

r
;

1

L
� o

Z
;

1

C
� oZ : �4:8�

Then our system of equations (4.7) becomes

dF
dt
� ÿo�t�Z�t�Q�t� ; dQ

dt
� o�t�

Z�t� F�t� ; �4:9�

and therefore, up to the substitution F! p, Q! x, it is
identical to Eqns (3.5), (3.7). This proves that the parametric
excitation in LC-circuits is governed by time modulation of
the impedance Z�t�, not of the frequency o�t�.

5. Multi-dimensional case, no `magnetic' forces

In this section, we consider the case where b̂ � 0, i.e., the case
of absent `magnetic-type' forces. Then system of equations
(2.8) becomes

d

dt

p
x

� �
� V

p
x

� �
;

�5:1�
V � 0̂ ÿK̂

M̂ÿ1 0̂

� �
; or

dp

dt
� ÿK̂x ; dx

dt
� M̂ÿ1p :

We wish to introduce tensor analogs of the frequency and the
impedance. Here is our approach to the system of equations
(5.1) where both matrices M̂ and K̂ may be time dependent.
We define the instantaneous symmetric real matrix Ẑ�t� as a
solution of the matrix equation

ẐM̂ÿ1Ẑ � K̂ ; M̂ � M̂T ; K̂ � K̂T ; Ẑ � ẐT �5:2�

(we recall that the superscript T denotes the transposition of a
matrix, and hence the three matrices M̂, K̂, and Ẑ are
symmetric). An explicit (albeit somewhat awkward) expres-

F�t� Q�t�

V�t�

I�t� Q � ÿCV
F � LI

L
C

Figure 3.Notations for LC-circuit.
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sion for the solution of this equation is

Ẑ � M̂ 1=2�M̂ÿ1=2K̂M̂ÿ1=2�1=2M̂ 1=2 : �5:3�

Another expression, which yields an identical result, is

Ẑ � K̂ 1=2�K̂ 1=2M̂ÿ1K̂ 1=2�ÿ1=2K̂ 1=2 : �5:4�

Equation (5.2) defining the Ẑ matrix, together with its
formal solution (5.3) or (5.4), constitutes one of the main
results in this paper: an extension of the notion of impedance
to the multi-dimensional case without magnetic-type forces. In
Appendix A, we give the explicit solution Ẑ of Eqn (5.2) for
2� 2 matrices M̂ and K̂; for a larger number of dimensions,
expressions (5.3) and (5.4) require using eigenvalues of M̂
and K̂.

That somewhat unwieldy formula (5.3) is derived as
follows. We first perform a symplectic transformation to
new coordinates and momenta such that the mass becomes
the unit matrix:

pnew �
1

M̂ 1=2
p ; xnew � M̂ 1=2x : �5:5�

For a stationary system (i.e., for time-independent matrices
M̂ and K̂), the equations of motion then become

dpnew
dt
� ÿM̂ÿ1=2K̂M̂ÿ1=2xnew ;

�5:6�
dxnew
dt
� pnew �stationary case� :

We may interpret K̂new � M̂ÿ1=2K̂M̂ÿ1=2 as the new elasticity
matrix. After that, the solution of an equation like (4.2),
ẐnewẐnew � K̂new, is evident: Ẑnew � K̂

1=2
new. Returning to the

original coordinates �p; x�, we obtain the result in (5.3).
Certainly, after that `derivation,' result (5.3) was verified by
direct substitution in Eqn (5.2). A similar procedure, where a
new elasticity matrix becomes a unit matrix by a symplectic
transformation, yields formula (5.4), which may also be
verified by direct substitution.

Returning to the general time-dependent case, we can use
this n� n matrix Ẑ of impedance to define new `vectors' of
canonical momenta P and coordinates X by

P
X

� �
� Ẑ2n

p
x

� �
; Ẑ2n�t� � Ẑÿ1=2 0̂

0̂ Ẑ 1=2

� �
;

�5:7�
p
x

� �
� Ẑÿ12n

P
X

� �
; Ẑÿ12n � Ẑ 1=2 0̂

0̂ Ẑÿ1=2

� �
:

Indeed, the transformation matrix Ẑ2n and its inverse Ẑÿ12n are
symplectic 2n� 2n matrices. (The definition of symplectic
matrices is recalled in Appendix B.) Now the equations for P
and X become

d

dt

P�t�
X�t�

� �
� ÿĜ1 ÿÔ2

Ô1 Ĝ2

� �
P�t�
X�t�

� �
; �5:8�

where we have introduced four n� nmatrices

Ô1 � Ẑ 1=2M̂ÿ1Ẑ 1=2 � ÔT
1 ; Ô2 � Ẑÿ1=2K̂Ẑÿ1=2 � ÔT

2 ;

Ĝ1 � Ẑÿ1=2
dẐ 1=2

dt
; �5:9�

Ĝ2 � ÿẐ 1=2 dẐÿ1=2

dt
� dẐ 1=2

dt
Ẑÿ1=2 � ĜT

1 :

Transformation of the formula for Ĝ2 was facilitated by the
use of identities

d

dt
Âÿ1 � ÿÂÿ1

�
d

dt
Â

�
Âÿ1 ;

�5:10�
d

dt
Ẑÿ1=2 � ÿẐÿ1=2

�
d

dt
Ẑ 1=2

�
Ẑÿ1=2 ;

which, in turn, may be easily derived by differentiating the
identity B̂B̂ÿ1 � 1̂. The Hamiltonian corresponding to
Eqns (5.8) is

H�P;X; t� � PTĜ2X� 1

2
�PTÔ1P� XTÔ2X� ; �5:11�

which may be found by fitting H�P;X; t� to Eqns (5.8). The
same Hamiltonian can also be found differently, with a proof
of the canonical (symplectic) character of transformation
(5.7) as a spin-off, if we use a generating function G�x;P; t�:

X � qG
qPT

; p � qG
qxT

;

Hnew�P;X; t� � Hold

ÿ
p�P�; x�X�; t�� qG�P; x; t�

qt
; �5:12�

G�P; x; t� � xTẐ 1=2P :

It can be seen that because the impedance matrix Ẑ
satisfies Eqn (5.2), the two symmetric real `frequency
matrices' Ô1 and Ô2 introduced in (5.9) are actually equal to
each other and are denoted just by Ô in what follows:

Ô � Ô1 � Ô2 � Ẑ 1=2M̂ÿ1Ẑ 1=2 � Ẑÿ1=2K̂Ẑÿ1=2 : �5:13�

Similarly to the single-oscillator case, we introduce a
`complex amplitude' vector a�t� and its complex conjugate
vector a ��t� by the definition

a�t� � X�t� � iP�t������
2�h
p ; a��t� � X�t� ÿ iP�t������

2�h
p : �5:14�

The coupled equations for the complex vectors a�t� and a��t�
then become

da�t�
dt
� ÿiô�t�a�t� � ĝ�t�a��t� ;

�5:15�
da��t�
dt

� iô�t�a��t� � ĝ�t�a�t� ;

where ô�t� is the Hermitian matrix

ô � Ô� Ĝ1 ÿ ĜT
1

2i
� ô� � Ôÿ ĜT

1 ÿ Ĝ1

2i
; �5:16�

and a real Hermitian matrix ĝ�t� is defined as

ĝ�t� � Ĝ1 � ĜT
1

2
: �5:17�

We first consider the case where the impedance matrix is
time independent. Then ĝ�t� � 0, and the Hermitian char-
acter of ô�t� results in the evolution of the vector a�t� under a
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unitary transformation:

a�t� � Û�t; t0�a�t0� ; dÛ�t; t0�
dt

� ÿiô�t�Û�t; t0� ;
�5:18�

Û��t; t0� � Ûÿ1�t; t0� :

Generally, the matrices ô�t1� and ô�t2� do not commute with
each other at different instants t1 and t2; for that reason, a
simple exponential formula for Û�t; t0� [as we had in
Eqn (3.12)] is not valid here. It must be substituted by a
time-ordered exponential (see, e.g., Ref. [9]); we do not go into
these details.

We next consider the equations for the `slowly varying'
complex vectors b�t� and b��t�:

a�t� � Û�t� b�t� ; a��t� � Û ��t� b��t� ; �5:19�
dÛ�t�
dt
� ÿiô�t�Û�t� ;

where we allow ĝ�t� 6� 0 and assume expression (5.16) for the
Hermitian matrix ô�t�. For definiteness, we have chosen the
initial instant t0 � 0. Then the equations for b�t� and b��t�
are

db�t�
dt
� Ûÿ1�t�ĝ�t�Û ��t�b��t� ;

�5:20�
db��t�
dt

� �Ûÿ1�t���ĝ�t�Û�t�b�t� :
Just as in the case of one oscillator, we come to an

important conclusion here; we repeat it. Even in the case of a
time-dependent frequency matrix ô�t�, the adiabatic invariant
aa� � bb� �PH=�ho is strictly conserved if the impedance
matrix Ẑ is constant in time and hence the matrix ĝ�t� � 0.
More familiar is the statement that the adiabatic invariant is
conserved with reasonably good accuracy if the impedance
Ẑ�t� changes adiabatically, i.e., slowly at the time scale
t � 1=o, since in that case the coupling between slow
amplitudes b�t� and b��t� oscillates very fast and does not
yield an accumulating effect. The expression for the con-
served adiabatic invariant aa� � bb� �PH=�ho is a particu-
lar case of Manley ±Row conserved quantities, in the case
where any possible transitions may only substitute one
quantum of a mode by one quantum of another mode.
Another description of the conservation of the adiabatic
invariant is the statement that parametric excitation of our
system of coupled oscillators is absent for a time-independent
impedance matrix.

