
Abstract. This article discusses the relationship between the
statistical description of stochastic dynamical systems based
on the ideas of statistical topography and the traditional analy-
sis of Lyapunov stability of dynamical systems with the use of
the Lyapunov characteristic indices (Lyapunov exponents). As
an illustration, some coherent phenomena are considered that
occur with a probability of unity, i.e., in almost all realizations
of the stochastic systems. Among such phenomena are the
diffusion and clustering of a passive tracer in random hydro-
dynamic flows, the dynamic localization of plane waves in
layered random media, and the emergence of caustic patterns
of the wave field in multidimensional random media.

1. Introduction

In recent years, the attention of both theoreticians and
experimenters has been commanded by the issue of the
relationship between the dynamics of averaged characteris-
tics of a solution to a problem and the behavior of the solution
in particular realizations. This point is of particular impor-
tance in geophysical problems concerning the properties of
atmosphere and ocean, where no appropriate averaging
ensemble is generally present and, as a rule, experimenters
deal with particular realizations.

Dynamical problems for particular realizations of the
parameters of a medium are extremely sophisticated in
terms of mathematics, so that it is virtually hopeless to try to
solve them. At the same time, investigators are interested in
the basic features of the phenomena, without going into
details. For this reason, the idea of using the well-elaborated
mathematical technique of random processes and fields, i.e.,
considering statistical averages over a whole ensemble of
possible realizations instead of particular realizations of the
processes under study, proved to be highly attractive. For
example, nearly all problems of atmospheric and oceanic
physics are currently based, to a certain extent, on statistical
analyses.

The introduction of randomness in the parameters of
the medium entails the stochastic behavior of the physical
fields themselves. The normally employed techniques of
statistical averaging (i.e., the calculation of mean quantities
such as the mean values of processes and fields,



x�t��and


r�r; t��, spatiotemporal correlation functions


x�t�x�t 0��,


r�r; t� r�r 0; t 0��, etc., where h. . .i denotes averaging over the
ensemble of all realizations of random parameters) ensure
smoothing of the qualitative particular features of individual
realizations. As a result, the obtained statistical character-
istics inmany cases not only have nothing in commonwith the
behavior of individual realizations but even, at first glance,
contradict them.

In a number of cases, however, certain physical processes
and phenomena occur with a probability of unity (i.e., in
almost all their realizations); they are termed coherent (see
Refs [1, 2] and monographs [3 ± 5], where this point is
discussed in detail).

Definitely, the complete statistics contains full informa-
tion about the dynamical system. However, only some
simplest statistical characteristics related to one-time and
one-point probability distributions can be studied in prac-
tice. Therefore, the following question arises: how can we
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describe the basic qualitative and quantitative characteristics
of the behavior of individual realizations of the system
knowing its simplest statistical characteristics and particular
features?

This question can be fielded using statistical topography
techniques (see, e.g., Ref. [6] and the above-mentioned
monographs). On the one hand, we will consider below
applications of these techniques to simplest physical pro-
blems; on the other hand, we will reveal relationships between
these techniques and the traditional approach to a stability
analysis based on considering Lyapunov exponents.

The approach based on the analysis of Lyapunov stability
of the solutions of deterministic, linear, ordinary differential
equations

d

dt
x�t� � A�t� x�t�

has received much attention from numerous investigators. It
implies analyzing the upper bound for the solution of the
problem, namely

lx�t� � lim
t!�1

1

t
ln
��x�t��� ;

which is called the characteristic index of this solution [7]. In
applying this approach to stochastic dynamical systems, a
statistical analysis is frequently invoked at a final stage of the
treatment to interpret and simplify the results obtained; in
this case, statistical averages are calculated, such as


lx�t�
� � lim

t!�1
1

t



ln
��x�t���� : �1�

2. Examples of dynamical systems

2.1 Ordinary differential equations
As a first example, let us mention papers [8, 9] where the
problem of relative diffusion of weakly inertial particles in a
randomhydrodynamic flowwith a velocity field u�r; t� (which
has zero mean value) was considered in the framework of the
Newton equation:

d

dt
r�t� � v�t� ; r�0� � r0 ;

�2�
d

dt
v�t� � ÿl�v�t� ÿ u

ÿ
r�t�; t�� ; v�0� � v0�r0� :

In these studies, Eqns (2) were linearized with respect to
the initial positions of the particles, and Lyapunov character-
istic indices (1) were calculated. In the same papers, the results
of numerical simulations of the stochastic system of equations
(2) were also presented.

For inertialess particles, the parameter l!1. As follows
from the system of equations (2), one has

v�t� � u
ÿ
r�t�; t�

and the trajectory of a particle in a hydrodynamic flow with a
velocity field u�r; t� is described by the equation

d

dt
r�tjr0� � u

ÿ
r�tjr0�; t

�
; r�0jr0� � r0 ; �3�

so that the problem of determining the trajectories of
inertialess particles in a hydrodynamic flow reduces to purely

kinematic one. Here, the vertical bar denotes the dependence
of the solution to the problem on the initial condition.

It should be noted that the quantity j�tjr0� �
det
qri�tjr0�=qrj 0, called the divergence, is governed by the

equation

d

dt
j�tjr0� � qu�r; t�

qr
j�tjr0� ; j�0jr0� � 1 ; �4�

and for a divergence-free hydrodynamic flow �div u�r; t� � 0�
one has j�tjr0� � 1.

Let us dwell on the stochastic peculiarities of the solution
of problem (3) for a system of particles. Formally, each
particle moves independently according to Eqn (3). How-
ever, if the random field u�r; t� has a finite spatial-correlation
radius lcor, particles separated by distances shorter than lcor
reside in a common zone of influence of the random field
u�r; t�, so that new collective features can emerge in the
dynamics of such a system of particles.

For a time-independent velocity field, u�r; t� � u�r�,
equation (3) assumes the simpler form

d

dt
r�t� � u�r� ; r�0� � r0 :

In this case, the stationary points ~r at which u�~r� � 0 remain
immobile. Depending on whether they are stable or unstable,
they will either attract or repel particles located in their
neighborhood. Since the function u�r� is random, the
positions of the points ~r are also random. A similar situation
should also be present in the general case of a spatiotemporal
random velocity field u�r; t�.

If some points~r remain stable over a sufficiently long time,
particle-cluster regions (i.e., compact regions of enhanced
particle concentrations mainly located in rarefied zones)
should form in their neighborhoods in some particular
realizations of the random field u�r; t�. If, however, the
stability of these points changes into instability sufficiently
rapidly, so that the particles have no time for their substantial
rearrangement, then cluster regions will not form.

