
Abstract. In relation to the recently intensified search for new
superconducting systems, it is interesting to study the properties
of metal nanoclusters containing � 102ÿ103 free carriers. It is
essential that the spectra of delocalized electrons in many
clusters form energy shells similar to those in atoms and nu-
clei. The superconducting pairing can be very strong if the
cluster parameters satisfy certain conditions. Such clusters
constitute a new family of high-temperature superconductors
(with Tc 5 150 K). Transition into the superconducting state is
manifested in an essential rearrangement of the energy spec-
trum. Pair correlation affects the optical, magnetic, and ther-
modynamic properties of clusters; corresponding changes can
be detected in specific experiments. Clusters can form high-
temperature superconducting tunneling networks, and this
leads to macroscopic high-temperature superconductivity. In
principle, higher values of Tc, up to room temperature, may be
achieved.

1. Introduction

This paper is concerned with the superconducting state in
small metallic nanoclusters. It can be demonstrated [1 ± 3]
that nanoclusters form a new family of high-temperature
superconductors.

The study of the superconducting state in nanoparticles is
not a new field (see, e.g., reviews [4, 5]). Moreover, the study
of granular superconductors has a long history (see, e.g., [6 ±
8]) and directly touches upon the question of pairing in
separate granules. The most recent and advanced study of
nanoparticles was performed by M Tinkham and his group
[9 ± 11]. Particles were placed inside a tunneling barrier, and
special features of their electronic spectra, including the odd ±
even effect, were detected. The nanoparticles studied in [9 ±
11] were relatively large, with the size d � 50ÿ100 A

�
, and

therefore they contain � 104ÿ105 electrons. Here, we focus
on much smaller nanoclusters containing � 102 delocalized
electrons.

The study of nanoclusters has attracted much attention
since the discovery of a shell structure in their electronic
spectra [12]. We discuss this fundamental feature in Section 2.
It is essential to stress that precisely because of the shell
structure, high values of the critical temperature may be
expected for some selected clusters. Potentially, the values of
Tc can reach room temperature.

The structure of this paper is as follows. Shell structure is
described in Section 2. Section 3 contains a qualitative
description of pairing in nanoclusters and the role of shell
structure. The qualitative reason for expecting high Tc values
is presented. The main equations and the method for
calculating Tc are introduced in Section 4, and some specific
examples are considered. Section 5 contains an analysis of the
energy spectrum (energy gap) near T � 0 K. A Ginzburg ±
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Landau functional that allows studying various properties
near Tc can also be introduced: the role of fluctuations is
discussed. Section 6 is concerned with various manifestations
of the pair correlation and the possibility of their experi-
mental observation. The properties of nanocluster-based
tunneling networks capable of transmitting a macroscopic
superconducting current are described in Section 7. Section 8
contains concluding remarks.

2. Metallic nanoclusters. Energy shells

Clusters are the aggregates of atoms (or molecules) that have
the structure Ak, where k is the number of atomsA (e.g., Nak,
Gak). The number k of atoms can vary from 2 to any large
value, and therefore the study of clusters allows tracking the
evolution from isolated atoms to solids. Metallic clusters, like
any metallic systems, are characterized by the presence of
delocalized electrons; their subsystem is formed by the
valence electrons of the atoms. The number N of valence
electrons is the main parameter of the cluster. For simple
monovalent metallic clusters, such as Nak and Lik, we have
N � k. For more complicated clusters,N � vk, where v is the
number of valence electrons per atom, for example, N � 135
for Al45 clusters, because each Al atom contains 3 valence
electrons. With the use of mass spectroscopy, the specific
clusters can be selected.We also note that because of the finite
size, the electronic energy spectrum of an isolated cluster is
discrete.

Clusters are usually prepared by evaporation of metals,
and hence their initial temperature is rather high. There are
various experimental techniques for cooling the clusters. As
a result, cluster beams at different temperatures can be
produced.

A milestone discovery was made in 1984 when W Knight
and his collaborators discovered [12] that the electronic
spectra in many metallic clusters form energy shells similar
to those in atoms or atomic nuclei. The shell structure is a key
feature of nanoclusters (see reviews [13 ± 16]). As is known,
the atoms with complete shells (s, d, ..., f-shells) are the most
stable. The same is true for nucleons in atomic nuclei (see, e.g.,
[17]). Specific clusters that are most stable can be distin-
guished (Fig. 1). Similarly to inert atoms, energy shells for
such clusters are completely occupied; such clusters are called
`magic.' Some examples of such close-shell clusters are
Nm � 8, 20, 40, 58, 92, 132, 138.

It is essential that the `magic' clusters with a good
accuracy have the spherical symmetry. As a result, their
electronic states can be classified by the orbital momentum
L and radial quantum number n. If the energy shell is
incomplete, the cluster undergoes a Jahn ±Teller distortion
and its shape deviates from spherical (Fig. 2). As a result,
the energy level with a specific value of L splits, and hence
the electronic states of the deformed cluster can be classified
not by L but by a projection of the angular momentum m.
The scale of the shell splitting is different for different
metals and also depends on the number of delocalized
electrons, more specifically, on the deviation dN from the
nearest `magic' number (dN � NÿNm). In turn, the change
in shape affects the electronic energy spectrum. An interest-
ing and unique correlation between the number of electrons
and the energy spectrum can therefore be observed; this is a
remarkable feature of metallic clusters.

