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populated) — potentially leading to the possibility of
inventing terahertz amplifiers and generators relying on
transitions between spin subbands (a possibility announced
earlier in Ref. [14]).

Figure 5 shows the dependence of the magnetic energy on
angle y for the case of Z3 > Z| > Z, and for various values of
reverse current density. In this event, the parallel configura-
tion y = 0 at the threshold current density j = ji, (the same as
for the forward current) becomes unstable, switching the
system to the stable antiparallel magnetic configuration
y = m, which is also stable for forward current (see Fig. 1),
so that the switching is irreversible. This behavior can be used
to magnetically record one-time (archival) information using
spin-polarized current. With the sd-exchange interaction with
a characteristic length of ~ 10~¢ cm underlying the process,
extremely high recording density can be achieved.
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The generalized Landau — Lifshitz equation
and spin transfer processes
in magnetic nanostructures

A K Zvezdin, K A Zvezdin, A V Khvalkovskiy

1. Introduction

Recently, a new method for magnetic-body magnetization
reversal has been proposed [1, 2] and experimentally
substantiated [3—5], based on the fact that a current
traversing a magnetic system transfers not only charge but
also spin, and constitutes therefore a flux of the angular
momentum. Spin polarization of the current (i.e., nonvan-
ishing total spin momentum) arises due to the exchange
interaction, for the current flowing through a ferromagnetic.
If the current flows from a ferromagnetic to a nonmagnetic
material, it retains its polarization over a certain length.
However, if the polarized current traverses a nonuniformly
magnetized magnetic system, its spin moment has to adjust
itself to the system’s magnetization. Because spin is locally

conserved, the change in the angular momentum of the
current is transferred to the ferromagnetic; thus, the
divergence in the spin flow gives rise to a torque that acts
on the magnetization. Such a process has come to be known
as spin transfer. Under certain conditions, the spin transfer
can result in the magnetization reversal of magnetic
structures, as well as causing spin wave generation and
domain wall motion. This effect is quantum in nature and
undoubtedly one of fundamental interest.

Adding to the interest in exciting magnetization in this
way are the successes achieved and problems encountered in
developing MRAM (Magnetoresistance Random Access
Memory) elements, microwave devices, and magnetic logic
elements [6]. Various aspects of the effect under study were
discussed in reviews [6—8].

The theoretical description of spin transfer process in
nonuniform ferromagnetic media usually relies on the so-
called sd-model which assumes that charge and spin currents
are carried by external electrons whose (Bloch) wave func-
tions are primarily formed by the s- and p-orbitals of the
material’s atoms, while the magnetization is determined by
the inner underpopulated d-orbitals (for details see Ref. [9]).
In this approach, the sp—d hybridization is assumed to be
sufficiently small and responsible for the exchange interaction
(with the energy on the order of several tenths of an electron-
volt) between the sp and d electrons. The corresponding
exchange fields are on the order of or higher than 107 Qe.

The mechanism by which the current’s spin moment (or
more precisely, its transverse component [1, 2]) adjusts itself to
the direction of the local magnetization is the exchange
interaction mentioned above, and because of the large value
of the exchange field this adaptation process occurs over
distances on the order of 1 nm. This distance is much smaller
than the characteristic length of spin—Ilattice relaxation,
which is several dozen nanometers in ferromagnetic metals.
Thus, the spin flow is not scattered by the impurities, it is only
redistributed. The spin flux Q is transferred from moving to
localized electrons in the form of torque T which causes their
spins to reorient themselves or to precess; O and T are defined
as Q;; = > uiS;, Ti = —V;Q;;, where vand S are, respectively,
the velocity and spin vectors, the summation runs over all the
electrons of the flow, and i, j are the Cartesian indices. The
spin-current-induced dynamics of a nonuniformly magne-
tized s—d system are described approximately by the general-
ized Landau- Lifshitz equation (GLLE) involving an addi-
tional spin torque Tsy =T (where y is the gyromagnetic
ratio):

dM

o dM
—=—9M x H T, — M x — 1
ds Y X eff+ s.t.+Ms( X dt)v ( )

where M is the magnetization vector, ¢ is the time, o is the
Gilbert damping parameter, Mj is the saturation magnetiza-
tion, and the effective field Hey [10] sums the contributions
from the external magnetic field and the magnetostatic,
exchange interaction, and anisotropy fields.