Numerical simulations [10, 11] show that there are
considerable differences in the dynamics of a system of
particles between the cases of divergence-free and divergent
random velocity fields. For a particular realization of a
divergence-free time-independent velocity field u�r�, Fig. 1a
schematically represents an interval of the evolutionary
history of a particles' system (in a two-dimensional case) in
dimensionless time related to the statistical parameters of the
field u�r�. Initially, the particles were uniformly distributed
inside a circle. In this case, the area bounded by the contour is
preserved, and particles relatively uniformly fill the area
enclosed by the deformed contour. Only a strong fractal
indentation of this contour arises. This phenomenon, which
came to be known as chaotic advection, is now actively being
studied (see, e.g., Ref. [12]).

As for a potential velocity field u�r�, the particles
uniformly distributed at the initial time over a square form
cluster regions in the process of time evolution. Figure 1b
illustrates a numerically simulated fragment of such an
evolutionary scenario. We emphasize again that the forma-
tion of clusters in this case is a purely kinematic effect. This
feature of the particle dynamics completely disappears with
averaging over the ensemble of realizations of the random
velocity field.
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A simple model of the tracer diffusion is known [13],
which makes it possible to observe the basic difference
between the diffusion processes in divergent and divergence-
free velocity fields. In divergence-free (incompressible)
velocity fields, the particles (and, therefore, the density field)
have no time to be attracted by stable attracting centers within
their lifetimes, thus slightly fluctuating about their initial
positions. Conversely, in a divergent (compressible) velocity
field (within the same lifetime of the stable attracting centers),
the particles have time to be attracted by these centers, since
this attraction process is exponentially speeded up.

To present a second example, we mention a monograph
by Lifshits et al. [14], in which a one-dimensional problem of
the overbarrier penetration of particles through a layer of a
disordered medium was considered based on the one-
dimensional, time-independent SchroÈ dinger equation with a
random potential. In the same monograph, Lyapunov
characteristic indices (1) were calculated. This problem is
similar to the problem of wave propagation in a one-
dimensional random medium.

Let a layer of a chaotically inhomogeneous medium
occupy a spatial region L0 < x < L and let an incident plane
wave u0�x� � exp

�ÿik�xÿ L�� come to this layer from the
region x > L. Due to the inhomogeneities, a wave reflected
from the layer with a reflection coefficient RL � u�L� ÿ 1
appears, and another wave is transmitted by the layer with a
transmission coefficient TL � u�L0�.

Inside the layer, the wave field is governed by the
Helmholtz equation

d2

dx 2
u�x� � k 2

�
1� e�x��u�x� � 0 ; �5�

where the function e�x� is assumed to be random and
describes the inhomogeneities of the medium. We also
assume that e�x� � 0 outside the layer, whereas
e�x� � e1�x� � ig inside the layer, with the real part e1�x�
being responsible for wave-scattering processes in the
medium, and the imaginary part g5 1 describing the
attenuation of the wave in the medium.

This equation must be complemented with boundary
conditions, viz. the continuity conditions for the wave field
u�x� and its derivative du�x�=dx at the layer boundaries, and

the radiation emission conditions at these boundaries; they
can be written out as

u�L� � i

k

du�x�
dx

����
x�L

� 2 ; u�L0� ÿ i

k

du�x�
dx

����
x�L0

� 0 : �6�

Under the assumption that the statistical properties of the
function e�x� are known, the statistical problem reduces to
determining the statistical characterization of both the wave
reflection and transmission coefficients related to the values
of the field at the layer boundaries and thewave-field intensity
I�x� � ��u�x���2 inside the inhomogeneous medium.

The wave equation considered coincides in its form with
the equation of an oscillator with a varying eigenfrequency (if
the spatial variable x is substituted with the time variable t); as
is well known, such an oscillator exhibits the phenomenon of
parametric resonance at the frequencies 2k=n �n � 1; 2; . . .�.
Since components with all frequencies, including these, are in
general present in the function e�x�, a similar phenomenon
should obviously occur also in the problem under considera-
tion and can be termed the phenomenon of stochastic
parametric wave resonance. In this case, the boundary
conditions fix the wave-field values at the boundaries of the
inhomogeneous-medium layer, so that the statistical expo-
nential growth of the field is possible only in the bulk of the
layer, far from its boundaries.

However, this phenomenon does not occur in some
particular realizations. Figure 2 illustrates two realizations
of the wave-field intensity in a sufficiently deep layer of the
medium, which correspond to two realizations of numerically
simulated inhomogeneities of the medium (see, e.g., Refs [1,
15] and the monographs [3, 4]). Without going into details of
the parameters of the problem, we only note that this figure
clearly demonstrates a tendency to an abrupt exponential
decline (with large spikes to either larger or nearly zero
intensities), which is due to multiple reflections of the wave
in the chaotically inhomogeneous medium (dynamic localiza-
tion). In this case, the parameter g5 1 and, therefore, the
effect of weak absorption on the dynamic localization is not
significant.

It should be noted that, with a passage to continual
generalizations of the considered problem in the mechanics
and electrodynamics of continuous media Ð i.e., to fields
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Figure 1. Simulated diffusion of a system of particles in a solenoidal (a) and potential (b) random velocity field.
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described by partial differential equations Ð an analysis of
Lyapunov stability becomes possible only using series
expansions of solutions in terms of a complete system of
orthogonal functions, i.e., with a passage to an infinite-
dimensional system of ordinary differential equations.
Applying such a technique to stochastic problems raises the
question of commutativity for the series-expansion and
statistical-averaging procedures. In particular, these opera-
tions are, as a rule, not commutative if the statistical
characteristics of the random processes and fields are
approximated by singular (generalized) functions (as, for
example, in the approximation of delta-correlated fluctua-
tions in the parameters of the system).

2.2 Partial differential equations
An example of such a field in fluidmechanics is the field of the
passive-tracer density r�r; t�, which is governed by the
continuity equation�

q
qt
� q
qr

v�r; t�
�
r�r; t� � 0 ; r�r; 0� � r0�r� : �7�

Here, v�r; t� is the tracer-velocity field in the hydrodynamic
flow u�r; t�, and the total mass of the tracer is conserved
during the evolution, namely

M �M�t� �
�
dr r�r; t� �

�
dr r0�r� � const :

Forweakly inertial particles, the field of the tracer velocity
v�r; t� itself in the hydrodynamic flow u�r; t� can be described
by the quasilinear partial differential equation (see, e.g.,
Ref. [16])�

q
qt
� v�r; t� q

qr

�
v�r; t� � ÿl�v�r; t� ÿ u�r; t�� �8�

which should be considered to be phenomenological. In the
general case, a solution to Eqn (8) may not be unique,

discontinuities can be present, etc. However, in the asympto-
tic case of a weakly inertial tracer (with l!1, which is the
limit that we are interested in), the solution of the problemwill
be unique over a reasonably long time interval. Notice that,
on the right-hand side of Eqn (8), the term F�r; t� � lv�r; t�
which is linear with respect to the velocity field v�r; t�
corresponds to the well-known Stokes formula for the drag
force acting on a slowly moving particle and is brought about
by the hydrodynamic flow u�r; t�. If the particle is approxi-
mated by a sphere of radius a, we have l � 6paZ=mp, where Z
is the dynamic viscosity, and mp is the mass of the particle
(see, e.g., Refs [17, 18]).