Shell structure was discovered initially for simple mo-
novalent alkali clusters, such as sodium (Na) and potas-

sium (K). Later, this phenomenon was also observed for Al,
Ga, In, Zn, and Cd clusters (see, e.g., [18 ± 21]). It is
interesting that energy shells are not a universal feature.
For example, for Nb clusters, the spectrum does not display
a shell structure.

As electrons are added to the lowest unoccupied shell
(LUS), the shape deforms from spherical and becomes
prolate. In this case, the energy levels are four-degenerate:
(m, ÿm) and (sz, ÿsz). The residual orbital degeneracy is
removed [22] by oscillations (the dynamic Jahn ±Teller effect)
between two configurations similar to Kekule structures of
benzene molecules (see, e.g., [23]). But this question is beyond
the scope of this paper.

Energy levels in magic clusters are totally occupied up to
the highest occupied shell (HOS). This shell and the LUS play
a major role in our analysis. They are analogous to the
HOMO and LUMO orbitals in molecular spectroscopy. As
was mentioned above, clusters with an incomplete HOS
undergo a Jahn ±Teller deformation. As a result, all shells,
including HOS and LUS, are split and form manifolds; each
sublevel of such a manifold is characterized by jmj, wherem is
the angular momentum projection.
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3. Superconducting state and high Tc.
Qualitative picture

As we know, the Cooper pairs in bulk superconductors are
formed by electrons with opposite momenta and spins. For
the nanoclusters of interest, the momentum is not a quantum
number, and the pairs are formed by electrons with opposite
projections of the angular momentum (m, ÿm). In many
aspects, the picture of pairing is similar to that in atomic
nuclei (see, e.g., [24 ± 26] and review [17]). In each case
(nucleus or cluster), we are dealing with a finite Fermi system
and a shell structure. The pairing states are labeled by similar
quantum numbers (m,ÿm). The manifestation of pairing has
similar features (see below). However, we can develop a
microscopic approach for clusters because we know the
forces (Coulomb interaction). In addition, the presence of
two subsystems (electrons and ions) allows using the
adiabatic Born ±Oppenheimer approximation.

We focus on the HOS. For `magic' clusters, the states are
degenerate, and the degree of degeneracy 2�2L� 1� depends
on the value of the orbital momentum. For clusters with an
incomplete shell, the states with different values of jmj (where
m is the projection of orbital momentum) correspond to
different energy levels, and the corresponding summation
must be performed (see below, Section 3).

Asmentioned above, the pairing occurs between the states
(m, ÿm). The pair correlation strength varies for different
clusters. Correspondingly, the critical temperature Tc and the
energy gap strongly depend on the cluster parameters, its
shape, the coupling strength, etc. We consider specific cases
below.

It is important that under special but perfectly realistic
conditions, high values of Tc can be observed. Qualitatively,
this can be understood as follows.We consider the case where
the highest occupied shell is highly degenerate (2�2L� 1� is
large). This can be viewed as a sharp peak in the density of
states at the Fermi level. The situation is similar to that
studied in [27] for bulk materials; the presence of a peak in the

density of states (van Hove singularity) results in a noticeable
increase in Tc. It is essential that the density of states in the
clusters of interest is strongly peaked at the Fermi level.

We discuss one more point. The most distinguished
feature of small nanoparticles is the discrete nature of the
electronic spectrum. As was noticed in [5, 28], the super-
conducting state canmanifest itself if the pairing energy gapD
exceeds or is comparable to the energy spacing caused by the
finite size of the particle, that is, ifD0DE, where,DE � EF=N
is the average energy level spacing and D is the energy gap.
According to the estimation in [28], EF � 105 K and
D � 10 K, and therefore N should be relatively large:
N0104. As a result, if we are concerned with small
nanoclusters, N � 102 ± 103, it might seem that they do not
display superconducting properties, because the average level
spacing (EF=N � 102ÿ103 K) greatly exceeds the pairing
energy gap. But such an estimation can be challenged.
Indeed, for larger Tc (e.g., Tc � 40 K for MgB2 and
Tc � 102 K for cuprates; for nanoclusters, Tc can be even
higher: see below), the energy gap is much larger than 10 K,
and this leads to a noticeable decrease in the limiting value
of N. More importantly, the estimation is based on the
assumption that the energy levels are approximately equidi-
stant. The discovery of shell structure totally invalidates this
assumption; the real situation is more complex. It turns out
that for many real clusters, the pattern of electronic states is
very different from an equally spaced level distribution.
Instead, they contain highly degenerate energy levels, or
groups of very close levels, such that the energy spacing for
electronic states close to the Fermi level EF appears to be
rather small (Fig. 3). The situation in such clusters is very
favorable for pairing. Moreover, we can even expect a giant
strengthening of the phenomenon relative to bulk samples
(see below).