Calculations similar to those in the one-dimensional case
lead to the mean values hxixki and h pi pki for the ground state
of the system:

hxixki � 1

2
�hẐÿ1ik ; h pi pki � 1

2
�hẐik ;

hxi pki � ÿ 1

2
i�hdik ; h pixki � 1

2
i�hdik ; �5:21�

h pixk � xk pii � 0 ; h pixk ÿ xk pii � ÿi�hdik :

The last formula expresses a direct consequence of the
canonical commutation relation. The wave function of the
ground state in the coordinate representation is multi-

dimensional Gaussian:

c�x� � const exp

�
ÿ 1

2�h

X
i; k

Zikxixk

�
: �5:22�

Wave functions of higher states can be found by application
of an appropriate number of the relevant creation operators
a� to ground-state wave function (5.22), and coherent states
can be produced in a similar manner; we do not go into these
details (see, e.g., Ref. [10]). Again, it is almost evident that if
simultaneous variations of mass and elasticity do not change
the impedancematrix, thewave function of the ground state is
preserved and, easily generalizing to excited states, we see that
the adiabatic invariant aa� is also preserved.

This discussion may be broadened to a more general
p; x-dependence of the Hamiltonian H�p; r; t� than the
previously considered bilinear Lagrangians and Hamilto-
nians. Specifically, let

H�p; r; t� � H0�p; r� s�t� : �5:23�

Evidently, the Hamilton equations for the Hamiltonian
H�p; r; t� differ from similar equations for H0�p; r� by a
simple time rescaling t! t, such that dt=dt � s�t�. In other
words, trajectories in the phase space �p; r� for these two
Hamiltonians are identical, while trajectories in the extended
phase space �p; r; t� are different for s�t� 6� 1. Because the
Hamiltonian H0�p; r� is time-independent, the motion of the
corresponding system is limited to a constant-energy hyper-
surface H0�p; r� � E0. However, as we have seen above for a
multidimensional system of coupled oscillators, the system
with a constant impedance matrix may still have a nontrivial
time dependence of the Hamiltonian, which cannot be
reduced just to a nonlinear change of the time variable (or,
which is equivalent, of the energy unit).

6. Two-dimensional motion
in the presence of a magnetic field

We now consider a particular case of motion in the �x; y�
plane in the presence of a magnetic field B � Bez, with the
action of this field described by the antisymmetric tensor b̂.
For definiteness, we consider the mass tensor M̂ to be
isotropic. The tensor b̂ can then be conveniently expressed
in terms of the so-called Larmor frequency L � qB=2m
[rad sÿ1], where q is the electric charge of the particle and m
is its mass. We also allow a certain anisotropy of the elasticity
tensor K̂, which by an appropriate choice of �x; y� coordinates
can be diagonalized in the �x; y� axes. In other words, we
assume that

bxy � ÿbyx � mL ; bxx � byy � 0 ;

b̂ � 0 mL
ÿmL 0

� �
; K̂ � mo2

x 0

0 mo2
y

 !
; �6:1�

M̂ � m 0
0 m

� �
:

The explicit expression for the Hamiltonian in this notation is

H�p; x; t� � �2m�ÿ1�� px � ymL�2 � � py ÿ xmL�2�
� 1

2
�mx 2o2

x �my 2o2
y� : �6:2�
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The Lagrange ±Hamilton equations then become

d

dt

px
py
x
y

0B@
1CA

�
0 L
ÿL 0

� � ÿm�o2
x � L2� 0

0 ÿm�o2
y � L2�

 !
1=m 0

0 1=m

� �
0 L
ÿL 0

� �
0BBB@

1CCCA
px
py
x
y

0B@
1CA:
�6:3�

These equations are also valid for time-dependent parameters
m, L, ox, and oy. According to Eqn (5.3), the actual
precession (for q > 0) occurs in the direction opposite to the
magnetic field (diamagnetism). We introduce new momenta
P� and Pÿ, as well as new coordinates X� and Xÿ, via the
transformation with a symplectic matrix Ẑ4:

P�
Pÿ
X�
Xÿ

0B@
1CA � Ẑ4

px
py
x
y

0B@
1CA ; Ẑ4 � Ŝ Û

V̂ Ŵ

� �
; �6:4�

Ŝ �
1��������
2Z1

p 0

1��������
2Z1

p 0

0BB@
1CCA ; Û �

0

������
Z1

p ���
2
p

0 ÿ
������
Z1

p ���
2
p

0BBB@
1CCCA ;

�6:5�

V̂ �
0 ÿ 1��������

2Z1

p

0
1��������
2Z1

p

0BB@
1CCA ; Ŵ �

������
Z1

p ���
2
p 0������
Z1

p ���
2
p 0

0BBB@
1CCCA :

(Unfortunately, none of the matrices S, U, V, and W is
invertible, because each has a vanishing determinant, and
therefore the elegant formulas for block matrices are
inapplicable here.) In other words, we introduce new
momenta P� and Pÿ and new coordinates X� and Xÿ as

P� � px��������
2Z1

p � y

�������
Z1

2

r
; Pÿ � px��������

2Z1

p ÿ y

�������
Z1

2

r
;
�6:6�

X� � ÿpy��������
2Z1

p � x

�������
Z1

2

r
; Xÿ � py��������

2Z1

p � x

�������
Z1

2

r
:

The inverse transformation is also sufficiently simple:

px �
�������
Z1

2

r
�P� � Pÿ� ; py �

�������
Z1

2

r
�ÿX� � Xÿ� ;

x � 1��������
2Z1

p �X� � Xÿ� ; y � 1��������
2Z1

p �P� ÿ Pÿ� :
�6:7�

In the general case, when the quantityZ1�t� is time dependent,
the equations of motion are given by

d

dt

P�
Pÿ

� �
� ÿg1�t� 0 1

1 0

� �
P�
Pÿ

� �
ÿ Ô2

X�
Xÿ

� �
;

d

dt

X�
Xÿ

� �
� g1�t� 0 1

1 0

� �
X�
Xÿ

� �
� Ô1

P�
Pÿ

� �
; �6:8�

g1�t� � 1

2

d lnZ1�t�
dt

(to be compared also to Fig. 2b). Specific expressions for the
symmetricmatrices Ô1 and Ô2 are given below [see Eqns (6.11)
and (6.12)]. Equations (6.8) are the canonical equations for
the Hamiltonian

H�P�;Pÿ;X�;Xÿ; t� � g1�t��X�Pÿ � XÿP��

� 1

2
PTÔ1P� 1

2
XTÔ2X : �6:9�

If this `intermediate' impedance Z1 is independent of time,
then the equations of motion become

d

dt

P�
Pÿ

� �
� ÿÔ2

X�
Xÿ

� �
;

d

dt

X�
Xÿ

� �
� Ô1

P�
Pÿ

� �
:

�6:10�

Remarkably, the transformation with Z1�t� � const pro-
duces equations where the new momenta P are `pulled back
by a restoring force' proportional to ÿÔ2X, while the new
coordinates X increase with time proportionally to �Ô1P. In
other words, this transformation allowed eliminating the
terms relating dP=dt to P, and the terms relating dX=dt to
X. As a result, the matrix Ô2 plays the role of a new elasticity
matrix and the matrix Ô1 plays the role of a new inverse mass
matrix. In some sense, this transformation resembles the
transition to the new coordinate frame revolving with the
Larmor precession rate L. The transformation to a rotating
frame would, however, make the anisotropic restoring force
(at ox 6� oy) explicitly time dependent. On the contrary, our
symplectic transformation is time independent, and hence
does not result in a violation of the energy conservation law,
even for ox 6� oy.