Equations (7) and (8) provide an Euler description of the
evolution of the passive-tracer-density field. They are first-
order partial differential equations and can be solved using
the method of characteristics. Then, the characteristic curves
r�t�, v�t� for Eqn (8) coincide with equations (2) describing the
motion of the particle. Equation (7) is written in the following
form

d

dt
r�tjr0� � ÿ

qv
ÿ
r�tjr0�; t

�
qr

r�tjr0� ; r�0jr0� � r0�r0� : �9�

Such a passage leads to a Lagrangian description of the tracer
dynamics.

For an inertialess tracer �l!1�, we have v�r; t�� u�r; t�,
and Eqns (7), (9) can be written in the simplified form�

q
qt
� q
qr

u�r; t�
�
r�r; t� � 0 ; r�r; 0� � r0�r� ; �10�

d

dt
r�tjr0� � ÿ

qu
ÿ
r�tjr0�; t

�
qr

r�tjr0� ; r�0jr0� � r0�r0� :
�11�

In this case, the clustering of the density field r�r; t� in the
divergent hydrodynamics flow with the velocity field u�r; t�
[for div u�r; t� 6� 0] occurs with a probability of unity.

A comparison between Eqns (11) and (4) leads to the
following relationship between the Lagrangian particle
density and the divergence:

r�tjr0� � r0�r0�
j�tjr0� : �12�

As a second example, let us consider wave propagation in
a randomly inhomogeneous three-dimensional medium using
a scalar parabolic equation valid for the description of wave
propagation in a medium with large-scale three-dimensional
inhomogeneities and describing the scattering of a wave by
small angles (see, e.g., Refs [19 ± 21] and the monograph [3]):

q
qx

U�x;R� � i

2k
DRU�x;R� � ik

2
e�x;R�U�x;R� ;

�13�
U�0;R� � U0�R� :

Here, the following notation was introduced: x is the
coordinate in the direction of propagation of the wave, R
are the coordinates in the lateral plane, and e�x;R� is the
departure of the permittivity from unity. Clearly, this
equation is approximate.

If we introduce the amplitude and phase of the wave field
according to the formula

U�x;R� � A�x;R� exp �iS�x;R�� ;

2

1

0 2.5 5.0 Dx

Figure 2. Numerical simulation of the dynamic localization for two

realizations of inhomogeneities in a medium.
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the transport equation for the wave-field intensity
I�x;R� � ��u�x;R���2 can be written out as

q
qx

I�x;R� � 1

k
HR

�
HRS�x;R�I�x;R�

	 � 0 ;
�14�

I�0;R� � I0�R� :
Therefore, in the general case of an arbitrarily directed
incoming wave beam, the power of the wave in the plane
x � const, viz.

E0 �
�
I�x;R� dR �

�
I0�R� dR ;

is conserved.
Equation (14) coincides in form with Eqn (7) and can thus

be treated as the transport equation for a conservative tracer
in a potential velocity field.

As is well known, the realizations of the intensity field are
of a cluster nature, and the clustering manifests itself in
caustic patterns due to the effects of random focusing and
defocusing of the wave field in a random medium. As an
example, Fig. 3 presents photographs of the cross section of a
laser beam propagating in a turbulent medium in laboratory
studies [22] for various intensities of the permittivity fluctua-
tions. Similar patterns taken from Ref. [23] are presented in
Fig. 4; they were obtained by numerical simulations [24, 25]
using the representation of the solution of Eqn (13) as a
continual integral. The development of the caustic wave-field
pattern is clearly seen in these figures.

3. Statistical topography
of random processes and fields

We will now discuss the essentials of the statistical topogra-
phy method. Let us first introduce the concept of typical
realization of the random process z�t� to characterize the

basic peculiarities of behavior for a particular realization of
the process as a whole, over the entire time interval t 2 �0;1�.

3.1 The typical-realization curve for a random process
Let z�t� be a random process. The statistical characteristics of
the process z�t� at a fixed time t are completely described by
either the probability density P�z; t�, which parametrically
depends on time, or the integral distribution function

F�z; t� � Prob
ÿ
z�t� < z

� � � z

ÿ1
dz 0 P�z 0; t�

which gives the probability of the process value at a time t,
satisfying the inequality z�t� < z.

We define the typical-realization curve for the random
process z�t� as the deterministic curve z ��t� that is themedian
of the integral distribution function. This function can be
determined as the solution of the algebraic equation

F
ÿ
z ��t�; t� � 1

2
:

This definition is based on the property of themedian that, for
any time interval �t1; t2�, the random process z�t� appears to
`wind' around the curve z ��t�, so that the mean time over
which the inequality z�t� > z ��t� holds true coincides with the
mean time over which the opposite inequality z�t� < z ��t� is
valid (Fig. 5), namely


Tz�t�>z ��t�
� � 
Tz�t�<z ��t�

� � 1

2
�t2 ÿ t1� :

Naturally, the curve z ��t� can substantially differ from any
particular realization of the process z�t� and it does not
describe the magnitude of possible spikes. Thus, the typical-
realization curve z ��t� of the random process z�t�, which was
obtained relying on the one-time probability density, is
nevertheless defined over the whole time interval t 2 �0;1�.

For specific types of random processes, additional
information characterizing the spikes against this curve can
obviously be obtained, as well.