The importance of shell structure for pairing was stressed
byWKnight [29] (see also [30, 31]). Especially interesting was
the paper by J Friedel [32], who was motivated by the
discovery of C60 clusters and superconductivity in fullerides.
According to [32], if clusters with a half-filled shell have a
spherical shape, they would have high values of Tc. However,
for such a shell filling, the cluster Jahn ±Teller deformation
would be very large, drastically decreasing Tc. In connection
with this, the use of cluster networks was suggested in [32],
with the resulting charge transfer leading to a resolution of
this problem. The idea of such a superconducting molecular
crystal (or, more precisely, cluster crystal) is very interesting.

As noted above, shell structure was discovered in 1984. It
took several more years for this concept to become generally
accepted (see, e.g., review [13]). But by the early 1990s, the
superconducting community was preoccupied with the new
family of high-Tc cuprates [33, 34]. Nevertheless, the dis-
covery in [12] was followed by several interesting papers
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discussing pairing in clusters. It can be hoped that the
experimental study of the superconducting state of nanoclus-
ters with its potential for room-temperature superconductiv-
ity (see Section 4) will attract the attention it deserves.

We first discuss pairing in isolated clusters. The tunneling
network is described below (Section 7).

4. Critical temperature

The equation for the pairing order parameter D�on� has the
form

D�on�Z � Z
T

2V

X
on 0

X
s

D�on ÿ on 0 �F�s �on 0 � ; �1�

where on � �2n� 1� pT, n � 0;�1;�2; . . . (we use the ther-
modynamic Green's function formalism, see, e.g., [35]),

D�on ÿ on 0 ; eO� � eO2
��on ÿ on 0 �2 � eO2

�ÿ1 �10�

is the vibrational propagator,

F�s �on 0 � � D�on 0 �
�
o 2

n 0 � x 2
s � D 2�on 0 �

�ÿ1 �100�

is the pairing function introduced by Gor'kov [36], xs �
Es ÿ m is the energy of the sth electronic state referenced to
the chemical potential m, V is the cluster volume,
Z � hI 2i=MeO2 is the Hopfield parameter, hI i is the elec-
tron ± ion matrix element averaged over electronic states
involved in the pairing (see, e.g., [37, 38]), M is the ion mass,
and Z is the renormalization function; we do not write the
equation for Z here. We note that the presence of the
renormalization function Z removes the divergence at
on � om [39]. The Coulomb term m � can be included in the
usual way.

It can be seen from Eqn (1) that the electron ± vibrational
interaction is the mechanism of pairing. As we know, the BCS
formalism is valid in the weak-coupling approximation (then
Tc 5 eO, where eO is the characteristic vibrational frequency).
Because we want to go beyond this limit, we start with general
equation (1), which explicitly contains the vibrational
propagator. We note that in the weak-coupling case
(Z=V5 1 and, correspondingly, pTc 5 eO), Z � 1 and D � 1
must be set in Eqn (1), recovering the usual BCS scheme for
the bulk sample.

Equation (1) contains a summation over all discrete
electron states. For `magic' clusters that have a spherical
shape, we can replace summation over states by summation
over the shells:

P
s !

P
j Gj, whereGj � 2�2Ij � 1� is the shell

degeneracy and Ij is the orbital momentum. If the shell is
incomplete, the cluster undergoes a Jahn ±Teller deforma-
tion; as a result, its shape becomes ellipsoidal and the states s
are classified by the projection of orbital momentum jmj4 I,
with each level containing up to four electrons (for jmj5 1).

Equation (1) looks similar to that in the theory of strong-
coupling superconductivity [40], but is different in two key
aspects. First, it contains a summation over discrete energy
levelsEs, whereas for a bulk superconductor, integration over
the continuous energy spectrum (over x) is performed.
Another important difference is that in contrast to a bulk
superconductor, here we are dealing with a finite Fermi
system, and therefore the number N of electrons is fixed. As
a result, the position of the chemical potential differs from the
Fermi level EF and is determined by the values of N and T.

Specifically, we can write

N �
X
n

X
s

I s�on� exp �iont�t!0 �
X
s

�u 2
s j
ÿ
s � v 2

s j
�
s � ;

�2�

where I s�on� is the thermodynamic Green's function,

u 2
s ; v

2
s � 0:5

�
1� xs

es

�
; j�s �

�
1� exp

�
� es

T

��ÿ1
; �3�

es � �x 2
s � e 20; s�1=2 ; �4�

e0; s is the gap parameter for the sth level, and e0; s is the
root of the equation e0; s � D�ie0; s�. Because xs � Es ÿ m,
Eqn (2) determines the position of the chemical potential
for the given number N of electrons, as well as the
dependence m�T �.

Equations (1) and (2) and the equation for the renorma-
lization function Z form the system of equations describing
the superconducting state of metallic nanoclusters.