The symmetric real matrices Ô1 and Ô2 have a rather
complicated structure in the case ox 6� oy:

Ô1 �
L�m�o2

y � L2�
2Z 2

1

� Z 2
1

2m
ÿm�o2

y � L2�
2Z 2

1

� Z 2
1

2m

ÿm�o2
y � L2�
2Z 2

1

� Z 2
1

2m
ÿL�m�o2

y � L2�
2Z 2

1

� Z 2
1

2m

0BBB@
1CCCA ;

�6:11�

Ô2 �
L�m�o2

x � L2�
2Z 2

1

� Z 2
1

2m

m�o2
x � L2�
2Z 2

1

ÿ Z 2
1

2m

m�o2
x � L2�
2Z 2

1

ÿ Z 2
1

2m
ÿL�m�o2

x � L2�
2Z 2

1

� Z 2
1

2m

0BBB@
1CCCA :

�6:12�
Their further transformation via an extra dimensionless
matrix ẑ2 satisfying the equation

ẑ2Ôÿ11 ẑ2 � Ô2 �6:13�

allows making the new Ô1 and Ô2 identical. Explicit
expressions for the matrix ẑ2 satisfying Eqn (6.13) are given
in Eqns (5.3), (5.4), and (A.7).

Eigenfrequencies of two linearly independent modes in
the stationary case are

o�;ÿ

�

�������������������������������������������������������������������������������������������������������������
2L2 � 1

2
�o2

x � o2
y� �

��������������������������������������������������������������
2L2 � 1

2
�o2

x � o2
y�
�2
ÿ o2

xo2
y

svuut
:

�6:14�
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Below, we limit ourself to the isotropic potential well,
ox � oy � oxy; then choosing

Z1 � m
�������������������
L2 � o2

xy

q
�6:15�

results in a simple diagonal form of the matrix Ô1 � Ô2 � Ô:

Ô1 � Ô2 � Ô � o� 0
0 oÿ

� �
;

�6:16�
o� �

�������������������
o2

xy � L2
q

� L ; oÿ �
�������������������
o2

xy � L2
q

ÿ L :

Indeed, an honest solution of the characteristic equation for
the matrices in Eqns (6.11) and (6.12) in the isotropic case
ox � oy � oxy exactly yields these two eigenfrequencies, o�
and oÿ, even without the special choice of Z1 � const.

Just as in the previous nonmagnetic case, we can introduce
complex amplitudes, to become annihilation and creation
operators in quantum mechanics:

a��t� � X��t� � iP��t������
2�h
p ; a ���t� �

X��t� ÿ iP��t������
2�h
p ;

�6:17�
aÿ�t� � Xÿ�t� � iPÿ�t������

2�h
p ; a �ÿ�t� �

Xÿ�t� ÿ iPÿ�t������
2�h
p :

Quantum mechanical energy levels of this oscillatory system
are characterized by the excitation numbers n� and nÿ of the
corresponding quanta �ho� and �hoÿ:

E�n�; nÿ� � �ho�

�
n� � 1

2

�
� �hoÿ

�
nÿ � 1

2

�
: �6:18�

If only the magnetic field is present and the potential well is
absent, oxy � 0, we obtain the famous Landau levels, with
o� � 2L being equal to twice the Larmor frequency, i.e., to
the cyclotron frequency, whileoÿ vanishes, and the centers of
Landau orbits become degenerate.

Expressions like Eqns (6.17) allow the calculation of
transition matrix elements, fluctuations, etc. Corresponding
expressions for the regular coordinates �x; y� and momenta
�px; py� are

x�t� �
���������

�h

4Z1

s
�a� � a �� � aÿ � a �ÿ� ;

�6:19�

y�t� �
���������

�h

4Z1

s
a� ÿ a �� ÿ aÿ � a �ÿ

i
;

px�t� �
��������
�hZ1

p a� ÿ a �� � aÿ ÿ a �ÿ
2i

;

�6:20�
py�t� �

��������
�hZ1

p ÿa� ÿ a �� � aÿ � a �ÿ
2

:

The expressions for velocities vx and vy may also be useful:

vx�t� � Ly� px
m
; vy�t� � ÿLx� py

m
: �6:21�

We consider the state of the system with definite values of the
number of quanta n� and nÿ. Then

hxi � h yi � h pxi � h pyi � hvxi � hvyi � 0 ; �6:22�

Z1hx 2i � Z1h y 2i � h p
2
x i

Z1
� h p

2
y i

Z1
� �h

2

�
n� � 1

2
� nÿ � 1

2

�
;

�6:23�
hxpx � pxxi � h ypy � pyyi � 0 ; �6:24�
hxpx ÿ pxxi � h ypy ÿ pyyi � i�h ;

hxpy ÿ pyxi � h ypx ÿ pxyi � 0 ; �6:25�
ÿ hxpy � pyxi � h ypx � pxyi � �h�n� ÿ nÿ� ;
�
m�v 2

x � v 2
y �

2
�mo2

xy�x 2 � y 2�
2

�

� �ho�

�
n� � 1

2

�
� �hoÿ

�
nÿ � 1

2

�
: �6:26�

These formulas may be useful in describing the system in
statistical physics.

7. Statistical physics of an oscillator
in a magnetic field

For a state with definite values of n� and nÿ, it is instructive to
calculate hMzi, the expectation value of themagnetic moment
Mz � q=2�xvy ÿ yvx� [A m2]. Substitution of expressions
(6.22) ± (6.26) inMz yields (for q > 0)

hMzi � q

2
hxvy ÿ yvxi � q�h

2m
�������������������
L2 � o2

xy

q
�
h
ÿL� nÿ

� �������������������
L2 � o2

xy

q
ÿ L

�
ÿ n�

� �������������������
L2 � o2

xy

q
� L

�i
:

�7:1�

The well-known Planck formula for the thermodynamically
equilibrium expectation value of the number of quanta takes
a particular limit form in the case of high temperatures:

hni �
�
exp

�
�ho
kBT

�
ÿ 1

�ÿ1
� kBT

�ho
ÿ 1

2
� 1

12

�ho
kBT
�O

�
�ho
kBT

�2

:

�7:2�

At the same time, hni ! 0 at a very low temperature. As a
result, the expectation value of the magnetic moment at very
low temperatures is

hMzi � ÿ jqj�h
2m

L�������������������
L2 � o2

xy

q � ÿ q 2�h

4m

B���������������������������������
o2

xy � �qB=2m�2
q

�7:3�
(diamagnetic response), with jqj�h=2m being the Bohr magne-
ton. As B! 0, this result coincides with the Langevin
formula. Equations (7.1) and (7.2) also allow illustrating the
validity of the theorem by Niels Bohr and Van Leuven (see,
e.g., Ref. [11]):

hMzi � q

2
hxvy ÿ yvxi � ÿ jqj�h

2m

�hL

3kBT
as kBT!1 ;

�7:4�

and hence the induced magnetic moment vanishes in the
classical limit �h! 0.
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If the magnetic field is strong, i.e., if L4ox;oy, then the
frequency oÿ is even much smaller than ox and oy. For
example, in the isotropic case �L4ox � oy � oxy�, the
lower eigenfrequency oÿ can be approximately calculated
without accounting for inertia: the Lorentz force
qBv � qBroÿ (in the circular motion of radius r and yet
unknown angular velocity oÿ) is to be set equal to the elastic
restoring force m�oxy�2r. The higher eigenfrequency o� may
be approximately calculated without accounting for the
elastic restoring force, but just by setting the mass times the
centripetal acceleration, m�o��2r, equal to the Lorentz force
qBv � qBo�r. In that approximation,

oÿ �
o2

xy

2L
; o� � 2L ; �7:5�

where 2L � qB=m is the well-known cyclotron frequency.
From the methodological standpoint, there is an interest-

ing intermediate case, where

L4oxy ; o� � 2L ; oÿ �
o2

xy

2L
5oxy 5L ;

�7:6�
�hoÿ5 kBT5 �ho� ; hn�i � 0 ; hnÿi � kBT

�hoÿ
ÿ 1

2
:

In this case, a nonzero diamagnetic response occurs

hMzi � q

2
hxvy ÿ yvxi � ÿjqj�h

2m
� kBT

Bz
; �7:7�

where the second `classical' paramagnetic term is a small
correction to the leading quantum diamagnetic term. The
reason for the small paramagnetic correction is that the
magnetic field was assumed to be very strong: the cyclotron
quantum 2�hL is much larger than the thermal energy kBT,
while the low-frequency quantum �hoÿ is much smaller than
the thermal energy.

8. General case. Discussion

We now consider the most general case, where the tensor b̂
may have both symmetric and antisymmetric parts. In the
stationary case, the symmetric part b̂ s of b̂ influences the
trajectories in the �p; x� space but does not influence
trajectories in the �x; _x� space. Indeed, we can perform a
gauge transformation of the Lagrangian with respect to the
symmetric part b̂ s of b̂:

xi b
s
i j _xj � d

dt

�
1

2
xi b

s
i jxj

�
ÿ xixj

1

2

d

dt
b s
i j : �8:1�

It is well known that adding a total time derivative of a
function of time and coordinates (but not velocities) does not
change the Euler ± Lagrange equations for �x; _x�. The time-
dependent symmetric part b̂ s of the tensor b̂ yields an extra
contribution to the elastic coefficient [cf. formula (3.2)]. The
antisymmetric part b̂ a of b̂ gives rise to magnetic-type forces,
while the time dependence of b̂ a (of the magnetic field) leads,
according to Faraday's law of electromagnetic induction, to
curly forces with nonzero work along a closed loop. That
work is called the `electromotive force (EMF) of induction' by
physicists.