3.1.1 Very simple random processes. For a Gaussian random
process z�t�with amean value



z�t�� and a variance s 2�t�, the

one-time probability density is given by

P�z; t� � 1����������������
2ps 2�t�p exp

�
ÿ
�
zÿ 
z�t���2
2s 2�t�

�
;

a b

Figure 3.Cross section of a laser beam propagating in a turbulent medium

(under laboratory conditions) in the region of strong focusing (a) and in

the region of strong (saturated) fluctuations (b).

a b

Figure 4.Cross section of a laser beam propagating in a turbulent medium

(numerical simulation) in the region of strong focusing (a) and in the

region of strong (saturated) fluctuations (b).

z ��t�
z�t�

t1 t2 t

Dt1 Dt2 Dt3

Figure 5.Toward a definition of a typical-realization curve for the random

process.
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and the typical-realization curve coincides with the mean
value of the process z�t�:

z ��t� � 
z�t�� : �15�

The generating (or characteristic) function for this process
has the form


exp
�
lz�t��� � �1

ÿ1
dz exp

�
lz�t��P�z; t�

� exp

�
l


z�t��� l2

2
s 2�t�

�
: �16�

For a logarithmically normal random process y�t� whose
logarithm is a Gaussian random process z�t�, viz.

y�t� � exp z�t� ;

the one-time probability density P�y; t� can be written out as

P�y; t� � 1

y
����������������
2ps 2�t�p exp

�
ÿ ln2

�
exp

�ÿ
z�t���y�
2s 2�t�

�
;

and the typical-realization curve is determined by the equality

y ��t� � exp


z�t�� � exp



ln y�t�� : �17�

If we know the behavior of the moment functions of the
logarithmically normal random process y�t�, i.e., the func-
tions



yn�t�� �n � 1; 2; . . .�, the statistical characteristics of

the random process z�t� � ln y�t� are also known. Indeed,
according to formula (16), we have at l � n the following
relationship



yn�t�� � 
exp �n ln y�t��� � exp

�
n


ln y�t��� n 2

2
s 2
ln y�t�

�
;

and hence

ln y�t�� � lim

n! 0

1

n
ln


yn�t�� ; s 2

ln y�t� � lim
n!1

2

n 2
ln


yn�t�� :
�18�

3.1.2 The simplest Markovian random processes
Wiener random process. The Wiener random process is
defined as the solution of the stochastic equation

d

dt
w�t� � z�t� ; w�0� � 0 ;

where z�t� is a Gaussian process delta-correlated in time (a
`white noise' process) with the parameters


z�t�� � 0 ;


z�t�z�t 0�� � 2s 2t0 d�tÿ t 0� : �19�

For a discussion of the property of delta correlation of
processes in time and the physical meaning of the parameters
s 2 and t0, see, for instance, the monographs [3, 4].

The solution of this equation,

w�t� �
� t

0

dt z�t� ;

is a continuous, time-dependent Gaussian random process
with the parameters


w�t�� � 0 ;


w�t�w�t 0�� � 2s 2t0 min �t; t 0� :

Wiener random process with a drift. Let us discuss a more
general process with a drift, depending on the parameter a
according to the formula

w�t; a� � ÿat� w�t� ; a > 0 :

The process w�t; a� is Markovian; its probability density
P�w; t; a� is described by the expression

P�w; t; a� � 1

2
��������
pDt
p exp

�
ÿ�w� at�2

4Dt

�
; �20�

where the quantity D � s 2t0 is the diffusion coefficient. The
typical-realization curve for a Wiener random process with a
drift is the linear function of time:

w ��t; a� � ÿat :

Wiener randomprocesses can be used to construct various
other processes convenient for the simulation of various
physical phenomena. For positive quantities, a very simple
approximation is a logarithmically normal (lognormal)
process. We will consider it in more detail.

Logarithmically normal process. We define a lognormal
random process by the formula

y�t; a� � expw�t; a� � exp

�
ÿat�

� t

0

dt z�t�
�
; �21�

where z�t� is a white-noise Gaussian process with the
parameters specified by formulas (19). It can be governed by
the stochastic equation

d

dt
y�t; a� � �ÿa� z�t�	 y�t; a� ; y�0; a� � 1 :

The one-time probability density of the lognormal process
is given by

P�y; t; a� � 1

2y
��������
pDt
p exp

�
ÿ ln2

�
y exp �at��
4Dt

�
: �22�

A feature typical of distribution (22) is the appearance of a
long flat `tail ' for Dt4 1, indicative of the increasing role of
large spikes of the process y�t; a� in the formation of one-time
statistics.

If we know only one-point statistical characteristics of the
process y�t; a�, we can obtain important information on the
behavior of the realizations of the process y�t; a� over the
entire time interval �0;1�.

In particular, the lognormal process y�t; a� is Markovian
and its one-time probability density (22) obeys the Fokker ±
Planck equation�

q
qt
ÿ a

q
qy

y

�
P�y; t; a� � D

q
qy

y
q
qy

yP�y; t; a� ;
�23�

P�y; 0; a� � d�yÿ 1� :

Based on Eqn (23), we can easily derive equations for the
moment functions of the process y�t; a�, whose solutions are
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determined by the equalities

yn�t; a�� � exp

�
n

�
nÿ a

D

�
Dt

�
;

�24��
1

yn�t; a�
�
� exp

�
n

�
n� a

D

�
Dt

�
; n � 1; 2; . . .

and grow exponentially with time.
From Eqn (23), we can also easily obtain the equality

ln y�t�� � ÿat ;

therefore, the parameter a can be written in the form

ÿa � 1

t



ln y�t�� : �25�

This means that, according to equality (1), it is the Lyapunov
characteristic index (Lyapunov exponent) for the lognormal
random process y�t�. Next, the typical-realization curve for
the process y�t; a� proves to be the exponentially declining
curve

y ��t� � exp


ln y�t�� � exp �ÿat� ; �26�

in agreement with formula (17).
The exponential growth of the moments is due to the

spikes of the process y�t; a� against the background of the
typical-realization curve y ��t; a� in the direction of both
larger and smaller y values; therefore, it is a purely statistical
effect that results from averaging over the whole ensemble of
realizations.

Thus, we see a distinct contradiction between the behavior
of the statistical characteristics of the process y�t; a� and the
behavior of the process in concrete realizations.

All these properties of the lognormal process manifest
themselves in the dynamics of specific physical systems in the
form of coherent phenomena such as clustering and localiza-
tion.

3.2 Random fields
The principal subject of investigation in the statistical
topography of random fields is, as in the normal topography
ofmountains, the system of contoursÐ level lines (in the two-
dimensional case) or surfaces of constant values (in the three-
dimensional case) defined by the equality f �r; t� � f � const.

To analyze the system of contours (in the two-dimensional
case), it is convenient to introduce the singular indicator
function

j�R; t; f � � d
ÿ
f �R; t� ÿ f

�
localized at the contours.

Quantities such as the total area of regions that are
bounded by contours and where f �R; t� > f, viz.

S�t; f � �
�
y
ÿ
f �R; t� ÿ f � dR �

�1
f

df 0
�
dRj�R; t; f 0� ;

and the total `mass' of the field in these regions,

M�t; f � �
�1
f

f 0 df 0
�
dRj�R; t; f 0� ;

can be expressed in terms of this function.