We also note that for the clusters of interest (N5 102;
then kHR4 1), the order parameter D � D�on�; the coordi-
nate dependence and, consequently, the dependence on s is
rather weak (see, e.g., [41]) and can be neglected. Here, R is
the cluster radius and kH is the electron wave vector for the
highest occupied shell (kH � 2=rs, where rs is the electron
density parameter; we set �h � 1). The value of kH for the
clusters of interest is close to the Thomas ±Fermi screening
wave vector and to the Fermi momentum kF. The energy EH

of the HOS is likewise close to the bulk Fermi energy EF.
We make one more general remark. The theory of usual

bulk superconductors encounters a strong logarithmic singu-
larity (Cooper instability, see, e.g, [35]). The situation for
nanoparticles is different. Because of the discrete energy
spectrum, we are dealing with a threshold phenomenon, and
hence even at low Tc, the value of the coupling constant must
exceed some critical value. However, we focus on the opposite
case in what follows, with large values of Tc.

At T � Tc, we should set D � 0 in the denominator of
expression (100), which yields

D�on�Z � Z
T

2V

X
n 0

X
s

eO2eO2 � �on ÿ on 0 �2
D�on 0 �
o 2

n 0 � x 2
s

: �5�

The value of the parameter Z is close to its bulk value Zb.
Indeed, the surface of the cluster can be treated as a scatterer
(cf. [42]), and therefore the pairing is analogous to that in the
case of a `dirty' superconductor (see, e.g., [43]), where the
mean free path is much shorter than the coherence length.
Then the average value of I 2 is not affected by the scattering
and it indeed follows that Z � Zb, where Zb is the bulk
Hopfield parameter (see, e.g., [38]). We also note that the
characteristic vibrational frequency is close to the bulk value
because pairing is mediated mainly by the short-wavelength
part of the vibrational spectrum. Then Eqn (5) can be written
as

D�on�Z � lb
T

2nbV

X
n 0

X
s

eO2eO2��onÿ on 0 �2
D�on 0 �
o 2

n 0 � x 2
s

����
Tc

;

�6�
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where lb � Znb is the bulk coupling constant [44] and
nb � m �pF=2p 2 is the bulk density of states.

We consider the strong-coupling case (2pTc=eO01). Then
it is convenient to use the matrix method [45 ± 47]. This
method was used in our paper [3]. The critical temperature
can be obtained from the matrix equation

det j1ÿ Knn 0 j � 0 ; n; n 05 0 : �7�

For `magic' clusters, the kernel has the form

K c
nn 0 � gtc

X
j

Gj� f ÿn; n 0 � f �n; n 0�1� wn 0; ~x ; n 6� n 0 ;

K c
nn � gtc

X
j

Gj

�
1

2
wn; 0:5 wn; ~xj

ÿ
�
n� 1

2

�ÿ1
�

�t 2c
X
m6�n

��m� n� 1�2ÿ�nÿm�2� f ÿn;m f �n;m�1

�
m� 1

2

�
wm; ~xj

�
:

�8�
where ~x � x=eO and

f �n; r �
�
1� �n� r�2t 2c

�ÿ1
; �80�

wn; ~x �
��

n� 1

2

�2

t 2c � ~x 2

�ÿ1
:

�800�

As noted above, we focus on the case where tc �
2pTc=eO01. In this case, matrix equation (7) converges
rapidly. The main contribution to the sums over shells in
Eqn (8) usually comes from the highest occupied shell and the
lowest unoccupied shell, and hence, with sufficient accuracy,
we can consider two terms ( j � H;L with GH � 2�2IH � 1�
and GL � 2�2IL � 1�, where IH and IL are the corresponding
angularmomenta). To estimate the value ofTc, we can use the
equation 1ÿ K00 � 0, which can be reduced to the simple
form

1 � geffF �tc;D eE � ;
geff � 8g�GH � GL� ;

�9�

where g � lb�4peOnbV �ÿ1, tc � 2pTc=eO,DE � EL ÿ EH is the
spacing between the highest occupied and the lowest
unoccupied shells, and

F �tc;D eE � � tc�t 2c � 1�ÿ1
n�

t 2c � �D eE �2�ÿ1
ÿ 4:5t 2c

��4t 2c � 1�ÿ1ÿ9t 2c � �D eE �2��ÿ1o:
It follows directly from Eqn (9) that the high degeneracies

of the HOS and the LUS play a very important role.
Qualitatively, these degeneracies increase the effective elec-
tron ± vibration coupling geff, and, more specifically, the
effective density of states. It is essential that the value of Tc

depends on the parameters that can be obtained from
experimental measurements (DE, eO, lb, nb) or from symme-
try considerations (degeneracies GH and GL; see, e.g.,
Ref. [48]). Photoemission or ionization potential measure-
ments appear to be the best techniques to determine the
electron energy spectrum.

We first demonstrate that for perfectly realistic values of
the parameters, a high value of Tc can be obtained. We
consider the following set of parameters: DE � 0:065 eV,eO �25 meV, m � � 0:75me, kF � 1:5� 108 cmÿ1, lb � 0:5,

the radius R � 6 A
�
, and GH � GL � 48 (e.g., IH � 7, IL � 4,

andN � 168); then g � 0:2. With Eqns (7) and (8), we obtain
Tc � 160 K (!).