We suppose that a symplectic 2n� 2n matrix Ẑ2n (i.e., a
matrix satisfying symplecticity conditions (B.5) ± (B.8) in
Appendix B) has been found such that

Ẑ2n � Ŝ Û

V̂ Ŵ

� �
; Ẑÿ12n � ŴT ÿÛT

ÿV̂T ŜT

� �
;

�8:2�
ŜÛT ÿ ÛŜT � 0 ; V̂ŴT ÿ ŴV̂T � 0 ; ŜŴT ÿ ÛV̂T � 1̂ ;

Ẑ2n
b̂M̂ÿ1 ÿ�K̂� b̂M̂ÿ1b̂T�
M̂ÿ1 ÿM̂ÿ1b̂T

 !
Ẑÿ12n � 0̂ ÿÔ

Ô 0̂

� �
: �8:3�

At the time of writing, the author does not have a
mathematical proof of the existence (or uniqueness) of such
amatrix Ẑ2n. But the intuition of a physicist suggests that such
a solutionmust exist.Moreover, in the absence of degeneracy,
the matrix Ẑ2n that diagonalizes the yet unknown n� n
`frequency matrix' Ô should be unique up to a relabeling of
nmodes.

The expression for the `old' momenta and coordinates are
then given by

p �
����
�h

2

r hÿÿÛT ÿ iŴT
�
a� ÿÿÛT ÿ iŴT

�
a�
i
;

�8:4�

x �
����
�h

2

r hÿ
iV̂T � ŜT

�
a� ÿÿiV̂T � ŜT

�
a�
i
:

Furthermore, if the state of the system in theHilbert space can
be presented as a product of states with definite numbers nj of
quanta in the j th oscillator mode, then

haki � ha �k i � 0 ; hakami � ha �k a �mi � 0 ;
�8:5�

haka �mi ÿ dkm � ha �k ami � nkdkm :

The corresponding formulas for the expectation values hxi,
hpi, hxpi, hxvi, etc., are logically simple, but cumbersome in
writing, and therefore we do not present them here (cf. the
rather detailed expressions in the case of a magnetic field in
Section 6).

A possible approach to multidimensional systems with
antisymmetric components of the b̂ tensor was already
mentioned in Section 6. Namely, the transition to the
coordinate frame revolving with the Larmor angular velocity
L can be performed. For two momenta and two coordinates,
we can use the symplectic transformation

~px
~py
~x
~y

0BB@
1CCA � Ẑ4

px
py
x
y

0B@
1CA ; Ẑ4�t� � R̂�t� 0̂

0̂ R̂�t�

 !
;

�8:6�
R̂�t� � cos �Lt� ÿ sin �Lt�

sin �Lt� cos �Lt�
� �

; R̂T�t� � R̂ÿ1�t� :

Equations (6.3) can then be transformed with the help of the
identity�

d

dt
R̂�t�

�
R̂ÿ1�t� � ÿL sin �Lt� ÿL cos �Lt�

L cos �Lt� ÿL sin �Lt�
� �

� cos �Lt� sin �Lt�
ÿ sin �Lt� cos �Lt�

� �
� 0 ÿL

L 0

� �
: �8:7�
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As a result, Eqns (6.3) become

d

dt

~p
~x

� �
� dẐ4�t�

dt
Ẑÿ14 �t�

~p
~x

� �
� Ẑ4�t� d

dt

p
x

� �

� 0̂ ÿR̂�t��K̂ÿ b̂aM̂ÿ1b̂a�R̂ÿ1�t�
R̂�t�M̂ÿ1R̂ÿ1�t� 0̂

 !
~p
~x

� �
:

�8:8�

We recall that the antisymmetric matrix b̂ is here assumed to
have form (6.1). In a truly remarkable way, the terms relating
momenta to themselves, and radius vectors to themselves in
Eqn (6.3) have disappeared! We can say that these terms were
compensated (in the Larmor-revolving frame) by the Coriolis
force. We can now apply the procedure of finding the
impedance matrix with respect to the radius vector ~x. After
that, we should make the transformation to the complex
amplitudes ~a and ~a�. Then, still using these complex
amplitudes, we can make a transformation back to the
laboratory (i.e., nonrotating) frame. Then we can pass from
laboratory complex amplitudes to the laboratory real coordi-
nates andmomentaP�,Pÿ,X�,Xÿ. Because this procedure is
valid at any time instant, the limit as t! 0 can be taken by
using something like l'Hôpital's rule. The procedure of going
from realmomenta and coordinates to a new basis, then going
to complex amplitudes, then going to complex amplitudes in
the old basis, and finally going to new real momenta and
coordinates is similar to the procedure of finding real
`momenta' and `coordinates' for the running-wave oscilla-
tors in classical electrodynamics, starting with the standing-
wave oscillators (see, e.g., æ 52 in Ref. [12] 3).

Returning to the problem with the antisymmetric real
matrix b of arbitrary size, we can use the well-known theorem
(see, e.g., Ref. [13]) about the reduction of a general
antisymmetric matrix by rotations (which are known to
preserve symplecticity) to a block form, with each block
being either

0 Lj

ÿLj 0

� �
�8:9�

or a zero matrix of size 1. Subsequently, we can pass to the
coordinate frame that revolves in the plane of the correspond-
ing matrix (7.9) with the appropriate `Larmor' angular
velocity Lj, individual for each j th plane, and perform all
the tricks with complex/real amplitudes described above. This
program might possibly be carried out, but this has not yet
been done by the present author, 4 except in the case with two
momenta and two coordinates (see Section 6).

Returning to the general ideology of impedance, it is
worth making the following statement, which does not seem
entirely evident. Common wisdom and the experience of
working with quantum oscillators of mass m and frequency
o suggest the following estimate:

dy� �
����������

�h

2Z�

s
� �?� �

��������������
�h

2mo�

s
; �8:10�

dyÿ �
����������

�h

2Zÿ

s
� �?� �

��������������
�h

2moÿ

s

(cf. the example involving themagnetic field in Section 6). The
results of our consideration in Section 6 show that an intuitive
estimation like (8.10) for the impedanceZÿ is radically wrong
there. Indeed, in the isotropic case, both high- and low-
frequency modes of motion have exactly the same impe-
dances, Z1 � m�L2 � o2

xy�1=2.
A typical objection to the use of a separate notion of

impedance Z (as opposed to the productmo) is that the mass
m is usually time-independent. One argument against that
objection is that the relativistic `transverse' mass depends on
speed.

The motion of electrons near the bottom of the con-
ductance band in a solid state with an anisotropic mass tensor
is another example. The tensor of inertia, which plays the role
of mass for the rotational motion, may evidently be time-
dependent; this is especially clear for the pendulum with
variable length. In electrical circuits (see Section 4), the
frequency o � 1=

�������
LC
p

and the impedance Z � ����������
L=C

p
are

evidently independent parameters, because both the induc-
tance L and the capacitance C may change independently in
time.

The case of motion in the presence of a magnetic field is
especially dramatic in this respect: even for a constant mass,
the frequency and the impedance can be changed indepen-
dently. Even more importantly, the impedance Z1 in
Eqn (6.15) can be kept time-independent even for
m�t� � const by simultaneously changing the magnetic field
(or the cyclotron frequency 2L) and the elasticity of the
mechanical restoring `spring' (isotropic frequency oxy) in
opposite directions: increasing one and decreasing the other
in appropriate proportions.

Apparently, gyroscopic forces in the classical dynamics of
rigid bodies andCoriolis forces in a rotating coordinate frame
may give rise to antisymmetric components of the b̂ tensor.
However, this problem requires further study.

9. Conclusion

In this paper, we have emphasized separate notions of
impedance as a `dynamic parameter,' and of frequency as a
`kinematic parameter.' The modulation of not the frequency
but the impedance is responsible for the parametric excita-
tion. The shape of a trajectory in the phase space for the
oscillator is an ellipse. The physical meaning of the impedance
Z is the aspect ratio of the phase-space trajectory: Z � dp=dx,
of the dimension �Z� � [J s xÿ2] for the appropriate dimension
of the coordinate x.

We derived the equation for the impedance matrix in the
multi-dimensional case. The conservation of the adiabatic
invariant is discussed in the example of the Manley ±Row
relations. It seems that the generation of particle ± antiparticle
pairs by gravitational fields may also be discussed in terms of
some kind of impedance, but this question deserves further
study.