The indicator function averaged over the ensemble of
realizations determines the one-time, one-point probability
density P�R; t; f � � 
j�R; t; f ��; therefore, the mean values
of all expressions are determined by this probability density.

Additional information on the structure of the field
f �R; t� can be gained if its spatial gradient, p�R; t� �
Hf �R; t�, is included in the consideration. For example, the
total length of the contours is described by the expression

l�t; f � �
�
dR
��p�R; t��� dÿ f �R; t� ÿ f

� � � dl :

The inclusion of the second-order spatial derivatives
makes it possible to estimate the total number of the
contours f �R; t� � f � const using the approximate (correct
up to counting unclosed curves) formula

N�t; f � � 1

2p

�
dR k�R; t; f ���p�R; t��� dÿ f �R; t� ÿ f

�
;

where k�R; t; f � is the curvature of the level line.
It should be noted that, for a spatially homogeneous field

f �R; t� with R-independent appropriate one-point probabil-
ity densities, the statistical averages of all quantities will
characterize the corresponding specific (calculated per unit
area) values of these quantities. In this case, for one-point
statistical characteristics, random fields are statistically
equivalent to random processes for which the typical-
realization curve characterizes the time behavior of the
random field at any fixed point in space. This constitutes a
fundamental difference of the statistical description from the
traditional Lyapunov approach.

We now illustrate the applications of the statistical
topography ideology using the problems considered in
Section 2 as examples.

4. An inertialess tracer
in random hydrodynamic flows

In the general case, we assume the random velocity field to be
divergent �div u�r; t� 6� 0� and, simultaneously, a (statistically
homogeneous and isotropic in space and stationary in time)
Gaussian random field with a correlation tensor and a
spectral tensor

ÿ

u�r; t�� � 0

�
:

Bi j�rÿ r 0; tÿ t 0� � 
ui�r; t�uj�r 0; t 0��
�
�
dkEi j�k; tÿ t 0� exp �ik�rÿ r 0�� ;

�27�
Ei j�k; t� � 1

�2p�d
�
drBi j�r; t� exp �ÿikr� ;

Ei j�k; t� � E s
i j�k; t� � Ep

i j�k; t� ;

where d is the dimension of space, and the spectral
components of the velocity field tensor have the structure

E s
i j�k; t� � E s�k; t�

�
di j ÿ ki kj

k 2

�
;

�28�
E p
i j�k; t� � Ep�k; t� ki kj

k 2
:

Here,E s�k; t� andEp�k; t� are the solenoidal and the potential
components of the spectral density of the velocity field,
respectively.
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Wedefine the time-correlation radius of the field u�r; t� via
the equality

t0s 2
u �

�1
0

dtBi i�0; t�

�
�1
0

dt
�
dk
��dÿ 1�E s�k; t� � E p�k; t�� ;

where the variance of the velocity field is s 2
u � Bi i�0; 0� �


u 2�r; t��.
In our statistical analysis, we will utilize the approxima-

tion of a random field u�r; t� delta-correlated in time, so that
the correlation tensor of the field u�r; t� is approximated by
the expression (see, e.g., the monographs [3, 4])

Bi j�r; t� � 2B eff
i j �r�d�t� ; B eff

i j �r� �
�1
0

dt Bi j�r; t� :

4.1 Lagrangian description (diffusion of particles)
4.1.1 One-point statistical characteristics. From the system of
equations (3) for the one-time Lagrangian probability density
P�r; j; tjr0� for the particle coordinate r�tjr0� and its diver-
gence j�tjr0�, in the approximation of a Gaussian velocity
field u�r; t� delta-correlated in time, we arrive at the Fokker ±
Planck equation�

q
qt
ÿD0D

�
P�r; j; tjr0� � Dp q2

q j 2
j 2P�r; j; tjr0� ;

�29�
P�r; j; 0jr0� � d�rÿ r0� d� jÿ 1� :

The solution of equation (29) has the form

P�r; j; tjr0� � P�r; tjr0�P� j; tjr0� ; �30�

where P�r; tjr0� is the probabilistic distribution of particle
coordinates that satisfies the equation

q
qt

P�r; tjr0� � D0
q2

qr 2
P�r; tjr0� ; P�r; 0jr0� � d�rÿ r0� :

Consequently, equation (30) represents a Gaussian distribu-
tion

P�r; tjr0� � 1

�4pD0dt�d=2
exp

�
ÿ�rÿ r0�2

4D0t

�
; �31�

where d is the dimension of the space.
We emphasize that the obtained solution (30) implies that

the coordinates r�tjr0� and divergences j�tjr0� are statistically
independent in the neighborhood of the particle with the
Lagrangian coordinate r0.

The probability density for the divergence satisfies the
Fokker ± Planck equation that follows from Eqn (29):

q
qt

P� j; t� � q2

q j 2
j 2P� j; t� ; P� j; 0jr0� � d� jÿ 1� : �32�

Hereinafter, we use the dimensionless time t � D pt. The
random process j�tjr0� is then lognormal, and its probability
density does not depend on the parameter r0:

P� j; tjr0� � 1

2 j
�����
pt
p exp

�
ÿ ln2 � j exp t�

4t

�
: �33�

Therefore, we obtain the following expression for the
Lagrangian moments of divergence:


j n�tjr0�
� � exp

�
n�nÿ 1�t� ;

this implies, in particular, an exponential growth of its
moments (for n > 1) in the Lagrangian representation.

For the realizations of divergence, we have an exponen-
tially declining typical-realization curve of the form

j ��t� � exp �ÿt� ;

which is precisely the Lyapunov exponent.
We emphasize that the above-discussed Lagrangian

statistical properties of the particle in the flows containing a
random potential component qualitatively differ from the
statistical properties of the particle resided in divergence-free
flows, where the divergence is conserved, viz. j�t� � 1. The
above-presented statistical estimates of the random process
j�t� indicate that they are formed by the spikes of their
realizations against the background of the typical-realization
curves.

At the same time, the probability distributions for particle
coordinates are virtually the same in the cases of both
divergent and divergence-free flows.

4.1.2 Two-point statistical characteristics. Now we consider
the combined dynamics of two particles in the absence of a
mean flow. In this case, the combined probability density for
the relative diffusion of the two particles is defined as

P�l; t� � 
dÿr1�t� ÿ r2�t� ÿ l
��
;

and it satisfies the Fokker ± Planck equation

q
qt

P�l; t� � q2

qla qlb
Dab�l�P�l; t� ; P�l; 0� � d�lÿ l0� ; �34�

where

Dab�l� � 2
�
B eff
ab �0� ÿ B eff

ab �l�
�

is the structural matrix of the vector field u�r; t�, and l0 is the
initial distance between the particles.