The value of Tc is very sensitive to the cluster parameters.
The most favorable case corresponds to

1) a cluster with large values of the orbital momentum L
for the highest occupied and lowest unoccupied shells, and
hence with large degeneracies GH and GL, and

2) a relatively small energy spacing between these shells.
For example, clusters with N � 168 (e.g., Ga56 or Zn83)

satisfy these criteria. We also note that the situation becomes
less favorable for large clusters because the shell effect then
weakens and, in addition, the decrease in the energy level
spacing leads to a broad distribution of the density of states
and to the loss of its peak structure.

Of course, the cluster should display the presence of the
shell structure for the Tc value to be high. For example,
according to [49], Nb clusters undergo the transition to the
superconducting state. But the value of Tc is not increased
relative to its bulk value, which is due to the absence of shells
for Nb clusters.

Our paper [3] contains calculations for specific clusters.
For example, we consider the Ga56 cluster. It contains
N � 168 delocalized electrons. Using the values lb � 0:4,
DE � 0:1 eV, eO � 270 K, GH � GL � 60, m � 0:6me, and
R � 6:5 A

�
and estimating Tc from Eqn (9), we obtain

Tc � 170 K. A more accurate calculation based on Eqns (7)
and (8) leads to Tc � 145 K, which greatly exceeds the bulk
value T b

c � 1:1 K. Similarly, we obtained Tc � 105 K for
Zn190.

An increase in Tc can be achieved by changing the
parameters (DE, eO, etc.) in the desired direction. For
example, for DE � 0:2 eV, lb � 0:5, m � 0:5me, R � 5:5 A

�
,eO � 50 meV, and GH � GL � 60, we obtain Tc � 240 K (!).

In principle, Tc can be increased to room temperatures.
The analysis can be generalized for clusters with nearly

complete shells (e.g., N � Nm ÿ 2, Nm). The density of states
is now spread over different energy levels, and such weaken-
ing of the sharp peak feature is not a positive factor forTc. On
the other hand, the removal of electrons from the HOS
strongly affects the position of the chemical potential, and
this factor turns out to be favorable for pairing. The best
scenario would correspond to clusters with almost filled shells
(e.g., N � Nm ÿ 2 being a `magic' number) and, correspond-
ingly, a small deviation from the spherical shape. In this case,
the HOS turns into a set of close levels classified by jmj, where
m is the projection of the angular momentum. High values of
Tc can be expected for such clusters [3].

5. Energy gap.
The Ginzburg ±Landau functional

Pairing leads to a noticeable modification of the cluster
electron spectrum. The energy gap opens at T < Tc and its
opening greatly affects the energy spectrum: the spacing
between HOS and LUS becomes different. We can study its
behavior near T � 0 and near Tc [3]. The energy gap at
T � 0 K can be calculated from Eqn (1) written at T � 0
(then the summation over on can be replaced by integration).
The energy gap e0; s near the level xs � Es ÿ m can be
determined from the equation e0; s � D

�
i�x 2

s � e 20; s�1=2
�
. For

example, for a cluster with the realistic set of parameters
DE � 65 meV, EF � 8 eV, eO � 24 meV, and lb � 0:4, we
obtain the HOS ±LUS spacing De � 80 meV. This value

May 2008 `Giant' strengthening of superconducting pairing 431



noticeably exceeds the intershell spacing in the absence of
pairing, DE � 65 meV. An especially large effect can be
observed for clusters with nearly complete shells, when the
energy gap parameter is comparable with the shell splitting
caused by the JT effect.

As we know, there is no phase transition for infinite 1D
and 2D systems, and this is due to fluctuations. It might be
thought that nanoclusters should be treated as 0D systems
and that the impact of fluctuations is the critical factor
destroying the superconducting state. But the situation is
not so simple. Indeed, the dimensionality of a system is
determined by the relation between its size and some
characteristic scale. For the superconducting state, the
coherence length represents such a scale. For example, a thin
film is considered a 2D system because its thickness is small
relative to the coherence length. But the value of the
coherence length is not universal and varies greatly for
different systems. For example, for conventional supercon-
ductors, the coherence length is large, being of the order of
5� 102ÿ103 nm. However, the situation is different for
cuprates: the high value of the critical temperature leads to a
relatively small coherence length (� 15 A

�
).

For nanoclusters, we should also compare the cluster size
and the corresponding coherence length. For high-Tc

nanoclusters, similarly to the cuprates, the coherence length
appears to be short and is of the order of 10 ± 15 A

�
. Therefore,

it is comparable with the cluster size. As a result, clusters with
high Tc represent 3D systems, and the phase transition is
observable.

This is a rather qualitative argument. But the fluctuation
problem can be studied in more detail. The Ginzburg ±
Landau functional can be derived as [3]

deYs � eA�ÿ �tc ÿ t� b 2 � �2s�ÿ1b 4
�
; �10�

where b 2 � sdt, dt � tc ÿ t, t � 2pT=eO, and eA and s are
constants defined in [3]. Based on Eqn (10), the broadening of
the transition dTc=Tc due to fluctuations can be calculated.