Usually, two configurations of planar structure are
employed to consider spin transfer processes. In the first and
most widely used CPP (current perpendicular to the plane)
configuration, the current flows perpendicular to layers in a
structure containing layers with different magnetization
directions. In the second, CIP (current in the plane) config-
uration, the current flows along the magnetic layer containing
a domain wall (DW).
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Figure 1. Layer and time averaged and M;-normalized x-component of
magnetization for the free layer of the CPP structure shown in inset, as a
function of current through the system (MMA and QMA calculations).
Calculation parameters are given in the text. Shown in the inset is a CPP
geometry typically used to study the polarized-current-induced magneti-
zation dynamics: /, free layer; 2, intermediate nonmagnetic layer, and
3, fixed magnetization layer.

The CPP system with a spin transfer (see inset to Fig. 1) is
a nanopillar containing a multilayer magnetic structure
N;/F;/N/F,/N, (F and N referring, respectively, to ferro-
magnetic and nonmagnetic layers) and having an oval-shaped
cross section with a typical dimension of 100 nm (the lateral
dimensions of the system are determined by the desire to
reduce the parasitic influence of the eddy magnetic field from
the current flowing through the system). Comprising the
nanopillar are (see Fig. 1) a free layer / with a thickness of
1-2 nm; a reference layer 3 with a fixed direction of
magnetization mg¢ (for example, along the x-axis), and a
nonmagnetic layer 2 with a thickness on the order of 10 nm
(enough to reduce the interlayer exchange interaction to an
acceptably small value), which is sandwiched between two
above layers. The free-layer magnetic anisotropy, generally
determined by the layer’s shape, is assumed to be sufficiently
small that spin direction in the layer can be easily controlled
by an external field and/or a torque.

Spin moment transfer in this system occurs as follows. If
we suppose that the magnetic moments in layers / and 3 are
not collinear and that the electron flux emerges from layer 3,
then the spin flux is defined by a single component
Q.. = —(li/2e)PJ, where J is the electric current density,
and P is the spin polarization of the current (interpreted as
the difference-to-sum ratio of partial currents with a spin
projection of 1/2 onto the quantization axis). The partial
reflection of polarized carriers at the interfaces between the
layers results in the spin flux acquiring a component
perpendicular to the magnetizations of both the free and
reference layers. The electrons entering layer / have their
spins rotated by the exchange field to align with the layer’s
localized spins [11]. We have already mentioned that this
process occurs over a length on the order of 1 nm from the
interface between layers / and 2, and that in this region div O
and the vector —T equal to it are different from zero. Thus,
spin transfer constitutes in fact a surface effect. However, if
the free layer is sufficiently thin, then due to exchange rigidity
the torque extends its action over the whole of the layer.

The magnetization dynamics of the free layer can be
described by the generalized Landau— Lifshitz equation (1).

Although the spin torque Ts; can be calculated quantum-
mechanically [8], for our purposes it suffices to employ a
phenomenological approach of the type Landau and Lifshitz
used when deriving their equation in 1935 [12].

Let us resolve the vector Ty, along three mutually
perpendicular axes parallel to the vectors M, [M X my], and
M x [M x myg], where my is a unit vector directed along the
reference layer magnetization. The projection of T onto M
is zero because the Landau— Lifshitz equation presupposes
the validity of the condition M = const. Two other compo-
nents of Ty, the parallel (T) and the perpendicular (T ) to
the plane of (M, m), are usually written in the form

TH:_%MX [Mxmref]v (2)
TL = 'be[M X mrer] . (3)

Here, the coefficients a; and b; (with the dimensionality of the
field) are proportional to the current density J and depend on
the material parameters and interface characteristics
involved. In the general case, a; and b, also depend on the
angle between M and m, — a dependence which can,
however, be neglected in the first approximation [13, 14].
The inequality |b,| < |ay| holds true for real systems. Typical
values of the parameters are as follows: ¢; = 10—100 Oe for
J=10" Acm=2%; |b;/a;| ~ 0.1, with a; and b; being opposite
in sign [15].