Equation (34) has not been solved in the general case. If,
however, for the initial distance between the particles we
have l0 5 lcor, where lcor is the spatial correlation radius of
the velocity field u�r; t�, the functions Dab�l� can be expanded
into a Taylor series and, to a first approximation, we will
obtain

Dab�l� � ÿ
q2B eff

ab �l�
qli qlj

����
l� 0

lilj :

The diffusion tensor can be simplified using representation
(28) and written out as

Dab�l� � 1

d�d� 2�
n�
D s�d� 1� �D p

�
dabl 2ÿ 2�D sÿD p�lalb

o
;

�35�

where d is the dimension of the space.
Now we substitute Eqn (35) into Eqn (34), multiply both

parts of the resulting equation by jljn � l n, and integrate with
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respect to l to obtain the closed equation

d

dt
ln


l n�t�� � 1

d�d� 2�
n�

D s�d� 1� �Dp
�
n�d� nÿ 2�

ÿ 2�D s ÿD p�n�nÿ 1�
o
;

whose solution corresponds to functions exponentially
growing in time for all moments �n � 1; 2; . . .�. The prob-
ability distribution for the random process l�t�=l0 will then be
logarithmically normal.

Therefore, in accordance with formulas (17) and (18), the
typical-realization curve for the distance between the two
particles will be the exponential function of time in the form

l ��t� � l0 exp

�
1

d�d� 2�
�
D sd�dÿ 1� ÿD p�4ÿ d ��t� ; �36�

which is related to the Lyapunov exponent.
From this it follows that, in the two-dimensional case

�d � 2�, the expression

l ��t� � l0 exp

�
1

4
�D s ÿD p�t

�

is essentially dependent on the sign of the differenceD s ÿD p.
In particular, for a divergence-free velocity field �D p � 0�, we
have an exponentially growing typical realization, which
corresponds to an exponentially rapid recession of particles
at small distances between them. This result is valid for times

1

4
D st5 ln

lcor
l0

;

for which expansion (35) is valid. In the other limiting case of
a potential velocity field �D s � 0�, the typical realization will
be an exponentially declining curve, i.e., the particles will
obviously tend to `merge'. This means that the clusters Ð
zones of compact concentration of particles, mainly located in
rarefied zonesÐ should form, which agrees with the results of
evolutionary numerical simulations of a realization of an
initially uniform particle distribution in a random potential
velocity field (such a distribution is shown in Fig. 1b, albeit
for a completely different statistical model of the velocity
field). Seemingly, the clustering phenomenon itself does not
depend on the model of the random velocity field, although
the statistical parameters characterizing this phenomenon
can certainly be sensitive to the model. Thus, the following
inequality must be satisfied for the clustering of particles:

D s < D p : �37�

In contrast, for the three-dimensional case �d � 3�, it
follows from Eqn (36) that

l ��t� � l0 exp

�
1

15
�6D s ÿD p�t

�
;

and the typical-realization curve will exponentially decline
with time, provided amore restrictive condition (compared to
the two-dimensional case) is satisfied:

D p > 6D s :

In the one-dimensional case, one obtains

l ��t� � l0 exp �ÿD pt� ;

and the typical-realization curve always declines with time,
since the velocity field is always divergent in this case.

4.2 Eulerian description
To describe the local behavior of the realizations of the tracer
spatial field in the random velocity field u�r; t�, it is necessary
to know the probabilistic distribution of the tracer density. If
we proceed from stochastic equation (7), the equation for the
probability density of the tracer density (concentration) field
can be written out as�

q
qt
ÿD0D

�
P�r; t; r� � Dr

q2

qr 2
r 2P�r; t; r� ;

�38�
P�r; 0; r� � d

ÿ
rÿ r0�r�

�
;

where the diffusion coefficient in the r-space is equal to
Dr � D p.

In particular, it follows from Eqn (38) that the moment
functions of the density field obey the equation�

q
qt
ÿD0D

�

r n�r; t�� � Drn�nÿ 1�
 r n�r; t�� ;

�39�

r n�r; 0�� � r n

0 �r� :

Its solution has the following structure

r n�r; t�� � exp

�
n�nÿ 1�t� � dr 0 P�r; tjr 0� r n

0 �r 0� ; �40�

where the function P�r; tjr 0� is described by equality (31), and
the parameter t � Drt.

If the initial tracer density is everywhere the same,
r0�r� � r0 � const, the probabilistic density distribution
does not depend on r and is governed by the equation

q
qt

P�t; r� � Dr
q2

qr 2
r 2P�t; r� ; P�0; r� � d�rÿ r0� ; �41�

which coincides with Eqn (32) for the divergence, differing
only in the initial condition.

Therefore, the Eulerian density field is lognormal in this
case, its probability density and the corresponding integral
distribution function being as follows:

P�t; r� � 1

2r
�����
pt
p exp

�
ÿ ln2 �r exp �t�=r0�

4t

�
;

�42�
F�t; r� � F

�
ln �r exp �t�=r0�

2
���
t
p

�
;

where F�z� is the probability integral (error function)

F�z� � 1������
2p
p

� z

ÿ1
dy exp

�
ÿ y 2

2

�
:

In terms of the one-point characterization of the density
field r�r; t�, the problem in this case is statistically equivalent
to the divergence random process in the Lagrangian descrip-
tion, j�t�, and all the moment functions, starting from the
second one, exponentially grow with time:


r�r; t�� � r0 ;


r n�r; t�� � r n

0 exp
�
n�nÿ 1�t� : �43�

In contrast, the typical-realization curve of the density field at
any fixed point in space exponentially declines with time,
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according to formulas (17) and (18):

r ��t� � r0 exp �ÿt� ; �44�

which testifies to a clustered nature of medium-density
fluctuations in arbitrary divergent flows. The formation of
the Eulerian statistics of density at any fixed point in space is
controlled by density fluctuations around this curve.

We discussed above the one-point probability distribu-
tion for the tracer density in an Eulerian representation,
which was even sufficient to make some inferences on the
temporal behavior of the density-field realizations at fixed
points in space. We will now demonstrate that this distribu-
tion also makes it possible to find out some characteristic
features of the spatiotemporal structure of the density-field
realizations.