A direct calculation performed for various specific
clusters shows that the transition broadening is of the order
of dTc=Tc � 5%. Such a broadening noticeably exceeds that
for bulk superconductors (� 10ÿ8 K), but is still relatively
small.

6. How to observe the phenomenon?

If it is possible to build a cluster-based tunneling network (see
below, Section 7), that would allow transmitting a high-
temperature macroscopic superconducting current. But we
first focus on various manifestations of the pair correlation
for an isolated cluster. We discuss the possibility of their
experimental observation.

6.1 The energy spectrum and its temperature dependence
Pairing leads to a strong temperature dependence of the
excitation spectrum. For T > Tc, the minimum excitation
energy is given byDEmin � EL ÿ EH for magic clusters and by
DEmin�EH

jmj�I ÿEH
jmj�Iÿ1 for clusters with nearly complete

shells. Below Tc and especially at low temperatures near
T � 0, the excitation energy DEmin�T � 0� is strongly mod-
ified by the gap parameter and noticeably exceeds the energy
in the region T > Tc. The shift is especially dramatic for
clusters with nearly occupied shells; the ratio
DEmin�T � 0�=DEmin�T > Tc� can then be � 6ÿ7. An inter-

esting case corresponds to the overlap of HOS and LUS
manifolds. Such an overlap leads to even greater values of the
ratio. A change of such magnitude in the excitation energy
should be experimentally observable and would represent a
strong manifestation of the pair correlation.

Generating beams of isolated metallic clusters at
different temperatures in combination with mass selection
would allow focusing on clusters of a specific size at various
temperatures. A measurement of the energy spectrum, in
particular, a determination of DEmin�T � 0� and
DEmin�T > Tc� (for example, by photoelectron spectro-
scopy; see, e.g., [50] and review [51]), would reveal a strong
temperature dependence of the spectrum. For example, in
Ga clusters (N � 168, Tc � 130 K), a large difference in DE
should be observed at the low-temperature region and
above Tc � 130 K. Similarly, for Cd clusters with
N � 166, a large difference should be observed between
spectra at low temperatures and for T > Tc � 85 K. The use
of Ga and Cd nanoclusters for such experiments looks
reasonable because these materials are superconducting
and, as mentioned above, the existence of an electron shell
structure in their clusters has been confirmed experimen-
tally. An experiment of this type would be both realistic and
informative. If it is possible to place small nanoclusters into
a tunneling barrier, then the spectrum can be determined
with the use of inelastic tunneling spectroscopy similar to
that employed in [9 ± 11]. In this case, there will be no
problems related to optical selection rules.

The pair correlation can also manifest itself in odd ±
even effects in cluster spectra. The presence of an unpaired
electron must strongly affect the excitation spectrum. A
similar effect has been observed for the nucleus and is a
manifestation of pair correlation. Such an effect was also
observed in [11], albeit for much larger particles
(N � 104ÿ105). It would be interesting to perform similar
spectroscopy for small nanoclusters displaying a shell
structure, such as Ga56 or Cd83 .

6.2 Heat capacity
An interesting calorimetric study of clusters was performed
by M Jarrold and his collaborators [52]. They developed a
special method that allows measuring the heat capacity of an
isolated cluster. The measurements were performed using a
multicollisional induced dissociative method. This method is
described in [53].

The beam of cluster ions selected by mass spectroscopy
undergoes a variable extension, and the desired temperature
is thus set. These clusters are then focused into a special
collision cell, where they are heated by collisions with an He
buffer gas. As a result, some of the clusters dissociate; the
modified mass distribution is analyzed by a second mass
spectrometer. The number of clusters that undergo the
dissociation depends on their internal energy and its close-
ness to the dissociation threshold. The number of dissociated
clusters is directly related to the cluster internal energy. The
change in the dissociation threshold with temperature
provides a measure of the heat capacity.

The study in [52] shows that for selected clusters, e.g., for
Al45 ions, a peak in heat capacity can be observed. It is
essential that the peak is not a universal feature and can be
observed only for selected clusters. The peak was observed at
T � 200 K (!); the result is highly reproducible. Aswe know, a
jump in heat capacity is a signature of a phase transition. The
Al clusters are not magnetic, and therefore a magnetic
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transition can be excluded. Special measurements of mobility
also exclude any structural transition.

It is natural to assume that we are dealing with a transition
into a superconducting state. Indeed, the calculation of Tc

based on Eqns (7) ± (9) leads to a value close to Tc � 200 K
for Al45 clusters.

We note that because of the discrete nature of the electron
spectrum, the lattice contribution to heat capacity is domi-
nant at all temperatures. Nevertheless, the jump DC e can be
measured, because it is of an electronic nature. The experi-
mental data in [52] (the amplitude of the observed jump and
its broadness) are consistent with the described theory. The
data in [52] are remarkable not only because the observed
value of Tc greatly exceeds that for bulk Al but also because
this is the highest observed value of the critical temperature.