The author is grateful to the numerous friends, colleagues,
and relatives with whom he discussed the results of this paper:
N B Baranova, G I Barenblatt, V B Braginskii, S M Voronin,
L P Grishchuk, J Goodman, P V Elyutin, V S Liberman,
M A Liberman, V I Zalyapin, K B Zeldovich, A E Kaplan,
D Kaup, E I Kats, D Christodoulides, K K Likharev,
S Mokhov, J Neife, S P Novikov, M A Ovchinnikov,
M Ya Ovchinnikova, L P Pitaevskii, O V Rudenko, and
A E Siegman. SMVoronin found an essential misprint in the
expression for the impedance of a pendulum. M A Ovchinni-

3 Section 52 in Landau and Lifshitz's Field Theory bears the humble title
``Characteristic vibrations of the field,'' suggesting that its contents should
be almost trivial. In reality, however, the procedure described there is not
very simple, for the author of this paper at least.
4 ``He who loves stronger than me writes longer than me.''
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kov suggested the idea underlying Figs 2a, b. M Ya Ovchin-
nikova suggested the term `aspect ratio of a phase-space
trajectory.' The author expresses his deep gratitude to
G I Barenblatt, V I Zalyapin, L B Glebov, A E Kaplan, and
EWvan Stryland formoral and organizational support of his
work on the subject of impedance.

10. Appendices

A. Solution of the impedance equation for 2� 2 matrices
We consider the task of solving the equation for the unknown
impedance matrix Ẑ:

ẐM̂ÿ1Ẑ � K̂ ; �A:1�
where M̂ is a symmetric real matrix of mass, K̂ is a symmetric
real matrix of elasticity, and both these matrices are assumed
to be positive definite. For 2� 2matrices, wewere able to find
an explicit solution of impedance equation (A.1); below is the
description of that solution.

It is convenient to reduce the problem to one where all the
three matrices have unit determinant. Namely, for general
2� 2 matrices, we can set

m̂ � �det M̂�ÿ1=2 M̂ ; k̂ � �det K̂ �ÿ1=2 K̂ ; �A:2�
ẑ � �det Ẑ�ÿ1=2Ẑ :

Each of the newmatrices m̂, k̂, and ẑ has unit determinant, and
Eqn (A.1) implies that

det Ẑ �
������������������������
det M̂ det K̂

p
; ẑm̂ÿ1 � k̂ẑÿ1 : �A:3�

The most general symmetric real positive definite 2� 2
matrices with unit determinant are

m̂ �
m t

t
1� t 2

m

0@ 1A ; k̂ �
k u

u
1� u 2

k

0@ 1A ; �A:4�

wherem and k are arbitrary real positive numbers, and t and u
are any real numbers. The inverse matrix to m̂ looks simple
because the determinant of m̂ is 1:

m̂ÿ1 �
1� t 2

m
ÿt

ÿt m

0@ 1A : �A:5�

We introduce the notation for entries of a matrix ẑ with unit
determinant:

ẑ � a b
g d

� �
; adÿ bg � 1 ; ẑÿ1 � d ÿb

ÿg a

� �
:

�A:6�
With this notation, Eqn (A.3) becomes linear (for the 2� 2
matrices ẑ and ẑÿ1) in the coefficients a, b, g, and d, and
therefore yields a relatively simple solution:

b � g � �u� t�
����������������������������������������������������������������������������������

mk

2km�1ÿ ut� �m 2�1� u 2� � k 2�1� t 2�

s
;

a � b
u� t

�m� k� ; d � b
u� t

�
1� u 2

k
� 1� t 2

m

�
:
�A:7�

Thus, the impedance matrix Ẑ turns out to be symmetric, as
expected, and exists at any values of the real parameters t

and u, and real positivem and k. Formulas (A.7) were verified
by direct substitution. An extra test is applicable in the
especially simple diagonal case, where t � u � 0. Then

b � g � 0 ; a �
�������
km
p

; d � 1�������
km
p ; �A:8�

just as it should be for the diagonal matrices m̂ and k̂ of type
(A.4) with t � u � 0.

B. Linear transformations of coordinates and momenta:
when are they canonical? Symplectic matrices
We consider `vectors' and `transposed vectors' of n original
coordinates and n original momenta:

x�t� �
x1�t�
� � �

xN�t�

 !
; p�t� �

p1�t�
� � �

pN�t�

 !
;

�B:1�
xT�t� � ÿx1�t�; . . . ; xN�t�

�
; pT�t� � ÿ p1�t�; . . . ; pN�t�

�
:

We consider linear transformations to vectors X and P of
`new' coordinates and momenta:

P � Ŝp� Ûx ; X � V̂p� Ŵx ;
�B:2�

P
X

� �
� Ẑ2n

p
x

� �
� Ŝ Û

V̂ Ŵ

� �
p
x

� �
;

where Ŝ, Û, V̂, and Ŵ are n� n real matrices, and Ẑ2n is a real
2n� 2n matrix. Here is the way to memorize the order of
matrices in our notation: they appear in alphabetical order
from left to right in the top row of Ẑ2n and then in the bottom
row. (We skip the letter `T' because it is needed to denote the
transposition.) These transformations are `canonical' if the
Poisson brackets of the new variables with respect to the old
variables satisfy the relations

fXi;Xjg � 0 ; fPi;Pjg � 0 ; fPi;Xjg � di j : �B:3�

Here, the Poisson bracket of two functions f �x; p� and g�x; p�
is defined by

f f; gg �
XN
k� 1

�
qf
qpk

qg
qxk
ÿ qf
qxk

qg
qpk

�
: �B:4�

In quantum mechanics, these Poisson brackets are replaced
by commutators of operators of physical quantities f and g.
Direct substitution yields the conditions on the matrices Ŝ, Û,
V̂, and Ŵ for the transformation to be canonical:

ŜÛT � �ŜÛT�T � ÛŜT ; V̂ŴT � �V̂ŴT�T � ŴV̂T ;

ŜŴT ÿ ÛV̂T � 1̂n ; ŴŜT ÿ V̂ÛT � 1̂n :
�B:5�

Actually, the last equality in (B.5) is a transposition of the
previous equality, whereas the transposition of the first and
second equalities in (B.5) just reproduces them. Conditions
(B.5) mean that the 2n� 2nmatrix Ẑ2n is symplectic, i.e., has
the properties

Ẑ2nR̂�Ẑ2n�T � R̂ ; R̂ � 0̂ 1̂n

ÿ1̂n 0̂

� �
;

�B:6�
Ẑ2n � Ŝ Û

V̂ Ŵ

� �
) �Ẑ2n�ÿ1 � ŴT ÿÛT

ÿV̂T ŜT

� �
:
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It can be verified that the symplecticity condition can also be
written as

�Ẑ2n�TR̂Ẑ2n � R̂ ; �B:7�

i.e., with interchanged Ẑ2n and �Ẑ2n�T in comparison with
(B.6). Then, in addition to (B.5), we also have the relations

ŜTV̂ � �ŜTV̂�T � V̂TŜ ; ÛTŴ � �ÛTŴ�T � ŴTÛ ;

ŜTŴÿ V̂TÛ � 1̂n ; ŴTŜÿ ÛTV̂ � 1̂n :
�B:8�

And again, the last equality in (B.8) is a transposition of the
previous equality, whereas the transposition of the first and
second equalities in (B.8) just reproduces them.

C. Oscillators with two types of dissipation
The systems considered in this appendix are described by
oscillatory equations with two types of friction, i.e., of
dissipation. Both examples are actually rather simple;
however, considerable effort is needed to choose the coordi-
nates and notation such that the equations for these systems
take a simple form and reduce to the standard form in (C.6)
and (C.9). 5 The first system is a mass m on a spring (Fig. 4).
One end of the spring is rigidly attached to the mass, whose
coordinate is denoted as x�t�. The other end of the spring is
attached to a weightless pivot, whose coordinate is
x�t� ÿ y�t� ÿ L0; here, L0 is the equilibrium length of the
spring. The pivot is at a rail and exhibits a `viscous' type of
friction. The equation of motion for the weightless pivot is

d

dt

ÿ
x�t� ÿ y�t� ÿ L0

� � Z fpivot : �C:1�

Here, the parameter Z [s kgÿ1] is the viscous mobility of the
pivot, i.e., the proportionality coefficient between the applied
force and the velocity of the pivot relative to the motionless
rail. This force, acting on the pivot (with the � sign) and on
the mass (with theÿ sign), is proportional to the deformation
y�t� of the spring:

fpivot � ky�t� : �C:2�

Themass is subject to two forces: from the deformation of the
spring and from its own viscous friction, and therefore the
relation between its velocity dx=dt and momentum p, and
Newton's second law are given by

dx

dt
� p�t�

m
;

dp

dt
� fx � ÿky�t� ÿ Zvisc

dx

dt
; �C:3�

where Zvisc [kg s
ÿ1] is the coefficient of viscous friction of the

mass. We can eliminate the variables x�t� and dx=dt to obtain
a closed system for y�t� and p�t�:
dp

dt
� ÿZvisc

m
p�t� ÿ ky�t� ; dy

dt
� 1

m
p�t� ÿ Zky�t� : �C:4�

We now introduce the undamped frequency o0 and the
impedance Zy (with respect to the coordinate y):

o0 �
�����
k

m

r
; Zy �

�������
km
p

; k � o0Zy ;
1

m
� o0

Zy
:

�C:5�
System (C.4) then becomes

dp

dt
� ÿo0

Zvisc

Zy
pÿ o0Zyy � ÿG1 pÿ o0Zyy ;

�C:6�
dy

dt
� o0

Zy
pÿ o0�ZZy�y � o0

Zy
pÿ G2y :

This system has one `dynamic parameter,' the impedance Zy

[kg sÿ1], one `kinematic parameter,' the frequencyo0 [rad s
ÿ1],

and two dimensionless parameters characterizing dissipation,
a � Zvisc=Zy � G1=o0 and b � ZZy � G2=o0:

G1 � ao0 � o0
Zvisc

Zy
; G2 � bo0 � o0�ZZy� : �C:7�

If all the parameters are independent of time, the
impedance Zy can be eliminated by the transformation

P�t� � p�t�������
Zy

p ; Y�t� � y�t� ������
Zy

p
; �C:8�

and hence the system acquires a purely `kinematic' form:

dP

dt
� ÿG1Pÿ o0Y ;

dY

dt
� o0Pÿ G2Y : �C:9�

The physical meaning of the individual relaxation constants
G1 and G2 is best revealed in the respective cases where
o0 5G1 and o0 5G2 or, alternatively, in the cases where
Y � 0 andP � 0. In the first case, the momentumP relaxes as
exp �ÿG1t�, and in the second case, the coordinateY relaxes as
exp �ÿG2t�. Seeking a solution of the standardized system
(C.9) in the form / exp �ÿiot�, we obtain two complex
eigenvalues of the frequency o:

o1; 2 � ÿi 1
2
�G1 � G2� �

�������������������������������������
o2

0 ÿ
1

4
�G1 ÿ G2�2

r
: �C:10�

We emphasize that our two sources of dissipation
contribute to the amplitude damping G � ÿImo1; 2 by their
arithmetic mean �G1 � G2�=2. The factor 1=2 in this arithmetic
mean is easy to interpret. Indeed, an oscillator `spends half of
the time' having mostly kinetic energy (which is dissipated via
G1), and the other `half of the time' having mostly potential
energy (which is dissipated via G2). But the correction to the
real part of the eigenfrequency is determined by the difference
of the two damping constants: �1=4��G1 ÿ G2�2. In particular,
the two sources of dissipation can be adjusted such that
G1 � G2. Then the real part of the frequency equals o0 at
any value of the Q factor [defined as Q � o0=�G1 � G2�],
including the case Q5 1.

5 The reader who tends to assume that this is very easy is invited to read

Appendix C once and then rederive Eqns (C.9) with the correct expres-

sions for G1 and G2.

k

m

x�t�x�t� ÿ y�t� ÿ L0

Figure 4. A mass on a spring with two sources of dissipation.
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The other system is a classical LC-circuit (Fig. 5), where
we take two ways of energy dissipation into account. One of
them is the loss due to a resistance RL [O] put serially with the
inductance L. The other is the conductivity G [Oÿ1] of the
leakage of the charge of our capacitor C. The total magnetic
flux F�t� (with the multiple turns of the coil taken into
account) is a result of the passage of the current I�t� through
the inductor:

F�t� � LI�t� ; �C:11�

where L [H] is the inductance. Faraday's law of electromag-
netic induction states that the voltage VL�t� � V�t� ÿ RLI�t�
results in an increase in the magnetic flux:

dF
dt
� V�t� ÿ RLI�t� : �C:12�

The charge Q�t� of the capacitor (at its lower electrode in
Fig. 5) is

Q�t� � ÿCV�t� : �C:13�

Finally, the current I�t� is expressed as

I�t� � dQ

dt
ÿ GV�t� : �C:14�

Eliminating V�t� and I�t�, we obtain a closed system of ODEs
for F�t� and Q�t�:

dF
dt
� ÿRL

L
F�t� ÿ 1

C
Q�t� ; dQ

dt
� 1

L
F�t� ÿ G

C
Q�t� :
�C:15�

And again, introducing the system impedance Z, the
undamped frequency o0, and two damping rates GL for the
RL circuit and GC for the GC circuit as

Z �
�����
L

C

r
; o0 � 1�������

LC
p ; GL � RL

L
; GC � G

C
� 1

RCC

�C:16�

allows reducing system (C.15) to

dF
dt
� ÿGLF�t� ÿ o0ZQ�t� ; dQ

dt
� o0

Z
F�t� ÿ GCQ�t� :

�C:17�

This is the standard system of form (C.6), (C.9), for which all
the conclusions obtained above are valid.

The main body of this paper is devoted to the study of
similarities and dissimilarities between the potential and
kinetic energy parts of the Hamiltonian. Similarities are
covered by the kinematic parameter, the frequency o0; the
dissimilarity is emphasized by the notion of impedance. In
Appendix C, to continue this line of reasoning, we discussed a
certain symmetry and asymmetry between the dissipation of
potential energy and that of kinetic energy. The topics
discussed in this appendix are relevant to the asymptotic
behavior of strongly damped oscillations.

D. What is the adiabatic invariant?
In discussing the contents of this paper with students, I noted
that the young generation (which `chooses Pepsi,' as I nearly
wrote) is not necessarily familiar with adiabatic invariantsÐ
a notion from classical Lagrangian/Hamiltonian mechanics.
Below is the formal definition of an adiabatic invariant, given
by a simple example of one-dimensional motion x�t� in a
stationary potential field U�x� (Fig. 6). In this problem, the
energy conservation law can be written as

p 2

2m
�U�x� � E � const : �D:1�

As a result, the momentum p depends on the position x as

p�x� � ��� p�x��� � � ������������������������������
2m
ÿ
EÿU�x��q

: �D:2�

Here, the� andÿ signs correspond to the respective stages of
motion in positive and negative directions of x. Stationary
oscillatory motion occurs between two points x1 and x2 such
that all the energy E becomes potential at these points:

U�x1� � E ; U�x2� � E : �D:3�
Because dx=dt � p=m, the period T of this motion is

T � T�E � �
�
dt � 2

� x2

x1

dt � 2m

� x2

x1

dx 0�� p�x 0���
�

�������
2m
p � x2�E �

x1�E �

dx 0����������������������
EÿU�x 0�p : �D:4�

The adiabatic invariant is formally defined as the area inside
the trajectory on the phase plane,

A � A�E � �
�
p dx � 2

� x2

x1

p�x 0� dx 0

� 2
�������
2m
p � x2�E �

x1�E �

����������������������
EÿU�x 0�

p
dx 0 ; �D:5�

F�t�

Q�t�

V�t�

I�t�

RL

C
L

G � 1=RC

Figure 5. An LC-RG circuit.

x1 x2

U�x�

E

x

Figure 6. Motion of a particle between turning points x1 and x2 in a

stationary potential U�x�.
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with the evident relation

T�E � � dA

dE
: �D:6�

The quantum mechanical motivation underlying this defini-
tion (see [8]) is that in the semiclassical (WKB) approxima-
tion, the de Broglie relation L � 2p�h=p holds between the
momentum p and the `wavelength' L. The stationary motion
of a particle with wave-like properties requires that an integer
number ~n of wavelengths fit the trajectory:�

dx 0

L�x 0� �
2

2p�h

� x2

x1

p�x 0� dx 0 � A�E �
2p�h

� ~n : �D:7�

A more refined approach (the so-called Bohr ± Sommerfeld
version of the old quantum theory quantization) amounts to
replacing [for smooth potentials U�x�] the number ~n with
�n� 1=2�, where n is an integer. As a result, the purely
classical definition of the adiabatic invariant is related to
this number n from the old quantum theory as

A�E � � 2p�h

�
n� 1

2

�
: �D:8�

This equation, with the functional dependence A�E�
calculated for a particular potential curve U�x� via
Eqn (D.5), allows, at least approximately, finding the
discrete energy level energies En. In the same WKB approx-
imation, the frequencyo � 2p=T of classical motion approxi-
mately corresponds to the energy difference of adjacent
energy levels divided by �h:

o � 2p
T
� En�1 ÿ En

�h
: �D:9�

Most textbooks on classical mechanics make the follow-
ing correct and important statement: ``Slow changes of the
parameters of the system leave adiabatic invariant almost
unchanged.'' Here is P Paradoksov's explanation of the
conservation of an adiabatic invariant. Slow changes in the
parameters of the system do not provide temporal Fourier
components of perturbations that could possibly induce
transitions n! n 0 because the corresponding transitions
have the frequencies

o�n! n 0� � 2p�nÿ n 0�
T

: �D:10�

As a result, the system stays in a quantum state with
unchanged n, and, by virtue of Eqn (D.8), with the
unchanged adiabatic invariant A�E�. This logic shows that
the slow character of perturbation is a sufficient condition for
good preservation ofA�E�, but not a necessary one. Even fast
changes may not affect A�E� considerably if they do not
contain appropriate resonant frequencies.