There are two regimes in which the magnetic layer of such
a structure can be excited by a spin-polarized current. The
first occurs when the momentum of the current flowing
through such a structure acts — via the spin transfer effect
— to reverse the magnetization of the free layer in the
direction of one of the stable magnetic states (precisely
which depends on the direction of the current) [5]. The
second regime is usually achieved by applying a strong
(several kOe) magnetic field to the system. In this case, the
field and current combined cause the magnetic moment of the
free layer to perform high-amplitude oscillations (rotation in
the plane of a film being an example) [16]. The polarized
current should have a density on the order of 10’ A cm™2 to be
able to excite the magnetic structure.

A typical example of a CIP spin transfer system is a thin
magnetic film or a nanowire comprising a DW. As current
carriers pass through the DW, their spin moment tends at
every point of the line of flow to realign with the local
magnetization, resulting in the system’s magnetization being
affected by the torque T ..

Let us write out the components of Ty, by analogy with
those for CPP systems. In CIP systems, the role of my is
played by the vector (j.V)M (with j. being a unit vector
along the current) which determines the variation in the
magnetization along the lines of current flow. The nonzero
Cartesian components of Ts¢ along M, [M x (j,V)M],
M x [M x (j,V)M] vectors are written in the form [17—19]

Ta:—AiI—JSZMx[Mx(jeV)M], (4)
T = — % M x V)M 5
na—_ﬁs[ X(]e) } ()

Here, the parameters ¢, and d; are proportional to the
current. The components 7, and T,, are called adiabatic
and nonadiabatic torques, respectively. As shown in
Refs [17—19], the former describes the effect of spin transfer
based on the assumption that the spin subsystem of the
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carriers during their passing is at every point of the domain
wall in equilibrium with the magnetic system. The second
component accounts for how the average spin moment of the
electrons deviates from a local magnetization direction. The
ratio crp = dj/cy, or the nonadiabaticity of the process, is a
material parameter and usually ranges between 0.001 and
0.05 [19]. Experiments on the use of a polarized current to
induce domain wall motion are normally carried out on thin
films (a few nanometers thick) with a critical current density
of about 108 A cm~2 sufficient for a DW to detach itself from
pinning centers [20].

Some significant aspects of the solution of the GLLE (1)
for various types of systems are discussed in what follows.

2. On the role of the micromagnetic approach
in modeling current-induced magnetization
dynamics in CPP structures

Because the width of the domain wall (~ 30—50 nm) in
nanopillar CPP structures described in the Introduction is of
the same order as the size of the free layer, it is often assumed
that the free layer mostly resides in the single-domain state —
leading to the belief that the dynamics of the system are
adequately described by the macrospin approximation (in
which layer magnetization is represented by a unit magnetic
moment). Calculations using this approximation do indeed
agree qualitatively — and in some cases quantitatively — with
the experimental results. However, recent direct observations
of polarized-current-induced switching [21] and oscillations
[22] show strongly nonuniform magnetization distributions
to be involved in their dynamics — a finding which full-scale
micromagnetic modeling calculations also support [23, 24].
This raises the question of how far the macrospin approxima-
tion can be applied to these processes. Another important
point to understand is through the behavior of what
parameters and in which way can the difference between the
macrospin description of the system and the more realistic
micromagnetic description be seen.

To investigate these queries, we simulated the current-
induced magnetization dynamics of a nanopillar CPP
structure (see the inset to Fig. 1) using both the micromag-
netic approximation (MMA) and the quasimacrospin
approximation (QMA). The quasimacrospin approximation
consists in modifying a micromagnetic calculation by addi-
tionally requiring that the system be uniformly magnetized.
The free layer of the system is assumed to be a 3-nm-thick
ellipse with major and minor semiaxis lengths of 32 and 16 nm,
respectively. The material parameters correspond to permal-
loy (saturation magnetization M = 800 G, exchange stiffness
A =13 x10"%ergcm™', anisotropy constant K = 0, and the
Gilbert damping parameter o = 0.014). The system used to
model QMA was the same except for a factor of 16 larger
exchange stiffness. For this system, the magnetization
magnitude averaged over all cells differed from M by no
more than 0.2% for all dynamic processes, being indicative of
a highly spatially uniform magnetization. It was assumed that
a; = 100 Oe and b; = 0 for J = 107 A cm~2. To numerically
integrate the GLLE (1), our program package SpinPM was
utilized. In accordance with current practice, only calcula-
tions for the free layer were made [23]. The vector m,f was
assumed to be along the x-axis, and the eddy field was
assumed to contribute nothing.