The study in [52] is the first experimental observation of a
high-Tc superconducting state in nanoclusters.

6.3 Diamagnetism
Pairing also leads to the appearance of orbital diamagnetism
below Tc; this is analogous to the Meissner effect in usual
superconductors, or to the peculiar behavior of the momenta
of inertia in atomic nuclei. But the case of nanoclusters is
peculiar. Indeed, we consider a magic cluster. It is character-
ized by a diamagnetic moment regardless of the pairing
correlation; this follows just from its spherical symmetry. As
a result, directmeasurements of themagneticmoments do not
provide a signature of the superconducting state.

Studying the special case of a cluster with two electrons
(holes) in the incomplete shell (e.g., N � 166) can be
proposed. Then the cluster should display an orbital para-
magnetism at high temperatures. Indeed, because Hund's
interaction in clusters is small, the linear term in the
Hamiltonian dominates (the large screening, which greatly
exceeds that for atoms, leads to a weak Hund's interaction).
Then the transition to the superconducting state at T � Tc

should be accompanied by the paramagnetic ± diamagnetic
transition.

7. Macroscopic high-Tc superconductivity:
a tunneling network

In Section 6, we discussed variousmanifestations of pairing in
isolated clusters. Here, we consider a network that could be
prepared, for example, by depositing clusters on a surface
(Fig. 4). Charge transfer between clusters due to the
Josephson coupling would lead to a macroscopic super-
conducting current at high temperatures [3, 54].

7.1 Josephson coupling
As a first step, we consider two superconducting nanoclusters
and the Josephson coupling between them. Based on the
equation for the current,

j�r� � ie

m
T
X
n

�
Hr 0 ÿ Hr

�
Gon
�r; r 0���

r�r 0 ; �11�

where Gon
is the Green's function, it can be shown that the

amplitude of the current j� jm sin�j1ÿj2� is described by a
relation similar to that for bulk superconductors:

jm � T

peR
Im
X
on

X
s1; s2

F1�on�F2�ÿon� ;

Rÿ1 � 4pe 2

jtj2� : �12�

Here, t is the tunneling matrix element and Fi�on� is the
Gor'kov pairing function (Eqn (1 00)). For bulk superconduc-
tors (see, e.g., [55], or [56] for large nanoparticles), the
summation over the states s1, s2 can be replaced by
integration. This is not the case for the nanoclusters of
interest. It can be shown [54] that the discrete nature of the
spectrum and high values of Tc lead to a current density
greatly exceeding that for usual bulk superconductors. It is
essential that the main contribution to the sum in Eqn (12)
comes from the upper shells. For bulk superconductors,
jm / Eÿ2F , whereas for nanoclusters, jm / �DE �ÿ2. Because
EF 4DE, the corresponding factor increases the value of jm.
Moreover, the large degeneracy of HOS, as well as the large
value of the gap parameter, is also a beneficial factor. A more
detailed analysis shows that

j clm
j bm
� Dcl

Db

Dcl

DE

�
EF

DE

�2

� pFR�ÿ4 ;

where Dcl and Db are the cluster and bulk energy gaps, DE is
the HOS ±LUS spacing, and R is the cluster radius. For
example, for the Al56 clusters, we obtain j clm=j

b
m � 3� 102. In

general, we can expect for various clusters that
j clm=j

b
m � 102ÿ103. Therefore, the use of cluster-based tunnel-

ing networks is important not only because it would allow
observing a macroscopic superconducting current at high
temperatures but also because of the large gain in the
amplitude of the current.

The phase of a cluster does not have a certain value; this
follows from the well-known uncertainty relation between the
phase and the number of particles. As a result, the phase is not
defined for each of the clusters. Nevertheless, the phase
difference that enters the expression for the Josephson
current is defined. This fact was stressed in [56]. As usual,
the phase difference is determined by the value of the
transmitted current.

Macroscopic superconducting current can be transmitted
by a cluster-based chain (Fig. 4). If the clusters are distributed
randomly on a surface, the formation of the chain is described
by the percolation theory. A similar picture was studied in
[57]; the percolation chain formed by the superconducting
regions embedded into a normal matrix was considered.
Paper [57] was concerned with the so-called `giant Josephson
proximity effect' observed for the `pseudogap' state of
cuprates [58]. Superconducting regions form a long percola-
tion path, transmitting the Josephson current.

For conventional superconductors, such networks were
described in the interesting paper [59], which contains an
analysis of a similar network. Small Pb nanoparticles were
placed in an organic matrix (C17H33 ±CO2H). If the initial
number of nanoparticles was small, the whole system was an
insulator. An increase in the number of nanoparticles resulted
in tunneling between some of them and, eventually, in the
formation of a percolation path. As a result, the insulator ±
metal transition was observed. A decrease in the temperature
was accompanied by a transition to the superconducting

Figure 4. Cluster-based tunneling network.
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state: the Meissner effect was observed using SQUID
magnetometry. The nanoparticles studied in [59] were
relatively large, but a similar picture could be observed for
the nanoclusters of interest.