For the sake of clarity, we restrict ourselves here to the
two-dimensional case. As noted above, important informa-
tion on the spatial behavior of realizations can be gained
from an analysis of contours which are specified by the
equality

r�r; t� � r � const : �45�

In particular, such functionals of the density field as the total
area in the region where r�r; t� > r [we denote it as S�t; r�]
and the total massM�t; r� of tracer in this region (their mean
values are determined by the one-point probability density)
are described by the expressions


S�t; r�� � �1
r

d~r
�
drP�r; t; ~r� ;

�46�

M�t; r�� � �1

r
~r d~r

�
drP�r; t; ~r� :

If we substitute here the solution of Eqn (38), we will easily
find, after simplemanipulations, explicit expressions for these
quantities:


S�t; r�� � � drF� 1

2
���
t
p ln

r0�r� exp �ÿt�
r

�
;

�47�

M�t; r�� � � dr r0�r�F� 1

2
���
t
p ln

r0�r� exp t
r

�
:

It can be seen from here that, as t4 1, the mean area of the
regions where the density exceeds a given value r decreases
with time according to the law


S�t; r�� � 1��������
ptr
p exp

�
ÿ t
4

��
dr

�����������
r0�r�

p
; �48�

while the mean mass of the tracer contained in these regions,
viz.



M�t; r�� �Mÿ

������
r
pt

r
exp

�
ÿ t
4

��
dr

�����������
r0�r�

p
; �49�

monotonically approaches the total mass M � � dr r0�r�.
This confirms again our previously-made conclusion that, as
time passes, the particles of the tracer tend to gather into
clusters Ð compact enhanced-density regions surrounded by
rarefied regions.

5. Localization of plane waves
in layered random media

Normally, to compute the specific statistical characteristics of
a solution to the wave problem, the model of fluctuations of
the function e�x� is used in the form of a Gaussian delta-
correlated random process (white-noise process) with the
parameters

e1�x�

� � 0 ;


e1�x�e1�x 0�

� � Be�xÿ x 0� � 2s 2
e l0d�xÿ x 0� ;

�50�

where Be�xÿ x 0� is the correlation function, s 2
e 5 1 is the

variance, and l0 is the correlation radius for the random
function e1�x�. This approximation implies that a passage to
the asymptotic case l0 ! 0 in the exact solution of the
problem with a finite correlation radius l0 leads to results
coinciding with the solution of the statistical problemwith the
parameters (50).

Notice that the principal fraction of the results weakly
depends on the model of the medium. Using a particular
model makes it possible to quantify the basic parameters of
the problem.

A statistical analysis of the solution of the problem
indicates that, for a sufficiently thick layer of the medium,
viz. D�Lÿ L0�4 1 [where the quantity D � k 2s 2

e l0=2 is
related to the statistical characteristics of the function e�x�],
with a probability of unity one finds jTLj ! 0 and, therefore,
jRLj ! 1; in other words, the half-space �L0 ! ÿ1� of the
randomly inhomogeneous medium totally reflects the inci-
dent wave due to multiple reflections in the medium, i.e., a
dynamic localization of the wave field occurs in this layer.

However, the mean value of the wave-field intensity for
the half-space of the randommedium is



I�Lÿ x�� � 2, while

higher moments normalized to their values at the layer
boundary are described by the expression


I n�Lÿ x�� � exp
�
Dn�nÿ 1��Lÿ x�� ;

i.e., the intensity of the wave field exhibits a logarithmically
normal probability distribution, while the moment functions
grow exponentially to the medium's interior.

The typical realization of thewave intensity in themedium
is described in this case by the exponentially declining curve

I ��x� � 2 exp
�ÿD�Lÿ x��

and coincides with the Lyapunov exponent; the quantity
lloc � 1=D is called the localization length (see, e.g., Ref. [14])
and determines the spatial scale of wave-field-intensity
damping in the medium for particular realizations of this
field.

Thus, we can see that the formation of the statistics is due
to the large spikes against the background of the typical-
realization curve, which means the absence of a statistical
localization of the wave field.

6. The caustic wave-field structure
in a randomly inhomogeneous medium

Let us introduce the amplitude and phase of awave field and a
complex wave phase according to the formula

u�x;R� � A�x;R� exp �iS�x;R�� � exp
�
f�x;R�� ;
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where

f�x;R� � w�x;R� � iS�x;R� ;

w�x;R� � lnA�x;R� is the amplitude level of the wave, and
S�x;R� is the wave-phase fluctuation relative to the phase kx
of the incident wave. From parabolic equation (13), the
following nonlinear equation of so-called Rytov's method of
smooth perturbations (MSP) can be obtained for the complex
phase:

q
qx

f�x;R� � i

2k
DRf�x;R� � i

2k

�
HHR f�x;R��2 � i

k

2
e�x;R� :
�51�

For a plane incident wave, which we will consider in what
follows, it can be assumed without any loss of generality that
u0�R� � 1 and, therefore, f�0;R� � 0.

We separate the real and the imaginary parts in Eqn (51)
to arrive at the equations

w�x;R� � 1

2k
DRS�x;R� � 1

k

�
HHR w�x;R���HHRS�x;R�

� � 0 ;

q
qx

S�x;R� ÿ 1

2k
DRw�x;R� ÿ 1

2k

�
HHRw�x;R�

�2
� 1

2k

�
HHRS�x;R�

�2 � k

2
e�x;R� : �52�

If the function e�x;R� is sufficiently small, iterative series
in terms of the field e�x;R� can be constructed for solving
equations (52). Once this is done, Gaussian fields w�x;R� and
S�x;R� correspond to the so-called first approximation of
Rytov's MSP; their statistical characteristics can be deter-
mined by statistically averaging the corresponding iterative
series. In particular, the second moments (including var-
iances) of these fields can be found from the linearized
system of equations (52), i.e., the system

q
qx

w0�x;R� � ÿ
1

2k
DRS0�x;R� ;

�53�
q
qx

S0�x;R� � 1

2k
DRw0�x;R� �

k

2
e�x;R� ;

while the mean values can be obtained by the direct averaging
of equations (52). The linear system of equations (53) can be
solved using a Fourier transform with respect to the
transverse coordinate.

Now consider a statistical description of the wave field.
We assume that the random field e�x;R� is a Gaussian
uniform and isotropic field with the parameters


e�x;R�� � 0 ; Be�xÿ x 0;Rÿ R 0� � 
e�x;R�e�x 0;R 0�� :
In the approximation of delta-correlated fluctuations in the
parameters of the medium, this correlation function can be
approximated by the `effective' function

Be�x;R� � B eff
e �x;R� � d�x�A�R� ;

A�R� �
�1
ÿ1

dxBe�x;R� ;

and the random field f�x;R� will then be a statistically
homogeneous field in the plane R, with all its one-point
statistical characteristics being independent of the parameter
R. The statistical properties of the amplitude fluctuations are

described in the considered approximation by the variance of
the amplitude level, i.e., by the parameter s 2

0 �x� �


w 2
0 �x;R�

�
.