The first case considered was structure switching by a
current in a zero magnetic field. As it turned out, the QMA is

Figure 2. Mechanical trajectories of the layer-averaged and Mg-normal-
ized magnetization vector of the free layer. MMP calculations are done for
different values of the current (represented by different color hues) for a
magnetic field H = 1000 Oe applied along the —x direction.

quite adequate for describing both the structure switching
current and the behavior of the layer- and time-averaged
x-component of the magnetization (see Fig. 1). That
measured switching currents agree well with the single-
domain approximation has also been shown by other
authors [7]. However, even for such a small structure the
QMA-calculated switching time differed appreciably from
(was about 10% larger than) the MMA result, which is in
agreement with available experimental data [21].

The next case considered was one in which the application
of an external magnetic field leads to the excitation of
magnetization oscillations in the system. Figure 2 displays
free-layer magnetization trajectories calculated in the MMA
for an external magnetic field H = 1000 Oe. For sufficiently
low currents, these trajectories are very nearly periodic in the
sense that each curve passes within a close proximity of the
point where it started. However, this periodicity is lost at a
certain critical current density J., the trajectories become to a
large extent chaotic [24], and essentially nonuniform (multi-
domain) states, occasionally containing vortices or distinct
domain walls, start to develop in the system. Figure 3 depicts
the Fourier spectra of the function (M, )(¢) for quasiperiodic
(dark curve) and nonperiodic (light curve) trajectories. The
first spectrum is a set of narrow peaks, among which one
distinguishes the main peak and a set of its higher-order
harmonic satellites. The second spectrum also exhibits the
main peak, but it is very broad (with a width of more than
1 GHz).

Along with chaotization of system’s magnetization
trajectories, other effects are lost in QMA calculations. In
Fig. 4 are shown MMA- and QMA-calculated positions of
the main spectral peak f as functions of current density J.
These dependences match almost exactly up to a certain
critical value of J; (= 2.2 x 107 A cm~2 in Fig. 4) and start
to noticeably differ above this value. It is important to note
that in the general case J; < J¢, and that these dependences
may differ sufficiently greatly — by several times. In the
interval Jg < J < Jo, spatially nonuniform spin wave modes
are excited in the system [22] — one for every current density
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Figure 3. Fourier spectra of the layer-averaged x-component of magneti-
zation (M,)(t) of the free layer obtained for quasiperiodic (j=
3% 107 A cm™2, H =10 Oe) and nonperiodic (j =1 x 10> A cm~2,
H = 10% Oe) trajectories (dark and light curves, respectively).
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Figure 4. The position of the main frequency peak versus density current.
Calculations are made in the MMA and QMA for an external magnetic
field H = 1000 Oe.

value except for small J intervals where mode-to-mode
transitions occur; the spectrum here is reduced to a narrow
peak, and magnetization trajectories are quasiperiodic. For
J > Jon, several nonuniform spin wave modes are excited,
which are comparable in amplitude and interact between
themselves due to nonlinearities in the system — thus
broadening the spectral peak and leading to chaotic mechan-
ical trajectories.

Thus, even in the case of a very small free layer, treating a
CPP system in the QM A means losing important information
about its dynamics, in particular, the time of the full
magnetization reversal in the switching regime; the frequency
of the main spectral peak, and the onset of the regime when
the magnetization trajectories become chaotic for the oscilla-
tions.

3. Current-induced motion of the domain wall
in a nanowire of elliptic cross section

This section examines the solution of the GLLE (1) for a one-
dimensional magnetic system comprising a DW, specifically

for an infinitely long nanowire with an elliptic cross section.
The system is allowed to have anisotropy of the easy-axis type
with the easy axis directed along a structure’s (z) axis. It is
assumed that anisotropy of the easy-axis type can be present
when the axis lies in the transverse plane (xy); for definiteness
sake, the axis is specified to be along x. We denote the
corresponding uniaxial anisotropy constants by K, and K.
The magnetization distribution is allowed to vary only along
z-axis; the magnetostatic interaction is assumed to be taken
into account by the coefficients K, and K,,.