For the power-law potential

U�x� � k

a
jxja ; a > 0 ; �D:11�

simple calculation shows that

x2; 1�E � � �
�
aE
k

�1=a

; A�E � � 4x2�E �
����������
2mE
p

B�a� ;

B�a� �
� 1

0

��������������
1ÿ y a

p
dy ;

�D:12�

T�E � � 2
�������
2m
p � x2�E �

0

dx��������������������������
Eÿ �k=a�x a

p � 2
�������
2m
p x2�E �����

E
p D�a� ;

D�a� �
� 1

0

dy��������������
1ÿ y a
p ;

�D:13�

A�E � � constE 1=a�0:5 ; T�E � � const 0 E 1=aÿ0:5 : �D:14�
The case of a linear harmonic oscillator, where a � 2, is
especially instructive:

A�E � � 2pE
o0

; T � 2p
o0

; o0 �
�����
k

m

r
; �D:15�

and hence the period is independent of the amplitude (i.e., of
the energy), and the Bohr ± Sommerfeld quantization formula
yields the exact result:

En � �ho0

�
n� 1

2

�
: �D:16�

Conservation of the adiabatic invariant for a linear harmonic
oscillator means that E / o0, i.e., an adiabatic change in
energy follows the change in frequency. Because the quantum
operator is related to the complex amplitudes a � and a by

n̂� 1

2
� aa � � a �a

2
; �D:17�

the conservation of aa � also implies that E / o, i.e., the
conservation of the adiabatic invariant.

E. Classical mechanics
of the adiabatic invariant conservation
The authors has always tended to feel some confusion when
reading various books on classical mechanics. The adiabatic
invariant A�E � is the area on the phase plane inside a
constant-energy trajectory under the assumption that the
Hamiltonian is stationary. From the Liouville theorem, it is
well known that the area (volume) in the phase space is strictly
conserved in the course of evolution. Therefore, it would be
natural to expect a certain relation between the adiabatic
invariant conservation and the Liouville theorem. To the
author's disappointment, virtually all the books that he has
been able to look through do not mention the Liouville
theorem in the relevant sections (however, see [6]). For this
reason, in what follows, the author tries to explain the
conservation of A�E � in a way that would suit his personal
tastes (which does not necessarily mean that it would suit
others', unfortunately).

We consider the motion of a 1-dimensional mechanical
system with the coordinate x�t� and the momentum p�t�,
which satisfy the standard Hamilton equations

dp

dt
� ÿ qH

ÿ
x; p; l�t��
qx

;
dx

dt
� qH

ÿ
x; p; l�t��
qp

: �E:1�

The parameter l�t� has a certain constant value l1 at infinite
negative time and a constant value l2 at infinite positive time.
Figures 7 and 8 depict possible changes with l1 6� l2;
however, these two limit values may also coincide. It is
important that l�t� generally changes inside this time
interval. The energy is conserved in both the initial state and
the final state, but not in-between.

The conservation of energy E in the one-dimensional
finite (oscillatory, but not necessarily harmonic) motion
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means that each trajectory, depicted for x�t� in Figs 7 and 8, is
a closed line in the phase plane �p; x�, depicted in Fig. 9.
Figure 9a shows trajectories in the phase space of a linear
harmonic oscillator: they are ellipses with the area equal to
the adiabatic invariant A�E �, and with the aspect ratio
dp=dx � Z, where Z is the impedance. By passing to new
variables P � p=

����
Z
p

and X � x
����
Z
p

, we can make this ellipse
into a circle (Fig. 9b). Then the time evolution at l�t� � const
corresponds to the conservation of energy and hence to pure
rotation in the P;X plane (Fig. 9c). We emphasize that the
points A, B, C, D, etc. at fixed energy are mapped into one
another under time evolution, and thus cover a closed
trajectory: an ellipse or circle, depending on the p, x or P, X
scales. Some of these phase points are shown in the graphs in
Fig. 7 as A, B, and C.

The time dependence of the coordinate x�t� and of the
momentum p�t� may be represented as a `circulation' of the
depicted points AÿBÿCÿDÿ . . .ÿA along the closed
trajectory, and the particular position of a point corresponds
to a particular phase of such an oscillatory motion. Anhar-
monicity may lead to a peculiar shape of the closed trajectory
(Fig. 10) and, even more importantly, to a dependence of the
period of oscillations on the amplitude (on the energy).

We now consider two different ensembles of points in the
phase plane, both of which correspond to a homogeneously

populated area of the phase plane. The homogeneous density
stays invariant in the process of motion, as follows from the
Liouville theorem.

The ensemble of the first type, encapsulated by the curves
AÿBÿCÿ . . .ÿA in Figs 9 and 10, is surrounded by a
closed trajectory with a fixed energy E0. The points
AÿBÿCÿ . . .ÿHÿA on that trajectory represent different
phases of motion; they are mapped into each other's positions
during the evolution with the time-independent Hamiltonian,
i.e., at l � const. Therefore, the ensemble of all the points,

t

x�t�
A B C

l�t�

t

Figure 7. Oscillatory motion of a system. Graphs A, B, and C represent motions with the same energy as t! ÿ1. This means that as t! ÿ1, these

graphs differ by a time shift (or, equivalently, a phase shift) only. The change in the parameter l�t� is slow in this case.

x�t�

l�t�

Figure 8.Oscillatorymotion of a system. The three graphs representmotionswith the same energy (as t! ÿ1). Thismeans that as t! ÿ1, these graphs

differ by a time shift (or, equivalently, a phase shift) only. The change in the parameter l�t� is fast in this case.

a
p

x

Time

b

t � 0

P

D
C

B

A

X

c

t > 0

D

C
BA

P

X

Figure 9. Phase plane of a linear harmonic oscillator with a constant

parameter l and hence with a constant energy. (a) Elliptic phase-space

curve. (b) Change in �p; x� scales allows making a circle out of the original

ellipse. (c) Time evolution corresponds to motion of the points along the

circle, i.e., to rotation of points around the origin.
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both inside and at the boundary, is stationary, i.e., it
reproduces itself in the process of motion. We can also say
that such an ensemble is phase invariant: none of the phases
occurs with greater probability than any other.

The second type of ensemble also consists of points with a
constant density at t � t0, but not all phases are present in
equal proportions (Fig. 11). For definiteness, Fig. 11 shows
the case of the linear harmonic oscillator described in the
coordinates such that the corresponding phase-space trajec-
tories are circles. It is evident, for example, that after the 3=8
of the period, this ensemble moves into another position in
the phase plane (see Fig. 11). The introduction of such an
ensemble should be accompanied by explicitly indicating the
instant t � t0 at which we consider it.

We now discuss the evolution of the system between
t! ÿ1 and t! �1, as the parameter l�t� changes from a
constant value l1 to a constant value l2 (see Figs 7 and 8). We
also suppose that at t! ÿ1, we take the stationary (i.e.,
phase-invariant) ensemble of points on the phase plane, with
the maximum value of energy E1 at the boundary
AÿBÿCÿ . . .ÿA. We should then consider two limit cases
of the possible behavior of the parameter l�t�.

The first limit case is the adiabatic case of slow change
of l�t�, shown in Fig. 7. The main `logical input' to the
proof resides here. This slow change cannot (up to a
reasonable accuracy) select any particular phase of the
original motion. Therefore, all the points of the ensemble
undergo the same evolution, and hence the final ensemble
is also phase invariant, with the boundary points
AÿBÿCÿ . . .ÿA on a trajectory with some new common
energy value E2 (Figs 12 and 13). Then the conservation of
the phase-space volume (the Liouville theorem) immedi-
ately yields the conservation of the adiabatic invariant

A�E �, which here just coincides with the phase-space area,
which had to be shown.

The other limit case is where the parameter l�t� changes
rapidly enough such that we can pinpoint a particular phase
of the oscillatory motion, for example, the one that corre-
sponds to themaximumpositive value of dl�t�=dt (see Fig. 8).
The behavior of the trajectories on the phase plane in this
limit case is shown in Figs 14 and 15. In other words,
evolution of the points of our ensemble with different initial
phases (e.g., A, B, C) yields énal states with different energies:
E2�A�, E2�B�, E2�C�.

This is the point where the treatment of adiabatic
invariants in this paper differs from the generally adopted
ones (see, e.g., Refs [1 ± 6]). Namely, the main statement to be
made about the nonadiabatic case is not that a certain change
in A�E � occurs. The main point to be observed is that the
nonadiabatic evolution introduces a phase-dependent spread
of the trajectories, of the final energy values E2, and of the
final values of the adiabatic invariant A�E2�.

Actually, in most cases of a weak nonadiabaticity, the
value



A�E2� ÿ A�E1�

�
averaged over the initial phases is zero

in the first order in some small parameter that characterizes
the change inA�E �. A spread of A�E � occurs in the first order
in this parameter. Therefore, statements like `the adiabatic
invariant changes by 3%' may be misleading: they detract
attention from the fact of the phase sensitivity, from the notion
of the spread of the final values of E2 and A�E2�, sensitive to
the initial phase.