To find the mean value of the amplitude level, we make
use of equation (14). For a plane incident wave, averaging this
equation over the ensemble of realizations of the field e�x;R�
yields the equality



I�x;R�� � 1, which can be rewritten as


I�x;R�� � 
exp �2w0�x;R���
� exp

�
2


w0�x;R�

�� 2s 2
0 �x�

� � 1 :

Therefore, in the first MSP approximation one obtains

w0�x;R�

� � ÿs 2
0 �x�. As for the variance of the wave

intensity, which is called the scintillation index, we find that,
in the first MSP approximation, it is equal to

b 2
0 �x� �



I 2�x;R��ÿ 1 � 
exp �4w0�x;R���ÿ 1 � 4s 2

0 �x� :
�54�

Thus, the wave-field intensity is a logarithmically normal
random field, and its one-point probability density is given by
the expression

P�x; I � � 1

I
����������������
2pb0�x�

p exp

�
ÿ 1

2b0�x�
ln2
�
I exp

�
1

2
b0�x�

���
:

�55�

Now we can consider a statistically equivalent random
process I�x� with probability density (55). For this process,
the typical-realization curve of the wave-field intensity is a
curve exponentially declining with the distance, namely

I ��x� � exp

�
ÿ 1

2
b0�x�

�
;

at any fixed point of spaceR; this testifies to the emergence of
a cluster (caustic) structure of the intensity field. The
formation of the statistics (for example, the moment func-
tions



I n�x;R��� is controlled by large spikes of the process

I�x� against the background of this curve.
The obtained description of intensity fluctuations based

on the first MSP approximation is valid for b0�x�4 1. As the
parameter b0�x� is further increased, the method of smooth
perturbations fails, and it becomes necessary to take into
account the nonlinearity of the equation for the complex
wave-field phase. This range of fluctuations, called the range
of strong focusing, can hardly be treated analytically. As the
parameter b0�x� is further increased �b 2

0 �x�5 10�, the
statistical characteristics of field intensity reach a saturation
regime, and this range of variations of the parameter b0�x� is
called the range of strong intensity fluctuations.

In the range of strong focusing, the intensity moments can
be approximated by the expression (see, e.g., Ref. [26])



I n�x;R�� � n! exp

�
n�nÿ 1� b

2�x� ÿ 1

4

�
;

with the corresponding probability density in the form

P�x; I � � 1�������������������������
p
ÿ
b�x� ÿ 1

�q
�
�1
0

dz exp

�
ÿzIÿ 1

b�x� ÿ 1

�
ln zÿ b�x� ÿ 1

4

�2�
;

April 2008 Statistical topography and Lyapunov exponents in stochastic dynamical systems 405



where the parameter b 2�x� describes the variance of intensity
fluctuations in this region; for example, in the case of a
turbulent medium, one obtains

b 2�x� � 1� 0:861
ÿ
b 2
0 �x�

�ÿ2=5
:

Here, b 2
0 �x� is the variance of the wave-field intensity

calculated in the first MSP approximation.
These asymptotic formulas describe a passage to the range

of saturated intensity fluctuations, where b�x� ! 1 as
b 2
0 �x� ! 1. Accordingly, in this range we have


I n�x;R�� � n! ; P�x; I � � exp �ÿI � :

The exponential probability distribution of the wave-field
intensity implies that the complex field u�x;R� is a Gaussian
random field. Consequently, in this region the mean specific
area of the regions where I�x;R� > I, and the specific
averaged power localized in these regions are constant and
do not reflect the behavior of the wave-field intensity in
particular realizations. Similarly, the passage to a statisti-
cally equivalent random process is not informative in this
case, since the typical-realization curve for such a process is
also represented by a constant.

The structure of the wave field in this case can be
understood by analyzing such quantities as the specific mean
length of the contours and the mean specific number of
contours (see, e.g., Ref. [21]). These quantities continue
growing with the parameter b0�x�, in contrast to the specific
mean area. This results from the fact that a leading role in this
regime is played by the interference of partial waves coming
from various directions.

The dynamical pattern of behavior of the contours
depends on the relationship between the processes of
radiation focusing and defocusing by particular regions of
the turbulent medium. The focusing on large-scale inhomo-
geneities gives rise to high peaks in the random relief of
intensity. In themaximum-focusing regime �b0�x� � 1�, about
half the total power of the wave is concentrated in high,
narrow peaks. As the parameter b0�x� is increased, the
defocusing of radiation becomes predominant, which smears
high peaks and produces a highly rugged (interferential) relief
with a large number of peaks at the levels of I � 1, which was
actually observed in both laboratory experiments (see Fig. 3)
and numerical simulations (see Fig. 4).

7. Conclusions

Our approach to the analysis of stochastic dynamical
problems is based on the ideas of statistical topography and
makes it possible to infer a quantitative and qualitative
characterization of particular realizations of the quantities
of interest over the whole time interval (whole space) from
one-point statistical characteristics of the random processes
and fields; it was conceived in discussions with experimenters
who mainly deal with individual realizations.

Many investigators still give much attention to the
traditional approach of analyzing the Lyapunov stability of
dynamical systems, based on Lyapunov characteristic
indices. As we have shown above, the Lyapunov exponent
for a random process can be identified with the typical-
realization curve corresponding to a lognormal law for
positive, time-dependent characteristics of the solutions for
stochastic dynamical systems. This is natural, since both

methods proceed in essence from the linearization of the
original dynamical system. The only difference lies in the fact
that, as the typical-realization curve is calculated, some
properties of the random parameters are immediately used,
such as their stationarity in time and homogeneity and
isotropy in space. Furthermore, the analysis can virtually
always be carried out using the approximation of the delta
correlation of the fluctuating parameters in time, i.e., using
the Fokker ± Planck equation, so that cumbersome computa-
tions can be avoided and the procedure can be substantially
simplified.

For stochastic dynamical systems homogeneous in space,
which are described by partial differential equations, a
passage can be made to statistically equivalent random
processes and, therefore, the typical-realization curve for
such a process can be studied. In contrast to Lyapunov's
approach, this curve can be used to gain information on the
formation of clustered structures in the random field.

If, however, linearization is not applicable or the one-time
probability distribution for the solution of the problem is
time-independent (for example, as in the case of wave
propagation in a turbulent medium in the radiation-intensity
range corresponding to `saturated fluctuations'), the typical-
realization curve ceases to be informative, and the complex
pattern of the wave-field caustic structure can be accounted
for only by studying the statistical topography of the wave
field in full.
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