Using expressions (4) and (5) for the torques, the solution
of the GLLE (1) for this system is approximately given by

0 _,
0z (6)

0 = 2 arctan exp {ZAi

where ¢, 0 are the polar angles, ¢(¢) determines the position of
the DW’s center, and 4(¢) = [a/(K, + K, sin® (p)}l/2 is the
DW width. The functions ¢(z), ¢(z) satisfy the system of
equations

K, .
g+cr—oadp =94 =L sin2¢,
M 3
(8)
oG+ dy+ Ap—yAH = 0.

For K, =0, H = 0, system (7) allows a solution of the form
[25]
ot ody

I

a2 +1 (8)

. 1 OCCJ—dJ
e\ a )

This solution describes the z-directed translational motion of
the DW whose plane rotates with a constant angular velocity.
It should be noted that both current-induced torques — the
adiabatic and nonadiabatic — make their contributions to the
stationary DW motion.

In most real systems, however, K, # 0 (for example, due
to the elliptic cross section of the nanowire). In this case,
system (7) admits the solution ¢ = 0 for H = 0:

. dy
q=——
” ©)

M
- —d
ayAK, oy = dy),

sin2¢p =

where the second of relationships (9) (with 4 being the DW
parameter, and ¢ the DW plane angle) determines the
existence range for the solution (cf. Ref. [26]). Solution (9)
for constant current describes the constant-velocity DW
motion with time-independent slope ¢. Unlike the preceding
case, here the adiabatic torque T, has no effect on the steady
velocity of the DW. The motion of the DW is determined only
by the nonadiabatic torque T,. In the limiting case of a thin
magnetic film, this solution was obtained in Refs [18, 19].

4. Current-induced motion of the domain wall
in a CPP spin-valve structure

This section discusses the solution of the GLLE (1) for a
multilayer DW-containing system with a current flowing
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Figure 5. Current-induced DW displacements calculated for (a) the torques T and T, combined, (b) the torque T alone, and (c) the torque T alone.
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Calculations are made for current densities J = 5, 10, 15, 20 [10® A cm~2] (curves / —4, respectively). The upper limit for this setis J = 24 x 10° Acm~2,a
current value at which the current-induced magnetization reversal of one of the domains occurs. The inset to panel (a) depicts the geometry of the system.

(d) Velocity of stationary DW motion as a function of current density J.

perpendicular to the layers. As shown in the inset to Fig. Sa,
the spin-valve structure under consideration consists, from
the bottom up, of a layer with pinned magnetization
(polarizer), a thin nonmagnetic spacer, a free magnetic layer,
and a nonmagnetic metal contact. It is assumed that the free
magnetic layer contains a single infinitely thin DW and that
the layer with pinned magnetization is aligned in the positive z
direction. There is a current flowing through this system, and
the spin transfer effect can bring the DW into motion. A
solution is sought for sufficiently low current densities for
which each of the domains is, on its own, stable relative to
current-induced excitation.

The solution method used was micromagnetic modeling,
and the computations were limited to the free layer [23]. The
influence of boundary effects was reduced by modeling the
layer as a long strip (8 pm in length) 50 x 3 nm in cross section
with a ‘head-to-head” DW in its center. The magnetic
parameters, chosen close to those of Co, were as follows:
My =1400emucm—>,4 =2 x 10~ ®ergem~!, and o = 0.007.
No bulk anisotropy was taken into account. The position of
the DW at each instant of time was calculated from the
system-averaged magnetization [27]. It was assumed that
aj=25 Oe and b;=-2.5 Oe for a current density
J=10" A cm™2. To explore the role of the torques T and
T, in DW motion, calculations for the same system were also
carried out by considering these torques separately (which
was rather a straightforward analysis due to the linearity of
the system: the displacement of the DW under the action of
the sum of T and T is equal, to within 1% or less, to the sum
of its displacements under the separate action of the torques
TH and TL)

The results of the simulation are shown in Fig. 5. The
domain wall starts moving at a finite velocity (Fig. Sa),
accelerates for about 1 ns after switching on the current and
then starts moving uniformly. As seen from Figs 5b and 5c,
the initial velocity of the DW is determined by the action of

the torque T}, while its stationary motion depends exclusively
on T, . When under T} (Fig. 5b), the DW starts moving at a
finite velocity, but after a period of 1 ns it stops. Under T
(Fig. 5¢), the DW starts moving at zero velocity and then
accelerates to a finite velocity. The velocity of the stationary
DW motion is linear in the current (Fig. 5d).