The shell structure of clusters placed on a surface has to be
preserved. However, shell structure has been observed only
for isolated particles forming cluster beams. Cluster ± surface
interactions destroy this picture. The creation of a substrate
(or matrix) that can keep the shell structure stable is a real
challenge for material science.

7.2 Cluster crystals
A new type of crystal (crystal metals) can be created by using
metallic nanoclusters as building blocks. The lattice is formed
by clusters instead of the usual point-like ions. Such solids are
analogous to molecular crystals. The Josephson charge
transfer between neighboring superconducting clusters leads
to macroscopic superconductivity. Such metals represent
tunneling networks (cf. Section 7.1); in this case, the clusters
form an ordered 3D lattice. Fullerides, containing C60

clusters, are an example of such a system. In Section 3, we
mentioned the interesting paper [30], which was motivated by
the discovery of superconductivity in C60 crystals. According
to [30], the best scenario corresponds to clusters with half-
filled shells.

An interesting study of Ga-based cluster metals was
described in [60]. A crystal was formed by Ga84 clusters
(N � 252; each Ga atom contains 3 valence electrons). A
superconducting transition at Tc � 7:2 K was observed. We
note that the HOS-LUS spacing for such a cluster is rather
large, and there is no reason to expect a high value of Tc.
Nevertheless, the value Tc � 7:2 K is noticeably higher than
T b
c � 1 K for the bulk Ga. It is useful to recall that there are

two modifications of bulk Ga. One of them (ordered crystal)
has the low value Tc � 1 K and the other (amorphous phase)
has the large value Tc � 6 K. One might think that the
clusters forming the described crystal have the amorphous
structure. But the X-ray study in [60] reveals that the ions in
Ga clusters are ordered. It is therefore natural to assume that
the observed increase in Tc (1 K ! 7.2K) corresponds to a
large Tc for Ga clusters relative to its bulk value.

8. Conclusion

Metallic nanoclusters form a new family of high-Tc super-
conductors. The high value of the critical temperature is
caused by the shell structure of their electron spectra and the
resulting high degeneracy 2�2L� 1�; the orbital momentumL
for the clusters of interest is large. This high degeneracy leads
to the appearance of a peak in the density of states at the
Fermi level.

As is known, size quantization leads to an increase in Tc

(dTc=Tc � 2ÿ3), and this effect has been observed in thin
films and in granular materials [6 ± 8, 61]. It has been
explained in [62]. The phenomenon studied here is likewise
concernedwith size-quantized systems, but it ismuch larger in
scale and entirely different in nature. It is caused by the shell
structure and high degeneracy of orbital motion.

It is important that high Tc is not a universal property of
all metallic clusters. Only selected clusters satisfy the condi-
tions ensuring a high value of Tc (see Section 4). The
manifestations of the pairing phenomenon are similar to
those of pair correlation in atomic nuclei, which is a well-
established concept in nuclear physics.

The theoretical treatment in [1 ± 3] is rigorous; however,
an experimental observation of the effect is a serious
challenge. It requires mass spectrometry for selecting specific
clusters along with special techniques for preparing cluster
beams of a variable temperature. These should be combined
with photoemission measurements in order to determine the
electron spectrum, in particular, the magnitude of the HOS ±
LUS gap DE for T > Tc and T < Tc. Pairing must lead to a
noticeable difference inDE for these two temperature regions.
At present, all these techniques are available, but combining
them in a single experiment is a serious challenge. As regards
the future progress, it lies with the construction of cluster-
based tunneling networks capable of transporting macro-
scopic dissipationless current at high temperatures. In
principle, the effect could be observed at room temperature.

For a long time, the search for new materials was mainly
focused on Nb-based systems. The discovery of high-
temperature cuprates [33] and the subsequent remarkable
developments [34] (see also, e.g., [63]) were very important,
not only because of the drastic increase inTc. Cuprates do not
contain Nb, i.e., the breakthrough came in an entirely new
direction. Initially, the lesson was not very well taken, because
the community worked almost exclusively with cuprates for
the next 10 ± 15 years. But in the last several years, we have
been witnessing an entirely new development. Along with
cuprates, scientists are now studying many novel and
different superconducting systems: ruthenates, MgB2, bor-
ocarbides, nitrides, fullerides, etc. There is also renewed
interest in organic materials and heavy fermions. It is hard
to recall a time when so many interesting and promising
systems were being synthesized and intensively studied almost
simultaneously.

The search for room-temperature superconducting mate-
rial has attracted much attention [64]. Many different ideas
have been put forward. They include searching for systems
with negative dielectric functions [65], synthesizing crystals
with specific phonon spectra [66], creating materials with a
pore structure [67], and studying the superconducting state
generated at interfaces in epitaxial heterostructures [68].

It follows from the analysis in this paper that nanoclusters
also form a novel family, and they have promise as future
room-temperature superconductors. This research, which
requires the combined efforts of physicists, chemists, and
material scientists, is a promising and interesting avenue.
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research by YO was supported by the RFBR and BNTS.
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