A nice example of an antiadiabatic perturbation is given
by the action of a pulse l�t� of the resonant force
F�t� � l�t� cos �ot� on a harmonic oscillator; this example is
taken from [3]. The equations of motion are

dx

dt
� p�t�

m
;

dp

dt
� ÿmo2x�t� � l�t� cos �ot� ; �E:2�

Stationary
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H
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F

E
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x

Figure 10. Nonlinear oscillator in stationary conditions. Points

AÿBÿCÿ . . .ÿHÿA are distributed over the actual trajectory (on a

constant-energy line, stationary ensemble). Therefore, the time evolution

keeps them on the same line, with a phase shift.
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D
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Figure 11. Linear harmonic oscillator in stationary conditions. Points A,

B, C, D, E are distributed over the line containing different values of

energy (a nonstationary ensemble). Therefore, in the process of evolution,

this line changes its position in the phase plane, even for a stationary

Hamiltonian. In this particular case of a harmonic oscillator, this

stationary evolution is a rotation of the figure.
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Figure 12. Adiabatic evolution of a linear harmonic oscillator. New

positions of the points AÿBÿ . . .ÿHÿA also constitute a fixed-energy

trajectory. Because the frequency and, most of all, the impedance have

changed, the second curve is an ellipse in the �p; x� canonical coordinates.
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Figure 13. Adiabatic evolution of a nonlinear oscillator. New positions of

the points AÿBÿ . . .ÿHÿA also constitute a fixed-energy trajectory.

482 B Ya Zeldovich Physics ±Uspekhi 51 (5)



under the assumption that l�ÿ1� � l��1� � 0. The general
solution of this equation as t! �1 is

x�t� � a0 cos �otÿ j� � b cos �otÿ b� ; �E:3�
p�t� � ÿmoa0 sin �otÿ j� ÿmob sin �otÿ b� ; �E:4�

where

b exp �ib� � �mo�ÿ1
�
l�t� cos �ot� exp �ÿiot� dt ; �E:5�

and the integration ranges from t � ÿ1 to t � �1. The
final value of the adiabatic invariant A�E2� is easily
calculated:

A�E2� � A�E1� � 2b
�������������������������
2pmoA�E1�

p
cos �jÿ b� � 2pmob 2 :

�E:6�

This shows that the first-order effect with respect to b is a
phase-sensitive spread of the final values A�E2�. Only the
second-order term/ b 2 gives the phase-insensitive systematic
increase in the adiabatic invariant.

Another example of a nonadiabatic perturbation is the
parametric resonance induced by the modulation of impe-
dance at the frequency 2o. Amplification or deamplification
also occur here, in a manner extremely sensitive to the phase
of initial oscillations, which is to be referenced to the phase of
the modulation parameter (the impedance).

F. Energy transfer in resonant coupled oscillators
Most textbooks treat oscillators using the standard second-
order ODE

d2x

dt 2
� o2x � 0 ; �F:1�

where the only parameter of the oscillator is its eigenfre-
quency o � ���������

k=m
p

. What is missing here? 6 Most people do
not realize that the information about the impedance
Z � �������

km
p

is missing, with k being the elasticity constant and
m being the mass. At first glance, with the given initial
coordinate x�t � 0� and the initial velocity vx�t � 0�, the
trajectory can be found using Eqn (F.1) only. This may
produce the false impression that two oscillators, one with a
largemassm1 and a strong spring (large elasticity constant k1)
and the other with a small mass m2 and a weak spring (small
elasticity constant k2), are physically equivalent if their
eigenfrequencies coincide (Fig. 16). In the main body of this
paper, we (hopefully) were able to persuade the reader that
the notion of impedance is necessary for an oscillator with
time-dependent parameters. Now, how about the stationary
case? In this Appendix, we show that in a stationary system of
two coupled oscillators with the same eigenfrequencies, the
energy exchange depends on their impedances in an essential
way.

The first step in understanding this is to write Eqn (F.1) in
the presence of an external force F�t�:

d2x

dt 2
� o2x � 1

m
F�t� � o

Z
F�t� : �F:2�

It follows that the effect of the same force F�t� is smaller for
the oscillator with larger Z.

It is instructive to consider the system of two mutually
resonant oscillators whose eigenfrequencies were the same
before the coupling (Fig. 17). We consider the coupling of
these oscillators by a weak spring, with an elasticity
constant s. Standard thinking is that the existence of a
resonance between two original eigenfrequencies leads to the
following beautiful phenomenon. For example, we excite a
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Figure 14. Antiadiabatic (fast) evolution of a linear harmonic oscillator.

Different AÿBÿ . . .ÿHÿA points acquire different change of energy,

and the new AÿBÿ . . .ÿHÿA sequence of points does not constitute a

trajectory.
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Figure 15.Antiadiabatic (fast) evolution of a nonlinear oscillator. Different

AÿBÿ . . .ÿHÿApoints acquire different changes of energy, and the new

AÿBÿ . . .ÿHÿA sequence of points does not constitute a trajectory.

6There is a well-knownRussian joke about a person who had been trained
to become a cook; at the exam, he was asked to taste some borshch and to
tell what was missing (the question referred to the ingredients that may
have been omitted in cooking the dish). The answer ``Bread is missing''
shows not only how notoriously dumb that person was but also the
Russian tradition to serve lunch with bread. In Eqn (F.1), the information
about the impedance is missing. This information is ``outside Eqn (F.1)''
much as bread is ``outside the borshch,'' but both are actually important.
We may say that the frequency and the impedance are the bare necessities,
in terms of food, of the theory of oscillations.

m1k1 m2 k2

Figure 16. Two oscillators may have identical eigenfrequencies but be

different physically: their impedances are not equal to each other.

s

m1k1 m2 k2

Figure 17. Two oscillators have identical eigenfrequencies and are coupled

by a weak spring (constant s). Do the beats result in complete energy

transfer from one oscillator to the other? If the impedances are not equal,

then the answer is `no.'
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finite displacement of the first oscillator, x1�t � 0� � a, and
produce no deflection of the second one, x2�t � 0� � 0. The
commonly expected effect is that in a certain time, all the
energy of oscillations is to be transferred to the second
oscillator, then back to first one, etc. But direct calculations
show that the displacement x1�t� behaves as

x1�t� � a

Z1 � Z2

ÿ
Z1 cos �oÿt� � Z2 cos �o�t�

�
; �F:3�

whereoÿ ando� are the frequencies of two eigenmodes in the
presence of coupling:

oÿ � o ; o� � o

�������������������������������������
1� s

o

�
1

Z1
� 1

Z2

�s
: �F:4�

It follows from Eqn (F.3) that the complete energy transfer
occurs only if Z1 � Z2.

A natural question is whether the coupling can be
modified so as to achieve the complete energy transfer. The
solution is to take the interaction in a modified form, with the
total Hamiltonian given by

H� p1; p2; x1; x2� � 1

2

"
1

m1
p 2
1 � k1x

2
1 �

1

m2
p 2
2

� k2x
2
2 � s

�
x1
a
ÿ x2

b

�2
#
; �F:5�

where we introduced two dimensionless coefficients a and b.
The assumption of equal original eigenfrequencies
o1 � o2 � o is easily described using Eqn (3.19) for the
Hamiltonian:

H� p1; p2; x1; x2� � o
2

�
1

Z1
p 2
1 � Z1x

2
1 �

1

Z2
p 2
2 � Z2x

2
2

�
� 1

2
s
�
x1
a
ÿ x2

b

�2

: �F:6�

The transformation to the new variables P1, P2, X1, X2, via

p1 � P1

������
Z1

p
; p2 � P2

������
Z2

p
; x1 � X1������

Z1

p ; x2 � X2������
Z2

p
�F:7�

allows writing the Hamiltonian of the coupled system as

~H�P1;P2;X1;X2� � o
2
�P 2

1 � X 2
1 � P 2

2 � X 2
2 �

� 1

2
s
�

X1

a
������
Z1

p ÿ X2

b
������
Z2

p
�2

: �F:8�

It is evident that our system becomes symmetric with respect
to the new variables, and thus allows the complete energy
transfer, only if��a ������

Z1

p �� � ��b ������
Z2

p �� : �F:9�

The reader is welcome to practice in designing various `levers'
with the appropriate ratio a=b, which may be called
`impedance transformers.' A possible design is shown in
Fig. 18, where a weightless stick is attached to an axis, to
one mass via a spring, and to another mass directly.
Evidently, the longer lever (proportional to b) must be
attached to the oscillator with the smaller impedance Z2.

Oscillators coupled by a common contribution to the kinetic
energy can also be imagined. Impedance matching can be
achieved in that case as well, and formulas (F.7) are especially
helpful for that task.

Impedance transformers (including the standard 220/127
transformers: see the novel by E Uspenskii about the little
guarantee men) are widely used and quite well studied in
electronics, and therefore the impedance matching of LC
oscillators is not discussed here.
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