There is a noteworthy similarity between this solution and
that for CIP systems (see Refs [18, 19] and the results
presented in Section 3) which consists, in particular, in a
major torque not producing stationary DW motion. This
similarity is due to the fact that the torques T and T acting
on a DW respectively in the CPP and CIP systems are —
although different in origin — pointing in the same direction
relative to the domain wall. The same is true for the pair of
moments T, and T,,, either of which produces stationary
DW motion [26].

Similar to what was done in Section 3, it is possible to
construct a one-dimensional analytical model for this system
[27]. According to this model, the velocity of the domain wall
is given by the expression

"/bjA

ucpp = — P

(10)

This expression describes the simulation results to within
about 10%. It is of interest to compare this result with that for
DW motion in the CIP configuration [see formula (9)].
Taking d; = 0.007 m s~! at a current density J = 10° A cm 2
(the upper estimate for d; according to Refs [18, 19]), it is
found that u =1 m s~! for Co, whereas for our system
(4 =19 nm) Eqn (10) yields ucpp = 14 m s~! for the same
value of J. A similar relation between u and ucpp is observed in
other 3d-metals and for typical geometries of the structure.
Thus, in terms of current-induced DW excitation the spin-
valve CPP structure can be an order of magnitude more
efficient than the similar monolayer CIP structure, defining
the efficiency as the DW velocity at a given current density.
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This result, due to the fact that the torque 7', is much larger
than Ty, in typical magnetic nanostructures, can be of
practical importance for developing controlled magnetic
elements (magnetic memory and logic) [28].

5. Spin current in molecular systems

One further class of experimental configurations for studying
spin-current-induced effects comprises systems containing
conducting organic molecules. Such molecules are grown by
self-assembly methods and brought into contact with a
nonmagnetic or ferromagnetic metal (for example, Au or
Ni). Such a contact is created by the chemosorption of so-
called thiol groups that form at that end of an organic
molecule which is in contact with a metal electrode. An
example of such organic molecules with thiol terminal
groups is benzene-thiol molecules. To the other end of an
organic molecule, a magnetic element (a magnetic nanoclus-
ter or an ion with the ‘easy-plane’ anisotropy) attaches itself,
either chemically or by van der Waals forces. Another
possible type of contact is the magnetic metallic (for
example, Ni) probe tip of an atomic force microscope. Such
an experimental configuration is currently typical in molecu-
lar spintronics.

At sufficiently low temperatures and low damping, the
quantum effects show themselves in the dynamics of such a
system [29]. A spin current induces excitations of a quasianion
nature and gives rise to coherent quantum effects: Bloch
oscillations in magnetic moment precession and tunneling
effects between various quantum precession modes (so-called
Zener macroscopic tunneling). These quantum effects can
manifest themselves as jumps in the magnetic moment and
peaks in the magnetic susceptibility of the system under
consideration.

6. Conclusion

In this paper we have discussed various aspects of application
of the Landau-Lifshitz equation modified by including
additional, current-dependent torques. First, the study of
the switching and oscillation dynamics of magnetization in
CPP systems showed that the full-scale micromagnetic
approach is of crucial importance even in the analysis of the
smallest-sized systems. The analysis of CIP and CPP config-
urations of the systems with DWs showed that, although the
current-induced spin torque Tsy is of a different origin in
these two configurations, the solutions of the GLLE can be
similar for certain system parameters. The reason for this lies
in the fact that the corresponding components of the T, are
pointing in the same direction relative to the domain wall. On
the other hand, the current-induced DW motion in CPP
structures can be more effective by far than in CIP
structures. Finally, attention was brought to the quantum
effects that spin-polarized current induces in molecular
systems. The most noteworthy of these are Bloch-oscillating
precession and Zener macroscopic tunneling of magnetiza-
tion, both observed in sufficiently low-damping systems at
low temperatures.

The work was supported by RFBR, project No. 07-02-
91589.
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